machdep.c revision 1.95 1 /* $NetBSD: machdep.c,v 1.95 1998/01/09 21:34:47 thorpej Exp $ */
2
3 /*
4 * Copyright (c) 1994, 1995, 1996 Carnegie-Mellon University.
5 * All rights reserved.
6 *
7 * Author: Chris G. Demetriou
8 *
9 * Permission to use, copy, modify and distribute this software and
10 * its documentation is hereby granted, provided that both the copyright
11 * notice and this permission notice appear in all copies of the
12 * software, derivative works or modified versions, and any portions
13 * thereof, and that both notices appear in supporting documentation.
14 *
15 * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
16 * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
17 * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
18 *
19 * Carnegie Mellon requests users of this software to return to
20 *
21 * Software Distribution Coordinator or Software.Distribution (at) CS.CMU.EDU
22 * School of Computer Science
23 * Carnegie Mellon University
24 * Pittsburgh PA 15213-3890
25 *
26 * any improvements or extensions that they make and grant Carnegie the
27 * rights to redistribute these changes.
28 */
29
30 #include <sys/cdefs.h> /* RCS ID & Copyright macro defns */
31
32 __KERNEL_RCSID(0, "$NetBSD: machdep.c,v 1.95 1998/01/09 21:34:47 thorpej Exp $");
33
34 #include <sys/param.h>
35 #include <sys/systm.h>
36 #include <sys/signalvar.h>
37 #include <sys/kernel.h>
38 #include <sys/map.h>
39 #include <sys/proc.h>
40 #include <sys/buf.h>
41 #include <sys/reboot.h>
42 #include <sys/device.h>
43 #include <sys/file.h>
44 #ifdef REAL_CLISTS
45 #include <sys/clist.h>
46 #endif
47 #include <sys/callout.h>
48 #include <sys/malloc.h>
49 #include <sys/mbuf.h>
50 #include <sys/msgbuf.h>
51 #include <sys/ioctl.h>
52 #include <sys/tty.h>
53 #include <sys/user.h>
54 #include <sys/exec.h>
55 #include <sys/exec_ecoff.h>
56 #include <vm/vm.h>
57 #include <sys/sysctl.h>
58 #include <sys/core.h>
59 #include <sys/kcore.h>
60 #include <machine/kcore.h>
61 #ifdef SYSVMSG
62 #include <sys/msg.h>
63 #endif
64 #ifdef SYSVSEM
65 #include <sys/sem.h>
66 #endif
67 #ifdef SYSVSHM
68 #include <sys/shm.h>
69 #endif
70
71 #include <sys/mount.h>
72 #include <sys/syscallargs.h>
73
74 #include <vm/vm_kern.h>
75
76 #include <dev/cons.h>
77
78 #include <machine/autoconf.h>
79 #include <machine/cpu.h>
80 #include <machine/reg.h>
81 #include <machine/rpb.h>
82 #include <machine/prom.h>
83 #include <machine/conf.h>
84
85 #include <net/netisr.h>
86 #include <net/if.h>
87
88 #ifdef INET
89 #include <netinet/in.h>
90 #include <netinet/ip_var.h>
91 #include "arp.h"
92 #if NARP > 0
93 #include <netinet/if_inarp.h>
94 #endif
95 #endif
96 #ifdef NS
97 #include <netns/ns_var.h>
98 #endif
99 #ifdef ISO
100 #include <netiso/iso.h>
101 #include <netiso/clnp.h>
102 #endif
103 #ifdef CCITT
104 #include <netccitt/x25.h>
105 #include <netccitt/pk.h>
106 #include <netccitt/pk_extern.h>
107 #endif
108 #ifdef NATM
109 #include <netnatm/natm.h>
110 #endif
111 #ifdef NETATALK
112 #include <netatalk/at_extern.h>
113 #endif
114 #include "ppp.h"
115 #if NPPP > 0
116 #include <net/ppp_defs.h>
117 #include <net/if_ppp.h>
118 #endif
119
120 #ifdef DDB
121 #include <machine/db_machdep.h>
122 #include <ddb/db_access.h>
123 #include <ddb/db_sym.h>
124 #include <ddb/db_extern.h>
125 #include <ddb/db_interface.h>
126 #endif
127
128 #include "le_ioasic.h" /* for le_iomem creation */
129
130 vm_map_t buffer_map;
131
132 /*
133 * Declare these as initialized data so we can patch them.
134 */
135 int nswbuf = 0;
136 #ifdef NBUF
137 int nbuf = NBUF;
138 #else
139 int nbuf = 0;
140 #endif
141 #ifdef BUFPAGES
142 int bufpages = BUFPAGES;
143 #else
144 int bufpages = 0;
145 #endif
146 caddr_t msgbufaddr;
147
148 int maxmem; /* max memory per process */
149
150 int totalphysmem; /* total amount of physical memory in system */
151 int physmem; /* physical memory used by NetBSD + some rsvd */
152 int firstusablepage; /* first usable memory page */
153 int lastusablepage; /* last usable memory page */
154 int resvmem; /* amount of memory reserved for PROM */
155 int unusedmem; /* amount of memory for OS that we don't use */
156 int unknownmem; /* amount of memory with an unknown use */
157
158 int cputype; /* system type, from the RPB */
159
160 /*
161 * XXX We need an address to which we can assign things so that they
162 * won't be optimized away because we didn't use the value.
163 */
164 u_int32_t no_optimize;
165
166 /* the following is used externally (sysctl_hw) */
167 char machine[] = MACHINE; /* from <machine/param.h> */
168 char machine_arch[] = MACHINE_ARCH; /* from <machine/param.h> */
169 char cpu_model[128];
170
171 struct user *proc0paddr;
172
173 /* Number of machine cycles per microsecond */
174 u_int64_t cycles_per_usec;
175
176 /* some memory areas for device DMA. "ick." */
177 caddr_t le_iomem; /* XXX iomem for LANCE DMA */
178
179 /* number of cpus in the box. really! */
180 int ncpus;
181
182 char boot_flags[64];
183 char booted_kernel[64];
184
185 int bootinfo_valid;
186 struct bootinfo bootinfo;
187
188 struct platform platform;
189
190 u_int32_t vm_mbuf_size = (NMBCLUSTERS*MCLBYTES);
191 u_int32_t vm_kmem_size = (NKMEMCLUSTERS*CLBYTES);
192 u_int32_t vm_phys_size = (USRIOSIZE*CLBYTES);
193
194 #ifdef DDB
195 /* start and end of kernel symbol table */
196 void *ksym_start, *ksym_end;
197 #endif
198
199 /* for cpu_sysctl() */
200 int alpha_unaligned_print = 1; /* warn about unaligned accesses */
201 int alpha_unaligned_fix = 1; /* fix up unaligned accesses */
202 int alpha_unaligned_sigbus = 0; /* don't SIGBUS on fixed-up accesses */
203
204 caddr_t allocsys __P((caddr_t));
205 int cpu_dump __P((void));
206 int cpu_dumpsize __P((void));
207 void dumpsys __P((void));
208 void identifycpu __P((void));
209 void netintr __P((void));
210 void printregs __P((struct reg *));
211
212 void
213 alpha_init(pfn, ptb, bim, bip)
214 u_long pfn; /* first free PFN number */
215 u_long ptb; /* PFN of current level 1 page table */
216 u_long bim; /* bootinfo magic */
217 u_long bip; /* bootinfo pointer */
218 {
219 extern char kernel_text[], _end[];
220 struct mddt *mddtp;
221 int i, mddtweird;
222 vm_offset_t kernstart, kernend;
223 vm_size_t size;
224 char *p;
225 caddr_t v;
226 caddr_t start, w;
227
228 /*
229 * Turn off interrupts (not mchecks) and floating point.
230 * Make sure the instruction and data streams are consistent.
231 */
232 (void)alpha_pal_swpipl(ALPHA_PSL_IPL_HIGH);
233 alpha_pal_wrfen(0);
234 ALPHA_TBIA();
235 alpha_pal_imb();
236
237 /*
238 * get address of the restart block, while we the bootstrap
239 * mapping is still around.
240 */
241 hwrpb = (struct rpb *)ALPHA_PHYS_TO_K0SEG(
242 (vm_offset_t)(*(struct rpb **)HWRPB_ADDR));
243
244 /*
245 * Remember how many cycles there are per microsecond,
246 * so that we can use delay(). Round up, for safety.
247 */
248 cycles_per_usec = (hwrpb->rpb_cc_freq + 999999) / 1000000;
249
250 /*
251 * Init the PROM interface, so we can use printf
252 * until PROM mappings go away in consinit.
253 */
254 init_prom_interface();
255
256 /*
257 * Check for a bootinfo from the boot program.
258 */
259 if (bim == BOOTINFO_MAGIC) {
260 /*
261 * Have boot info. Copy it to our own storage.
262 * We'll sanity-check it later.
263 */
264 bcopy((void *)bip, &bootinfo, sizeof(bootinfo));
265 switch (bootinfo.version) {
266 case 1:
267 bootinfo_valid = 1;
268 break;
269
270 default:
271 printf("warning: unknown bootinfo version %d\n",
272 bootinfo.version);
273 }
274 } else
275 printf("warning: boot program did not pass bootinfo\n");
276
277 /*
278 * Point interrupt/exception vectors to our own.
279 */
280 alpha_pal_wrent(XentInt, ALPHA_KENTRY_INT);
281 alpha_pal_wrent(XentArith, ALPHA_KENTRY_ARITH);
282 alpha_pal_wrent(XentMM, ALPHA_KENTRY_MM);
283 alpha_pal_wrent(XentIF, ALPHA_KENTRY_IF);
284 alpha_pal_wrent(XentUna, ALPHA_KENTRY_UNA);
285 alpha_pal_wrent(XentSys, ALPHA_KENTRY_SYS);
286
287 /*
288 * Clear pending machine checks and error reports, and enable
289 * system- and processor-correctable error reporting.
290 */
291 alpha_pal_wrmces(alpha_pal_rdmces() &
292 ~(ALPHA_MCES_DSC|ALPHA_MCES_DPC));
293
294 /*
295 * find out this CPU's page size
296 */
297 PAGE_SIZE = hwrpb->rpb_page_size;
298 if (PAGE_SIZE != 8192)
299 panic("page size %d != 8192?!", PAGE_SIZE);
300
301 /*
302 * Initialize PAGE_SIZE-dependent variables.
303 */
304 vm_set_page_size();
305
306 /*
307 * Find the beginning and end of the kernel.
308 */
309 kernstart = trunc_page(kernel_text);
310 #ifdef DDB
311 if (bootinfo_valid) {
312 /*
313 * Save the kernel symbol table.
314 */
315 switch (bootinfo.version) {
316 case 1:
317 ksym_start = (void *)bootinfo.un.v1.ssym;
318 ksym_end = (void *)bootinfo.un.v1.esym;
319 break;
320 }
321 kernend = (vm_offset_t)round_page(ksym_end);
322 } else
323 #endif
324 kernend = (vm_offset_t)round_page(_end);
325
326 /*
327 * Find out how much memory is available, by looking at
328 * the memory cluster descriptors. This also tries to do
329 * its best to detect things things that have never been seen
330 * before...
331 *
332 * XXX Assumes that the first "system" cluster is the
333 * only one we can use. Is the second (etc.) system cluster
334 * (if one happens to exist) guaranteed to be contiguous? or...?
335 */
336 mddtp = (struct mddt *)(((caddr_t)hwrpb) + hwrpb->rpb_memdat_off);
337
338 /*
339 * BEGIN MDDT WEIRDNESS CHECKING
340 */
341 mddtweird = 0;
342
343 #define cnt mddtp->mddt_cluster_cnt
344 #define usage(n) mddtp->mddt_clusters[(n)].mddt_usage
345 if (cnt != 2 && cnt != 3) {
346 printf("WARNING: weird number (%ld) of mem clusters\n", cnt);
347 mddtweird = 1;
348 } else if (usage(0) != MDDT_PALCODE ||
349 usage(1) != MDDT_SYSTEM ||
350 (cnt == 3 && usage(2) != MDDT_PALCODE)) {
351 mddtweird = 1;
352 printf("WARNING: %ld mem clusters, but weird config\n", cnt);
353 }
354
355 for (i = 0; i < cnt; i++) {
356 if ((usage(i) & MDDT_mbz) != 0) {
357 printf("WARNING: mem cluster %d has weird usage %lx\n",
358 i, usage(i));
359 mddtweird = 1;
360 }
361 if (mddtp->mddt_clusters[i].mddt_pg_cnt == 0) {
362 printf("WARNING: mem cluster %d has pg cnt == 0\n", i);
363 mddtweird = 1;
364 }
365 /* XXX other things to check? */
366 }
367 #undef cnt
368 #undef usage
369
370 if (mddtweird) {
371 printf("\n");
372 printf("complete memory cluster information:\n");
373 for (i = 0; i < mddtp->mddt_cluster_cnt; i++) {
374 printf("mddt %d:\n", i);
375 printf("\tpfn %lx\n",
376 mddtp->mddt_clusters[i].mddt_pfn);
377 printf("\tcnt %lx\n",
378 mddtp->mddt_clusters[i].mddt_pg_cnt);
379 printf("\ttest %lx\n",
380 mddtp->mddt_clusters[i].mddt_pg_test);
381 printf("\tbva %lx\n",
382 mddtp->mddt_clusters[i].mddt_v_bitaddr);
383 printf("\tbpa %lx\n",
384 mddtp->mddt_clusters[i].mddt_p_bitaddr);
385 printf("\tbcksum %lx\n",
386 mddtp->mddt_clusters[i].mddt_bit_cksum);
387 printf("\tusage %lx\n",
388 mddtp->mddt_clusters[i].mddt_usage);
389 }
390 printf("\n");
391 }
392 /*
393 * END MDDT WEIRDNESS CHECKING
394 */
395
396 for (i = 0; i < mddtp->mddt_cluster_cnt; i++) {
397 totalphysmem += mddtp->mddt_clusters[i].mddt_pg_cnt;
398 #define usage(n) mddtp->mddt_clusters[(n)].mddt_usage
399 #define pgcnt(n) mddtp->mddt_clusters[(n)].mddt_pg_cnt
400 if ((usage(i) & MDDT_mbz) != 0)
401 unknownmem += pgcnt(i);
402 else if ((usage(i) & ~MDDT_mbz) == MDDT_PALCODE)
403 resvmem += pgcnt(i);
404 else if ((usage(i) & ~MDDT_mbz) == MDDT_SYSTEM) {
405 /*
406 * assumes that the system cluster listed is
407 * one we're in...
408 */
409 if (physmem != resvmem) {
410 physmem += pgcnt(i);
411 firstusablepage =
412 mddtp->mddt_clusters[i].mddt_pfn;
413 lastusablepage = firstusablepage + pgcnt(i) - 1;
414 } else
415 unusedmem += pgcnt(i);
416 }
417 #undef usage
418 #undef pgcnt
419 }
420 if (totalphysmem == 0)
421 panic("can't happen: system seems to have no memory!");
422 #ifdef LIMITMEM
423 if (totalphysmem >= btoc(LIMITMEM << 20)) {
424 u_int64_t ovf = totalphysmem - btoc(LIMITMEM << 20);
425 printf("********LIMITING MEMORY TO %dMB**********\n", LIMITMEM);
426 physmem = totalphysmem = btoc(LIMITMEM << 20);
427 unusedmem += ovf;
428 lastusablepage = firstusablepage + physmem - 1;
429 }
430 #endif
431 maxmem = physmem;
432
433 #if 0
434 printf("totalphysmem = %d\n", totalphysmem);
435 printf("physmem = %d\n", physmem);
436 printf("firstusablepage = %d\n", firstusablepage);
437 printf("lastusablepage = %d\n", lastusablepage);
438 printf("resvmem = %d\n", resvmem);
439 printf("unusedmem = %d\n", unusedmem);
440 printf("unknownmem = %d\n", unknownmem);
441 #endif
442
443 /*
444 * Adjust some parameters if the amount of physmem
445 * available would cause us to croak. This is completely
446 * eyeballed and isn't meant to be the final answer.
447 * vm_phys_size is probably the only one to really worry
448 * about.
449 *
450 * It's for booting a GENERIC kernel on a large memory platform.
451 */
452 if (physmem >= btoc(128 << 20)) {
453 vm_mbuf_size <<= 1;
454 vm_kmem_size <<= 3;
455 vm_phys_size <<= 2;
456 }
457
458 /*
459 * Find out what hardware we're on, and remember its type name.
460 */
461 cputype = hwrpb->rpb_type;
462 if (cputype >= ncpuinit) {
463 platform_not_supported();
464 /* NOTREACHED */
465 }
466 (*cpuinit[cputype].init)();
467 strcpy(cpu_model, platform.model);
468
469 /* XXX SANITY CHECKING. SHOULD GO AWAY */
470 /* XXX We should always be running on the the primary. */
471 assert(hwrpb->rpb_primary_cpu_id == alpha_pal_whami()); /*XXX*/
472 /* XXX On single-CPU boxes, the primary should always be CPU 0. */
473 if (cputype != ST_DEC_21000) /*XXX*/
474 assert(hwrpb->rpb_primary_cpu_id == 0); /*XXX*/
475
476 #if NLE_IOASIC > 0
477 /*
478 * Grab 128K at the top of physical memory for the lance chip
479 * on machines where it does dma through the I/O ASIC.
480 * It must be physically contiguous and aligned on a 128K boundary.
481 *
482 * Note that since this is conditional on the presence of
483 * IOASIC-attached 'le' units in the kernel config, the
484 * message buffer may move on these systems. This shouldn't
485 * be a problem, because once people have a kernel config that
486 * they use, they're going to stick with it.
487 */
488 if (cputype == ST_DEC_3000_500 ||
489 cputype == ST_DEC_3000_300) { /* XXX possibly others? */
490 lastusablepage -= btoc(128 * 1024);
491 le_iomem =
492 (caddr_t)ALPHA_PHYS_TO_K0SEG(ctob(lastusablepage + 1));
493 }
494 #endif /* NLE_IOASIC */
495
496 /*
497 * Initialize error message buffer (at end of core).
498 */
499 lastusablepage -= btoc(MSGBUFSIZE);
500 msgbufaddr = (caddr_t) ALPHA_PHYS_TO_K0SEG(ctob(lastusablepage + 1));
501 initmsgbuf(msgbufaddr, alpha_round_page(MSGBUFSIZE));
502
503 /*
504 * Init mapping for u page(s) for proc 0
505 */
506 start = v = (caddr_t)kernend;
507 curproc->p_addr = proc0paddr = (struct user *)v;
508 v += UPAGES * NBPG;
509
510 /*
511 * Allocate space for system data structures. These data structures
512 * are allocated here instead of cpu_startup() because physical
513 * memory is directly addressable. We don't have to map these into
514 * virtual address space.
515 */
516 size = (vm_size_t)allocsys(0);
517 w = allocsys(v);
518 if ((w - v) != size)
519 panic("alpha_init: table size inconsistency");
520 v = w;
521
522 /*
523 * Clear allocated memory.
524 */
525 bzero(start, v - start);
526
527 /*
528 * Initialize the virtual memory system, and set the
529 * page table base register in proc 0's PCB.
530 */
531 #ifndef NEW_PMAP
532 pmap_bootstrap((vm_offset_t)v, ALPHA_PHYS_TO_K0SEG(ptb << PGSHIFT));
533 #else
534 pmap_bootstrap((vm_offset_t)v, ALPHA_PHYS_TO_K0SEG(ptb << PGSHIFT),
535 hwrpb->rpb_max_asn);
536 #endif
537
538 /*
539 * Initialize the rest of proc 0's PCB, and cache its physical
540 * address.
541 */
542 proc0.p_md.md_pcbpaddr =
543 (struct pcb *)ALPHA_K0SEG_TO_PHYS((vm_offset_t)&proc0paddr->u_pcb);
544
545 /*
546 * Set the kernel sp, reserving space for an (empty) trapframe,
547 * and make proc0's trapframe pointer point to it for sanity.
548 */
549 proc0paddr->u_pcb.pcb_hw.apcb_ksp =
550 (u_int64_t)proc0paddr + USPACE - sizeof(struct trapframe);
551 proc0.p_md.md_tf =
552 (struct trapframe *)proc0paddr->u_pcb.pcb_hw.apcb_ksp;
553
554 #ifdef NEW_PMAP
555 /*
556 * Set up the kernel address space in proc0's hwpcb.
557 */
558 PMAP_ACTIVATE(kernel_pmap, &proc0paddr->u_pcb.pcb_hw, 0);
559 #endif
560
561 /*
562 * Look at arguments passed to us and compute boothowto.
563 * Also, get kernel name so it can be used in user-land.
564 */
565 if (bootinfo_valid) {
566 switch (bootinfo.version) {
567 case 1:
568 bcopy(bootinfo.un.v1.boot_flags, boot_flags,
569 sizeof(boot_flags));
570 bcopy(bootinfo.un.v1.booted_kernel, booted_kernel,
571 sizeof(booted_kernel));
572 }
573 } else {
574 prom_getenv(PROM_E_BOOTED_OSFLAGS, boot_flags,
575 sizeof(boot_flags));
576 prom_getenv(PROM_E_BOOTED_FILE, booted_kernel,
577 sizeof(booted_kernel));
578 }
579
580 #if 0
581 printf("boot flags = \"%s\"\n", boot_flags);
582 printf("booted kernel = \"%s\"\n", booted_kernel);
583 #endif
584
585 boothowto = RB_SINGLE;
586 #ifdef KADB
587 boothowto |= RB_KDB;
588 #endif
589 for (p = boot_flags; p && *p != '\0'; p++) {
590 /*
591 * Note that we'd really like to differentiate case here,
592 * but the Alpha AXP Architecture Reference Manual
593 * says that we shouldn't.
594 */
595 switch (*p) {
596 case 'a': /* autoboot */
597 case 'A':
598 boothowto &= ~RB_SINGLE;
599 break;
600
601 #ifdef DEBUG
602 case 'c': /* crash dump immediately after autoconfig */
603 case 'C':
604 boothowto |= RB_DUMP;
605 break;
606 #endif
607
608 #if defined(KGDB) || defined(DDB)
609 case 'd': /* break into the kernel debugger ASAP */
610 case 'D':
611 boothowto |= RB_KDB;
612 break;
613 #endif
614
615 case 'h': /* always halt, never reboot */
616 case 'H':
617 boothowto |= RB_HALT;
618 break;
619
620 #if 0
621 case 'm': /* mini root present in memory */
622 case 'M':
623 boothowto |= RB_MINIROOT;
624 break;
625 #endif
626
627 case 'n': /* askname */
628 case 'N':
629 boothowto |= RB_ASKNAME;
630 break;
631
632 case 's': /* single-user (default, supported for sanity) */
633 case 'S':
634 boothowto |= RB_SINGLE;
635 break;
636
637 default:
638 printf("Unrecognized boot flag '%c'.\n", *p);
639 break;
640 }
641 }
642
643 /*
644 * Figure out the number of cpus in the box, from RPB fields.
645 * Really. We mean it.
646 */
647 for (i = 0; i < hwrpb->rpb_pcs_cnt; i++) {
648 struct pcs *pcsp;
649
650 pcsp = (struct pcs *)((char *)hwrpb + hwrpb->rpb_pcs_off +
651 (i * hwrpb->rpb_pcs_size));
652 if ((pcsp->pcs_flags & PCS_PP) != 0)
653 ncpus++;
654 }
655 }
656
657 /*
658 * Allocate space for system data structures. We are given
659 * a starting virtual address and we return a final virtual
660 * address; along the way we set each data structure pointer.
661 *
662 * We call allocsys() with 0 to find out how much space we want,
663 * allocate that much and fill it with zeroes, and the call
664 * allocsys() again with the correct base virtual address.
665 */
666 caddr_t
667 allocsys(v)
668 caddr_t v;
669 {
670
671 #define valloc(name, type, num) \
672 (name) = (type *)v; v = (caddr_t)ALIGN((name)+(num))
673 #define valloclim(name, type, num, lim) \
674 (name) = (type *)v; v = (caddr_t)ALIGN((lim) = ((name)+(num)))
675 #ifdef REAL_CLISTS
676 valloc(cfree, struct cblock, nclist);
677 #endif
678 valloc(callout, struct callout, ncallout);
679 #ifdef SYSVSHM
680 valloc(shmsegs, struct shmid_ds, shminfo.shmmni);
681 #endif
682 #ifdef SYSVSEM
683 valloc(sema, struct semid_ds, seminfo.semmni);
684 valloc(sem, struct sem, seminfo.semmns);
685 /* This is pretty disgusting! */
686 valloc(semu, int, (seminfo.semmnu * seminfo.semusz) / sizeof(int));
687 #endif
688 #ifdef SYSVMSG
689 valloc(msgpool, char, msginfo.msgmax);
690 valloc(msgmaps, struct msgmap, msginfo.msgseg);
691 valloc(msghdrs, struct msg, msginfo.msgtql);
692 valloc(msqids, struct msqid_ds, msginfo.msgmni);
693 #endif
694
695 /*
696 * Determine how many buffers to allocate.
697 * We allocate 10% of memory for buffer space. Insure a
698 * minimum of 16 buffers. We allocate 1/2 as many swap buffer
699 * headers as file i/o buffers.
700 */
701 if (bufpages == 0)
702 bufpages = (physmem * 10) / (CLSIZE * 100);
703 if (nbuf == 0) {
704 nbuf = bufpages;
705 if (nbuf < 16)
706 nbuf = 16;
707 }
708 if (nswbuf == 0) {
709 nswbuf = (nbuf / 2) &~ 1; /* force even */
710 if (nswbuf > 256)
711 nswbuf = 256; /* sanity */
712 }
713 valloc(swbuf, struct buf, nswbuf);
714 valloc(buf, struct buf, nbuf);
715 return (v);
716 }
717
718 void
719 consinit()
720 {
721 if (platform.cons_init)
722 (*platform.cons_init)();
723 pmap_unmap_prom();
724
725 #ifdef DDB
726 db_machine_init();
727 ddb_init(ksym_start, ksym_end);
728 if (boothowto & RB_KDB)
729 Debugger();
730 #endif
731 #ifdef KGDB
732 if (boothowto & RB_KDB)
733 kgdb_connect(0);
734 #endif
735 }
736
737 void
738 cpu_startup()
739 {
740 register unsigned i;
741 int base, residual;
742 vm_offset_t minaddr, maxaddr;
743 vm_size_t size;
744 #if defined(DEBUG)
745 extern int pmapdebug;
746 int opmapdebug = pmapdebug;
747
748 pmapdebug = 0;
749 #endif
750
751 /*
752 * Good {morning,afternoon,evening,night}.
753 */
754 printf(version);
755 identifycpu();
756 printf("real mem = %u (%u reserved for PROM, %u used by NetBSD)\n",
757 ctob(totalphysmem), ctob(resvmem), ctob(physmem));
758 if (unusedmem)
759 printf("WARNING: unused memory = %d bytes\n", ctob(unusedmem));
760 if (unknownmem)
761 printf("WARNING: %d bytes of memory with unknown purpose\n",
762 ctob(unknownmem));
763
764 /*
765 * Allocate virtual address space for file I/O buffers.
766 * Note they are different than the array of headers, 'buf',
767 * and usually occupy more virtual memory than physical.
768 */
769 size = MAXBSIZE * nbuf;
770 buffer_map = kmem_suballoc(kernel_map, (vm_offset_t *)&buffers,
771 &maxaddr, size, TRUE);
772 minaddr = (vm_offset_t)buffers;
773 if (vm_map_find(buffer_map, vm_object_allocate(size), (vm_offset_t)0,
774 &minaddr, size, FALSE) != KERN_SUCCESS)
775 panic("startup: cannot allocate buffers");
776 base = bufpages / nbuf;
777 residual = bufpages % nbuf;
778 for (i = 0; i < nbuf; i++) {
779 vm_size_t curbufsize;
780 vm_offset_t curbuf;
781
782 /*
783 * First <residual> buffers get (base+1) physical pages
784 * allocated for them. The rest get (base) physical pages.
785 *
786 * The rest of each buffer occupies virtual space,
787 * but has no physical memory allocated for it.
788 */
789 curbuf = (vm_offset_t)buffers + i * MAXBSIZE;
790 curbufsize = CLBYTES * (i < residual ? base+1 : base);
791 vm_map_pageable(buffer_map, curbuf, curbuf+curbufsize, FALSE);
792 vm_map_simplify(buffer_map, curbuf);
793 }
794 /*
795 * Allocate a submap for exec arguments. This map effectively
796 * limits the number of processes exec'ing at any time.
797 */
798 exec_map = kmem_suballoc(kernel_map, &minaddr, &maxaddr,
799 16 * NCARGS, TRUE);
800
801 /*
802 * Allocate a submap for physio
803 */
804 phys_map = kmem_suballoc(kernel_map, &minaddr, &maxaddr,
805 VM_PHYS_SIZE, TRUE);
806
807 /*
808 * Finally, allocate mbuf cluster submap.
809 */
810 mb_map = kmem_suballoc(kernel_map, (vm_offset_t *)&mbutl, &maxaddr,
811 VM_MBUF_SIZE, FALSE);
812 /*
813 * Initialize callouts
814 */
815 callfree = callout;
816 for (i = 1; i < ncallout; i++)
817 callout[i-1].c_next = &callout[i];
818 callout[i-1].c_next = NULL;
819
820 #if defined(DEBUG)
821 pmapdebug = opmapdebug;
822 #endif
823 printf("avail mem = %ld\n", (long)ptoa(cnt.v_free_count));
824 printf("using %ld buffers containing %ld bytes of memory\n",
825 (long)nbuf, (long)(bufpages * CLBYTES));
826
827 /*
828 * Set up buffers, so they can be used to read disk labels.
829 */
830 bufinit();
831
832 /*
833 * Configure the system.
834 */
835 configure();
836
837 /*
838 * Note that bootstrapping is finished, and set the HWRPB up
839 * to do restarts.
840 */
841 hwrpb_restart_setup();
842 }
843
844 void
845 identifycpu()
846 {
847
848 /*
849 * print out CPU identification information.
850 */
851 printf("%s, %ldMHz\n", cpu_model,
852 hwrpb->rpb_cc_freq / 1000000); /* XXX true for 21164? */
853 printf("%ld byte page size, %d processor%s.\n",
854 hwrpb->rpb_page_size, ncpus, ncpus == 1 ? "" : "s");
855 #if 0
856 /* this isn't defined for any systems that we run on? */
857 printf("serial number 0x%lx 0x%lx\n",
858 ((long *)hwrpb->rpb_ssn)[0], ((long *)hwrpb->rpb_ssn)[1]);
859
860 /* and these aren't particularly useful! */
861 printf("variation: 0x%lx, revision 0x%lx\n",
862 hwrpb->rpb_variation, *(long *)hwrpb->rpb_revision);
863 #endif
864 }
865
866 int waittime = -1;
867 struct pcb dumppcb;
868
869 void
870 cpu_reboot(howto, bootstr)
871 int howto;
872 char *bootstr;
873 {
874 extern int cold;
875
876 /* If system is cold, just halt. */
877 if (cold) {
878 howto |= RB_HALT;
879 goto haltsys;
880 }
881
882 /* If "always halt" was specified as a boot flag, obey. */
883 if ((boothowto & RB_HALT) != 0)
884 howto |= RB_HALT;
885
886 boothowto = howto;
887 if ((howto & RB_NOSYNC) == 0 && waittime < 0) {
888 waittime = 0;
889 vfs_shutdown();
890 /*
891 * If we've been adjusting the clock, the todr
892 * will be out of synch; adjust it now.
893 */
894 resettodr();
895 }
896
897 /* Disable interrupts. */
898 splhigh();
899
900 /* If rebooting and a dump is requested do it. */
901 #if 0
902 if ((howto & (RB_DUMP | RB_HALT)) == RB_DUMP)
903 #else
904 if (howto & RB_DUMP)
905 #endif
906 dumpsys();
907
908 haltsys:
909
910 /* run any shutdown hooks */
911 doshutdownhooks();
912
913 #ifdef BOOTKEY
914 printf("hit any key to %s...\n", howto & RB_HALT ? "halt" : "reboot");
915 cngetc();
916 printf("\n");
917 #endif
918
919 /* Finally, halt/reboot the system. */
920 printf("%s\n\n", howto & RB_HALT ? "halted." : "rebooting...");
921 prom_halt(howto & RB_HALT);
922 /*NOTREACHED*/
923 }
924
925 /*
926 * These variables are needed by /sbin/savecore
927 */
928 u_long dumpmag = 0x8fca0101; /* magic number */
929 int dumpsize = 0; /* pages */
930 long dumplo = 0; /* blocks */
931
932 /*
933 * cpu_dumpsize: calculate size of machine-dependent kernel core dump headers.
934 */
935 int
936 cpu_dumpsize()
937 {
938 int size;
939
940 size = ALIGN(sizeof(kcore_seg_t)) + ALIGN(sizeof(cpu_kcore_hdr_t));
941 if (roundup(size, dbtob(1)) != dbtob(1))
942 return -1;
943
944 return (1);
945 }
946
947 /*
948 * cpu_dump: dump machine-dependent kernel core dump headers.
949 */
950 int
951 cpu_dump()
952 {
953 int (*dump) __P((dev_t, daddr_t, caddr_t, size_t));
954 long buf[dbtob(1) / sizeof (long)];
955 kcore_seg_t *segp;
956 cpu_kcore_hdr_t *cpuhdrp;
957
958 dump = bdevsw[major(dumpdev)].d_dump;
959
960 segp = (kcore_seg_t *)buf;
961 cpuhdrp =
962 (cpu_kcore_hdr_t *)&buf[ALIGN(sizeof(*segp)) / sizeof (long)];
963
964 /*
965 * Generate a segment header.
966 */
967 CORE_SETMAGIC(*segp, KCORE_MAGIC, MID_MACHINE, CORE_CPU);
968 segp->c_size = dbtob(1) - ALIGN(sizeof(*segp));
969
970 /*
971 * Add the machine-dependent header info
972 */
973 cpuhdrp->lev1map_pa = ALPHA_K0SEG_TO_PHYS((vm_offset_t)Lev1map);
974 cpuhdrp->page_size = PAGE_SIZE;
975 cpuhdrp->core_seg.start = ctob(firstusablepage);
976 cpuhdrp->core_seg.size = ctob(physmem);
977
978 return (dump(dumpdev, dumplo, (caddr_t)buf, dbtob(1)));
979 }
980
981 /*
982 * This is called by main to set dumplo and dumpsize.
983 * Dumps always skip the first CLBYTES of disk space
984 * in case there might be a disk label stored there.
985 * If there is extra space, put dump at the end to
986 * reduce the chance that swapping trashes it.
987 */
988 void
989 cpu_dumpconf()
990 {
991 int nblks, dumpblks; /* size of dump area */
992 int maj;
993
994 if (dumpdev == NODEV)
995 goto bad;
996 maj = major(dumpdev);
997 if (maj < 0 || maj >= nblkdev)
998 panic("dumpconf: bad dumpdev=0x%x", dumpdev);
999 if (bdevsw[maj].d_psize == NULL)
1000 goto bad;
1001 nblks = (*bdevsw[maj].d_psize)(dumpdev);
1002 if (nblks <= ctod(1))
1003 goto bad;
1004
1005 dumpblks = cpu_dumpsize();
1006 if (dumpblks < 0)
1007 goto bad;
1008 dumpblks += ctod(physmem);
1009
1010 /* If dump won't fit (incl. room for possible label), punt. */
1011 if (dumpblks > (nblks - ctod(1)))
1012 goto bad;
1013
1014 /* Put dump at end of partition */
1015 dumplo = nblks - dumpblks;
1016
1017 /* dumpsize is in page units, and doesn't include headers. */
1018 dumpsize = physmem;
1019 return;
1020
1021 bad:
1022 dumpsize = 0;
1023 return;
1024 }
1025
1026 /*
1027 * Dump the kernel's image to the swap partition.
1028 */
1029 #define BYTES_PER_DUMP NBPG
1030
1031 void
1032 dumpsys()
1033 {
1034 unsigned bytes, i, n;
1035 int maddr, psize;
1036 daddr_t blkno;
1037 int (*dump) __P((dev_t, daddr_t, caddr_t, size_t));
1038 int error;
1039
1040 /* Save registers. */
1041 savectx(&dumppcb);
1042
1043 msgbufmapped = 0; /* don't record dump msgs in msgbuf */
1044 if (dumpdev == NODEV)
1045 return;
1046
1047 /*
1048 * For dumps during autoconfiguration,
1049 * if dump device has already configured...
1050 */
1051 if (dumpsize == 0)
1052 cpu_dumpconf();
1053 if (dumplo <= 0) {
1054 printf("\ndump to dev %x not possible\n", dumpdev);
1055 return;
1056 }
1057 printf("\ndumping to dev %x, offset %ld\n", dumpdev, dumplo);
1058
1059 psize = (*bdevsw[major(dumpdev)].d_psize)(dumpdev);
1060 printf("dump ");
1061 if (psize == -1) {
1062 printf("area unavailable\n");
1063 return;
1064 }
1065
1066 /* XXX should purge all outstanding keystrokes. */
1067
1068 if ((error = cpu_dump()) != 0)
1069 goto err;
1070
1071 bytes = ctob(physmem);
1072 maddr = ctob(firstusablepage);
1073 blkno = dumplo + cpu_dumpsize();
1074 dump = bdevsw[major(dumpdev)].d_dump;
1075 error = 0;
1076 for (i = 0; i < bytes; i += n) {
1077
1078 /* Print out how many MBs we to go. */
1079 n = bytes - i;
1080 if (n && (n % (1024*1024)) == 0)
1081 printf("%d ", n / (1024 * 1024));
1082
1083 /* Limit size for next transfer. */
1084 if (n > BYTES_PER_DUMP)
1085 n = BYTES_PER_DUMP;
1086
1087 error = (*dump)(dumpdev, blkno,
1088 (caddr_t)ALPHA_PHYS_TO_K0SEG(maddr), n);
1089 if (error)
1090 break;
1091 maddr += n;
1092 blkno += btodb(n); /* XXX? */
1093
1094 /* XXX should look for keystrokes, to cancel. */
1095 }
1096
1097 err:
1098 switch (error) {
1099
1100 case ENXIO:
1101 printf("device bad\n");
1102 break;
1103
1104 case EFAULT:
1105 printf("device not ready\n");
1106 break;
1107
1108 case EINVAL:
1109 printf("area improper\n");
1110 break;
1111
1112 case EIO:
1113 printf("i/o error\n");
1114 break;
1115
1116 case EINTR:
1117 printf("aborted from console\n");
1118 break;
1119
1120 case 0:
1121 printf("succeeded\n");
1122 break;
1123
1124 default:
1125 printf("error %d\n", error);
1126 break;
1127 }
1128 printf("\n\n");
1129 delay(1000);
1130 }
1131
1132 void
1133 frametoreg(framep, regp)
1134 struct trapframe *framep;
1135 struct reg *regp;
1136 {
1137
1138 regp->r_regs[R_V0] = framep->tf_regs[FRAME_V0];
1139 regp->r_regs[R_T0] = framep->tf_regs[FRAME_T0];
1140 regp->r_regs[R_T1] = framep->tf_regs[FRAME_T1];
1141 regp->r_regs[R_T2] = framep->tf_regs[FRAME_T2];
1142 regp->r_regs[R_T3] = framep->tf_regs[FRAME_T3];
1143 regp->r_regs[R_T4] = framep->tf_regs[FRAME_T4];
1144 regp->r_regs[R_T5] = framep->tf_regs[FRAME_T5];
1145 regp->r_regs[R_T6] = framep->tf_regs[FRAME_T6];
1146 regp->r_regs[R_T7] = framep->tf_regs[FRAME_T7];
1147 regp->r_regs[R_S0] = framep->tf_regs[FRAME_S0];
1148 regp->r_regs[R_S1] = framep->tf_regs[FRAME_S1];
1149 regp->r_regs[R_S2] = framep->tf_regs[FRAME_S2];
1150 regp->r_regs[R_S3] = framep->tf_regs[FRAME_S3];
1151 regp->r_regs[R_S4] = framep->tf_regs[FRAME_S4];
1152 regp->r_regs[R_S5] = framep->tf_regs[FRAME_S5];
1153 regp->r_regs[R_S6] = framep->tf_regs[FRAME_S6];
1154 regp->r_regs[R_A0] = framep->tf_regs[FRAME_A0];
1155 regp->r_regs[R_A1] = framep->tf_regs[FRAME_A1];
1156 regp->r_regs[R_A2] = framep->tf_regs[FRAME_A2];
1157 regp->r_regs[R_A3] = framep->tf_regs[FRAME_A3];
1158 regp->r_regs[R_A4] = framep->tf_regs[FRAME_A4];
1159 regp->r_regs[R_A5] = framep->tf_regs[FRAME_A5];
1160 regp->r_regs[R_T8] = framep->tf_regs[FRAME_T8];
1161 regp->r_regs[R_T9] = framep->tf_regs[FRAME_T9];
1162 regp->r_regs[R_T10] = framep->tf_regs[FRAME_T10];
1163 regp->r_regs[R_T11] = framep->tf_regs[FRAME_T11];
1164 regp->r_regs[R_RA] = framep->tf_regs[FRAME_RA];
1165 regp->r_regs[R_T12] = framep->tf_regs[FRAME_T12];
1166 regp->r_regs[R_AT] = framep->tf_regs[FRAME_AT];
1167 regp->r_regs[R_GP] = framep->tf_regs[FRAME_GP];
1168 /* regp->r_regs[R_SP] = framep->tf_regs[FRAME_SP]; XXX */
1169 regp->r_regs[R_ZERO] = 0;
1170 }
1171
1172 void
1173 regtoframe(regp, framep)
1174 struct reg *regp;
1175 struct trapframe *framep;
1176 {
1177
1178 framep->tf_regs[FRAME_V0] = regp->r_regs[R_V0];
1179 framep->tf_regs[FRAME_T0] = regp->r_regs[R_T0];
1180 framep->tf_regs[FRAME_T1] = regp->r_regs[R_T1];
1181 framep->tf_regs[FRAME_T2] = regp->r_regs[R_T2];
1182 framep->tf_regs[FRAME_T3] = regp->r_regs[R_T3];
1183 framep->tf_regs[FRAME_T4] = regp->r_regs[R_T4];
1184 framep->tf_regs[FRAME_T5] = regp->r_regs[R_T5];
1185 framep->tf_regs[FRAME_T6] = regp->r_regs[R_T6];
1186 framep->tf_regs[FRAME_T7] = regp->r_regs[R_T7];
1187 framep->tf_regs[FRAME_S0] = regp->r_regs[R_S0];
1188 framep->tf_regs[FRAME_S1] = regp->r_regs[R_S1];
1189 framep->tf_regs[FRAME_S2] = regp->r_regs[R_S2];
1190 framep->tf_regs[FRAME_S3] = regp->r_regs[R_S3];
1191 framep->tf_regs[FRAME_S4] = regp->r_regs[R_S4];
1192 framep->tf_regs[FRAME_S5] = regp->r_regs[R_S5];
1193 framep->tf_regs[FRAME_S6] = regp->r_regs[R_S6];
1194 framep->tf_regs[FRAME_A0] = regp->r_regs[R_A0];
1195 framep->tf_regs[FRAME_A1] = regp->r_regs[R_A1];
1196 framep->tf_regs[FRAME_A2] = regp->r_regs[R_A2];
1197 framep->tf_regs[FRAME_A3] = regp->r_regs[R_A3];
1198 framep->tf_regs[FRAME_A4] = regp->r_regs[R_A4];
1199 framep->tf_regs[FRAME_A5] = regp->r_regs[R_A5];
1200 framep->tf_regs[FRAME_T8] = regp->r_regs[R_T8];
1201 framep->tf_regs[FRAME_T9] = regp->r_regs[R_T9];
1202 framep->tf_regs[FRAME_T10] = regp->r_regs[R_T10];
1203 framep->tf_regs[FRAME_T11] = regp->r_regs[R_T11];
1204 framep->tf_regs[FRAME_RA] = regp->r_regs[R_RA];
1205 framep->tf_regs[FRAME_T12] = regp->r_regs[R_T12];
1206 framep->tf_regs[FRAME_AT] = regp->r_regs[R_AT];
1207 framep->tf_regs[FRAME_GP] = regp->r_regs[R_GP];
1208 /* framep->tf_regs[FRAME_SP] = regp->r_regs[R_SP]; XXX */
1209 /* ??? = regp->r_regs[R_ZERO]; */
1210 }
1211
1212 void
1213 printregs(regp)
1214 struct reg *regp;
1215 {
1216 int i;
1217
1218 for (i = 0; i < 32; i++)
1219 printf("R%d:\t0x%016lx%s", i, regp->r_regs[i],
1220 i & 1 ? "\n" : "\t");
1221 }
1222
1223 void
1224 regdump(framep)
1225 struct trapframe *framep;
1226 {
1227 struct reg reg;
1228
1229 frametoreg(framep, ®);
1230 reg.r_regs[R_SP] = alpha_pal_rdusp();
1231
1232 printf("REGISTERS:\n");
1233 printregs(®);
1234 }
1235
1236 #ifdef DEBUG
1237 int sigdebug = 0;
1238 int sigpid = 0;
1239 #define SDB_FOLLOW 0x01
1240 #define SDB_KSTACK 0x02
1241 #endif
1242
1243 /*
1244 * Send an interrupt to process.
1245 */
1246 void
1247 sendsig(catcher, sig, mask, code)
1248 sig_t catcher;
1249 int sig, mask;
1250 u_long code;
1251 {
1252 struct proc *p = curproc;
1253 struct sigcontext *scp, ksc;
1254 struct trapframe *frame;
1255 struct sigacts *psp = p->p_sigacts;
1256 int oonstack, fsize, rndfsize;
1257 extern char sigcode[], esigcode[];
1258 extern struct proc *fpcurproc;
1259
1260 frame = p->p_md.md_tf;
1261 oonstack = psp->ps_sigstk.ss_flags & SS_ONSTACK;
1262 fsize = sizeof ksc;
1263 rndfsize = ((fsize + 15) / 16) * 16;
1264 /*
1265 * Allocate and validate space for the signal handler
1266 * context. Note that if the stack is in P0 space, the
1267 * call to grow() is a nop, and the useracc() check
1268 * will fail if the process has not already allocated
1269 * the space with a `brk'.
1270 */
1271 if ((psp->ps_flags & SAS_ALTSTACK) && !oonstack &&
1272 (psp->ps_sigonstack & sigmask(sig))) {
1273 scp = (struct sigcontext *)(psp->ps_sigstk.ss_sp +
1274 psp->ps_sigstk.ss_size - rndfsize);
1275 psp->ps_sigstk.ss_flags |= SS_ONSTACK;
1276 } else
1277 scp = (struct sigcontext *)(alpha_pal_rdusp() - rndfsize);
1278 if ((u_long)scp <= USRSTACK - ctob(p->p_vmspace->vm_ssize))
1279 (void)grow(p, (u_long)scp);
1280 #ifdef DEBUG
1281 if ((sigdebug & SDB_KSTACK) && p->p_pid == sigpid)
1282 printf("sendsig(%d): sig %d ssp %p usp %p\n", p->p_pid,
1283 sig, &oonstack, scp);
1284 #endif
1285 if (useracc((caddr_t)scp, fsize, B_WRITE) == 0) {
1286 #ifdef DEBUG
1287 if ((sigdebug & SDB_KSTACK) && p->p_pid == sigpid)
1288 printf("sendsig(%d): useracc failed on sig %d\n",
1289 p->p_pid, sig);
1290 #endif
1291 /*
1292 * Process has trashed its stack; give it an illegal
1293 * instruction to halt it in its tracks.
1294 */
1295 SIGACTION(p, SIGILL) = SIG_DFL;
1296 sig = sigmask(SIGILL);
1297 p->p_sigignore &= ~sig;
1298 p->p_sigcatch &= ~sig;
1299 p->p_sigmask &= ~sig;
1300 psignal(p, SIGILL);
1301 return;
1302 }
1303
1304 /*
1305 * Build the signal context to be used by sigreturn.
1306 */
1307 ksc.sc_onstack = oonstack;
1308 ksc.sc_mask = mask;
1309 ksc.sc_pc = frame->tf_regs[FRAME_PC];
1310 ksc.sc_ps = frame->tf_regs[FRAME_PS];
1311
1312 /* copy the registers. */
1313 frametoreg(frame, (struct reg *)ksc.sc_regs);
1314 ksc.sc_regs[R_ZERO] = 0xACEDBADE; /* magic number */
1315 ksc.sc_regs[R_SP] = alpha_pal_rdusp();
1316
1317 /* save the floating-point state, if necessary, then copy it. */
1318 if (p == fpcurproc) {
1319 alpha_pal_wrfen(1);
1320 savefpstate(&p->p_addr->u_pcb.pcb_fp);
1321 alpha_pal_wrfen(0);
1322 fpcurproc = NULL;
1323 }
1324 ksc.sc_ownedfp = p->p_md.md_flags & MDP_FPUSED;
1325 bcopy(&p->p_addr->u_pcb.pcb_fp, (struct fpreg *)ksc.sc_fpregs,
1326 sizeof(struct fpreg));
1327 ksc.sc_fp_control = 0; /* XXX ? */
1328 bzero(ksc.sc_reserved, sizeof ksc.sc_reserved); /* XXX */
1329 bzero(ksc.sc_xxx, sizeof ksc.sc_xxx); /* XXX */
1330
1331
1332 #ifdef COMPAT_OSF1
1333 /*
1334 * XXX Create an OSF/1-style sigcontext and associated goo.
1335 */
1336 #endif
1337
1338 /*
1339 * copy the frame out to userland.
1340 */
1341 (void) copyout((caddr_t)&ksc, (caddr_t)scp, fsize);
1342 #ifdef DEBUG
1343 if (sigdebug & SDB_FOLLOW)
1344 printf("sendsig(%d): sig %d scp %p code %lx\n", p->p_pid, sig,
1345 scp, code);
1346 #endif
1347
1348 /*
1349 * Set up the registers to return to sigcode.
1350 */
1351 frame->tf_regs[FRAME_PC] =
1352 (u_int64_t)PS_STRINGS - (esigcode - sigcode);
1353 frame->tf_regs[FRAME_A0] = sig;
1354 frame->tf_regs[FRAME_A1] = code;
1355 frame->tf_regs[FRAME_A2] = (u_int64_t)scp;
1356 frame->tf_regs[FRAME_T12] = (u_int64_t)catcher; /* t12 is pv */
1357 alpha_pal_wrusp((unsigned long)scp);
1358
1359 #ifdef DEBUG
1360 if (sigdebug & SDB_FOLLOW)
1361 printf("sendsig(%d): pc %lx, catcher %lx\n", p->p_pid,
1362 frame->tf_regs[FRAME_PC], frame->tf_regs[FRAME_A3]);
1363 if ((sigdebug & SDB_KSTACK) && p->p_pid == sigpid)
1364 printf("sendsig(%d): sig %d returns\n",
1365 p->p_pid, sig);
1366 #endif
1367 }
1368
1369 /*
1370 * System call to cleanup state after a signal
1371 * has been taken. Reset signal mask and
1372 * stack state from context left by sendsig (above).
1373 * Return to previous pc and psl as specified by
1374 * context left by sendsig. Check carefully to
1375 * make sure that the user has not modified the
1376 * psl to gain improper priviledges or to cause
1377 * a machine fault.
1378 */
1379 /* ARGSUSED */
1380 int
1381 sys_sigreturn(p, v, retval)
1382 struct proc *p;
1383 void *v;
1384 register_t *retval;
1385 {
1386 struct sys_sigreturn_args /* {
1387 syscallarg(struct sigcontext *) sigcntxp;
1388 } */ *uap = v;
1389 struct sigcontext *scp, ksc;
1390 extern struct proc *fpcurproc;
1391
1392 scp = SCARG(uap, sigcntxp);
1393 #ifdef DEBUG
1394 if (sigdebug & SDB_FOLLOW)
1395 printf("sigreturn: pid %d, scp %p\n", p->p_pid, scp);
1396 #endif
1397
1398 if (ALIGN(scp) != (u_int64_t)scp)
1399 return (EINVAL);
1400
1401 /*
1402 * Test and fetch the context structure.
1403 * We grab it all at once for speed.
1404 */
1405 if (useracc((caddr_t)scp, sizeof (*scp), B_WRITE) == 0 ||
1406 copyin((caddr_t)scp, (caddr_t)&ksc, sizeof ksc))
1407 return (EINVAL);
1408
1409 if (ksc.sc_regs[R_ZERO] != 0xACEDBADE) /* magic number */
1410 return (EINVAL);
1411 /*
1412 * Restore the user-supplied information
1413 */
1414 if (ksc.sc_onstack)
1415 p->p_sigacts->ps_sigstk.ss_flags |= SS_ONSTACK;
1416 else
1417 p->p_sigacts->ps_sigstk.ss_flags &= ~SS_ONSTACK;
1418 p->p_sigmask = ksc.sc_mask &~ sigcantmask;
1419
1420 p->p_md.md_tf->tf_regs[FRAME_PC] = ksc.sc_pc;
1421 p->p_md.md_tf->tf_regs[FRAME_PS] =
1422 (ksc.sc_ps | ALPHA_PSL_USERSET) & ~ALPHA_PSL_USERCLR;
1423
1424 regtoframe((struct reg *)ksc.sc_regs, p->p_md.md_tf);
1425 alpha_pal_wrusp(ksc.sc_regs[R_SP]);
1426
1427 /* XXX ksc.sc_ownedfp ? */
1428 if (p == fpcurproc)
1429 fpcurproc = NULL;
1430 bcopy((struct fpreg *)ksc.sc_fpregs, &p->p_addr->u_pcb.pcb_fp,
1431 sizeof(struct fpreg));
1432 /* XXX ksc.sc_fp_control ? */
1433
1434 #ifdef DEBUG
1435 if (sigdebug & SDB_FOLLOW)
1436 printf("sigreturn(%d): returns\n", p->p_pid);
1437 #endif
1438 return (EJUSTRETURN);
1439 }
1440
1441 /*
1442 * machine dependent system variables.
1443 */
1444 int
1445 cpu_sysctl(name, namelen, oldp, oldlenp, newp, newlen, p)
1446 int *name;
1447 u_int namelen;
1448 void *oldp;
1449 size_t *oldlenp;
1450 void *newp;
1451 size_t newlen;
1452 struct proc *p;
1453 {
1454 dev_t consdev;
1455
1456 /* all sysctl names at this level are terminal */
1457 if (namelen != 1)
1458 return (ENOTDIR); /* overloaded */
1459
1460 switch (name[0]) {
1461 case CPU_CONSDEV:
1462 if (cn_tab != NULL)
1463 consdev = cn_tab->cn_dev;
1464 else
1465 consdev = NODEV;
1466 return (sysctl_rdstruct(oldp, oldlenp, newp, &consdev,
1467 sizeof consdev));
1468
1469 case CPU_ROOT_DEVICE:
1470 return (sysctl_rdstring(oldp, oldlenp, newp,
1471 root_device->dv_xname));
1472
1473 case CPU_UNALIGNED_PRINT:
1474 return (sysctl_int(oldp, oldlenp, newp, newlen,
1475 &alpha_unaligned_print));
1476
1477 case CPU_UNALIGNED_FIX:
1478 return (sysctl_int(oldp, oldlenp, newp, newlen,
1479 &alpha_unaligned_fix));
1480
1481 case CPU_UNALIGNED_SIGBUS:
1482 return (sysctl_int(oldp, oldlenp, newp, newlen,
1483 &alpha_unaligned_sigbus));
1484
1485 case CPU_BOOTED_KERNEL:
1486 return (sysctl_rdstring(oldp, oldlenp, newp, booted_kernel));
1487
1488 default:
1489 return (EOPNOTSUPP);
1490 }
1491 /* NOTREACHED */
1492 }
1493
1494 /*
1495 * Set registers on exec.
1496 */
1497 void
1498 setregs(p, pack, stack)
1499 register struct proc *p;
1500 struct exec_package *pack;
1501 u_long stack;
1502 {
1503 struct trapframe *tfp = p->p_md.md_tf;
1504 extern struct proc *fpcurproc;
1505 #ifdef DEBUG
1506 int i;
1507 #endif
1508
1509 #ifdef DEBUG
1510 /*
1511 * Crash and dump, if the user requested it.
1512 */
1513 if (boothowto & RB_DUMP)
1514 panic("crash requested by boot flags");
1515 #endif
1516
1517 #ifdef DEBUG
1518 for (i = 0; i < FRAME_SIZE; i++)
1519 tfp->tf_regs[i] = 0xbabefacedeadbeef;
1520 #else
1521 bzero(tfp->tf_regs, FRAME_SIZE * sizeof tfp->tf_regs[0]);
1522 #endif
1523 bzero(&p->p_addr->u_pcb.pcb_fp, sizeof p->p_addr->u_pcb.pcb_fp);
1524 #define FP_RN 2 /* XXX */
1525 p->p_addr->u_pcb.pcb_fp.fpr_cr = (long)FP_RN << 58;
1526 alpha_pal_wrusp(stack);
1527 tfp->tf_regs[FRAME_PS] = ALPHA_PSL_USERSET;
1528 tfp->tf_regs[FRAME_PC] = pack->ep_entry & ~3;
1529
1530 tfp->tf_regs[FRAME_A0] = stack; /* a0 = sp */
1531 tfp->tf_regs[FRAME_A1] = 0; /* a1 = rtld cleanup */
1532 tfp->tf_regs[FRAME_A2] = 0; /* a2 = rtld object */
1533 tfp->tf_regs[FRAME_A3] = (u_int64_t)PS_STRINGS; /* a3 = ps_strings */
1534 tfp->tf_regs[FRAME_T12] = tfp->tf_regs[FRAME_PC]; /* a.k.a. PV */
1535
1536 p->p_md.md_flags &= ~MDP_FPUSED;
1537 if (fpcurproc == p)
1538 fpcurproc = NULL;
1539 }
1540
1541 void
1542 netintr()
1543 {
1544 int n, s;
1545
1546 s = splhigh();
1547 n = netisr;
1548 netisr = 0;
1549 splx(s);
1550
1551 #define DONETISR(bit, fn) \
1552 do { \
1553 if (n & (1 << (bit))) \
1554 fn; \
1555 } while (0)
1556
1557 #ifdef INET
1558 #if NARP > 0
1559 DONETISR(NETISR_ARP, arpintr());
1560 #endif
1561 DONETISR(NETISR_IP, ipintr());
1562 #endif
1563 #ifdef NETATALK
1564 DONETISR(NETISR_ATALK, atintr());
1565 #endif
1566 #ifdef NS
1567 DONETISR(NETISR_NS, nsintr());
1568 #endif
1569 #ifdef ISO
1570 DONETISR(NETISR_ISO, clnlintr());
1571 #endif
1572 #ifdef CCITT
1573 DONETISR(NETISR_CCITT, ccittintr());
1574 #endif
1575 #ifdef NATM
1576 DONETISR(NETISR_NATM, natmintr());
1577 #endif
1578 #if NPPP > 1
1579 DONETISR(NETISR_PPP, pppintr());
1580 #endif
1581
1582 #undef DONETISR
1583 }
1584
1585 void
1586 do_sir()
1587 {
1588 u_int64_t n;
1589
1590 do {
1591 (void)splhigh();
1592 n = ssir;
1593 ssir = 0;
1594 splsoft(); /* don't recurse through spl0() */
1595
1596 #define DO_SIR(bit, fn) \
1597 do { \
1598 if (n & (bit)) { \
1599 cnt.v_soft++; \
1600 fn; \
1601 } \
1602 } while (0)
1603
1604 DO_SIR(SIR_NET, netintr());
1605 DO_SIR(SIR_CLOCK, softclock());
1606
1607 #undef DO_SIR
1608 } while (ssir != 0);
1609 }
1610
1611 int
1612 spl0()
1613 {
1614
1615 if (ssir)
1616 do_sir(); /* it lowers the IPL itself */
1617
1618 return (alpha_pal_swpipl(ALPHA_PSL_IPL_0));
1619 }
1620
1621 /*
1622 * The following primitives manipulate the run queues. _whichqs tells which
1623 * of the 32 queues _qs have processes in them. Setrunqueue puts processes
1624 * into queues, Remrunqueue removes them from queues. The running process is
1625 * on no queue, other processes are on a queue related to p->p_priority,
1626 * divided by 4 actually to shrink the 0-127 range of priorities into the 32
1627 * available queues.
1628 */
1629 /*
1630 * setrunqueue(p)
1631 * proc *p;
1632 *
1633 * Call should be made at splclock(), and p->p_stat should be SRUN.
1634 */
1635
1636 void
1637 setrunqueue(p)
1638 struct proc *p;
1639 {
1640 int bit;
1641
1642 /* firewall: p->p_back must be NULL */
1643 if (p->p_back != NULL)
1644 panic("setrunqueue");
1645
1646 bit = p->p_priority >> 2;
1647 whichqs |= (1 << bit);
1648 p->p_forw = (struct proc *)&qs[bit];
1649 p->p_back = qs[bit].ph_rlink;
1650 p->p_back->p_forw = p;
1651 qs[bit].ph_rlink = p;
1652 }
1653
1654 /*
1655 * remrunqueue(p)
1656 *
1657 * Call should be made at splclock().
1658 */
1659 void
1660 remrunqueue(p)
1661 struct proc *p;
1662 {
1663 int bit;
1664
1665 bit = p->p_priority >> 2;
1666 if ((whichqs & (1 << bit)) == 0)
1667 panic("remrunqueue");
1668
1669 p->p_back->p_forw = p->p_forw;
1670 p->p_forw->p_back = p->p_back;
1671 p->p_back = NULL; /* for firewall checking. */
1672
1673 if ((struct proc *)&qs[bit] == qs[bit].ph_link)
1674 whichqs &= ~(1 << bit);
1675 }
1676
1677 /*
1678 * Return the best possible estimate of the time in the timeval
1679 * to which tvp points. Unfortunately, we can't read the hardware registers.
1680 * We guarantee that the time will be greater than the value obtained by a
1681 * previous call.
1682 */
1683 void
1684 microtime(tvp)
1685 register struct timeval *tvp;
1686 {
1687 int s = splclock();
1688 static struct timeval lasttime;
1689
1690 *tvp = time;
1691 #ifdef notdef
1692 tvp->tv_usec += clkread();
1693 while (tvp->tv_usec > 1000000) {
1694 tvp->tv_sec++;
1695 tvp->tv_usec -= 1000000;
1696 }
1697 #endif
1698 if (tvp->tv_sec == lasttime.tv_sec &&
1699 tvp->tv_usec <= lasttime.tv_usec &&
1700 (tvp->tv_usec = lasttime.tv_usec + 1) > 1000000) {
1701 tvp->tv_sec++;
1702 tvp->tv_usec -= 1000000;
1703 }
1704 lasttime = *tvp;
1705 splx(s);
1706 }
1707
1708 /*
1709 * Wait "n" microseconds.
1710 */
1711 void
1712 delay(n)
1713 unsigned long n;
1714 {
1715 long N = cycles_per_usec * (n);
1716
1717 while (N > 0) /* XXX */
1718 N -= 3; /* XXX */
1719 }
1720
1721 #if defined(COMPAT_OSF1) || 1 /* XXX */
1722 void cpu_exec_ecoff_setregs __P((struct proc *, struct exec_package *,
1723 u_long));
1724
1725 void
1726 cpu_exec_ecoff_setregs(p, epp, stack)
1727 struct proc *p;
1728 struct exec_package *epp;
1729 u_long stack;
1730 {
1731 struct ecoff_exechdr *execp = (struct ecoff_exechdr *)epp->ep_hdr;
1732
1733 setregs(p, epp, stack);
1734 p->p_md.md_tf->tf_regs[FRAME_GP] = execp->a.gp_value;
1735 }
1736
1737 /*
1738 * cpu_exec_ecoff_hook():
1739 * cpu-dependent ECOFF format hook for execve().
1740 *
1741 * Do any machine-dependent diddling of the exec package when doing ECOFF.
1742 *
1743 */
1744 int
1745 cpu_exec_ecoff_hook(p, epp)
1746 struct proc *p;
1747 struct exec_package *epp;
1748 {
1749 struct ecoff_exechdr *execp = (struct ecoff_exechdr *)epp->ep_hdr;
1750 extern struct emul emul_netbsd;
1751 #ifdef COMPAT_OSF1
1752 extern struct emul emul_osf1;
1753 #endif
1754
1755 switch (execp->f.f_magic) {
1756 #ifdef COMPAT_OSF1
1757 case ECOFF_MAGIC_ALPHA:
1758 epp->ep_emul = &emul_osf1;
1759 break;
1760 #endif
1761
1762 case ECOFF_MAGIC_NETBSD_ALPHA:
1763 epp->ep_emul = &emul_netbsd;
1764 break;
1765
1766 default:
1767 return ENOEXEC;
1768 }
1769 return 0;
1770 }
1771 #endif
1772
1773 /* XXX XXX BEGIN XXX XXX */
1774 vm_offset_t alpha_XXX_dmamap_or; /* XXX */
1775 /* XXX */
1776 vm_offset_t /* XXX */
1777 alpha_XXX_dmamap(v) /* XXX */
1778 vm_offset_t v; /* XXX */
1779 { /* XXX */
1780 /* XXX */
1781 return (vtophys(v) | alpha_XXX_dmamap_or); /* XXX */
1782 } /* XXX */
1783 /* XXX XXX END XXX XXX */
1784