1 1.28 khorben /* $NetBSD: mm.c,v 1.28 2021/05/04 21:09:16 khorben Exp $ */ 2 1.1 maxv 3 1.1 maxv /* 4 1.25 maxv * Copyright (c) 2017-2020 The NetBSD Foundation, Inc. All rights reserved. 5 1.1 maxv * 6 1.1 maxv * This code is derived from software contributed to The NetBSD Foundation 7 1.1 maxv * by Maxime Villard. 8 1.1 maxv * 9 1.1 maxv * Redistribution and use in source and binary forms, with or without 10 1.1 maxv * modification, are permitted provided that the following conditions 11 1.1 maxv * are met: 12 1.1 maxv * 1. Redistributions of source code must retain the above copyright 13 1.1 maxv * notice, this list of conditions and the following disclaimer. 14 1.1 maxv * 2. Redistributions in binary form must reproduce the above copyright 15 1.1 maxv * notice, this list of conditions and the following disclaimer in the 16 1.1 maxv * documentation and/or other materials provided with the distribution. 17 1.1 maxv * 18 1.1 maxv * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS 19 1.1 maxv * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED 20 1.1 maxv * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR 21 1.1 maxv * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS 22 1.1 maxv * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR 23 1.1 maxv * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF 24 1.1 maxv * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS 25 1.1 maxv * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN 26 1.1 maxv * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) 27 1.1 maxv * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE 28 1.1 maxv * POSSIBILITY OF SUCH DAMAGE. 29 1.1 maxv */ 30 1.1 maxv 31 1.1 maxv #include "prekern.h" 32 1.1 maxv 33 1.14 maxv #define ELFROUND 64 34 1.14 maxv 35 1.18 maxv static const uint8_t pads[4] = { 36 1.17 maxv [BTSEG_NONE] = 0x00, 37 1.17 maxv [BTSEG_TEXT] = 0xCC, 38 1.17 maxv [BTSEG_RODATA] = 0x00, 39 1.17 maxv [BTSEG_DATA] = 0x00 40 1.17 maxv }; 41 1.17 maxv 42 1.15 maxv #define MM_PROT_READ 0x00 43 1.15 maxv #define MM_PROT_WRITE 0x01 44 1.15 maxv #define MM_PROT_EXECUTE 0x02 45 1.15 maxv 46 1.1 maxv static const pt_entry_t protection_codes[3] = { 47 1.24 maxv [MM_PROT_READ] = PTE_NX, 48 1.24 maxv [MM_PROT_WRITE] = PTE_W | PTE_NX, 49 1.23 maxv [MM_PROT_EXECUTE] = 0, 50 1.1 maxv /* RWX does not exist */ 51 1.1 maxv }; 52 1.1 maxv 53 1.6 maxv struct bootspace bootspace; 54 1.6 maxv 55 1.1 maxv extern paddr_t kernpa_start, kernpa_end; 56 1.1 maxv vaddr_t iom_base; 57 1.1 maxv 58 1.1 maxv paddr_t pa_avail = 0; 59 1.2 maxv static const vaddr_t tmpva = (PREKERNBASE + NKL2_KIMG_ENTRIES * NBPD_L2); 60 1.1 maxv 61 1.1 maxv void 62 1.1 maxv mm_init(paddr_t first_pa) 63 1.1 maxv { 64 1.1 maxv pa_avail = first_pa; 65 1.1 maxv } 66 1.1 maxv 67 1.1 maxv static void 68 1.1 maxv mm_enter_pa(paddr_t pa, vaddr_t va, pte_prot_t prot) 69 1.1 maxv { 70 1.24 maxv if (PTE_BASE[pl1_i(va)] & PTE_P) { 71 1.20 maxv fatal("mm_enter_pa: mapping already present"); 72 1.20 maxv } 73 1.24 maxv PTE_BASE[pl1_i(va)] = pa | PTE_P | protection_codes[prot]; 74 1.20 maxv } 75 1.20 maxv 76 1.20 maxv static void 77 1.20 maxv mm_reenter_pa(paddr_t pa, vaddr_t va, pte_prot_t prot) 78 1.20 maxv { 79 1.24 maxv PTE_BASE[pl1_i(va)] = pa | PTE_P | protection_codes[prot]; 80 1.1 maxv } 81 1.1 maxv 82 1.1 maxv static void 83 1.1 maxv mm_flush_va(vaddr_t va) 84 1.1 maxv { 85 1.1 maxv asm volatile("invlpg (%0)" ::"r" (va) : "memory"); 86 1.1 maxv } 87 1.1 maxv 88 1.2 maxv static paddr_t 89 1.2 maxv mm_palloc(size_t npages) 90 1.2 maxv { 91 1.2 maxv paddr_t pa; 92 1.2 maxv size_t i; 93 1.2 maxv 94 1.2 maxv /* Allocate the physical pages */ 95 1.2 maxv pa = pa_avail; 96 1.2 maxv pa_avail += npages * PAGE_SIZE; 97 1.2 maxv 98 1.2 maxv /* Zero them out */ 99 1.2 maxv for (i = 0; i < npages; i++) { 100 1.20 maxv mm_reenter_pa(pa + i * PAGE_SIZE, tmpva, 101 1.2 maxv MM_PROT_READ|MM_PROT_WRITE); 102 1.2 maxv mm_flush_va(tmpva); 103 1.2 maxv memset((void *)tmpva, 0, PAGE_SIZE); 104 1.2 maxv } 105 1.2 maxv 106 1.2 maxv return pa; 107 1.2 maxv } 108 1.2 maxv 109 1.3 maxv static bool 110 1.3 maxv mm_pte_is_valid(pt_entry_t pte) 111 1.3 maxv { 112 1.24 maxv return ((pte & PTE_P) != 0); 113 1.3 maxv } 114 1.3 maxv 115 1.8 maxv static void 116 1.17 maxv mm_mprotect(vaddr_t startva, size_t size, pte_prot_t prot) 117 1.1 maxv { 118 1.1 maxv size_t i, npages; 119 1.1 maxv vaddr_t va; 120 1.1 maxv paddr_t pa; 121 1.1 maxv 122 1.1 maxv ASSERT(size % PAGE_SIZE == 0); 123 1.1 maxv npages = size / PAGE_SIZE; 124 1.1 maxv 125 1.1 maxv for (i = 0; i < npages; i++) { 126 1.1 maxv va = startva + i * PAGE_SIZE; 127 1.24 maxv pa = (PTE_BASE[pl1_i(va)] & PTE_FRAME); 128 1.20 maxv mm_reenter_pa(pa, va, prot); 129 1.1 maxv mm_flush_va(va); 130 1.1 maxv } 131 1.1 maxv } 132 1.1 maxv 133 1.8 maxv void 134 1.13 maxv mm_bootspace_mprotect(void) 135 1.8 maxv { 136 1.17 maxv pte_prot_t prot; 137 1.10 maxv size_t i; 138 1.10 maxv 139 1.10 maxv /* Remap the kernel segments with proper permissions. */ 140 1.10 maxv for (i = 0; i < BTSPACE_NSEGS; i++) { 141 1.10 maxv if (bootspace.segs[i].type == BTSEG_TEXT) { 142 1.10 maxv prot = MM_PROT_READ|MM_PROT_EXECUTE; 143 1.10 maxv } else if (bootspace.segs[i].type == BTSEG_RODATA) { 144 1.10 maxv prot = MM_PROT_READ; 145 1.10 maxv } else { 146 1.10 maxv continue; 147 1.10 maxv } 148 1.10 maxv mm_mprotect(bootspace.segs[i].va, bootspace.segs[i].sz, prot); 149 1.10 maxv } 150 1.8 maxv 151 1.28 khorben print_state(STATE_NORMAL, "Segments protection updated"); 152 1.8 maxv } 153 1.8 maxv 154 1.5 maxv static size_t 155 1.5 maxv mm_nentries_range(vaddr_t startva, vaddr_t endva, size_t pgsz) 156 1.5 maxv { 157 1.5 maxv size_t npages; 158 1.5 maxv 159 1.5 maxv npages = roundup((endva / PAGE_SIZE), (pgsz / PAGE_SIZE)) - 160 1.5 maxv rounddown((startva / PAGE_SIZE), (pgsz / PAGE_SIZE)); 161 1.5 maxv return (npages / (pgsz / PAGE_SIZE)); 162 1.5 maxv } 163 1.5 maxv 164 1.1 maxv static void 165 1.2 maxv mm_map_tree(vaddr_t startva, vaddr_t endva) 166 1.1 maxv { 167 1.5 maxv size_t i, nL4e, nL3e, nL2e; 168 1.1 maxv size_t L4e_idx, L3e_idx, L2e_idx; 169 1.3 maxv paddr_t pa; 170 1.3 maxv 171 1.18 maxv /* Build L4. */ 172 1.3 maxv L4e_idx = pl4_i(startva); 173 1.5 maxv nL4e = mm_nentries_range(startva, endva, NBPD_L4); 174 1.3 maxv ASSERT(L4e_idx == 511); 175 1.2 maxv ASSERT(nL4e == 1); 176 1.3 maxv if (!mm_pte_is_valid(L4_BASE[L4e_idx])) { 177 1.3 maxv pa = mm_palloc(1); 178 1.24 maxv L4_BASE[L4e_idx] = pa | PTE_P | PTE_W; 179 1.3 maxv } 180 1.1 maxv 181 1.18 maxv /* Build L3. */ 182 1.3 maxv L3e_idx = pl3_i(startva); 183 1.5 maxv nL3e = mm_nentries_range(startva, endva, NBPD_L3); 184 1.3 maxv for (i = 0; i < nL3e; i++) { 185 1.3 maxv if (mm_pte_is_valid(L3_BASE[L3e_idx+i])) { 186 1.3 maxv continue; 187 1.3 maxv } 188 1.3 maxv pa = mm_palloc(1); 189 1.24 maxv L3_BASE[L3e_idx+i] = pa | PTE_P | PTE_W; 190 1.3 maxv } 191 1.1 maxv 192 1.18 maxv /* Build L2. */ 193 1.3 maxv L2e_idx = pl2_i(startva); 194 1.5 maxv nL2e = mm_nentries_range(startva, endva, NBPD_L2); 195 1.2 maxv for (i = 0; i < nL2e; i++) { 196 1.3 maxv if (mm_pte_is_valid(L2_BASE[L2e_idx+i])) { 197 1.3 maxv continue; 198 1.3 maxv } 199 1.3 maxv pa = mm_palloc(1); 200 1.24 maxv L2_BASE[L2e_idx+i] = pa | PTE_P | PTE_W; 201 1.1 maxv } 202 1.1 maxv } 203 1.1 maxv 204 1.1 maxv static vaddr_t 205 1.17 maxv mm_randva_kregion(size_t size, size_t pagesz) 206 1.1 maxv { 207 1.11 maxv vaddr_t sva, eva; 208 1.1 maxv vaddr_t randva; 209 1.1 maxv uint64_t rnd; 210 1.6 maxv size_t i; 211 1.6 maxv bool ok; 212 1.6 maxv 213 1.6 maxv while (1) { 214 1.19 maxv prng_get_rand(&rnd, sizeof(rnd)); 215 1.6 maxv randva = rounddown(KASLR_WINDOW_BASE + 216 1.17 maxv rnd % (KASLR_WINDOW_SIZE - size), pagesz); 217 1.6 maxv 218 1.6 maxv /* Detect collisions */ 219 1.6 maxv ok = true; 220 1.11 maxv for (i = 0; i < BTSPACE_NSEGS; i++) { 221 1.11 maxv if (bootspace.segs[i].type == BTSEG_NONE) { 222 1.11 maxv continue; 223 1.11 maxv } 224 1.11 maxv sva = bootspace.segs[i].va; 225 1.11 maxv eva = sva + bootspace.segs[i].sz; 226 1.11 maxv 227 1.11 maxv if ((sva <= randva) && (randva < eva)) { 228 1.6 maxv ok = false; 229 1.6 maxv break; 230 1.6 maxv } 231 1.11 maxv if ((sva < randva + size) && (randva + size <= eva)) { 232 1.6 maxv ok = false; 233 1.6 maxv break; 234 1.6 maxv } 235 1.20 maxv if (randva < sva && eva < (randva + size)) { 236 1.20 maxv ok = false; 237 1.20 maxv break; 238 1.20 maxv } 239 1.6 maxv } 240 1.6 maxv if (ok) { 241 1.6 maxv break; 242 1.6 maxv } 243 1.6 maxv } 244 1.1 maxv 245 1.2 maxv mm_map_tree(randva, randva + size); 246 1.1 maxv 247 1.1 maxv return randva; 248 1.1 maxv } 249 1.1 maxv 250 1.10 maxv static paddr_t 251 1.26 maxv bootspace_get_kern_segs_end_pa(void) 252 1.10 maxv { 253 1.10 maxv paddr_t pa, max = 0; 254 1.10 maxv size_t i; 255 1.10 maxv 256 1.10 maxv for (i = 0; i < BTSPACE_NSEGS; i++) { 257 1.10 maxv if (bootspace.segs[i].type == BTSEG_NONE) { 258 1.10 maxv continue; 259 1.10 maxv } 260 1.10 maxv pa = bootspace.segs[i].pa + bootspace.segs[i].sz; 261 1.10 maxv if (pa > max) 262 1.10 maxv max = pa; 263 1.10 maxv } 264 1.10 maxv 265 1.10 maxv return max; 266 1.10 maxv } 267 1.10 maxv 268 1.10 maxv static void 269 1.10 maxv bootspace_addseg(int type, vaddr_t va, paddr_t pa, size_t sz) 270 1.10 maxv { 271 1.10 maxv size_t i; 272 1.10 maxv 273 1.10 maxv for (i = 0; i < BTSPACE_NSEGS; i++) { 274 1.10 maxv if (bootspace.segs[i].type == BTSEG_NONE) { 275 1.10 maxv bootspace.segs[i].type = type; 276 1.10 maxv bootspace.segs[i].va = va; 277 1.10 maxv bootspace.segs[i].pa = pa; 278 1.10 maxv bootspace.segs[i].sz = sz; 279 1.10 maxv return; 280 1.10 maxv } 281 1.10 maxv } 282 1.10 maxv 283 1.10 maxv fatal("bootspace_addseg: segments full"); 284 1.10 maxv } 285 1.10 maxv 286 1.14 maxv static size_t 287 1.14 maxv mm_shift_segment(vaddr_t va, size_t pagesz, size_t elfsz, size_t elfalign) 288 1.14 maxv { 289 1.14 maxv size_t shiftsize, offset; 290 1.14 maxv uint64_t rnd; 291 1.14 maxv 292 1.25 maxv /* 293 1.25 maxv * If possible, shift the segment in memory using a random offset. Once 294 1.25 maxv * shifted the segment remains in the same page, of size pagesz. Make 295 1.25 maxv * sure to respect the ELF alignment constraint. 296 1.25 maxv */ 297 1.25 maxv 298 1.14 maxv if (elfalign == 0) { 299 1.14 maxv elfalign = ELFROUND; 300 1.14 maxv } 301 1.14 maxv 302 1.17 maxv ASSERT(pagesz >= elfalign); 303 1.17 maxv ASSERT(pagesz % elfalign == 0); 304 1.14 maxv shiftsize = roundup(elfsz, pagesz) - roundup(elfsz, elfalign); 305 1.14 maxv if (shiftsize == 0) { 306 1.14 maxv return 0; 307 1.14 maxv } 308 1.14 maxv 309 1.19 maxv prng_get_rand(&rnd, sizeof(rnd)); 310 1.14 maxv offset = roundup(rnd % shiftsize, elfalign); 311 1.14 maxv ASSERT((va + offset) % elfalign == 0); 312 1.14 maxv 313 1.14 maxv memmove((void *)(va + offset), (void *)va, elfsz); 314 1.14 maxv 315 1.14 maxv return offset; 316 1.14 maxv } 317 1.14 maxv 318 1.18 maxv static void 319 1.18 maxv mm_map_head(void) 320 1.18 maxv { 321 1.18 maxv size_t i, npages, size; 322 1.18 maxv uint64_t rnd; 323 1.18 maxv vaddr_t randva; 324 1.18 maxv 325 1.18 maxv /* 326 1.25 maxv * The HEAD window is 1GB below the main KASLR window. This is to 327 1.25 maxv * ensure that head always comes first in virtual memory. The reason 328 1.25 maxv * for that is that we use (headva + sh_offset), and sh_offset is 329 1.25 maxv * unsigned. 330 1.25 maxv */ 331 1.25 maxv 332 1.25 maxv /* 333 1.18 maxv * To get the size of the head, we give a look at the read-only 334 1.18 maxv * mapping of the kernel we created in locore. We're identity mapped, 335 1.18 maxv * so kernpa = kernva. 336 1.18 maxv */ 337 1.18 maxv size = elf_get_head_size((vaddr_t)kernpa_start); 338 1.18 maxv npages = size / PAGE_SIZE; 339 1.18 maxv 340 1.25 maxv /* 341 1.25 maxv * Choose a random range of VAs in the HEAD window, and create the page 342 1.25 maxv * tree for it. 343 1.25 maxv */ 344 1.19 maxv prng_get_rand(&rnd, sizeof(rnd)); 345 1.18 maxv randva = rounddown(HEAD_WINDOW_BASE + rnd % (HEAD_WINDOW_SIZE - size), 346 1.18 maxv PAGE_SIZE); 347 1.18 maxv mm_map_tree(randva, randva + size); 348 1.18 maxv 349 1.18 maxv /* Enter the area and build the ELF info */ 350 1.18 maxv for (i = 0; i < npages; i++) { 351 1.18 maxv mm_enter_pa(kernpa_start + i * PAGE_SIZE, 352 1.18 maxv randva + i * PAGE_SIZE, MM_PROT_READ|MM_PROT_WRITE); 353 1.18 maxv } 354 1.18 maxv elf_build_head(randva); 355 1.18 maxv 356 1.18 maxv /* Register the values in bootspace */ 357 1.18 maxv bootspace.head.va = randva; 358 1.18 maxv bootspace.head.pa = kernpa_start; 359 1.18 maxv bootspace.head.sz = size; 360 1.18 maxv } 361 1.18 maxv 362 1.12 maxv vaddr_t 363 1.14 maxv mm_map_segment(int segtype, paddr_t pa, size_t elfsz, size_t elfalign) 364 1.1 maxv { 365 1.14 maxv size_t i, npages, size, pagesz, offset; 366 1.6 maxv vaddr_t randva; 367 1.12 maxv char pad; 368 1.6 maxv 369 1.16 maxv if (elfsz <= PAGE_SIZE) { 370 1.14 maxv pagesz = NBPD_L1; 371 1.14 maxv } else { 372 1.14 maxv pagesz = NBPD_L2; 373 1.14 maxv } 374 1.14 maxv 375 1.25 maxv /* Create the page tree */ 376 1.14 maxv size = roundup(elfsz, pagesz); 377 1.14 maxv randva = mm_randva_kregion(size, pagesz); 378 1.14 maxv 379 1.25 maxv /* Enter the segment */ 380 1.6 maxv npages = size / PAGE_SIZE; 381 1.6 maxv for (i = 0; i < npages; i++) { 382 1.6 maxv mm_enter_pa(pa + i * PAGE_SIZE, 383 1.6 maxv randva + i * PAGE_SIZE, MM_PROT_READ|MM_PROT_WRITE); 384 1.6 maxv } 385 1.6 maxv 386 1.25 maxv /* Shift the segment in memory */ 387 1.14 maxv offset = mm_shift_segment(randva, pagesz, elfsz, elfalign); 388 1.14 maxv ASSERT(offset + elfsz <= size); 389 1.14 maxv 390 1.25 maxv /* Fill the paddings */ 391 1.17 maxv pad = pads[segtype]; 392 1.14 maxv memset((void *)randva, pad, offset); 393 1.14 maxv memset((void *)(randva + offset + elfsz), pad, size - elfsz - offset); 394 1.6 maxv 395 1.25 maxv /* Register the bootspace information */ 396 1.12 maxv bootspace_addseg(segtype, randva, pa, size); 397 1.9 maxv 398 1.14 maxv return (randva + offset); 399 1.6 maxv } 400 1.6 maxv 401 1.6 maxv static void 402 1.13 maxv mm_map_boot(void) 403 1.6 maxv { 404 1.6 maxv size_t i, npages, size; 405 1.6 maxv vaddr_t randva; 406 1.6 maxv paddr_t bootpa; 407 1.6 maxv 408 1.6 maxv /* 409 1.6 maxv * The "boot" region is special: its page tree has a fixed size, but 410 1.6 maxv * the number of pages entered is lower. 411 1.6 maxv */ 412 1.6 maxv 413 1.26 maxv /* Create the page tree, starting at a random VA */ 414 1.6 maxv size = (NKL2_KIMG_ENTRIES + 1) * NBPD_L2; 415 1.14 maxv randva = mm_randva_kregion(size, PAGE_SIZE); 416 1.6 maxv 417 1.26 maxv /* The "boot" region begins right after the kernel segments */ 418 1.26 maxv bootpa = bootspace_get_kern_segs_end_pa(); 419 1.26 maxv 420 1.27 maxv /* The prekern consumed some EXTRA memory up until pa_avail, this 421 1.27 maxv * covers REL/RELA/SYM/STR and EXTRA */ 422 1.6 maxv size = (pa_avail - bootpa); 423 1.6 maxv npages = size / PAGE_SIZE; 424 1.26 maxv 425 1.26 maxv /* Enter the whole area linearly */ 426 1.6 maxv for (i = 0; i < npages; i++) { 427 1.6 maxv mm_enter_pa(bootpa + i * PAGE_SIZE, 428 1.6 maxv randva + i * PAGE_SIZE, MM_PROT_READ|MM_PROT_WRITE); 429 1.1 maxv } 430 1.26 maxv 431 1.27 maxv /* Fix up the ELF sections located in the "boot" region */ 432 1.27 maxv elf_fixup_boot(randva, bootpa); 433 1.1 maxv 434 1.27 maxv /* Map the ISA I/O MEM right after EXTRA, in pure VA */ 435 1.6 maxv iom_base = randva + npages * PAGE_SIZE; 436 1.1 maxv npages = IOM_SIZE / PAGE_SIZE; 437 1.1 maxv for (i = 0; i < npages; i++) { 438 1.1 maxv mm_enter_pa(IOM_BEGIN + i * PAGE_SIZE, 439 1.1 maxv iom_base + i * PAGE_SIZE, MM_PROT_READ|MM_PROT_WRITE); 440 1.1 maxv } 441 1.1 maxv 442 1.6 maxv /* Register the values in bootspace */ 443 1.6 maxv bootspace.boot.va = randva; 444 1.6 maxv bootspace.boot.pa = bootpa; 445 1.6 maxv bootspace.boot.sz = (size_t)(iom_base + IOM_SIZE) - 446 1.6 maxv (size_t)bootspace.boot.va; 447 1.6 maxv 448 1.6 maxv /* Initialize the values that are located in the "boot" region */ 449 1.6 maxv extern uint64_t PDPpaddr; 450 1.6 maxv bootspace.spareva = bootspace.boot.va + NKL2_KIMG_ENTRIES * NBPD_L2; 451 1.6 maxv bootspace.pdir = bootspace.boot.va + (PDPpaddr - bootspace.boot.pa); 452 1.22 maxv bootspace.smodule = (vaddr_t)iom_base + IOM_SIZE; 453 1.6 maxv bootspace.emodule = bootspace.boot.va + NKL2_KIMG_ENTRIES * NBPD_L2; 454 1.1 maxv } 455 1.6 maxv 456 1.6 maxv /* 457 1.25 maxv * The bootloader has set up the following layout of physical memory: 458 1.27 maxv * +------------+--------------+------------+------------------------+-------+ 459 1.27 maxv * | ELF HEADER | SECT HEADERS | KERN SECTS | REL/RELA/SYM/STR SECTS | EXTRA | 460 1.27 maxv * +------------+--------------+------------+------------------------+-------+ 461 1.26 maxv * This was done in the loadfile_elf32.c:loadfile_dynamic() function. 462 1.26 maxv * 463 1.26 maxv * We abstract this layout into several "regions": 464 1.27 maxv * +---------------------------+------------+--------------------------------+ 465 1.27 maxv * | Head region | Kern segs | Boot region | 466 1.27 maxv * +---------------------------+------------+--------------------------------+ 467 1.25 maxv * 468 1.25 maxv * There is a variable number of independent regions we create: one head, 469 1.25 maxv * several kernel segments, one boot. They are all mapped at random VAs. 470 1.6 maxv * 471 1.26 maxv * "Head" contains the ELF Header and ELF Section Headers, and we use them to 472 1.26 maxv * map the rest of the regions. Head must be placed *before* the other 473 1.26 maxv * regions, in both virtual memory and physical memory. 474 1.25 maxv * 475 1.26 maxv * The "Kernel Segments" contain the kernel SHT_NOBITS and SHT_PROGBITS 476 1.26 maxv * sections, in a 1:1 manner (one segment is associated with one section). 477 1.26 maxv * The segments are mapped at random VAs and referenced in bootspace.segs[]. 478 1.25 maxv * 479 1.27 maxv * "Boot" contains miscellaneous information: 480 1.27 maxv * - The ELF Rel/Rela/Sym/Str sections of the kernel 481 1.27 maxv * - Some extra memory the prekern has consumed so far 482 1.27 maxv * - The ISA I/O MEM, in pure VA 483 1.27 maxv * - Eventually the module_map, in pure VA (the kernel uses the available VA 484 1.27 maxv * at the end of "boot") 485 1.27 maxv * Boot is placed *after* the other regions in physical memory. In virtual 486 1.27 maxv * memory however there is no constraint, so its VA is randomly selected in 487 1.27 maxv * the main KASLR window. 488 1.6 maxv * 489 1.6 maxv * At the end of this function, the bootspace structure is fully constructed. 490 1.6 maxv */ 491 1.6 maxv void 492 1.13 maxv mm_map_kernel(void) 493 1.6 maxv { 494 1.6 maxv memset(&bootspace, 0, sizeof(bootspace)); 495 1.6 maxv mm_map_head(); 496 1.28 khorben print_state(STATE_NORMAL, "Head region mapped"); 497 1.12 maxv elf_map_sections(); 498 1.28 khorben print_state(STATE_NORMAL, "Segments mapped"); 499 1.6 maxv mm_map_boot(); 500 1.28 khorben print_state(STATE_NORMAL, "Boot region mapped"); 501 1.6 maxv } 502