machdep.c revision 1.98 1 /* $NetBSD: machdep.c,v 1.98 1998/01/31 02:20:44 cgd Exp $ */
2
3 /*
4 * Copyright (c) 1994, 1995, 1996 Carnegie-Mellon University.
5 * All rights reserved.
6 *
7 * Author: Chris G. Demetriou
8 *
9 * Permission to use, copy, modify and distribute this software and
10 * its documentation is hereby granted, provided that both the copyright
11 * notice and this permission notice appear in all copies of the
12 * software, derivative works or modified versions, and any portions
13 * thereof, and that both notices appear in supporting documentation.
14 *
15 * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
16 * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
17 * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
18 *
19 * Carnegie Mellon requests users of this software to return to
20 *
21 * Software Distribution Coordinator or Software.Distribution (at) CS.CMU.EDU
22 * School of Computer Science
23 * Carnegie Mellon University
24 * Pittsburgh PA 15213-3890
25 *
26 * any improvements or extensions that they make and grant Carnegie the
27 * rights to redistribute these changes.
28 */
29
30 #include <sys/cdefs.h> /* RCS ID & Copyright macro defns */
31
32 __KERNEL_RCSID(0, "$NetBSD: machdep.c,v 1.98 1998/01/31 02:20:44 cgd Exp $");
33
34 #include <sys/param.h>
35 #include <sys/systm.h>
36 #include <sys/signalvar.h>
37 #include <sys/kernel.h>
38 #include <sys/map.h>
39 #include <sys/proc.h>
40 #include <sys/buf.h>
41 #include <sys/reboot.h>
42 #include <sys/device.h>
43 #include <sys/file.h>
44 #ifdef REAL_CLISTS
45 #include <sys/clist.h>
46 #endif
47 #include <sys/callout.h>
48 #include <sys/malloc.h>
49 #include <sys/mbuf.h>
50 #include <sys/msgbuf.h>
51 #include <sys/ioctl.h>
52 #include <sys/tty.h>
53 #include <sys/user.h>
54 #include <sys/exec.h>
55 #include <sys/exec_ecoff.h>
56 #include <vm/vm.h>
57 #include <sys/sysctl.h>
58 #include <sys/core.h>
59 #include <sys/kcore.h>
60 #include <machine/kcore.h>
61 #ifdef SYSVMSG
62 #include <sys/msg.h>
63 #endif
64 #ifdef SYSVSEM
65 #include <sys/sem.h>
66 #endif
67 #ifdef SYSVSHM
68 #include <sys/shm.h>
69 #endif
70
71 #include <sys/mount.h>
72 #include <sys/syscallargs.h>
73
74 #include <vm/vm_kern.h>
75
76 #include <dev/cons.h>
77
78 #include <machine/autoconf.h>
79 #include <machine/cpu.h>
80 #include <machine/reg.h>
81 #include <machine/rpb.h>
82 #include <machine/prom.h>
83 #include <machine/conf.h>
84
85 #include <net/netisr.h>
86 #include <net/if.h>
87
88 #ifdef INET
89 #include <netinet/in.h>
90 #include <netinet/ip_var.h>
91 #include "arp.h"
92 #if NARP > 0
93 #include <netinet/if_inarp.h>
94 #endif
95 #endif
96 #ifdef NS
97 #include <netns/ns_var.h>
98 #endif
99 #ifdef ISO
100 #include <netiso/iso.h>
101 #include <netiso/clnp.h>
102 #endif
103 #ifdef CCITT
104 #include <netccitt/x25.h>
105 #include <netccitt/pk.h>
106 #include <netccitt/pk_extern.h>
107 #endif
108 #ifdef NATM
109 #include <netnatm/natm.h>
110 #endif
111 #ifdef NETATALK
112 #include <netatalk/at_extern.h>
113 #endif
114 #include "ppp.h"
115 #if NPPP > 0
116 #include <net/ppp_defs.h>
117 #include <net/if_ppp.h>
118 #endif
119
120 #ifdef DDB
121 #include <machine/db_machdep.h>
122 #include <ddb/db_access.h>
123 #include <ddb/db_sym.h>
124 #include <ddb/db_extern.h>
125 #include <ddb/db_interface.h>
126 #endif
127
128 vm_map_t buffer_map;
129
130 /*
131 * Declare these as initialized data so we can patch them.
132 */
133 int nswbuf = 0;
134 #ifdef NBUF
135 int nbuf = NBUF;
136 #else
137 int nbuf = 0;
138 #endif
139 #ifdef BUFPAGES
140 int bufpages = BUFPAGES;
141 #else
142 int bufpages = 0;
143 #endif
144 caddr_t msgbufaddr;
145
146 int maxmem; /* max memory per process */
147
148 int totalphysmem; /* total amount of physical memory in system */
149 int physmem; /* physical memory used by NetBSD + some rsvd */
150 int firstusablepage; /* first usable memory page */
151 int lastusablepage; /* last usable memory page */
152 int resvmem; /* amount of memory reserved for PROM */
153 int unusedmem; /* amount of memory for OS that we don't use */
154 int unknownmem; /* amount of memory with an unknown use */
155
156 int cputype; /* system type, from the RPB */
157
158 /*
159 * XXX We need an address to which we can assign things so that they
160 * won't be optimized away because we didn't use the value.
161 */
162 u_int32_t no_optimize;
163
164 /* the following is used externally (sysctl_hw) */
165 char machine[] = MACHINE; /* from <machine/param.h> */
166 char machine_arch[] = MACHINE_ARCH; /* from <machine/param.h> */
167 char cpu_model[128];
168
169 struct user *proc0paddr;
170
171 /* Number of machine cycles per microsecond */
172 u_int64_t cycles_per_usec;
173
174 /* number of cpus in the box. really! */
175 int ncpus;
176
177 char boot_flags[64];
178 char booted_kernel[64];
179
180 int bootinfo_valid;
181 struct bootinfo bootinfo;
182
183 struct platform platform;
184
185 u_int32_t vm_mbuf_size = (NMBCLUSTERS*MCLBYTES);
186 u_int32_t vm_kmem_size = (NKMEMCLUSTERS*CLBYTES);
187 u_int32_t vm_phys_size = (USRIOSIZE*CLBYTES);
188
189 #ifdef DDB
190 /* start and end of kernel symbol table */
191 void *ksym_start, *ksym_end;
192 #endif
193
194 /* for cpu_sysctl() */
195 int alpha_unaligned_print = 1; /* warn about unaligned accesses */
196 int alpha_unaligned_fix = 1; /* fix up unaligned accesses */
197 int alpha_unaligned_sigbus = 0; /* don't SIGBUS on fixed-up accesses */
198
199 caddr_t allocsys __P((caddr_t));
200 int cpu_dump __P((void));
201 int cpu_dumpsize __P((void));
202 void dumpsys __P((void));
203 void identifycpu __P((void));
204 void netintr __P((void));
205 void printregs __P((struct reg *));
206
207 void
208 alpha_init(pfn, ptb, bim, bip)
209 u_long pfn; /* first free PFN number */
210 u_long ptb; /* PFN of current level 1 page table */
211 u_long bim; /* bootinfo magic */
212 u_long bip; /* bootinfo pointer */
213 {
214 extern char kernel_text[], _end[];
215 struct mddt *mddtp;
216 int i, mddtweird;
217 vm_offset_t kernstart, kernend;
218 vm_size_t size;
219 char *p;
220 caddr_t v;
221 caddr_t start, w;
222
223 /*
224 * Turn off interrupts (not mchecks) and floating point.
225 * Make sure the instruction and data streams are consistent.
226 */
227 (void)alpha_pal_swpipl(ALPHA_PSL_IPL_HIGH);
228 alpha_pal_wrfen(0);
229 ALPHA_TBIA();
230 alpha_pal_imb();
231
232 /*
233 * get address of the restart block, while we the bootstrap
234 * mapping is still around.
235 */
236 hwrpb = (struct rpb *)ALPHA_PHYS_TO_K0SEG(
237 (vm_offset_t)(*(struct rpb **)HWRPB_ADDR));
238
239 /*
240 * Remember how many cycles there are per microsecond,
241 * so that we can use delay(). Round up, for safety.
242 */
243 cycles_per_usec = (hwrpb->rpb_cc_freq + 999999) / 1000000;
244
245 /*
246 * Init the PROM interface, so we can use printf
247 * until PROM mappings go away in consinit.
248 */
249 init_prom_interface();
250
251 /*
252 * Check for a bootinfo from the boot program.
253 */
254 if (bim == BOOTINFO_MAGIC) {
255 /*
256 * Have boot info. Copy it to our own storage.
257 * We'll sanity-check it later.
258 */
259 bcopy((void *)bip, &bootinfo, sizeof(bootinfo));
260 switch (bootinfo.version) {
261 case 1:
262 bootinfo_valid = 1;
263 break;
264
265 default:
266 printf("warning: unknown bootinfo version %d\n",
267 bootinfo.version);
268 }
269 } else
270 printf("warning: boot program did not pass bootinfo\n");
271
272 /*
273 * Point interrupt/exception vectors to our own.
274 */
275 alpha_pal_wrent(XentInt, ALPHA_KENTRY_INT);
276 alpha_pal_wrent(XentArith, ALPHA_KENTRY_ARITH);
277 alpha_pal_wrent(XentMM, ALPHA_KENTRY_MM);
278 alpha_pal_wrent(XentIF, ALPHA_KENTRY_IF);
279 alpha_pal_wrent(XentUna, ALPHA_KENTRY_UNA);
280 alpha_pal_wrent(XentSys, ALPHA_KENTRY_SYS);
281
282 /*
283 * Clear pending machine checks and error reports, and enable
284 * system- and processor-correctable error reporting.
285 */
286 alpha_pal_wrmces(alpha_pal_rdmces() &
287 ~(ALPHA_MCES_DSC|ALPHA_MCES_DPC));
288
289 /*
290 * find out this CPU's page size
291 */
292 PAGE_SIZE = hwrpb->rpb_page_size;
293 if (PAGE_SIZE != 8192)
294 panic("page size %d != 8192?!", PAGE_SIZE);
295
296 /*
297 * Initialize PAGE_SIZE-dependent variables.
298 */
299 vm_set_page_size();
300
301 /*
302 * Find the beginning and end of the kernel.
303 */
304 kernstart = trunc_page(kernel_text);
305 #ifdef DDB
306 if (bootinfo_valid) {
307 /*
308 * Save the kernel symbol table.
309 */
310 switch (bootinfo.version) {
311 case 1:
312 ksym_start = (void *)bootinfo.un.v1.ssym;
313 ksym_end = (void *)bootinfo.un.v1.esym;
314 break;
315 }
316 kernend = (vm_offset_t)round_page(ksym_end);
317 } else
318 #endif
319 kernend = (vm_offset_t)round_page(_end);
320
321 /*
322 * Find out how much memory is available, by looking at
323 * the memory cluster descriptors. This also tries to do
324 * its best to detect things things that have never been seen
325 * before...
326 *
327 * XXX Assumes that the first "system" cluster is the
328 * only one we can use. Is the second (etc.) system cluster
329 * (if one happens to exist) guaranteed to be contiguous? or...?
330 */
331 mddtp = (struct mddt *)(((caddr_t)hwrpb) + hwrpb->rpb_memdat_off);
332
333 /*
334 * BEGIN MDDT WEIRDNESS CHECKING
335 */
336 mddtweird = 0;
337
338 #define cnt mddtp->mddt_cluster_cnt
339 #define usage(n) mddtp->mddt_clusters[(n)].mddt_usage
340 if (cnt != 2 && cnt != 3) {
341 printf("WARNING: weird number (%ld) of mem clusters\n", cnt);
342 mddtweird = 1;
343 } else if (usage(0) != MDDT_PALCODE ||
344 usage(1) != MDDT_SYSTEM ||
345 (cnt == 3 && usage(2) != MDDT_PALCODE)) {
346 mddtweird = 1;
347 printf("WARNING: %ld mem clusters, but weird config\n", cnt);
348 }
349
350 for (i = 0; i < cnt; i++) {
351 if ((usage(i) & MDDT_mbz) != 0) {
352 printf("WARNING: mem cluster %d has weird usage %lx\n",
353 i, usage(i));
354 mddtweird = 1;
355 }
356 if (mddtp->mddt_clusters[i].mddt_pg_cnt == 0) {
357 printf("WARNING: mem cluster %d has pg cnt == 0\n", i);
358 mddtweird = 1;
359 }
360 /* XXX other things to check? */
361 }
362 #undef cnt
363 #undef usage
364
365 if (mddtweird) {
366 printf("\n");
367 printf("complete memory cluster information:\n");
368 for (i = 0; i < mddtp->mddt_cluster_cnt; i++) {
369 printf("mddt %d:\n", i);
370 printf("\tpfn %lx\n",
371 mddtp->mddt_clusters[i].mddt_pfn);
372 printf("\tcnt %lx\n",
373 mddtp->mddt_clusters[i].mddt_pg_cnt);
374 printf("\ttest %lx\n",
375 mddtp->mddt_clusters[i].mddt_pg_test);
376 printf("\tbva %lx\n",
377 mddtp->mddt_clusters[i].mddt_v_bitaddr);
378 printf("\tbpa %lx\n",
379 mddtp->mddt_clusters[i].mddt_p_bitaddr);
380 printf("\tbcksum %lx\n",
381 mddtp->mddt_clusters[i].mddt_bit_cksum);
382 printf("\tusage %lx\n",
383 mddtp->mddt_clusters[i].mddt_usage);
384 }
385 printf("\n");
386 }
387 /*
388 * END MDDT WEIRDNESS CHECKING
389 */
390
391 for (i = 0; i < mddtp->mddt_cluster_cnt; i++) {
392 totalphysmem += mddtp->mddt_clusters[i].mddt_pg_cnt;
393 #define usage(n) mddtp->mddt_clusters[(n)].mddt_usage
394 #define pgcnt(n) mddtp->mddt_clusters[(n)].mddt_pg_cnt
395 if ((usage(i) & MDDT_mbz) != 0)
396 unknownmem += pgcnt(i);
397 else if ((usage(i) & ~MDDT_mbz) == MDDT_PALCODE)
398 resvmem += pgcnt(i);
399 else if ((usage(i) & ~MDDT_mbz) == MDDT_SYSTEM) {
400 /*
401 * assumes that the system cluster listed is
402 * one we're in...
403 */
404 if (physmem != resvmem) {
405 physmem += pgcnt(i);
406 firstusablepage =
407 mddtp->mddt_clusters[i].mddt_pfn;
408 lastusablepage = firstusablepage + pgcnt(i) - 1;
409 } else
410 unusedmem += pgcnt(i);
411 }
412 #undef usage
413 #undef pgcnt
414 }
415 if (totalphysmem == 0)
416 panic("can't happen: system seems to have no memory!");
417 #ifdef LIMITMEM
418 if (totalphysmem >= btoc(LIMITMEM << 20)) {
419 u_int64_t ovf = totalphysmem - btoc(LIMITMEM << 20);
420 printf("********LIMITING MEMORY TO %dMB**********\n", LIMITMEM);
421 physmem = totalphysmem = btoc(LIMITMEM << 20);
422 unusedmem += ovf;
423 lastusablepage = firstusablepage + physmem - 1;
424 }
425 #endif
426 maxmem = physmem;
427
428 #if 0
429 printf("totalphysmem = %d\n", totalphysmem);
430 printf("physmem = %d\n", physmem);
431 printf("firstusablepage = %d\n", firstusablepage);
432 printf("lastusablepage = %d\n", lastusablepage);
433 printf("resvmem = %d\n", resvmem);
434 printf("unusedmem = %d\n", unusedmem);
435 printf("unknownmem = %d\n", unknownmem);
436 #endif
437
438 /*
439 * Adjust some parameters if the amount of physmem
440 * available would cause us to croak. This is completely
441 * eyeballed and isn't meant to be the final answer.
442 * vm_phys_size is probably the only one to really worry
443 * about.
444 *
445 * It's for booting a GENERIC kernel on a large memory platform.
446 */
447 if (physmem >= btoc(128 << 20)) {
448 vm_mbuf_size <<= 1;
449 vm_kmem_size <<= 3;
450 vm_phys_size <<= 2;
451 }
452
453 /*
454 * Find out what hardware we're on, and remember its type name.
455 */
456 cputype = hwrpb->rpb_type;
457 if (cputype >= ncpuinit) {
458 platform_not_supported();
459 /* NOTREACHED */
460 }
461 (*cpuinit[cputype].init)();
462 strcpy(cpu_model, platform.model);
463
464 /* XXX SANITY CHECKING. SHOULD GO AWAY */
465 /* XXX We should always be running on the the primary. */
466 assert(hwrpb->rpb_primary_cpu_id == alpha_pal_whami()); /*XXX*/
467 /* XXX On single-CPU boxes, the primary should always be CPU 0. */
468 if (cputype != ST_DEC_21000) /*XXX*/
469 assert(hwrpb->rpb_primary_cpu_id == 0); /*XXX*/
470
471 /*
472 * Initialize error message buffer (at end of core).
473 */
474 lastusablepage -= btoc(MSGBUFSIZE);
475 msgbufaddr = (caddr_t) ALPHA_PHYS_TO_K0SEG(ctob(lastusablepage + 1));
476 initmsgbuf(msgbufaddr, alpha_round_page(MSGBUFSIZE));
477
478 /*
479 * Init mapping for u page(s) for proc 0
480 */
481 start = v = (caddr_t)kernend;
482 curproc->p_addr = proc0paddr = (struct user *)v;
483 v += UPAGES * NBPG;
484
485 /*
486 * Allocate space for system data structures. These data structures
487 * are allocated here instead of cpu_startup() because physical
488 * memory is directly addressable. We don't have to map these into
489 * virtual address space.
490 */
491 size = (vm_size_t)allocsys(0);
492 w = allocsys(v);
493 if ((w - v) != size)
494 panic("alpha_init: table size inconsistency");
495 v = w;
496
497 /*
498 * Clear allocated memory.
499 */
500 bzero(start, v - start);
501
502 /*
503 * Initialize the virtual memory system, and set the
504 * page table base register in proc 0's PCB.
505 */
506 #ifndef NEW_PMAP
507 pmap_bootstrap((vm_offset_t)v, ALPHA_PHYS_TO_K0SEG(ptb << PGSHIFT));
508 #else
509 pmap_bootstrap((vm_offset_t)v, ALPHA_PHYS_TO_K0SEG(ptb << PGSHIFT),
510 hwrpb->rpb_max_asn);
511 #endif
512
513 /*
514 * Initialize the rest of proc 0's PCB, and cache its physical
515 * address.
516 */
517 proc0.p_md.md_pcbpaddr =
518 (struct pcb *)ALPHA_K0SEG_TO_PHYS((vm_offset_t)&proc0paddr->u_pcb);
519
520 /*
521 * Set the kernel sp, reserving space for an (empty) trapframe,
522 * and make proc0's trapframe pointer point to it for sanity.
523 */
524 proc0paddr->u_pcb.pcb_hw.apcb_ksp =
525 (u_int64_t)proc0paddr + USPACE - sizeof(struct trapframe);
526 proc0.p_md.md_tf =
527 (struct trapframe *)proc0paddr->u_pcb.pcb_hw.apcb_ksp;
528
529 #ifdef NEW_PMAP
530 /*
531 * Set up the kernel address space in proc0's hwpcb.
532 */
533 PMAP_ACTIVATE(kernel_pmap, &proc0paddr->u_pcb.pcb_hw, 0);
534 #endif
535
536 /*
537 * Look at arguments passed to us and compute boothowto.
538 * Also, get kernel name so it can be used in user-land.
539 */
540 if (bootinfo_valid) {
541 switch (bootinfo.version) {
542 case 1:
543 bcopy(bootinfo.un.v1.boot_flags, boot_flags,
544 sizeof(boot_flags));
545 bcopy(bootinfo.un.v1.booted_kernel, booted_kernel,
546 sizeof(booted_kernel));
547 }
548 } else {
549 prom_getenv(PROM_E_BOOTED_OSFLAGS, boot_flags,
550 sizeof(boot_flags));
551 prom_getenv(PROM_E_BOOTED_FILE, booted_kernel,
552 sizeof(booted_kernel));
553 }
554
555 #if 0
556 printf("boot flags = \"%s\"\n", boot_flags);
557 printf("booted kernel = \"%s\"\n", booted_kernel);
558 #endif
559
560 boothowto = RB_SINGLE;
561 #ifdef KADB
562 boothowto |= RB_KDB;
563 #endif
564 for (p = boot_flags; p && *p != '\0'; p++) {
565 /*
566 * Note that we'd really like to differentiate case here,
567 * but the Alpha AXP Architecture Reference Manual
568 * says that we shouldn't.
569 */
570 switch (*p) {
571 case 'a': /* autoboot */
572 case 'A':
573 boothowto &= ~RB_SINGLE;
574 break;
575
576 #ifdef DEBUG
577 case 'c': /* crash dump immediately after autoconfig */
578 case 'C':
579 boothowto |= RB_DUMP;
580 break;
581 #endif
582
583 #if defined(KGDB) || defined(DDB)
584 case 'd': /* break into the kernel debugger ASAP */
585 case 'D':
586 boothowto |= RB_KDB;
587 break;
588 #endif
589
590 case 'h': /* always halt, never reboot */
591 case 'H':
592 boothowto |= RB_HALT;
593 break;
594
595 #if 0
596 case 'm': /* mini root present in memory */
597 case 'M':
598 boothowto |= RB_MINIROOT;
599 break;
600 #endif
601
602 case 'n': /* askname */
603 case 'N':
604 boothowto |= RB_ASKNAME;
605 break;
606
607 case 's': /* single-user (default, supported for sanity) */
608 case 'S':
609 boothowto |= RB_SINGLE;
610 break;
611
612 default:
613 printf("Unrecognized boot flag '%c'.\n", *p);
614 break;
615 }
616 }
617
618 /*
619 * Figure out the number of cpus in the box, from RPB fields.
620 * Really. We mean it.
621 */
622 for (i = 0; i < hwrpb->rpb_pcs_cnt; i++) {
623 struct pcs *pcsp;
624
625 pcsp = (struct pcs *)((char *)hwrpb + hwrpb->rpb_pcs_off +
626 (i * hwrpb->rpb_pcs_size));
627 if ((pcsp->pcs_flags & PCS_PP) != 0)
628 ncpus++;
629 }
630 }
631
632 /*
633 * Allocate space for system data structures. We are given
634 * a starting virtual address and we return a final virtual
635 * address; along the way we set each data structure pointer.
636 *
637 * We call allocsys() with 0 to find out how much space we want,
638 * allocate that much and fill it with zeroes, and the call
639 * allocsys() again with the correct base virtual address.
640 */
641 caddr_t
642 allocsys(v)
643 caddr_t v;
644 {
645
646 #define valloc(name, type, num) \
647 (name) = (type *)v; v = (caddr_t)ALIGN((name)+(num))
648 #ifdef REAL_CLISTS
649 valloc(cfree, struct cblock, nclist);
650 #endif
651 valloc(callout, struct callout, ncallout);
652 #ifdef SYSVSHM
653 valloc(shmsegs, struct shmid_ds, shminfo.shmmni);
654 #endif
655 #ifdef SYSVSEM
656 valloc(sema, struct semid_ds, seminfo.semmni);
657 valloc(sem, struct sem, seminfo.semmns);
658 /* This is pretty disgusting! */
659 valloc(semu, int, (seminfo.semmnu * seminfo.semusz) / sizeof(int));
660 #endif
661 #ifdef SYSVMSG
662 valloc(msgpool, char, msginfo.msgmax);
663 valloc(msgmaps, struct msgmap, msginfo.msgseg);
664 valloc(msghdrs, struct msg, msginfo.msgtql);
665 valloc(msqids, struct msqid_ds, msginfo.msgmni);
666 #endif
667
668 /*
669 * Determine how many buffers to allocate.
670 * We allocate 10% of memory for buffer space. Insure a
671 * minimum of 16 buffers. We allocate 1/2 as many swap buffer
672 * headers as file i/o buffers.
673 */
674 if (bufpages == 0)
675 bufpages = (physmem * 10) / (CLSIZE * 100);
676 if (nbuf == 0) {
677 nbuf = bufpages;
678 if (nbuf < 16)
679 nbuf = 16;
680 }
681 if (nswbuf == 0) {
682 nswbuf = (nbuf / 2) &~ 1; /* force even */
683 if (nswbuf > 256)
684 nswbuf = 256; /* sanity */
685 }
686 valloc(swbuf, struct buf, nswbuf);
687 valloc(buf, struct buf, nbuf);
688 return (v);
689 #undef valloc
690 }
691
692 void
693 consinit()
694 {
695 if (platform.cons_init)
696 (*platform.cons_init)();
697 pmap_unmap_prom();
698
699 #ifdef DDB
700 db_machine_init();
701 ddb_init(ksym_start, ksym_end);
702 if (boothowto & RB_KDB)
703 Debugger();
704 #endif
705 #ifdef KGDB
706 if (boothowto & RB_KDB)
707 kgdb_connect(0);
708 #endif
709 }
710
711 void
712 cpu_startup()
713 {
714 register unsigned i;
715 int base, residual;
716 vm_offset_t minaddr, maxaddr;
717 vm_size_t size;
718 #if defined(DEBUG)
719 extern int pmapdebug;
720 int opmapdebug = pmapdebug;
721
722 pmapdebug = 0;
723 #endif
724
725 /*
726 * Good {morning,afternoon,evening,night}.
727 */
728 printf(version);
729 identifycpu();
730 printf("real mem = %u (%u reserved for PROM, %u used by NetBSD)\n",
731 ctob(totalphysmem), ctob(resvmem), ctob(physmem));
732 if (unusedmem)
733 printf("WARNING: unused memory = %d bytes\n", ctob(unusedmem));
734 if (unknownmem)
735 printf("WARNING: %d bytes of memory with unknown purpose\n",
736 ctob(unknownmem));
737
738 /*
739 * Allocate virtual address space for file I/O buffers.
740 * Note they are different than the array of headers, 'buf',
741 * and usually occupy more virtual memory than physical.
742 */
743 size = MAXBSIZE * nbuf;
744 buffer_map = kmem_suballoc(kernel_map, (vm_offset_t *)&buffers,
745 &maxaddr, size, TRUE);
746 minaddr = (vm_offset_t)buffers;
747 if (vm_map_find(buffer_map, vm_object_allocate(size), (vm_offset_t)0,
748 &minaddr, size, FALSE) != KERN_SUCCESS)
749 panic("startup: cannot allocate buffers");
750 base = bufpages / nbuf;
751 residual = bufpages % nbuf;
752 for (i = 0; i < nbuf; i++) {
753 vm_size_t curbufsize;
754 vm_offset_t curbuf;
755
756 /*
757 * First <residual> buffers get (base+1) physical pages
758 * allocated for them. The rest get (base) physical pages.
759 *
760 * The rest of each buffer occupies virtual space,
761 * but has no physical memory allocated for it.
762 */
763 curbuf = (vm_offset_t)buffers + i * MAXBSIZE;
764 curbufsize = CLBYTES * (i < residual ? base+1 : base);
765 vm_map_pageable(buffer_map, curbuf, curbuf+curbufsize, FALSE);
766 vm_map_simplify(buffer_map, curbuf);
767 }
768 /*
769 * Allocate a submap for exec arguments. This map effectively
770 * limits the number of processes exec'ing at any time.
771 */
772 exec_map = kmem_suballoc(kernel_map, &minaddr, &maxaddr,
773 16 * NCARGS, TRUE);
774
775 /*
776 * Allocate a submap for physio
777 */
778 phys_map = kmem_suballoc(kernel_map, &minaddr, &maxaddr,
779 VM_PHYS_SIZE, TRUE);
780
781 /*
782 * Finally, allocate mbuf cluster submap.
783 */
784 mb_map = kmem_suballoc(kernel_map, (vm_offset_t *)&mbutl, &maxaddr,
785 VM_MBUF_SIZE, FALSE);
786 /*
787 * Initialize callouts
788 */
789 callfree = callout;
790 for (i = 1; i < ncallout; i++)
791 callout[i-1].c_next = &callout[i];
792 callout[i-1].c_next = NULL;
793
794 #if defined(DEBUG)
795 pmapdebug = opmapdebug;
796 #endif
797 printf("avail mem = %ld\n", (long)ptoa(cnt.v_free_count));
798 printf("using %ld buffers containing %ld bytes of memory\n",
799 (long)nbuf, (long)(bufpages * CLBYTES));
800
801 /*
802 * Set up buffers, so they can be used to read disk labels.
803 */
804 bufinit();
805
806 /*
807 * Configure the system.
808 */
809 configure();
810
811 /*
812 * Note that bootstrapping is finished, and set the HWRPB up
813 * to do restarts.
814 */
815 hwrpb_restart_setup();
816 }
817
818 void
819 identifycpu()
820 {
821
822 /*
823 * print out CPU identification information.
824 */
825 printf("%s, %ldMHz\n", cpu_model,
826 hwrpb->rpb_cc_freq / 1000000); /* XXX true for 21164? */
827 printf("%ld byte page size, %d processor%s.\n",
828 hwrpb->rpb_page_size, ncpus, ncpus == 1 ? "" : "s");
829 #if 0
830 /* this isn't defined for any systems that we run on? */
831 printf("serial number 0x%lx 0x%lx\n",
832 ((long *)hwrpb->rpb_ssn)[0], ((long *)hwrpb->rpb_ssn)[1]);
833
834 /* and these aren't particularly useful! */
835 printf("variation: 0x%lx, revision 0x%lx\n",
836 hwrpb->rpb_variation, *(long *)hwrpb->rpb_revision);
837 #endif
838 }
839
840 int waittime = -1;
841 struct pcb dumppcb;
842
843 void
844 cpu_reboot(howto, bootstr)
845 int howto;
846 char *bootstr;
847 {
848 extern int cold;
849
850 /* If system is cold, just halt. */
851 if (cold) {
852 howto |= RB_HALT;
853 goto haltsys;
854 }
855
856 /* If "always halt" was specified as a boot flag, obey. */
857 if ((boothowto & RB_HALT) != 0)
858 howto |= RB_HALT;
859
860 boothowto = howto;
861 if ((howto & RB_NOSYNC) == 0 && waittime < 0) {
862 waittime = 0;
863 vfs_shutdown();
864 /*
865 * If we've been adjusting the clock, the todr
866 * will be out of synch; adjust it now.
867 */
868 resettodr();
869 }
870
871 /* Disable interrupts. */
872 splhigh();
873
874 /* If rebooting and a dump is requested do it. */
875 #if 0
876 if ((howto & (RB_DUMP | RB_HALT)) == RB_DUMP)
877 #else
878 if (howto & RB_DUMP)
879 #endif
880 dumpsys();
881
882 haltsys:
883
884 /* run any shutdown hooks */
885 doshutdownhooks();
886
887 #ifdef BOOTKEY
888 printf("hit any key to %s...\n", howto & RB_HALT ? "halt" : "reboot");
889 cngetc();
890 printf("\n");
891 #endif
892
893 /* Finally, halt/reboot the system. */
894 printf("%s\n\n", howto & RB_HALT ? "halted." : "rebooting...");
895 prom_halt(howto & RB_HALT);
896 /*NOTREACHED*/
897 }
898
899 /*
900 * These variables are needed by /sbin/savecore
901 */
902 u_long dumpmag = 0x8fca0101; /* magic number */
903 int dumpsize = 0; /* pages */
904 long dumplo = 0; /* blocks */
905
906 /*
907 * cpu_dumpsize: calculate size of machine-dependent kernel core dump headers.
908 */
909 int
910 cpu_dumpsize()
911 {
912 int size;
913
914 size = ALIGN(sizeof(kcore_seg_t)) + ALIGN(sizeof(cpu_kcore_hdr_t));
915 if (roundup(size, dbtob(1)) != dbtob(1))
916 return -1;
917
918 return (1);
919 }
920
921 /*
922 * cpu_dump: dump machine-dependent kernel core dump headers.
923 */
924 int
925 cpu_dump()
926 {
927 int (*dump) __P((dev_t, daddr_t, caddr_t, size_t));
928 long buf[dbtob(1) / sizeof (long)];
929 kcore_seg_t *segp;
930 cpu_kcore_hdr_t *cpuhdrp;
931
932 dump = bdevsw[major(dumpdev)].d_dump;
933
934 segp = (kcore_seg_t *)buf;
935 cpuhdrp =
936 (cpu_kcore_hdr_t *)&buf[ALIGN(sizeof(*segp)) / sizeof (long)];
937
938 /*
939 * Generate a segment header.
940 */
941 CORE_SETMAGIC(*segp, KCORE_MAGIC, MID_MACHINE, CORE_CPU);
942 segp->c_size = dbtob(1) - ALIGN(sizeof(*segp));
943
944 /*
945 * Add the machine-dependent header info
946 */
947 cpuhdrp->lev1map_pa = ALPHA_K0SEG_TO_PHYS((vm_offset_t)Lev1map);
948 cpuhdrp->page_size = PAGE_SIZE;
949 cpuhdrp->core_seg.start = ctob(firstusablepage);
950 cpuhdrp->core_seg.size = ctob(physmem);
951
952 return (dump(dumpdev, dumplo, (caddr_t)buf, dbtob(1)));
953 }
954
955 /*
956 * This is called by main to set dumplo and dumpsize.
957 * Dumps always skip the first CLBYTES of disk space
958 * in case there might be a disk label stored there.
959 * If there is extra space, put dump at the end to
960 * reduce the chance that swapping trashes it.
961 */
962 void
963 cpu_dumpconf()
964 {
965 int nblks, dumpblks; /* size of dump area */
966 int maj;
967
968 if (dumpdev == NODEV)
969 goto bad;
970 maj = major(dumpdev);
971 if (maj < 0 || maj >= nblkdev)
972 panic("dumpconf: bad dumpdev=0x%x", dumpdev);
973 if (bdevsw[maj].d_psize == NULL)
974 goto bad;
975 nblks = (*bdevsw[maj].d_psize)(dumpdev);
976 if (nblks <= ctod(1))
977 goto bad;
978
979 dumpblks = cpu_dumpsize();
980 if (dumpblks < 0)
981 goto bad;
982 dumpblks += ctod(physmem);
983
984 /* If dump won't fit (incl. room for possible label), punt. */
985 if (dumpblks > (nblks - ctod(1)))
986 goto bad;
987
988 /* Put dump at end of partition */
989 dumplo = nblks - dumpblks;
990
991 /* dumpsize is in page units, and doesn't include headers. */
992 dumpsize = physmem;
993 return;
994
995 bad:
996 dumpsize = 0;
997 return;
998 }
999
1000 /*
1001 * Dump the kernel's image to the swap partition.
1002 */
1003 #define BYTES_PER_DUMP NBPG
1004
1005 void
1006 dumpsys()
1007 {
1008 unsigned bytes, i, n;
1009 int maddr, psize;
1010 daddr_t blkno;
1011 int (*dump) __P((dev_t, daddr_t, caddr_t, size_t));
1012 int error;
1013
1014 /* Save registers. */
1015 savectx(&dumppcb);
1016
1017 msgbufmapped = 0; /* don't record dump msgs in msgbuf */
1018 if (dumpdev == NODEV)
1019 return;
1020
1021 /*
1022 * For dumps during autoconfiguration,
1023 * if dump device has already configured...
1024 */
1025 if (dumpsize == 0)
1026 cpu_dumpconf();
1027 if (dumplo <= 0) {
1028 printf("\ndump to dev %u,%u not possible\n", major(dumpdev),
1029 minor(dumpdev));
1030 return;
1031 }
1032 printf("\ndumping to dev %u,%u offset %ld\n", major(dumpdev),
1033 minor(dumpdev), dumplo);
1034
1035 psize = (*bdevsw[major(dumpdev)].d_psize)(dumpdev);
1036 printf("dump ");
1037 if (psize == -1) {
1038 printf("area unavailable\n");
1039 return;
1040 }
1041
1042 /* XXX should purge all outstanding keystrokes. */
1043
1044 if ((error = cpu_dump()) != 0)
1045 goto err;
1046
1047 bytes = ctob(physmem);
1048 maddr = ctob(firstusablepage);
1049 blkno = dumplo + cpu_dumpsize();
1050 dump = bdevsw[major(dumpdev)].d_dump;
1051 error = 0;
1052 for (i = 0; i < bytes; i += n) {
1053
1054 /* Print out how many MBs we to go. */
1055 n = bytes - i;
1056 if (n && (n % (1024*1024)) == 0)
1057 printf("%d ", n / (1024 * 1024));
1058
1059 /* Limit size for next transfer. */
1060 if (n > BYTES_PER_DUMP)
1061 n = BYTES_PER_DUMP;
1062
1063 error = (*dump)(dumpdev, blkno,
1064 (caddr_t)ALPHA_PHYS_TO_K0SEG(maddr), n);
1065 if (error)
1066 break;
1067 maddr += n;
1068 blkno += btodb(n); /* XXX? */
1069
1070 /* XXX should look for keystrokes, to cancel. */
1071 }
1072
1073 err:
1074 switch (error) {
1075
1076 case ENXIO:
1077 printf("device bad\n");
1078 break;
1079
1080 case EFAULT:
1081 printf("device not ready\n");
1082 break;
1083
1084 case EINVAL:
1085 printf("area improper\n");
1086 break;
1087
1088 case EIO:
1089 printf("i/o error\n");
1090 break;
1091
1092 case EINTR:
1093 printf("aborted from console\n");
1094 break;
1095
1096 case 0:
1097 printf("succeeded\n");
1098 break;
1099
1100 default:
1101 printf("error %d\n", error);
1102 break;
1103 }
1104 printf("\n\n");
1105 delay(1000);
1106 }
1107
1108 void
1109 frametoreg(framep, regp)
1110 struct trapframe *framep;
1111 struct reg *regp;
1112 {
1113
1114 regp->r_regs[R_V0] = framep->tf_regs[FRAME_V0];
1115 regp->r_regs[R_T0] = framep->tf_regs[FRAME_T0];
1116 regp->r_regs[R_T1] = framep->tf_regs[FRAME_T1];
1117 regp->r_regs[R_T2] = framep->tf_regs[FRAME_T2];
1118 regp->r_regs[R_T3] = framep->tf_regs[FRAME_T3];
1119 regp->r_regs[R_T4] = framep->tf_regs[FRAME_T4];
1120 regp->r_regs[R_T5] = framep->tf_regs[FRAME_T5];
1121 regp->r_regs[R_T6] = framep->tf_regs[FRAME_T6];
1122 regp->r_regs[R_T7] = framep->tf_regs[FRAME_T7];
1123 regp->r_regs[R_S0] = framep->tf_regs[FRAME_S0];
1124 regp->r_regs[R_S1] = framep->tf_regs[FRAME_S1];
1125 regp->r_regs[R_S2] = framep->tf_regs[FRAME_S2];
1126 regp->r_regs[R_S3] = framep->tf_regs[FRAME_S3];
1127 regp->r_regs[R_S4] = framep->tf_regs[FRAME_S4];
1128 regp->r_regs[R_S5] = framep->tf_regs[FRAME_S5];
1129 regp->r_regs[R_S6] = framep->tf_regs[FRAME_S6];
1130 regp->r_regs[R_A0] = framep->tf_regs[FRAME_A0];
1131 regp->r_regs[R_A1] = framep->tf_regs[FRAME_A1];
1132 regp->r_regs[R_A2] = framep->tf_regs[FRAME_A2];
1133 regp->r_regs[R_A3] = framep->tf_regs[FRAME_A3];
1134 regp->r_regs[R_A4] = framep->tf_regs[FRAME_A4];
1135 regp->r_regs[R_A5] = framep->tf_regs[FRAME_A5];
1136 regp->r_regs[R_T8] = framep->tf_regs[FRAME_T8];
1137 regp->r_regs[R_T9] = framep->tf_regs[FRAME_T9];
1138 regp->r_regs[R_T10] = framep->tf_regs[FRAME_T10];
1139 regp->r_regs[R_T11] = framep->tf_regs[FRAME_T11];
1140 regp->r_regs[R_RA] = framep->tf_regs[FRAME_RA];
1141 regp->r_regs[R_T12] = framep->tf_regs[FRAME_T12];
1142 regp->r_regs[R_AT] = framep->tf_regs[FRAME_AT];
1143 regp->r_regs[R_GP] = framep->tf_regs[FRAME_GP];
1144 /* regp->r_regs[R_SP] = framep->tf_regs[FRAME_SP]; XXX */
1145 regp->r_regs[R_ZERO] = 0;
1146 }
1147
1148 void
1149 regtoframe(regp, framep)
1150 struct reg *regp;
1151 struct trapframe *framep;
1152 {
1153
1154 framep->tf_regs[FRAME_V0] = regp->r_regs[R_V0];
1155 framep->tf_regs[FRAME_T0] = regp->r_regs[R_T0];
1156 framep->tf_regs[FRAME_T1] = regp->r_regs[R_T1];
1157 framep->tf_regs[FRAME_T2] = regp->r_regs[R_T2];
1158 framep->tf_regs[FRAME_T3] = regp->r_regs[R_T3];
1159 framep->tf_regs[FRAME_T4] = regp->r_regs[R_T4];
1160 framep->tf_regs[FRAME_T5] = regp->r_regs[R_T5];
1161 framep->tf_regs[FRAME_T6] = regp->r_regs[R_T6];
1162 framep->tf_regs[FRAME_T7] = regp->r_regs[R_T7];
1163 framep->tf_regs[FRAME_S0] = regp->r_regs[R_S0];
1164 framep->tf_regs[FRAME_S1] = regp->r_regs[R_S1];
1165 framep->tf_regs[FRAME_S2] = regp->r_regs[R_S2];
1166 framep->tf_regs[FRAME_S3] = regp->r_regs[R_S3];
1167 framep->tf_regs[FRAME_S4] = regp->r_regs[R_S4];
1168 framep->tf_regs[FRAME_S5] = regp->r_regs[R_S5];
1169 framep->tf_regs[FRAME_S6] = regp->r_regs[R_S6];
1170 framep->tf_regs[FRAME_A0] = regp->r_regs[R_A0];
1171 framep->tf_regs[FRAME_A1] = regp->r_regs[R_A1];
1172 framep->tf_regs[FRAME_A2] = regp->r_regs[R_A2];
1173 framep->tf_regs[FRAME_A3] = regp->r_regs[R_A3];
1174 framep->tf_regs[FRAME_A4] = regp->r_regs[R_A4];
1175 framep->tf_regs[FRAME_A5] = regp->r_regs[R_A5];
1176 framep->tf_regs[FRAME_T8] = regp->r_regs[R_T8];
1177 framep->tf_regs[FRAME_T9] = regp->r_regs[R_T9];
1178 framep->tf_regs[FRAME_T10] = regp->r_regs[R_T10];
1179 framep->tf_regs[FRAME_T11] = regp->r_regs[R_T11];
1180 framep->tf_regs[FRAME_RA] = regp->r_regs[R_RA];
1181 framep->tf_regs[FRAME_T12] = regp->r_regs[R_T12];
1182 framep->tf_regs[FRAME_AT] = regp->r_regs[R_AT];
1183 framep->tf_regs[FRAME_GP] = regp->r_regs[R_GP];
1184 /* framep->tf_regs[FRAME_SP] = regp->r_regs[R_SP]; XXX */
1185 /* ??? = regp->r_regs[R_ZERO]; */
1186 }
1187
1188 void
1189 printregs(regp)
1190 struct reg *regp;
1191 {
1192 int i;
1193
1194 for (i = 0; i < 32; i++)
1195 printf("R%d:\t0x%016lx%s", i, regp->r_regs[i],
1196 i & 1 ? "\n" : "\t");
1197 }
1198
1199 void
1200 regdump(framep)
1201 struct trapframe *framep;
1202 {
1203 struct reg reg;
1204
1205 frametoreg(framep, ®);
1206 reg.r_regs[R_SP] = alpha_pal_rdusp();
1207
1208 printf("REGISTERS:\n");
1209 printregs(®);
1210 }
1211
1212 #ifdef DEBUG
1213 int sigdebug = 0;
1214 int sigpid = 0;
1215 #define SDB_FOLLOW 0x01
1216 #define SDB_KSTACK 0x02
1217 #endif
1218
1219 /*
1220 * Send an interrupt to process.
1221 */
1222 void
1223 sendsig(catcher, sig, mask, code)
1224 sig_t catcher;
1225 int sig, mask;
1226 u_long code;
1227 {
1228 struct proc *p = curproc;
1229 struct sigcontext *scp, ksc;
1230 struct trapframe *frame;
1231 struct sigacts *psp = p->p_sigacts;
1232 int oonstack, fsize, rndfsize;
1233 extern char sigcode[], esigcode[];
1234 extern struct proc *fpcurproc;
1235
1236 frame = p->p_md.md_tf;
1237 oonstack = psp->ps_sigstk.ss_flags & SS_ONSTACK;
1238 fsize = sizeof ksc;
1239 rndfsize = ((fsize + 15) / 16) * 16;
1240 /*
1241 * Allocate and validate space for the signal handler
1242 * context. Note that if the stack is in P0 space, the
1243 * call to grow() is a nop, and the useracc() check
1244 * will fail if the process has not already allocated
1245 * the space with a `brk'.
1246 */
1247 if ((psp->ps_flags & SAS_ALTSTACK) && !oonstack &&
1248 (psp->ps_sigonstack & sigmask(sig))) {
1249 scp = (struct sigcontext *)(psp->ps_sigstk.ss_sp +
1250 psp->ps_sigstk.ss_size - rndfsize);
1251 psp->ps_sigstk.ss_flags |= SS_ONSTACK;
1252 } else
1253 scp = (struct sigcontext *)(alpha_pal_rdusp() - rndfsize);
1254 if ((u_long)scp <= USRSTACK - ctob(p->p_vmspace->vm_ssize))
1255 (void)grow(p, (u_long)scp);
1256 #ifdef DEBUG
1257 if ((sigdebug & SDB_KSTACK) && p->p_pid == sigpid)
1258 printf("sendsig(%d): sig %d ssp %p usp %p\n", p->p_pid,
1259 sig, &oonstack, scp);
1260 #endif
1261 if (useracc((caddr_t)scp, fsize, B_WRITE) == 0) {
1262 #ifdef DEBUG
1263 if ((sigdebug & SDB_KSTACK) && p->p_pid == sigpid)
1264 printf("sendsig(%d): useracc failed on sig %d\n",
1265 p->p_pid, sig);
1266 #endif
1267 /*
1268 * Process has trashed its stack; give it an illegal
1269 * instruction to halt it in its tracks.
1270 */
1271 SIGACTION(p, SIGILL) = SIG_DFL;
1272 sig = sigmask(SIGILL);
1273 p->p_sigignore &= ~sig;
1274 p->p_sigcatch &= ~sig;
1275 p->p_sigmask &= ~sig;
1276 psignal(p, SIGILL);
1277 return;
1278 }
1279
1280 /*
1281 * Build the signal context to be used by sigreturn.
1282 */
1283 ksc.sc_onstack = oonstack;
1284 ksc.sc_mask = mask;
1285 ksc.sc_pc = frame->tf_regs[FRAME_PC];
1286 ksc.sc_ps = frame->tf_regs[FRAME_PS];
1287
1288 /* copy the registers. */
1289 frametoreg(frame, (struct reg *)ksc.sc_regs);
1290 ksc.sc_regs[R_ZERO] = 0xACEDBADE; /* magic number */
1291 ksc.sc_regs[R_SP] = alpha_pal_rdusp();
1292
1293 /* save the floating-point state, if necessary, then copy it. */
1294 if (p == fpcurproc) {
1295 alpha_pal_wrfen(1);
1296 savefpstate(&p->p_addr->u_pcb.pcb_fp);
1297 alpha_pal_wrfen(0);
1298 fpcurproc = NULL;
1299 }
1300 ksc.sc_ownedfp = p->p_md.md_flags & MDP_FPUSED;
1301 bcopy(&p->p_addr->u_pcb.pcb_fp, (struct fpreg *)ksc.sc_fpregs,
1302 sizeof(struct fpreg));
1303 ksc.sc_fp_control = 0; /* XXX ? */
1304 bzero(ksc.sc_reserved, sizeof ksc.sc_reserved); /* XXX */
1305 bzero(ksc.sc_xxx, sizeof ksc.sc_xxx); /* XXX */
1306
1307
1308 #ifdef COMPAT_OSF1
1309 /*
1310 * XXX Create an OSF/1-style sigcontext and associated goo.
1311 */
1312 #endif
1313
1314 /*
1315 * copy the frame out to userland.
1316 */
1317 (void) copyout((caddr_t)&ksc, (caddr_t)scp, fsize);
1318 #ifdef DEBUG
1319 if (sigdebug & SDB_FOLLOW)
1320 printf("sendsig(%d): sig %d scp %p code %lx\n", p->p_pid, sig,
1321 scp, code);
1322 #endif
1323
1324 /*
1325 * Set up the registers to return to sigcode.
1326 */
1327 frame->tf_regs[FRAME_PC] =
1328 (u_int64_t)PS_STRINGS - (esigcode - sigcode);
1329 frame->tf_regs[FRAME_A0] = sig;
1330 frame->tf_regs[FRAME_A1] = code;
1331 frame->tf_regs[FRAME_A2] = (u_int64_t)scp;
1332 frame->tf_regs[FRAME_T12] = (u_int64_t)catcher; /* t12 is pv */
1333 alpha_pal_wrusp((unsigned long)scp);
1334
1335 #ifdef DEBUG
1336 if (sigdebug & SDB_FOLLOW)
1337 printf("sendsig(%d): pc %lx, catcher %lx\n", p->p_pid,
1338 frame->tf_regs[FRAME_PC], frame->tf_regs[FRAME_A3]);
1339 if ((sigdebug & SDB_KSTACK) && p->p_pid == sigpid)
1340 printf("sendsig(%d): sig %d returns\n",
1341 p->p_pid, sig);
1342 #endif
1343 }
1344
1345 /*
1346 * System call to cleanup state after a signal
1347 * has been taken. Reset signal mask and
1348 * stack state from context left by sendsig (above).
1349 * Return to previous pc and psl as specified by
1350 * context left by sendsig. Check carefully to
1351 * make sure that the user has not modified the
1352 * psl to gain improper priviledges or to cause
1353 * a machine fault.
1354 */
1355 /* ARGSUSED */
1356 int
1357 sys_sigreturn(p, v, retval)
1358 struct proc *p;
1359 void *v;
1360 register_t *retval;
1361 {
1362 struct sys_sigreturn_args /* {
1363 syscallarg(struct sigcontext *) sigcntxp;
1364 } */ *uap = v;
1365 struct sigcontext *scp, ksc;
1366 extern struct proc *fpcurproc;
1367
1368 scp = SCARG(uap, sigcntxp);
1369 #ifdef DEBUG
1370 if (sigdebug & SDB_FOLLOW)
1371 printf("sigreturn: pid %d, scp %p\n", p->p_pid, scp);
1372 #endif
1373
1374 if (ALIGN(scp) != (u_int64_t)scp)
1375 return (EINVAL);
1376
1377 /*
1378 * Test and fetch the context structure.
1379 * We grab it all at once for speed.
1380 */
1381 if (useracc((caddr_t)scp, sizeof (*scp), B_WRITE) == 0 ||
1382 copyin((caddr_t)scp, (caddr_t)&ksc, sizeof ksc))
1383 return (EINVAL);
1384
1385 if (ksc.sc_regs[R_ZERO] != 0xACEDBADE) /* magic number */
1386 return (EINVAL);
1387 /*
1388 * Restore the user-supplied information
1389 */
1390 if (ksc.sc_onstack)
1391 p->p_sigacts->ps_sigstk.ss_flags |= SS_ONSTACK;
1392 else
1393 p->p_sigacts->ps_sigstk.ss_flags &= ~SS_ONSTACK;
1394 p->p_sigmask = ksc.sc_mask &~ sigcantmask;
1395
1396 p->p_md.md_tf->tf_regs[FRAME_PC] = ksc.sc_pc;
1397 p->p_md.md_tf->tf_regs[FRAME_PS] =
1398 (ksc.sc_ps | ALPHA_PSL_USERSET) & ~ALPHA_PSL_USERCLR;
1399
1400 regtoframe((struct reg *)ksc.sc_regs, p->p_md.md_tf);
1401 alpha_pal_wrusp(ksc.sc_regs[R_SP]);
1402
1403 /* XXX ksc.sc_ownedfp ? */
1404 if (p == fpcurproc)
1405 fpcurproc = NULL;
1406 bcopy((struct fpreg *)ksc.sc_fpregs, &p->p_addr->u_pcb.pcb_fp,
1407 sizeof(struct fpreg));
1408 /* XXX ksc.sc_fp_control ? */
1409
1410 #ifdef DEBUG
1411 if (sigdebug & SDB_FOLLOW)
1412 printf("sigreturn(%d): returns\n", p->p_pid);
1413 #endif
1414 return (EJUSTRETURN);
1415 }
1416
1417 /*
1418 * machine dependent system variables.
1419 */
1420 int
1421 cpu_sysctl(name, namelen, oldp, oldlenp, newp, newlen, p)
1422 int *name;
1423 u_int namelen;
1424 void *oldp;
1425 size_t *oldlenp;
1426 void *newp;
1427 size_t newlen;
1428 struct proc *p;
1429 {
1430 dev_t consdev;
1431
1432 /* all sysctl names at this level are terminal */
1433 if (namelen != 1)
1434 return (ENOTDIR); /* overloaded */
1435
1436 switch (name[0]) {
1437 case CPU_CONSDEV:
1438 if (cn_tab != NULL)
1439 consdev = cn_tab->cn_dev;
1440 else
1441 consdev = NODEV;
1442 return (sysctl_rdstruct(oldp, oldlenp, newp, &consdev,
1443 sizeof consdev));
1444
1445 case CPU_ROOT_DEVICE:
1446 return (sysctl_rdstring(oldp, oldlenp, newp,
1447 root_device->dv_xname));
1448
1449 case CPU_UNALIGNED_PRINT:
1450 return (sysctl_int(oldp, oldlenp, newp, newlen,
1451 &alpha_unaligned_print));
1452
1453 case CPU_UNALIGNED_FIX:
1454 return (sysctl_int(oldp, oldlenp, newp, newlen,
1455 &alpha_unaligned_fix));
1456
1457 case CPU_UNALIGNED_SIGBUS:
1458 return (sysctl_int(oldp, oldlenp, newp, newlen,
1459 &alpha_unaligned_sigbus));
1460
1461 case CPU_BOOTED_KERNEL:
1462 return (sysctl_rdstring(oldp, oldlenp, newp, booted_kernel));
1463
1464 default:
1465 return (EOPNOTSUPP);
1466 }
1467 /* NOTREACHED */
1468 }
1469
1470 /*
1471 * Set registers on exec.
1472 */
1473 void
1474 setregs(p, pack, stack)
1475 register struct proc *p;
1476 struct exec_package *pack;
1477 u_long stack;
1478 {
1479 struct trapframe *tfp = p->p_md.md_tf;
1480 extern struct proc *fpcurproc;
1481 #ifdef DEBUG
1482 int i;
1483 #endif
1484
1485 #ifdef DEBUG
1486 /*
1487 * Crash and dump, if the user requested it.
1488 */
1489 if (boothowto & RB_DUMP)
1490 panic("crash requested by boot flags");
1491 #endif
1492
1493 #ifdef DEBUG
1494 for (i = 0; i < FRAME_SIZE; i++)
1495 tfp->tf_regs[i] = 0xbabefacedeadbeef;
1496 #else
1497 bzero(tfp->tf_regs, FRAME_SIZE * sizeof tfp->tf_regs[0]);
1498 #endif
1499 bzero(&p->p_addr->u_pcb.pcb_fp, sizeof p->p_addr->u_pcb.pcb_fp);
1500 #define FP_RN 2 /* XXX */
1501 p->p_addr->u_pcb.pcb_fp.fpr_cr = (long)FP_RN << 58;
1502 alpha_pal_wrusp(stack);
1503 tfp->tf_regs[FRAME_PS] = ALPHA_PSL_USERSET;
1504 tfp->tf_regs[FRAME_PC] = pack->ep_entry & ~3;
1505
1506 tfp->tf_regs[FRAME_A0] = stack; /* a0 = sp */
1507 tfp->tf_regs[FRAME_A1] = 0; /* a1 = rtld cleanup */
1508 tfp->tf_regs[FRAME_A2] = 0; /* a2 = rtld object */
1509 tfp->tf_regs[FRAME_A3] = (u_int64_t)PS_STRINGS; /* a3 = ps_strings */
1510 tfp->tf_regs[FRAME_T12] = tfp->tf_regs[FRAME_PC]; /* a.k.a. PV */
1511
1512 p->p_md.md_flags &= ~MDP_FPUSED;
1513 if (fpcurproc == p)
1514 fpcurproc = NULL;
1515 }
1516
1517 void
1518 netintr()
1519 {
1520 int n, s;
1521
1522 s = splhigh();
1523 n = netisr;
1524 netisr = 0;
1525 splx(s);
1526
1527 #define DONETISR(bit, fn) \
1528 do { \
1529 if (n & (1 << (bit))) \
1530 fn; \
1531 } while (0)
1532
1533 #ifdef INET
1534 #if NARP > 0
1535 DONETISR(NETISR_ARP, arpintr());
1536 #endif
1537 DONETISR(NETISR_IP, ipintr());
1538 #endif
1539 #ifdef NETATALK
1540 DONETISR(NETISR_ATALK, atintr());
1541 #endif
1542 #ifdef NS
1543 DONETISR(NETISR_NS, nsintr());
1544 #endif
1545 #ifdef ISO
1546 DONETISR(NETISR_ISO, clnlintr());
1547 #endif
1548 #ifdef CCITT
1549 DONETISR(NETISR_CCITT, ccittintr());
1550 #endif
1551 #ifdef NATM
1552 DONETISR(NETISR_NATM, natmintr());
1553 #endif
1554 #if NPPP > 1
1555 DONETISR(NETISR_PPP, pppintr());
1556 #endif
1557
1558 #undef DONETISR
1559 }
1560
1561 void
1562 do_sir()
1563 {
1564 u_int64_t n;
1565
1566 do {
1567 (void)splhigh();
1568 n = ssir;
1569 ssir = 0;
1570 splsoft(); /* don't recurse through spl0() */
1571
1572 #define DO_SIR(bit, fn) \
1573 do { \
1574 if (n & (bit)) { \
1575 cnt.v_soft++; \
1576 fn; \
1577 } \
1578 } while (0)
1579
1580 DO_SIR(SIR_NET, netintr());
1581 DO_SIR(SIR_CLOCK, softclock());
1582
1583 #undef DO_SIR
1584 } while (ssir != 0);
1585 }
1586
1587 int
1588 spl0()
1589 {
1590
1591 if (ssir)
1592 do_sir(); /* it lowers the IPL itself */
1593
1594 return (alpha_pal_swpipl(ALPHA_PSL_IPL_0));
1595 }
1596
1597 /*
1598 * The following primitives manipulate the run queues. _whichqs tells which
1599 * of the 32 queues _qs have processes in them. Setrunqueue puts processes
1600 * into queues, Remrunqueue removes them from queues. The running process is
1601 * on no queue, other processes are on a queue related to p->p_priority,
1602 * divided by 4 actually to shrink the 0-127 range of priorities into the 32
1603 * available queues.
1604 */
1605 /*
1606 * setrunqueue(p)
1607 * proc *p;
1608 *
1609 * Call should be made at splclock(), and p->p_stat should be SRUN.
1610 */
1611
1612 void
1613 setrunqueue(p)
1614 struct proc *p;
1615 {
1616 int bit;
1617
1618 /* firewall: p->p_back must be NULL */
1619 if (p->p_back != NULL)
1620 panic("setrunqueue");
1621
1622 bit = p->p_priority >> 2;
1623 whichqs |= (1 << bit);
1624 p->p_forw = (struct proc *)&qs[bit];
1625 p->p_back = qs[bit].ph_rlink;
1626 p->p_back->p_forw = p;
1627 qs[bit].ph_rlink = p;
1628 }
1629
1630 /*
1631 * remrunqueue(p)
1632 *
1633 * Call should be made at splclock().
1634 */
1635 void
1636 remrunqueue(p)
1637 struct proc *p;
1638 {
1639 int bit;
1640
1641 bit = p->p_priority >> 2;
1642 if ((whichqs & (1 << bit)) == 0)
1643 panic("remrunqueue");
1644
1645 p->p_back->p_forw = p->p_forw;
1646 p->p_forw->p_back = p->p_back;
1647 p->p_back = NULL; /* for firewall checking. */
1648
1649 if ((struct proc *)&qs[bit] == qs[bit].ph_link)
1650 whichqs &= ~(1 << bit);
1651 }
1652
1653 /*
1654 * Return the best possible estimate of the time in the timeval
1655 * to which tvp points. Unfortunately, we can't read the hardware registers.
1656 * We guarantee that the time will be greater than the value obtained by a
1657 * previous call.
1658 */
1659 void
1660 microtime(tvp)
1661 register struct timeval *tvp;
1662 {
1663 int s = splclock();
1664 static struct timeval lasttime;
1665
1666 *tvp = time;
1667 #ifdef notdef
1668 tvp->tv_usec += clkread();
1669 while (tvp->tv_usec > 1000000) {
1670 tvp->tv_sec++;
1671 tvp->tv_usec -= 1000000;
1672 }
1673 #endif
1674 if (tvp->tv_sec == lasttime.tv_sec &&
1675 tvp->tv_usec <= lasttime.tv_usec &&
1676 (tvp->tv_usec = lasttime.tv_usec + 1) > 1000000) {
1677 tvp->tv_sec++;
1678 tvp->tv_usec -= 1000000;
1679 }
1680 lasttime = *tvp;
1681 splx(s);
1682 }
1683
1684 /*
1685 * Wait "n" microseconds.
1686 */
1687 void
1688 delay(n)
1689 unsigned long n;
1690 {
1691 long N = cycles_per_usec * (n);
1692
1693 while (N > 0) /* XXX */
1694 N -= 3; /* XXX */
1695 }
1696
1697 #if defined(COMPAT_OSF1) || 1 /* XXX */
1698 void cpu_exec_ecoff_setregs __P((struct proc *, struct exec_package *,
1699 u_long));
1700
1701 void
1702 cpu_exec_ecoff_setregs(p, epp, stack)
1703 struct proc *p;
1704 struct exec_package *epp;
1705 u_long stack;
1706 {
1707 struct ecoff_exechdr *execp = (struct ecoff_exechdr *)epp->ep_hdr;
1708
1709 setregs(p, epp, stack);
1710 p->p_md.md_tf->tf_regs[FRAME_GP] = execp->a.gp_value;
1711 }
1712
1713 /*
1714 * cpu_exec_ecoff_hook():
1715 * cpu-dependent ECOFF format hook for execve().
1716 *
1717 * Do any machine-dependent diddling of the exec package when doing ECOFF.
1718 *
1719 */
1720 int
1721 cpu_exec_ecoff_hook(p, epp)
1722 struct proc *p;
1723 struct exec_package *epp;
1724 {
1725 struct ecoff_exechdr *execp = (struct ecoff_exechdr *)epp->ep_hdr;
1726 extern struct emul emul_netbsd;
1727 #ifdef COMPAT_OSF1
1728 extern struct emul emul_osf1;
1729 #endif
1730
1731 switch (execp->f.f_magic) {
1732 #ifdef COMPAT_OSF1
1733 case ECOFF_MAGIC_ALPHA:
1734 epp->ep_emul = &emul_osf1;
1735 break;
1736 #endif
1737
1738 case ECOFF_MAGIC_NETBSD_ALPHA:
1739 epp->ep_emul = &emul_netbsd;
1740 break;
1741
1742 default:
1743 return ENOEXEC;
1744 }
1745 return 0;
1746 }
1747 #endif
1748
1749 /* XXX XXX BEGIN XXX XXX */
1750 vm_offset_t alpha_XXX_dmamap_or; /* XXX */
1751 /* XXX */
1752 vm_offset_t /* XXX */
1753 alpha_XXX_dmamap(v) /* XXX */
1754 vm_offset_t v; /* XXX */
1755 { /* XXX */
1756 /* XXX */
1757 return (vtophys(v) | alpha_XXX_dmamap_or); /* XXX */
1758 } /* XXX */
1759 /* XXX XXX END XXX XXX */
1760