aucc.c revision 1.42.2.1 1 /* $NetBSD: aucc.c,v 1.42.2.1 2014/05/18 17:44:55 rmind Exp $ */
2
3 /*
4 * Copyright (c) 1999 Bernardo Innocenti
5 * All rights reserved.
6 *
7 * Copyright (c) 1997 Stephan Thesing
8 * All rights reserved.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 * 3. All advertising materials mentioning features or use of this software
19 * must display the following acknowledgement:
20 * This product includes software developed by Stephan Thesing.
21 * 4. The name of the author may not be used to endorse or promote products
22 * derived from this software without specific prior written permission
23 *
24 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
25 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
26 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
27 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
28 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
29 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
30 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
31 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
32 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
33 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
34 */
35
36 /* TODO:
37 *
38 * - mu-law -> 14bit conversion
39 * - channel allocation is wrong for 14bit mono
40 * - convert the... err... conversion routines to 68k asm for best performance
41 * XXX: NO. aucc audio is limited by chipmem speed, anyway. You dont
42 * want to make life difficult for amigappc work.
43 * -is
44 *
45 * - rely on auconv.c routines for mu-law/A-law conversions
46 * - perhaps use a calibration table for better 14bit output
47 * - set 31 kHz AGA video mode to allow 44.1 kHz even if grfcc is missing
48 * in the kernel
49 * - 14bit output requires maximum volume
50 */
51
52 #include "aucc.h"
53 #if NAUCC > 0
54
55 #include <sys/cdefs.h>
56 __KERNEL_RCSID(0, "$NetBSD: aucc.c,v 1.42.2.1 2014/05/18 17:44:55 rmind Exp $");
57
58 #include <sys/param.h>
59 #include <sys/systm.h>
60 #include <sys/errno.h>
61 #include <sys/ioctl.h>
62 #include <sys/device.h>
63 #include <sys/proc.h>
64 #include <machine/cpu.h>
65
66 #include <sys/audioio.h>
67 #include <dev/audio_if.h>
68 #include <amiga/amiga/cc.h>
69 #include <amiga/amiga/custom.h>
70 #include <amiga/amiga/device.h>
71 #include <amiga/dev/auccvar.h>
72
73 #include "opt_lev6_defer.h"
74
75
76 #ifdef LEV6_DEFER
77 #define AUCC_MAXINT 3
78 #define AUCC_ALLINTF (INTF_AUD0|INTF_AUD1|INTF_AUD2)
79 #else
80 #define AUCC_MAXINT 4
81 #define AUCC_ALLINTF (INTF_AUD0|INTF_AUD1|INTF_AUD2|INTF_AUD3)
82 #endif
83 /* this unconditionally; we may use AUD3 as slave channel with LEV6_DEFER */
84 #define AUCC_ALLDMAF (DMAF_AUD0|DMAF_AUD1|DMAF_AUD2|DMAF_AUD3)
85
86 #ifdef AUDIO_DEBUG
87 /*extern printf(const char *,...);*/
88 int auccdebug = 1;
89 #define DPRINTF(x) if (auccdebug) printf x
90 #else
91 #define DPRINTF(x)
92 #endif
93
94 /* clock frequency.. */
95 extern int eclockfreq;
96
97
98 /* hw audio ch */
99 extern struct audio_channel channel[4];
100
101
102 /*
103 * Software state.
104 */
105 struct aucc_softc {
106 int sc_open; /* single use device */
107 aucc_data_t sc_channel[4]; /* per channel freq, ... */
108 u_int sc_encoding; /* encoding AUDIO_ENCODING_.*/
109 int sc_channels; /* # of channels used */
110 int sc_precision; /* 8 or 16 bits */
111 int sc_14bit; /* 14bit output enabled */
112
113 int sc_intrcnt; /* interrupt count */
114 int sc_channelmask; /* which channels are used ? */
115 void (*sc_decodefunc)(u_char **, u_char *, int);
116 /* pointer to format conversion routine */
117
118 kmutex_t sc_lock;
119 kmutex_t sc_intr_lock;
120 };
121
122 /* interrupt interfaces */
123 void aucc_inthdl(int);
124
125 /* forward declarations */
126 static int init_aucc(struct aucc_softc *);
127 static u_int freqtoper(u_int);
128 static u_int pertofreq(u_int);
129
130 /* autoconfiguration driver */
131 void auccattach(device_t, device_t, void *);
132 int auccmatch(device_t, cfdata_t, void *);
133
134 CFATTACH_DECL_NEW(aucc, sizeof(struct aucc_softc),
135 auccmatch, auccattach, NULL, NULL);
136
137 struct audio_device aucc_device = {
138 "Amiga-audio",
139 "2.0",
140 "aucc"
141 };
142
143
144 struct aucc_softc *aucc = NULL;
145
146
147 unsigned char mulaw_to_lin[] = {
148 0x82, 0x86, 0x8a, 0x8e, 0x92, 0x96, 0x9a, 0x9e,
149 0xa2, 0xa6, 0xaa, 0xae, 0xb2, 0xb6, 0xba, 0xbe,
150 0xc1, 0xc3, 0xc5, 0xc7, 0xc9, 0xcb, 0xcd, 0xcf,
151 0xd1, 0xd3, 0xd5, 0xd7, 0xd9, 0xdb, 0xdd, 0xdf,
152 0xe1, 0xe2, 0xe3, 0xe4, 0xe5, 0xe6, 0xe7, 0xe8,
153 0xe9, 0xea, 0xeb, 0xec, 0xed, 0xee, 0xef, 0xf0,
154 0xf0, 0xf1, 0xf1, 0xf2, 0xf2, 0xf3, 0xf3, 0xf4,
155 0xf4, 0xf5, 0xf5, 0xf6, 0xf6, 0xf7, 0xf7, 0xf8,
156 0xf8, 0xf8, 0xf9, 0xf9, 0xf9, 0xf9, 0xfa, 0xfa,
157 0xfa, 0xfa, 0xfb, 0xfb, 0xfb, 0xfb, 0xfc, 0xfc,
158 0xfc, 0xfc, 0xfc, 0xfc, 0xfd, 0xfd, 0xfd, 0xfd,
159 0xfd, 0xfd, 0xfd, 0xfd, 0xfe, 0xfe, 0xfe, 0xfe,
160 0xfe, 0xfe, 0xfe, 0xfe, 0xfe, 0xfe, 0xfe, 0xfe,
161 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
162 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
163 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0x00,
164 0x7d, 0x79, 0x75, 0x71, 0x6d, 0x69, 0x65, 0x61,
165 0x5d, 0x59, 0x55, 0x51, 0x4d, 0x49, 0x45, 0x41,
166 0x3e, 0x3c, 0x3a, 0x38, 0x36, 0x34, 0x32, 0x30,
167 0x2e, 0x2c, 0x2a, 0x28, 0x26, 0x24, 0x22, 0x20,
168 0x1e, 0x1d, 0x1c, 0x1b, 0x1a, 0x19, 0x18, 0x17,
169 0x16, 0x15, 0x14, 0x13, 0x12, 0x11, 0x10, 0x0f,
170 0x0f, 0x0e, 0x0e, 0x0d, 0x0d, 0x0c, 0x0c, 0x0b,
171 0x0b, 0x0a, 0x0a, 0x09, 0x09, 0x08, 0x08, 0x07,
172 0x07, 0x07, 0x06, 0x06, 0x06, 0x06, 0x05, 0x05,
173 0x05, 0x05, 0x04, 0x04, 0x04, 0x04, 0x03, 0x03,
174 0x03, 0x03, 0x03, 0x03, 0x02, 0x02, 0x02, 0x02,
175 0x02, 0x02, 0x02, 0x02, 0x01, 0x01, 0x01, 0x01,
176 0x01, 0x01, 0x01, 0x01, 0x01, 0x01, 0x01, 0x01,
177 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
178 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
179 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
180 };
181
182 /*
183 * Define our interface to the higher level audio driver.
184 */
185 int aucc_open(void *, int);
186 void aucc_close(void *);
187 int aucc_set_out_sr(void *, u_int);
188 int aucc_query_encoding(void *, struct audio_encoding *);
189 int aucc_round_blocksize(void *, int, int, const audio_params_t *);
190 int aucc_commit_settings(void *);
191 int aucc_start_output(void *, void *, int, void (*)(void *), void *);
192 int aucc_start_input(void *, void *, int, void (*)(void *), void *);
193 int aucc_halt_output(void *);
194 int aucc_halt_input(void *);
195 int aucc_getdev(void *, struct audio_device *);
196 int aucc_set_port(void *, mixer_ctrl_t *);
197 int aucc_get_port(void *, mixer_ctrl_t *);
198 int aucc_query_devinfo(void *, mixer_devinfo_t *);
199 void aucc_encode(int, int, int, int, u_char *, u_short **);
200 int aucc_set_params(void *, int, int, audio_params_t *, audio_params_t *,
201 stream_filter_list_t *, stream_filter_list_t *);
202 int aucc_get_props(void *);
203 void aucc_get_locks(void *, kmutex_t **, kmutex_t **);
204
205
206 static void aucc_decode_slinear8_1ch(u_char **, u_char *, int);
207 static void aucc_decode_slinear8_2ch(u_char **, u_char *, int);
208 static void aucc_decode_slinear8_3ch(u_char **, u_char *, int);
209 static void aucc_decode_slinear8_4ch(u_char **, u_char *, int);
210
211 static void aucc_decode_ulinear8_1ch(u_char **, u_char *, int);
212 static void aucc_decode_ulinear8_2ch(u_char **, u_char *, int);
213 static void aucc_decode_ulinear8_3ch(u_char **, u_char *, int);
214 static void aucc_decode_ulinear8_4ch(u_char **, u_char *, int);
215
216 static void aucc_decode_mulaw_1ch(u_char **, u_char *, int);
217 static void aucc_decode_mulaw_2ch(u_char **, u_char *, int);
218 static void aucc_decode_mulaw_3ch(u_char **, u_char *, int);
219 static void aucc_decode_mulaw_4ch(u_char **, u_char *, int);
220
221 static void aucc_decode_slinear16_1ch(u_char **, u_char *, int);
222 static void aucc_decode_slinear16_2ch(u_char **, u_char *, int);
223 static void aucc_decode_slinear16_3ch(u_char **, u_char *, int);
224 static void aucc_decode_slinear16_4ch(u_char **, u_char *, int);
225
226 static void aucc_decode_slinear16sw_1ch(u_char **, u_char *, int);
227 static void aucc_decode_slinear16sw_2ch(u_char **, u_char *, int);
228 static void aucc_decode_slinear16sw_3ch(u_char **, u_char *, int);
229 static void aucc_decode_slinear16sw_4ch(u_char **, u_char *, int);
230
231
232
233 const struct audio_hw_if sa_hw_if = {
234 aucc_open,
235 aucc_close,
236 NULL,
237 aucc_query_encoding,
238 aucc_set_params,
239 aucc_round_blocksize,
240 aucc_commit_settings,
241 NULL,
242 NULL,
243 aucc_start_output,
244 aucc_start_input,
245 aucc_halt_output,
246 aucc_halt_input,
247 NULL,
248 aucc_getdev,
249 NULL,
250 aucc_set_port,
251 aucc_get_port,
252 aucc_query_devinfo,
253 NULL,
254 NULL,
255 NULL,
256 NULL,
257 aucc_get_props,
258 NULL,
259 NULL,
260 NULL,
261 aucc_get_locks,
262 };
263
264 /* autoconfig routines */
265
266 int
267 auccmatch(device_t parent, cfdata_t cf, void *aux)
268 {
269 static int aucc_matched = 0;
270
271 if (!matchname((char *)aux, "aucc") ||
272 #ifdef DRACO
273 is_draco() ||
274 #endif
275 aucc_matched)
276 return 0;
277
278 aucc_matched = 1;
279 return 1;
280 }
281
282 /*
283 * Audio chip found.
284 */
285 void
286 auccattach(device_t parent, device_t self, void *args)
287 {
288 struct aucc_softc *sc;
289 int i;
290
291 sc = device_private(self);
292 printf("\n");
293
294 if ((i=init_aucc(sc))) {
295 printf("audio: no chipmem\n");
296 return;
297 }
298
299 audio_attach_mi(&sa_hw_if, sc, self);
300 }
301
302
303 static int
304 init_aucc(struct aucc_softc *sc)
305 {
306 int i, err;
307
308 err = 0;
309 /* init values per channel */
310 for (i = 0; i < 4; i++) {
311 sc->sc_channel[i].nd_freq = 8000;
312 sc->sc_channel[i].nd_per = freqtoper(8000);
313 sc->sc_channel[i].nd_busy = 0;
314 sc->sc_channel[i].nd_dma = alloc_chipmem(AUDIO_BUF_SIZE*2);
315 if (sc->sc_channel[i].nd_dma == NULL)
316 err = 1;
317 sc->sc_channel[i].nd_dmalength = 0;
318 sc->sc_channel[i].nd_volume = 64;
319 sc->sc_channel[i].nd_intr = NULL;
320 sc->sc_channel[i].nd_intrdata = NULL;
321 sc->sc_channel[i].nd_doublebuf = 0;
322 DPRINTF(("DMA buffer for channel %d is %p\n", i,
323 sc->sc_channel[i].nd_dma));
324 }
325
326 if (err) {
327 for (i = 0; i < 4; i++)
328 if (sc->sc_channel[i].nd_dma)
329 free_chipmem(sc->sc_channel[i].nd_dma);
330 }
331
332 sc->sc_channels = 1;
333 sc->sc_channelmask = 0xf;
334 sc->sc_precision = 8;
335 sc->sc_14bit = 0;
336 sc->sc_encoding = AUDIO_ENCODING_ULAW;
337 sc->sc_decodefunc = aucc_decode_mulaw_1ch;
338
339 /* clear interrupts and DMA: */
340 custom.intena = AUCC_ALLINTF;
341 custom.dmacon = AUCC_ALLDMAF;
342
343 mutex_init(&sc->sc_lock, MUTEX_DEFAULT, IPL_NONE);
344 mutex_init(&sc->sc_intr_lock, MUTEX_DEFAULT, IPL_SCHED);
345
346 return err;
347 }
348
349 int
350 aucc_open(void *addr, int flags)
351 {
352 struct aucc_softc *sc;
353 int i;
354
355 sc = addr;
356 DPRINTF(("sa_open: unit %p\n",sc));
357
358 if (sc->sc_open)
359 return EBUSY;
360 sc->sc_open = 1;
361 for (i = 0; i < AUCC_MAXINT; i++) {
362 sc->sc_channel[i].nd_intr = NULL;
363 sc->sc_channel[i].nd_intrdata = NULL;
364 }
365 aucc = sc;
366 sc->sc_channelmask = 0xf;
367
368 DPRINTF(("saopen: ok -> sc=%p\n",sc));
369
370 return 0;
371 }
372
373 void
374 aucc_close(void *addr)
375 {
376 struct aucc_softc *sc;
377
378 sc = addr;
379 DPRINTF(("sa_close: sc=%p\n", sc));
380 /*
381 * halt i/o, clear open flag, and done.
382 */
383 aucc_halt_output(sc);
384 sc->sc_open = 0;
385
386 DPRINTF(("sa_close: closed.\n"));
387 }
388
389 int
390 aucc_set_out_sr(void *addr, u_int sr)
391 {
392 struct aucc_softc *sc;
393 u_long per;
394 int i;
395
396 sc = addr;
397 per = freqtoper(sr);
398 if (per > 0xffff)
399 return EINVAL;
400 sr = pertofreq(per);
401
402 for (i = 0; i < 4; i++) {
403 sc->sc_channel[i].nd_freq = sr;
404 sc->sc_channel[i].nd_per = per;
405 }
406
407 return 0;
408 }
409
410 int
411 aucc_query_encoding(void *addr, struct audio_encoding *fp)
412 {
413
414 switch (fp->index) {
415 case 0:
416 strcpy(fp->name, AudioEslinear);
417 fp->encoding = AUDIO_ENCODING_SLINEAR;
418 fp->precision = 8;
419 fp->flags = 0;
420 break;
421 case 1:
422 strcpy(fp->name, AudioEmulaw);
423 fp->encoding = AUDIO_ENCODING_ULAW;
424 fp->precision = 8;
425 fp->flags = AUDIO_ENCODINGFLAG_EMULATED;
426 break;
427
428 case 2:
429 strcpy(fp->name, AudioEulinear);
430 fp->encoding = AUDIO_ENCODING_ULINEAR;
431 fp->precision = 8;
432 fp->flags = AUDIO_ENCODINGFLAG_EMULATED;
433 break;
434
435 case 3:
436 strcpy(fp->name, AudioEslinear);
437 fp->encoding = AUDIO_ENCODING_SLINEAR;
438 fp->precision = 16;
439 fp->flags = AUDIO_ENCODINGFLAG_EMULATED;
440 break;
441
442 case 4:
443 strcpy(fp->name, AudioEslinear_be);
444 fp->encoding = AUDIO_ENCODING_SLINEAR_BE;
445 fp->precision = 16;
446 fp->flags = AUDIO_ENCODINGFLAG_EMULATED;
447 break;
448
449 case 5:
450 strcpy(fp->name, AudioEslinear_le);
451 fp->encoding = AUDIO_ENCODING_SLINEAR_LE;
452 fp->precision = 16;
453 fp->flags = AUDIO_ENCODINGFLAG_EMULATED;
454 break;
455
456 default:
457 return EINVAL;
458 /*NOTREACHED*/
459 }
460 return 0;
461 }
462
463 int
464 aucc_set_params(void *addr, int setmode, int usemode,
465 audio_params_t *p, audio_params_t *r,
466 stream_filter_list_t *pfil, stream_filter_list_t *rfil)
467 {
468 struct aucc_softc *sc;
469
470 sc = addr;
471 /* if (setmode & AUMODE_RECORD)
472 return 0 ENXIO*/;
473
474 #ifdef AUCCDEBUG
475 printf("aucc_set_params(setmode 0x%x, usemode 0x%x, "
476 "enc %u, bits %u, chn %u, sr %u)\n", setmode, usemode,
477 p->encoding, p->precision, p->channels, p->sample_rate);
478 #endif
479
480 switch (p->precision) {
481 case 8:
482 switch (p->encoding) {
483 case AUDIO_ENCODING_ULAW:
484 switch (p->channels) {
485 case 1:
486 sc->sc_decodefunc = aucc_decode_mulaw_1ch;
487 break;
488 case 2:
489 sc->sc_decodefunc = aucc_decode_mulaw_2ch;
490 break;
491 case 3:
492 sc->sc_decodefunc = aucc_decode_mulaw_3ch;
493 break;
494 case 4:
495 sc->sc_decodefunc = aucc_decode_mulaw_4ch;
496 break;
497 default:
498 return EINVAL;
499 }
500 break;
501
502 case AUDIO_ENCODING_SLINEAR:
503 case AUDIO_ENCODING_SLINEAR_BE:
504 case AUDIO_ENCODING_SLINEAR_LE:
505 switch (p->channels) {
506 case 1:
507 sc->sc_decodefunc = aucc_decode_slinear8_1ch;
508 break;
509 case 2:
510 sc->sc_decodefunc = aucc_decode_slinear8_2ch;
511 break;
512 case 3:
513 sc->sc_decodefunc = aucc_decode_slinear8_3ch;
514 break;
515 case 4:
516 sc->sc_decodefunc = aucc_decode_slinear8_4ch;
517 break;
518 default:
519 return EINVAL;
520 }
521 break;
522
523 case AUDIO_ENCODING_ULINEAR:
524 case AUDIO_ENCODING_ULINEAR_BE:
525 case AUDIO_ENCODING_ULINEAR_LE:
526 switch (p->channels) {
527 case 1:
528 sc->sc_decodefunc = aucc_decode_ulinear8_1ch;
529 break;
530 case 2:
531 sc->sc_decodefunc = aucc_decode_ulinear8_2ch;
532 break;
533 case 3:
534 sc->sc_decodefunc = aucc_decode_ulinear8_3ch;
535 break;
536 case 4:
537 sc->sc_decodefunc = aucc_decode_ulinear8_4ch;
538 break;
539 default:
540 return EINVAL;
541 }
542 break;
543
544 default:
545 return EINVAL;
546 }
547 break;
548
549 case 16:
550 switch (p->encoding) {
551 #if BYTE_ORDER == BIG_ENDIAN
552 case AUDIO_ENCODING_SLINEAR:
553 #endif
554 case AUDIO_ENCODING_SLINEAR_BE:
555 switch (p->channels) {
556 case 1:
557 sc->sc_decodefunc = aucc_decode_slinear16_1ch;
558 break;
559
560 case 2:
561 sc->sc_decodefunc = aucc_decode_slinear16_2ch;
562 break;
563 case 3:
564 sc->sc_decodefunc = aucc_decode_slinear16_3ch;
565 break;
566 case 4:
567 sc->sc_decodefunc = aucc_decode_slinear16_4ch;
568 break;
569 default:
570 return EINVAL;
571 }
572 break;
573
574 #if BYTE_ORDER == LITTLE_ENDIAN
575 case AUDIO_ENCODING_SLINEAR:
576 #endif
577 case AUDIO_ENCODING_SLINEAR_LE:
578 switch (p->channels) {
579 case 1:
580 sc->sc_decodefunc = aucc_decode_slinear16sw_1ch;
581 break;
582 case 2:
583 sc->sc_decodefunc = aucc_decode_slinear16sw_2ch;
584 break;
585 case 3:
586 sc->sc_decodefunc = aucc_decode_slinear16sw_3ch;
587 break;
588 case 4:
589 sc->sc_decodefunc = aucc_decode_slinear16sw_4ch;
590 break;
591 default:
592 return EINVAL;
593 }
594 break;
595
596 default:
597 return EINVAL;
598 }
599 break;
600
601 default:
602 return EINVAL;
603 }
604
605 sc->sc_encoding = p->encoding;
606 sc->sc_precision = p->precision;
607 sc->sc_14bit = ((p->precision == 16) && (p->channels <= 2));
608 sc->sc_channels = sc->sc_14bit ? (p->channels * 2) : p->channels;
609
610 return aucc_set_out_sr(addr, p->sample_rate);
611 }
612
613 int
614 aucc_round_blocksize(void *addr, int blk,
615 int mode, const audio_params_t *param)
616 {
617
618 /* round up to even size */
619 return blk > AUDIO_BUF_SIZE ? AUDIO_BUF_SIZE : blk;
620 }
621
622 int
623 aucc_commit_settings(void *addr)
624 {
625 struct aucc_softc *sc;
626 int i;
627
628 DPRINTF(("sa_commit.\n"));
629
630 sc = addr;
631 for (i = 0; i < 4; i++) {
632 custom.aud[i].vol = sc->sc_channel[i].nd_volume;
633 custom.aud[i].per = sc->sc_channel[i].nd_per;
634 }
635
636 DPRINTF(("commit done\n"));
637
638 return 0;
639 }
640
641 static int masks[4] = {1,3,7,15}; /* masks for n first channels */
642 static int masks2[4] = {1,2,4,8};
643
644 int
645 aucc_start_output(void *addr, void *p, int cc, void (*intr)(void *), void *arg)
646 {
647 struct aucc_softc *sc;
648 int mask;
649 int i, j, k, len;
650 u_char *dmap[4];
651
652
653 sc = addr;
654 mask = sc->sc_channelmask;
655
656 dmap[0] = dmap[1] = dmap[2] = dmap[3] = NULL;
657
658 DPRINTF(("sa_start_output: cc=%d %p (%p)\n", cc, intr, arg));
659
660 if (sc->sc_channels > 1)
661 mask &= masks[sc->sc_channels - 1];
662 /* we use first sc_channels channels */
663 if (mask == 0) /* active and used channels are disjoint */
664 return EINVAL;
665
666 for (i = 0; i < 4; i++) {
667 /* channels available ? */
668 if ((masks2[i] & mask) && (sc->sc_channel[i].nd_busy))
669 return EBUSY; /* channel is busy */
670 if (channel[i].isaudio == -1)
671 return EBUSY; /* system uses them */
672 }
673
674 /* enable interrupt on 1st channel */
675 for (i = j = 0; i < AUCC_MAXINT; i++) {
676 if (masks2[i] & mask) {
677 DPRINTF(("first channel is %d\n",i));
678 j = i;
679 sc->sc_channel[i].nd_intr = intr;
680 sc->sc_channel[i].nd_intrdata = arg;
681 break;
682 }
683 }
684
685 DPRINTF(("dmap is %p %p %p %p, mask=0x%x\n", dmap[0], dmap[1],
686 dmap[2], dmap[3], mask));
687
688 /* disable ints, DMA for channels, until all parameters set */
689 /* XXX dont disable DMA! custom.dmacon=mask;*/
690 custom.intreq = mask << INTB_AUD0;
691 custom.intena = mask << INTB_AUD0;
692
693 /* copy data to DMA buffer */
694
695 if (sc->sc_channels == 1) {
696 dmap[0] =
697 dmap[1] =
698 dmap[2] =
699 dmap[3] = (u_char *)sc->sc_channel[j].nd_dma;
700 } else {
701 for (k = 0; k < 4; k++) {
702 if (masks2[k+j] & mask)
703 dmap[k] = (u_char *)sc->sc_channel[k+j].nd_dma;
704 }
705 }
706
707 sc->sc_channel[j].nd_doublebuf ^= 1;
708 if (sc->sc_channel[j].nd_doublebuf) {
709 dmap[0] += AUDIO_BUF_SIZE;
710 dmap[1] += AUDIO_BUF_SIZE;
711 dmap[2] += AUDIO_BUF_SIZE;
712 dmap[3] += AUDIO_BUF_SIZE;
713 }
714
715 /*
716 * compute output length in bytes per channel.
717 * divide by two only for 16bit->8bit conversion.
718 */
719 len = cc / sc->sc_channels;
720 if (!sc->sc_14bit && (sc->sc_precision == 16))
721 len /= 2;
722
723 /* call audio decoding routine */
724 sc->sc_decodefunc (dmap, (u_char *)p, len);
725
726 /* DMA buffers: we use same buffer 4 all channels
727 * write DMA location and length
728 */
729 for (i = k = 0; i < 4; i++) {
730 if (masks2[i] & mask) {
731 DPRINTF(("turning channel %d on\n",i));
732 /* sc->sc_channel[i].nd_busy=1; */
733 channel[i].isaudio = 1;
734 channel[i].play_count = 1;
735 channel[i].handler = NULL;
736 custom.aud[i].per = sc->sc_channel[i].nd_per;
737 if (sc->sc_14bit && (i > 1))
738 custom.aud[i].vol = 1;
739 else
740 custom.aud[i].vol = sc->sc_channel[i].nd_volume;
741 custom.aud[i].lc = PREP_DMA_MEM(dmap[k++]);
742 custom.aud[i].len = len / 2;
743 sc->sc_channel[i].nd_mask = mask;
744 DPRINTF(("per is %d, vol is %d, len is %d\n",\
745 sc->sc_channel[i].nd_per,
746 sc->sc_channel[i].nd_volume, len));
747 }
748 }
749
750 channel[j].handler = aucc_inthdl;
751
752 /* enable ints */
753 custom.intena = INTF_SETCLR | INTF_INTEN | (masks2[j] << INTB_AUD0);
754
755 DPRINTF(("enabled ints: 0x%x\n", (masks2[j] << INTB_AUD0)));
756
757 /* enable DMA */
758 custom.dmacon = DMAF_SETCLR | DMAF_MASTER | mask;
759
760 DPRINTF(("enabled DMA, mask=0x%x\n",mask));
761
762 return 0;
763 }
764
765 /* ARGSUSED */
766 int
767 aucc_start_input(void *addr, void *p, int cc, void (*intr)(void *), void *arg)
768 {
769
770 return ENXIO; /* no input */
771 }
772
773 int
774 aucc_halt_output(void *addr)
775 {
776 struct aucc_softc *sc;
777 int i;
778
779 /* XXX only halt, if input is also halted ?? */
780 sc = addr;
781 /* stop DMA, etc */
782 custom.intena = AUCC_ALLINTF;
783 custom.dmacon = AUCC_ALLDMAF;
784 /* mark every busy unit idle */
785 for (i = 0; i < 4; i++) {
786 sc->sc_channel[i].nd_busy = sc->sc_channel[i].nd_mask = 0;
787 channel[i].isaudio = 0;
788 channel[i].play_count = 0;
789 }
790
791 return 0;
792 }
793
794 int
795 aucc_halt_input(void *addr)
796 {
797
798 /* no input */
799 return ENXIO;
800 }
801
802 int
803 aucc_getdev(void *addr, struct audio_device *retp)
804 {
805
806 *retp = aucc_device;
807 return 0;
808 }
809
810 int
811 aucc_set_port(void *addr, mixer_ctrl_t *cp)
812 {
813 struct aucc_softc *sc;
814 int i,j;
815
816 DPRINTF(("aucc_set_port: port=%d", cp->dev));
817 sc = addr;
818 switch (cp->type) {
819 case AUDIO_MIXER_SET:
820 if (cp->dev != AUCC_CHANNELS)
821 return EINVAL;
822 i = cp->un.mask;
823 if ((i < 1) || (i > 15))
824 return EINVAL;
825
826 sc->sc_channelmask = i;
827 break;
828
829 case AUDIO_MIXER_VALUE:
830 i = cp->un.value.num_channels;
831 if ((i < 1) || (i > 4))
832 return EINVAL;
833
834 #ifdef __XXXwhatsthat
835 if (cp->dev != AUCC_VOLUME)
836 return EINVAL;
837 #endif
838
839 /* set volume for channel 0..i-1 */
840
841 /* evil workaround for xanim bug, IMO */
842 if ((sc->sc_channels == 1) && (i == 2)) {
843 sc->sc_channel[0].nd_volume =
844 sc->sc_channel[3].nd_volume =
845 cp->un.value.level[0] >> 2;
846 sc->sc_channel[1].nd_volume =
847 sc->sc_channel[2].nd_volume =
848 cp->un.value.level[1] >> 2;
849 } else if (i > 1) {
850 for (j = 0; j < i; j++)
851 sc->sc_channel[j].nd_volume =
852 cp->un.value.level[j] >> 2;
853 } else if (sc->sc_channels > 1)
854 for (j = 0; j < sc->sc_channels; j++)
855 sc->sc_channel[j].nd_volume =
856 cp->un.value.level[0] >> 2;
857 else
858 for (j = 0; j < 4; j++)
859 sc->sc_channel[j].nd_volume =
860 cp->un.value.level[0] >> 2;
861 break;
862
863 default:
864 return EINVAL;
865 break;
866 }
867 return 0;
868 }
869
870
871 int
872 aucc_get_port(void *addr, mixer_ctrl_t *cp)
873 {
874 struct aucc_softc *sc;
875 int i,j;
876
877 DPRINTF(("aucc_get_port: port=%d", cp->dev));
878 sc = addr;
879 switch (cp->type) {
880 case AUDIO_MIXER_SET:
881 if (cp->dev != AUCC_CHANNELS)
882 return EINVAL;
883 cp->un.mask = sc->sc_channelmask;
884 break;
885
886 case AUDIO_MIXER_VALUE:
887 i = cp->un.value.num_channels;
888 if ((i < 1) || (i > 4))
889 return EINVAL;
890
891 for (j = 0; j < i; j++)
892 cp->un.value.level[j] =
893 (sc->sc_channel[j].nd_volume << 2) +
894 (sc->sc_channel[j].nd_volume >> 4);
895 break;
896
897 default:
898 return EINVAL;
899 }
900 return 0;
901 }
902
903
904 int
905 aucc_get_props(void *addr)
906 {
907 return 0;
908 }
909
910
911 void
912 aucc_get_locks(void *opaque, kmutex_t **intr, kmutex_t **thread)
913 {
914 struct aucc_softc *sc = opaque;
915
916 *intr = &sc->sc_intr_lock;
917 *thread = &sc->sc_lock;
918 }
919
920 int
921 aucc_query_devinfo(void *addr, register mixer_devinfo_t *dip)
922 {
923 int i;
924
925 switch(dip->index) {
926 case AUCC_CHANNELS:
927 dip->type = AUDIO_MIXER_SET;
928 dip->mixer_class = AUCC_OUTPUT_CLASS;
929 dip->prev = dip->next = AUDIO_MIXER_LAST;
930 #define setname(a) strlcpy(dip->label.name, (a), sizeof(dip->label.name))
931 setname(AudioNspeaker);
932 for (i = 0; i < 16; i++) {
933 snprintf(dip->un.s.member[i].label.name,
934 sizeof(dip->un.s.member[i].label.name),
935 "channelmask%d", i);
936 dip->un.s.member[i].mask = i;
937 }
938 dip->un.s.num_mem = 16;
939 break;
940
941 case AUCC_VOLUME:
942 dip->type = AUDIO_MIXER_VALUE;
943 dip->mixer_class = AUCC_OUTPUT_CLASS;
944 dip->prev = dip->next = AUDIO_MIXER_LAST;
945 setname(AudioNmaster);
946 dip->un.v.num_channels = 4;
947 strcpy(dip->un.v.units.name, AudioNvolume);
948 break;
949
950 case AUCC_OUTPUT_CLASS:
951 dip->type = AUDIO_MIXER_CLASS;
952 dip->mixer_class = AUCC_OUTPUT_CLASS;
953 dip->next = dip->prev = AUDIO_MIXER_LAST;
954 setname(AudioCoutputs);
955 break;
956
957 default:
958 return ENXIO;
959 }
960
961 DPRINTF(("AUDIO_MIXER_DEVINFO: name=%s\n", dip->label.name));
962
963 return 0;
964 }
965
966 /* audio int handler */
967 void
968 aucc_inthdl(int ch)
969 {
970 int i;
971 int mask;
972
973 mutex_spin_enter(&aucc->sc_intr_lock);
974 mask = aucc->sc_channel[ch].nd_mask;
975 /*
976 * for all channels in this maskgroup:
977 * disable DMA, int
978 * mark idle
979 */
980 DPRINTF(("inthandler called, channel %d, mask 0x%x\n", ch, mask));
981
982 custom.intreq = mask << INTB_AUD0; /* clear request */
983 /*
984 * XXX: maybe we can leave ints and/or DMA on,
985 * if another sample has to be played?
986 */
987 custom.intena = mask << INTB_AUD0;
988 /*
989 * XXX custom.dmacon=mask; NO!!!
990 */
991 for (i = 0; i < 4; i++) {
992 if (masks2[i] && mask) {
993 DPRINTF(("marking channel %d idle\n",i));
994 aucc->sc_channel[i].nd_busy = 0;
995 aucc->sc_channel[i].nd_mask = 0;
996 channel[i].isaudio = channel[i].play_count = 0;
997 }
998 }
999
1000 /* call handler */
1001 if (aucc->sc_channel[ch].nd_intr) {
1002 DPRINTF(("calling %p\n",aucc->sc_channel[ch].nd_intr));
1003 (*(aucc->sc_channel[ch].nd_intr))
1004 (aucc->sc_channel[ch].nd_intrdata);
1005 } else
1006 DPRINTF(("zero int handler\n"));
1007 mutex_spin_exit(&aucc->sc_intr_lock);
1008 DPRINTF(("ints done\n"));
1009 }
1010
1011 /* transform frequency to period, adjust bounds */
1012 static u_int
1013 freqtoper(u_int freq)
1014 {
1015 u_int per;
1016
1017 per = eclockfreq * 5 / freq;
1018 if (per < 124)
1019 per = 124; /* must have at least 124 ticks between samples */
1020
1021 return per;
1022 }
1023
1024 /* transform period to frequency */
1025 static u_int
1026 pertofreq(u_int per)
1027 {
1028
1029 return eclockfreq * 5 / per;
1030 }
1031
1032 static void
1033 aucc_decode_slinear8_1ch(u_char **dmap, u_char *p, int i)
1034 {
1035 memcpy(dmap[0], p, i);
1036 }
1037
1038 static void
1039 aucc_decode_slinear8_2ch(u_char **dmap, u_char *p, int i)
1040 {
1041 u_char *ch0;
1042 u_char *ch1;
1043
1044 ch0 = dmap[0];
1045 ch1 = dmap[1];
1046 while (i--) {
1047 *ch0++ = *p++;
1048 *ch1++ = *p++;
1049 }
1050 }
1051
1052 static void
1053 aucc_decode_slinear8_3ch(u_char **dmap, u_char *p, int i)
1054 {
1055 u_char *ch0;
1056 u_char *ch1;
1057 u_char *ch2;
1058
1059 ch0 = dmap[0];
1060 ch1 = dmap[1];
1061 ch2 = dmap[2];
1062 while (i--) {
1063 *ch0++ = *p++;
1064 *ch1++ = *p++;
1065 *ch2++ = *p++;
1066 }
1067 }
1068
1069 static void
1070 aucc_decode_slinear8_4ch(u_char **dmap, u_char *p, int i)
1071 {
1072 u_char *ch0;
1073 u_char *ch1;
1074 u_char *ch2;
1075 u_char *ch3;
1076
1077 ch0 = dmap[0];
1078 ch1 = dmap[1];
1079 ch2 = dmap[2];
1080 ch3 = dmap[3];
1081 while (i--) {
1082 *ch0++ = *p++;
1083 *ch1++ = *p++;
1084 *ch2++ = *p++;
1085 *ch3++ = *p++;
1086 }
1087 }
1088
1089 static void
1090 aucc_decode_ulinear8_1ch(u_char **dmap, u_char *p, int i)
1091 {
1092 u_char *ch0;
1093
1094 ch0 = dmap[0];
1095 while (i--)
1096 *ch0++ = *p++ - 128;
1097 }
1098
1099 static void
1100 aucc_decode_ulinear8_2ch(u_char **dmap, u_char *p, int i)
1101 {
1102 u_char *ch0;
1103 u_char *ch1;
1104
1105 ch0 = dmap[0];
1106 ch1 = dmap[1];
1107 while (i--) {
1108 *ch0++ = *p++ - 128;
1109 *ch1++ = *p++ - 128;
1110 }
1111 }
1112
1113 static void
1114 aucc_decode_ulinear8_3ch(u_char **dmap, u_char *p, int i)
1115 {
1116 u_char *ch0;
1117 u_char *ch1;
1118 u_char *ch2;
1119
1120 ch0 = dmap[0];
1121 ch1 = dmap[1];
1122 ch2 = dmap[2];
1123 while (i--) {
1124 *ch0++ = *p++ - 128;
1125 *ch1++ = *p++ - 128;
1126 *ch2++ = *p++ - 128;
1127 }
1128 }
1129
1130 static void
1131 aucc_decode_ulinear8_4ch(u_char **dmap, u_char *p, int i)
1132 {
1133 u_char *ch0;
1134 u_char *ch1;
1135 u_char *ch2;
1136 u_char *ch3;
1137
1138 ch0 = dmap[0];
1139 ch1 = dmap[1];
1140 ch2 = dmap[2];
1141 ch3 = dmap[3];
1142 while (i--) {
1143 *ch0++ = *p++ - 128;
1144 *ch1++ = *p++ - 128;
1145 *ch2++ = *p++ - 128;
1146 *ch3++ = *p++ - 128;
1147 }
1148 }
1149
1150
1151 static void
1152 aucc_decode_mulaw_1ch(u_char **dmap, u_char *p, int i)
1153 {
1154 u_char *ch0;
1155
1156 ch0 = dmap[0];
1157 while (i--)
1158 *ch0++ = mulaw_to_lin[*p++];
1159 }
1160
1161 static void
1162 aucc_decode_mulaw_2ch(u_char **dmap, u_char *p, int i)
1163 {
1164 u_char *ch0;
1165 u_char *ch1;
1166
1167 ch0 = dmap[0];
1168 ch1 = dmap[1];
1169 while (i--) {
1170 *ch0++ = mulaw_to_lin[*p++];
1171 *ch1++ = mulaw_to_lin[*p++];
1172 }
1173 }
1174
1175 static void
1176 aucc_decode_mulaw_3ch(u_char **dmap, u_char *p, int i)
1177 {
1178 u_char *ch0;
1179 u_char *ch1;
1180 u_char *ch2;
1181
1182 ch0 = dmap[0];
1183 ch1 = dmap[1];
1184 ch2 = dmap[2];
1185 while (i--) {
1186 *ch0++ = mulaw_to_lin[*p++];
1187 *ch1++ = mulaw_to_lin[*p++];
1188 *ch2++ = mulaw_to_lin[*p++];
1189 }
1190 }
1191
1192 static void
1193 aucc_decode_mulaw_4ch(u_char **dmap, u_char *p, int i)
1194 {
1195 u_char *ch0;
1196 u_char *ch1;
1197 u_char *ch2;
1198 u_char *ch3;
1199
1200 ch0 = dmap[0];
1201 ch1 = dmap[1];
1202 ch2 = dmap[2];
1203 ch3 = dmap[3];
1204 while (i--) {
1205 *ch0++ = mulaw_to_lin[*p++];
1206 *ch1++ = mulaw_to_lin[*p++];
1207 *ch2++ = mulaw_to_lin[*p++];
1208 *ch3++ = mulaw_to_lin[*p++];
1209 }
1210 }
1211
1212
1213 /* 14bit output */
1214 static void
1215 aucc_decode_slinear16_1ch(u_char **dmap, u_char *p, int i)
1216 {
1217 u_char *ch0;
1218 u_char *ch3;
1219
1220 ch0 = dmap[0];
1221 ch3 = dmap[1]; /* XXX should be 3 */
1222 while (i--) {
1223 *ch0++ = *p++;
1224 *ch3++ = *p++ >> 2;
1225 }
1226 }
1227
1228 /* 14bit stereo output */
1229 static void
1230 aucc_decode_slinear16_2ch(u_char **dmap, u_char *p, int i)
1231 {
1232 u_char *ch0;
1233 u_char *ch1;
1234 u_char *ch2;
1235 u_char *ch3;
1236
1237 ch0 = dmap[0];
1238 ch1 = dmap[1];
1239 ch2 = dmap[2];
1240 ch3 = dmap[3];
1241 while (i--) {
1242 *ch0++ = *p++;
1243 *ch3++ = *p++ >> 2;
1244 *ch1++ = *p++;
1245 *ch2++ = *p++ >> 2;
1246 }
1247 }
1248
1249 static void
1250 aucc_decode_slinear16_3ch(u_char **dmap, u_char *p, int i)
1251 {
1252 u_char *ch0;
1253 u_char *ch1;
1254 u_char *ch2;
1255
1256 ch0 = dmap[0];
1257 ch1 = dmap[1];
1258 ch2 = dmap[2];
1259 while (i--) {
1260 *ch0++ = *p++; p++;
1261 *ch1++ = *p++; p++;
1262 *ch2++ = *p++; p++;
1263 }
1264 }
1265
1266 static void
1267 aucc_decode_slinear16_4ch(u_char **dmap, u_char *p, int i)
1268 {
1269 u_char *ch0;
1270 u_char *ch1;
1271 u_char *ch2;
1272 u_char *ch3;
1273
1274 ch0 = dmap[0];
1275 ch1 = dmap[1];
1276 ch2 = dmap[2];
1277 ch3 = dmap[3];
1278 while (i--) {
1279 *ch0++ = *p++; p++;
1280 *ch1++ = *p++; p++;
1281 *ch2++ = *p++; p++;
1282 *ch3++ = *p++; p++;
1283 }
1284 }
1285
1286 /* 14bit output, swap bytes */
1287 static void
1288 aucc_decode_slinear16sw_1ch(u_char **dmap, u_char *p, int i)
1289 {
1290 u_char *ch0;
1291 u_char *ch3;
1292
1293 ch0 = dmap[0];
1294 ch3 = dmap[1]; /* XXX should be 3 */
1295 while (i--) {
1296 *ch3++ = *p++ >> 2;
1297 *ch0++ = *p++;
1298 }
1299 }
1300
1301 static void
1302 aucc_decode_slinear16sw_2ch(u_char **dmap, u_char *p, int i)
1303 {
1304 u_char *ch0;
1305 u_char *ch1;
1306 u_char *ch2;
1307 u_char *ch3;
1308
1309 ch0 = dmap[0];
1310 ch1 = dmap[1];
1311 ch2 = dmap[2];
1312 ch3 = dmap[3];
1313 while (i--) {
1314 *ch3++ = *p++ >> 2;
1315 *ch0++ = *p++;
1316 *ch2++ = *p++ >> 2;
1317 *ch1++ = *p++;
1318 }
1319 }
1320
1321 static void
1322 aucc_decode_slinear16sw_3ch(u_char **dmap, u_char *p, int i)
1323 {
1324 u_char *ch0;
1325 u_char *ch1;
1326 u_char *ch2;
1327
1328 ch0 = dmap[0];
1329 ch1 = dmap[1];
1330 ch2 = dmap[2];
1331 while (i--) {
1332 p++; *ch0++ = *p++;
1333 p++; *ch1++ = *p++;
1334 p++; *ch2++ = *p++;
1335 }
1336 }
1337
1338 static void
1339 aucc_decode_slinear16sw_4ch(u_char **dmap, u_char *p, int i)
1340 {
1341 u_char *ch0;
1342 u_char *ch1;
1343 u_char *ch2;
1344 u_char *ch3;
1345
1346 ch0 = dmap[0];
1347 ch1 = dmap[1];
1348 ch2 = dmap[2];
1349 ch3 = dmap[3];
1350 while (i--) {
1351 p++; *ch0++ = *p++;
1352 p++; *ch1++ = *p++;
1353 p++; *ch2++ = *p++;
1354 p++; *ch3++ = *p++;
1355 }
1356 }
1357
1358
1359 #endif /* NAUCC > 0 */
1360