mm.c revision 1.14 1 1.13 maxv /* $NetBSD: mm.c,v 1.14 2017/11/15 18:02:36 maxv Exp $ */
2 1.1 maxv
3 1.1 maxv /*
4 1.1 maxv * Copyright (c) 2017 The NetBSD Foundation, Inc. All rights reserved.
5 1.1 maxv *
6 1.1 maxv * This code is derived from software contributed to The NetBSD Foundation
7 1.1 maxv * by Maxime Villard.
8 1.1 maxv *
9 1.1 maxv * Redistribution and use in source and binary forms, with or without
10 1.1 maxv * modification, are permitted provided that the following conditions
11 1.1 maxv * are met:
12 1.1 maxv * 1. Redistributions of source code must retain the above copyright
13 1.1 maxv * notice, this list of conditions and the following disclaimer.
14 1.1 maxv * 2. Redistributions in binary form must reproduce the above copyright
15 1.1 maxv * notice, this list of conditions and the following disclaimer in the
16 1.1 maxv * documentation and/or other materials provided with the distribution.
17 1.1 maxv *
18 1.1 maxv * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
19 1.1 maxv * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
20 1.1 maxv * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
21 1.1 maxv * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
22 1.1 maxv * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
23 1.1 maxv * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
24 1.1 maxv * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
25 1.1 maxv * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
26 1.1 maxv * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
27 1.1 maxv * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
28 1.1 maxv * POSSIBILITY OF SUCH DAMAGE.
29 1.1 maxv */
30 1.1 maxv
31 1.1 maxv #include "prekern.h"
32 1.1 maxv
33 1.9 maxv #define PAD_TEXT 0xCC
34 1.9 maxv #define PAD_RODATA 0x00
35 1.9 maxv #define PAD_DATA 0x00
36 1.9 maxv
37 1.14 maxv #define ELFROUND 64
38 1.14 maxv
39 1.1 maxv static const pt_entry_t protection_codes[3] = {
40 1.1 maxv [MM_PROT_READ] = PG_RO | PG_NX,
41 1.1 maxv [MM_PROT_WRITE] = PG_RW | PG_NX,
42 1.1 maxv [MM_PROT_EXECUTE] = PG_RO,
43 1.1 maxv /* RWX does not exist */
44 1.1 maxv };
45 1.1 maxv
46 1.6 maxv struct bootspace bootspace;
47 1.6 maxv
48 1.1 maxv extern paddr_t kernpa_start, kernpa_end;
49 1.1 maxv vaddr_t iom_base;
50 1.1 maxv
51 1.1 maxv paddr_t pa_avail = 0;
52 1.2 maxv static const vaddr_t tmpva = (PREKERNBASE + NKL2_KIMG_ENTRIES * NBPD_L2);
53 1.1 maxv
54 1.1 maxv void
55 1.1 maxv mm_init(paddr_t first_pa)
56 1.1 maxv {
57 1.1 maxv pa_avail = first_pa;
58 1.1 maxv }
59 1.1 maxv
60 1.1 maxv static void
61 1.1 maxv mm_enter_pa(paddr_t pa, vaddr_t va, pte_prot_t prot)
62 1.1 maxv {
63 1.1 maxv PTE_BASE[pl1_i(va)] = pa | PG_V | protection_codes[prot];
64 1.1 maxv }
65 1.1 maxv
66 1.1 maxv static void
67 1.1 maxv mm_flush_va(vaddr_t va)
68 1.1 maxv {
69 1.1 maxv asm volatile("invlpg (%0)" ::"r" (va) : "memory");
70 1.1 maxv }
71 1.1 maxv
72 1.2 maxv static paddr_t
73 1.2 maxv mm_palloc(size_t npages)
74 1.2 maxv {
75 1.2 maxv paddr_t pa;
76 1.2 maxv size_t i;
77 1.2 maxv
78 1.2 maxv /* Allocate the physical pages */
79 1.2 maxv pa = pa_avail;
80 1.2 maxv pa_avail += npages * PAGE_SIZE;
81 1.2 maxv
82 1.2 maxv /* Zero them out */
83 1.2 maxv for (i = 0; i < npages; i++) {
84 1.2 maxv mm_enter_pa(pa + i * PAGE_SIZE, tmpva,
85 1.2 maxv MM_PROT_READ|MM_PROT_WRITE);
86 1.2 maxv mm_flush_va(tmpva);
87 1.2 maxv memset((void *)tmpva, 0, PAGE_SIZE);
88 1.2 maxv }
89 1.2 maxv
90 1.2 maxv return pa;
91 1.2 maxv }
92 1.2 maxv
93 1.3 maxv static bool
94 1.3 maxv mm_pte_is_valid(pt_entry_t pte)
95 1.3 maxv {
96 1.3 maxv return ((pte & PG_V) != 0);
97 1.3 maxv }
98 1.3 maxv
99 1.1 maxv paddr_t
100 1.1 maxv mm_vatopa(vaddr_t va)
101 1.1 maxv {
102 1.1 maxv return (PTE_BASE[pl1_i(va)] & PG_FRAME);
103 1.1 maxv }
104 1.1 maxv
105 1.8 maxv static void
106 1.1 maxv mm_mprotect(vaddr_t startva, size_t size, int prot)
107 1.1 maxv {
108 1.1 maxv size_t i, npages;
109 1.1 maxv vaddr_t va;
110 1.1 maxv paddr_t pa;
111 1.1 maxv
112 1.1 maxv ASSERT(size % PAGE_SIZE == 0);
113 1.1 maxv npages = size / PAGE_SIZE;
114 1.1 maxv
115 1.1 maxv for (i = 0; i < npages; i++) {
116 1.1 maxv va = startva + i * PAGE_SIZE;
117 1.1 maxv pa = (PTE_BASE[pl1_i(va)] & PG_FRAME);
118 1.1 maxv mm_enter_pa(pa, va, prot);
119 1.1 maxv mm_flush_va(va);
120 1.1 maxv }
121 1.1 maxv }
122 1.1 maxv
123 1.8 maxv void
124 1.13 maxv mm_bootspace_mprotect(void)
125 1.8 maxv {
126 1.10 maxv int prot;
127 1.10 maxv size_t i;
128 1.10 maxv
129 1.10 maxv /* Remap the kernel segments with proper permissions. */
130 1.10 maxv for (i = 0; i < BTSPACE_NSEGS; i++) {
131 1.10 maxv if (bootspace.segs[i].type == BTSEG_TEXT) {
132 1.10 maxv prot = MM_PROT_READ|MM_PROT_EXECUTE;
133 1.10 maxv } else if (bootspace.segs[i].type == BTSEG_RODATA) {
134 1.10 maxv prot = MM_PROT_READ;
135 1.10 maxv } else {
136 1.10 maxv continue;
137 1.10 maxv }
138 1.10 maxv mm_mprotect(bootspace.segs[i].va, bootspace.segs[i].sz, prot);
139 1.10 maxv }
140 1.8 maxv
141 1.8 maxv print_state(true, "Segments protection updated");
142 1.8 maxv }
143 1.8 maxv
144 1.5 maxv static size_t
145 1.5 maxv mm_nentries_range(vaddr_t startva, vaddr_t endva, size_t pgsz)
146 1.5 maxv {
147 1.5 maxv size_t npages;
148 1.5 maxv
149 1.5 maxv npages = roundup((endva / PAGE_SIZE), (pgsz / PAGE_SIZE)) -
150 1.5 maxv rounddown((startva / PAGE_SIZE), (pgsz / PAGE_SIZE));
151 1.5 maxv return (npages / (pgsz / PAGE_SIZE));
152 1.5 maxv }
153 1.5 maxv
154 1.1 maxv static void
155 1.2 maxv mm_map_tree(vaddr_t startva, vaddr_t endva)
156 1.1 maxv {
157 1.5 maxv size_t i, nL4e, nL3e, nL2e;
158 1.1 maxv size_t L4e_idx, L3e_idx, L2e_idx;
159 1.3 maxv paddr_t pa;
160 1.3 maxv
161 1.1 maxv /*
162 1.3 maxv * Build L4.
163 1.1 maxv */
164 1.3 maxv L4e_idx = pl4_i(startva);
165 1.5 maxv nL4e = mm_nentries_range(startva, endva, NBPD_L4);
166 1.3 maxv ASSERT(L4e_idx == 511);
167 1.2 maxv ASSERT(nL4e == 1);
168 1.3 maxv if (!mm_pte_is_valid(L4_BASE[L4e_idx])) {
169 1.3 maxv pa = mm_palloc(1);
170 1.3 maxv L4_BASE[L4e_idx] = pa | PG_V | PG_RW;
171 1.3 maxv }
172 1.1 maxv
173 1.1 maxv /*
174 1.3 maxv * Build L3.
175 1.1 maxv */
176 1.3 maxv L3e_idx = pl3_i(startva);
177 1.5 maxv nL3e = mm_nentries_range(startva, endva, NBPD_L3);
178 1.3 maxv for (i = 0; i < nL3e; i++) {
179 1.3 maxv if (mm_pte_is_valid(L3_BASE[L3e_idx+i])) {
180 1.3 maxv continue;
181 1.3 maxv }
182 1.3 maxv pa = mm_palloc(1);
183 1.3 maxv L3_BASE[L3e_idx+i] = pa | PG_V | PG_RW;
184 1.3 maxv }
185 1.1 maxv
186 1.1 maxv /*
187 1.3 maxv * Build L2.
188 1.1 maxv */
189 1.3 maxv L2e_idx = pl2_i(startva);
190 1.5 maxv nL2e = mm_nentries_range(startva, endva, NBPD_L2);
191 1.2 maxv for (i = 0; i < nL2e; i++) {
192 1.3 maxv if (mm_pte_is_valid(L2_BASE[L2e_idx+i])) {
193 1.3 maxv continue;
194 1.3 maxv }
195 1.3 maxv pa = mm_palloc(1);
196 1.3 maxv L2_BASE[L2e_idx+i] = pa | PG_V | PG_RW;
197 1.1 maxv }
198 1.1 maxv }
199 1.1 maxv
200 1.6 maxv static uint64_t
201 1.13 maxv mm_rand_num64(void)
202 1.6 maxv {
203 1.6 maxv /* XXX: yes, this is ridiculous, will be fixed soon */
204 1.6 maxv return rdtsc();
205 1.6 maxv }
206 1.6 maxv
207 1.6 maxv static void
208 1.13 maxv mm_map_head(void)
209 1.6 maxv {
210 1.6 maxv size_t i, npages, size;
211 1.6 maxv uint64_t rnd;
212 1.6 maxv vaddr_t randva;
213 1.6 maxv
214 1.6 maxv /*
215 1.6 maxv * To get the size of the head, we give a look at the read-only
216 1.6 maxv * mapping of the kernel we created in locore. We're identity mapped,
217 1.6 maxv * so kernpa = kernva.
218 1.6 maxv */
219 1.6 maxv size = elf_get_head_size((vaddr_t)kernpa_start);
220 1.6 maxv npages = size / PAGE_SIZE;
221 1.6 maxv
222 1.6 maxv rnd = mm_rand_num64();
223 1.6 maxv randva = rounddown(HEAD_WINDOW_BASE + rnd % (HEAD_WINDOW_SIZE - size),
224 1.6 maxv PAGE_SIZE);
225 1.6 maxv mm_map_tree(randva, randva + size);
226 1.6 maxv
227 1.6 maxv /* Enter the area and build the ELF info */
228 1.6 maxv for (i = 0; i < npages; i++) {
229 1.6 maxv mm_enter_pa(kernpa_start + i * PAGE_SIZE,
230 1.6 maxv randva + i * PAGE_SIZE, MM_PROT_READ|MM_PROT_WRITE);
231 1.6 maxv }
232 1.6 maxv elf_build_head(randva);
233 1.6 maxv
234 1.6 maxv /* Register the values in bootspace */
235 1.6 maxv bootspace.head.va = randva;
236 1.6 maxv bootspace.head.pa = kernpa_start;
237 1.6 maxv bootspace.head.sz = size;
238 1.6 maxv }
239 1.6 maxv
240 1.1 maxv static vaddr_t
241 1.14 maxv mm_randva_kregion(size_t size, size_t align)
242 1.1 maxv {
243 1.11 maxv vaddr_t sva, eva;
244 1.1 maxv vaddr_t randva;
245 1.1 maxv uint64_t rnd;
246 1.6 maxv size_t i;
247 1.6 maxv bool ok;
248 1.6 maxv
249 1.6 maxv while (1) {
250 1.6 maxv rnd = mm_rand_num64();
251 1.6 maxv randva = rounddown(KASLR_WINDOW_BASE +
252 1.14 maxv rnd % (KASLR_WINDOW_SIZE - size), align);
253 1.6 maxv
254 1.6 maxv /* Detect collisions */
255 1.6 maxv ok = true;
256 1.11 maxv for (i = 0; i < BTSPACE_NSEGS; i++) {
257 1.11 maxv if (bootspace.segs[i].type == BTSEG_NONE) {
258 1.11 maxv continue;
259 1.11 maxv }
260 1.11 maxv sva = bootspace.segs[i].va;
261 1.11 maxv eva = sva + bootspace.segs[i].sz;
262 1.11 maxv
263 1.11 maxv if ((sva <= randva) && (randva < eva)) {
264 1.6 maxv ok = false;
265 1.6 maxv break;
266 1.6 maxv }
267 1.11 maxv if ((sva < randva + size) && (randva + size <= eva)) {
268 1.6 maxv ok = false;
269 1.6 maxv break;
270 1.6 maxv }
271 1.6 maxv }
272 1.6 maxv if (ok) {
273 1.6 maxv break;
274 1.6 maxv }
275 1.6 maxv }
276 1.1 maxv
277 1.2 maxv mm_map_tree(randva, randva + size);
278 1.1 maxv
279 1.1 maxv return randva;
280 1.1 maxv }
281 1.1 maxv
282 1.10 maxv static paddr_t
283 1.13 maxv bootspace_getend(void)
284 1.10 maxv {
285 1.10 maxv paddr_t pa, max = 0;
286 1.10 maxv size_t i;
287 1.10 maxv
288 1.10 maxv for (i = 0; i < BTSPACE_NSEGS; i++) {
289 1.10 maxv if (bootspace.segs[i].type == BTSEG_NONE) {
290 1.10 maxv continue;
291 1.10 maxv }
292 1.10 maxv pa = bootspace.segs[i].pa + bootspace.segs[i].sz;
293 1.10 maxv if (pa > max)
294 1.10 maxv max = pa;
295 1.10 maxv }
296 1.10 maxv
297 1.10 maxv return max;
298 1.10 maxv }
299 1.10 maxv
300 1.10 maxv static void
301 1.10 maxv bootspace_addseg(int type, vaddr_t va, paddr_t pa, size_t sz)
302 1.10 maxv {
303 1.10 maxv size_t i;
304 1.10 maxv
305 1.10 maxv for (i = 0; i < BTSPACE_NSEGS; i++) {
306 1.10 maxv if (bootspace.segs[i].type == BTSEG_NONE) {
307 1.10 maxv bootspace.segs[i].type = type;
308 1.10 maxv bootspace.segs[i].va = va;
309 1.10 maxv bootspace.segs[i].pa = pa;
310 1.10 maxv bootspace.segs[i].sz = sz;
311 1.10 maxv return;
312 1.10 maxv }
313 1.10 maxv }
314 1.10 maxv
315 1.10 maxv fatal("bootspace_addseg: segments full");
316 1.10 maxv }
317 1.10 maxv
318 1.14 maxv static size_t
319 1.14 maxv mm_shift_segment(vaddr_t va, size_t pagesz, size_t elfsz, size_t elfalign)
320 1.14 maxv {
321 1.14 maxv size_t shiftsize, offset;
322 1.14 maxv uint64_t rnd;
323 1.14 maxv
324 1.14 maxv if (elfalign == 0) {
325 1.14 maxv elfalign = ELFROUND;
326 1.14 maxv }
327 1.14 maxv
328 1.14 maxv shiftsize = roundup(elfsz, pagesz) - roundup(elfsz, elfalign);
329 1.14 maxv if (shiftsize == 0) {
330 1.14 maxv return 0;
331 1.14 maxv }
332 1.14 maxv
333 1.14 maxv rnd = mm_rand_num64();
334 1.14 maxv offset = roundup(rnd % shiftsize, elfalign);
335 1.14 maxv ASSERT((va + offset) % elfalign == 0);
336 1.14 maxv
337 1.14 maxv memmove((void *)(va + offset), (void *)va, elfsz);
338 1.14 maxv
339 1.14 maxv return offset;
340 1.14 maxv }
341 1.14 maxv
342 1.12 maxv vaddr_t
343 1.14 maxv mm_map_segment(int segtype, paddr_t pa, size_t elfsz, size_t elfalign)
344 1.1 maxv {
345 1.14 maxv size_t i, npages, size, pagesz, offset;
346 1.6 maxv vaddr_t randva;
347 1.12 maxv char pad;
348 1.6 maxv
349 1.14 maxv if (elfsz < PAGE_SIZE) {
350 1.14 maxv pagesz = NBPD_L1;
351 1.14 maxv } else {
352 1.14 maxv pagesz = NBPD_L2;
353 1.14 maxv }
354 1.14 maxv
355 1.14 maxv size = roundup(elfsz, pagesz);
356 1.14 maxv randva = mm_randva_kregion(size, pagesz);
357 1.14 maxv
358 1.6 maxv npages = size / PAGE_SIZE;
359 1.6 maxv for (i = 0; i < npages; i++) {
360 1.6 maxv mm_enter_pa(pa + i * PAGE_SIZE,
361 1.6 maxv randva + i * PAGE_SIZE, MM_PROT_READ|MM_PROT_WRITE);
362 1.6 maxv }
363 1.6 maxv
364 1.14 maxv offset = mm_shift_segment(randva, pagesz, elfsz, elfalign);
365 1.14 maxv ASSERT(offset + elfsz <= size);
366 1.14 maxv
367 1.12 maxv if (segtype == BTSEG_TEXT) {
368 1.12 maxv pad = PAD_TEXT;
369 1.12 maxv } else if (segtype == BTSEG_RODATA) {
370 1.12 maxv pad = PAD_RODATA;
371 1.12 maxv } else {
372 1.12 maxv pad = PAD_DATA;
373 1.6 maxv }
374 1.14 maxv memset((void *)randva, pad, offset);
375 1.14 maxv memset((void *)(randva + offset + elfsz), pad, size - elfsz - offset);
376 1.6 maxv
377 1.12 maxv bootspace_addseg(segtype, randva, pa, size);
378 1.9 maxv
379 1.14 maxv return (randva + offset);
380 1.6 maxv }
381 1.6 maxv
382 1.6 maxv static void
383 1.13 maxv mm_map_boot(void)
384 1.6 maxv {
385 1.6 maxv size_t i, npages, size;
386 1.6 maxv vaddr_t randva;
387 1.6 maxv paddr_t bootpa;
388 1.6 maxv
389 1.6 maxv /*
390 1.6 maxv * The "boot" region is special: its page tree has a fixed size, but
391 1.6 maxv * the number of pages entered is lower.
392 1.6 maxv */
393 1.6 maxv
394 1.6 maxv /* Create the page tree */
395 1.6 maxv size = (NKL2_KIMG_ENTRIES + 1) * NBPD_L2;
396 1.14 maxv randva = mm_randva_kregion(size, PAGE_SIZE);
397 1.6 maxv
398 1.6 maxv /* Enter the area and build the ELF info */
399 1.10 maxv bootpa = bootspace_getend();
400 1.6 maxv size = (pa_avail - bootpa);
401 1.6 maxv npages = size / PAGE_SIZE;
402 1.6 maxv for (i = 0; i < npages; i++) {
403 1.6 maxv mm_enter_pa(bootpa + i * PAGE_SIZE,
404 1.6 maxv randva + i * PAGE_SIZE, MM_PROT_READ|MM_PROT_WRITE);
405 1.1 maxv }
406 1.6 maxv elf_build_boot(randva, bootpa);
407 1.1 maxv
408 1.1 maxv /* Enter the ISA I/O MEM */
409 1.6 maxv iom_base = randva + npages * PAGE_SIZE;
410 1.1 maxv npages = IOM_SIZE / PAGE_SIZE;
411 1.1 maxv for (i = 0; i < npages; i++) {
412 1.1 maxv mm_enter_pa(IOM_BEGIN + i * PAGE_SIZE,
413 1.1 maxv iom_base + i * PAGE_SIZE, MM_PROT_READ|MM_PROT_WRITE);
414 1.1 maxv }
415 1.1 maxv
416 1.6 maxv /* Register the values in bootspace */
417 1.6 maxv bootspace.boot.va = randva;
418 1.6 maxv bootspace.boot.pa = bootpa;
419 1.6 maxv bootspace.boot.sz = (size_t)(iom_base + IOM_SIZE) -
420 1.6 maxv (size_t)bootspace.boot.va;
421 1.6 maxv
422 1.6 maxv /* Initialize the values that are located in the "boot" region */
423 1.6 maxv extern uint64_t PDPpaddr;
424 1.6 maxv bootspace.spareva = bootspace.boot.va + NKL2_KIMG_ENTRIES * NBPD_L2;
425 1.6 maxv bootspace.pdir = bootspace.boot.va + (PDPpaddr - bootspace.boot.pa);
426 1.6 maxv bootspace.emodule = bootspace.boot.va + NKL2_KIMG_ENTRIES * NBPD_L2;
427 1.1 maxv }
428 1.6 maxv
429 1.6 maxv /*
430 1.6 maxv * There are five independent regions: head, text, rodata, data, boot. They are
431 1.6 maxv * all mapped at random VAs.
432 1.6 maxv *
433 1.6 maxv * Head contains the ELF Header and ELF Section Headers, and we use them to
434 1.6 maxv * map the rest of the regions. Head must be placed in memory *before* the
435 1.6 maxv * other regions.
436 1.6 maxv *
437 1.6 maxv * At the end of this function, the bootspace structure is fully constructed.
438 1.6 maxv */
439 1.6 maxv void
440 1.13 maxv mm_map_kernel(void)
441 1.6 maxv {
442 1.6 maxv memset(&bootspace, 0, sizeof(bootspace));
443 1.6 maxv mm_map_head();
444 1.7 maxv print_state(true, "Head region mapped");
445 1.12 maxv elf_map_sections();
446 1.7 maxv print_state(true, "Segments mapped");
447 1.6 maxv mm_map_boot();
448 1.7 maxv print_state(true, "Boot region mapped");
449 1.6 maxv }
450