Home | History | Annotate | Line # | Download | only in dev
clock.c revision 1.12
      1  1.12   mhitch /*	$NetBSD: clock.c,v 1.12 1996/03/17 05:58:30 mhitch Exp $	*/
      2   1.6      cgd 
      3   1.1   chopps /*
      4   1.1   chopps  * Copyright (c) 1988 University of Utah.
      5   1.1   chopps  * Copyright (c) 1982, 1990 The Regents of the University of California.
      6   1.1   chopps  * All rights reserved.
      7   1.1   chopps  *
      8   1.1   chopps  * This code is derived from software contributed to Berkeley by
      9   1.1   chopps  * the Systems Programming Group of the University of Utah Computer
     10   1.1   chopps  * Science Department.
     11   1.1   chopps  *
     12   1.1   chopps  * Redistribution and use in source and binary forms, with or without
     13   1.1   chopps  * modification, are permitted provided that the following conditions
     14   1.1   chopps  * are met:
     15   1.1   chopps  * 1. Redistributions of source code must retain the above copyright
     16   1.1   chopps  *    notice, this list of conditions and the following disclaimer.
     17   1.1   chopps  * 2. Redistributions in binary form must reproduce the above copyright
     18   1.1   chopps  *    notice, this list of conditions and the following disclaimer in the
     19   1.1   chopps  *    documentation and/or other materials provided with the distribution.
     20   1.1   chopps  * 3. All advertising materials mentioning features or use of this software
     21   1.1   chopps  *    must display the following acknowledgement:
     22   1.1   chopps  *	This product includes software developed by the University of
     23   1.1   chopps  *	California, Berkeley and its contributors.
     24   1.1   chopps  * 4. Neither the name of the University nor the names of its contributors
     25   1.1   chopps  *    may be used to endorse or promote products derived from this software
     26   1.1   chopps  *    without specific prior written permission.
     27   1.1   chopps  *
     28   1.1   chopps  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     29   1.1   chopps  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     30   1.1   chopps  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     31   1.1   chopps  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     32   1.1   chopps  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     33   1.1   chopps  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     34   1.1   chopps  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     35   1.1   chopps  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     36   1.1   chopps  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     37   1.1   chopps  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     38   1.1   chopps  * SUCH DAMAGE.
     39   1.1   chopps  *
     40   1.1   chopps  * from: Utah $Hdr: clock.c 1.18 91/01/21$
     41   1.1   chopps  *
     42   1.1   chopps  *	@(#)clock.c	7.6 (Berkeley) 5/7/91
     43   1.1   chopps  */
     44   1.1   chopps 
     45   1.1   chopps #include <sys/param.h>
     46   1.1   chopps #include <sys/kernel.h>
     47   1.1   chopps #include <sys/device.h>
     48   1.1   chopps #include <machine/psl.h>
     49   1.1   chopps #include <machine/cpu.h>
     50   1.1   chopps #include <amiga/amiga/device.h>
     51   1.1   chopps #include <amiga/amiga/custom.h>
     52   1.1   chopps #include <amiga/amiga/cia.h>
     53   1.1   chopps #include <amiga/dev/rtc.h>
     54   1.8   chopps #include <amiga/dev/zbusvar.h>
     55   1.1   chopps 
     56   1.1   chopps #if defined(PROF) && defined(PROFTIMER)
     57   1.1   chopps #include <sys/PROF.h>
     58   1.1   chopps #endif
     59   1.1   chopps 
     60   1.1   chopps /* the clocks run at NTSC: 715.909kHz or PAL: 709.379kHz.
     61   1.1   chopps    We're using a 100 Hz clock. */
     62   1.1   chopps 
     63   1.1   chopps #define CLK_INTERVAL amiga_clk_interval
     64   1.4   chopps int amiga_clk_interval;
     65   1.4   chopps int eclockfreq;
     66   1.4   chopps 
     67   1.1   chopps /*
     68   1.1   chopps  * Machine-dependent clock routines.
     69   1.1   chopps  *
     70   1.1   chopps  * Startrtclock restarts the real-time clock, which provides
     71   1.1   chopps  * hardclock interrupts to kern_clock.c.
     72   1.1   chopps  *
     73   1.1   chopps  * Inittodr initializes the time of day hardware which provides
     74   1.1   chopps  * date functions.
     75   1.1   chopps  *
     76   1.1   chopps  * Resettodr restores the time of day hardware after a time change.
     77   1.1   chopps  *
     78   1.1   chopps  * A note on the real-time clock:
     79   1.1   chopps  * We actually load the clock with CLK_INTERVAL-1 instead of CLK_INTERVAL.
     80   1.1   chopps  * This is because the counter decrements to zero after N+1 enabled clock
     81   1.1   chopps  * periods where N is the value loaded into the counter.
     82   1.1   chopps  */
     83   1.1   chopps 
     84  1.11  thorpej int clockmatch __P((struct device *, void *, void *));
     85   1.1   chopps void clockattach __P((struct device *, struct device *, void *));
     86   1.1   chopps 
     87  1.11  thorpej struct cfattach clock_ca = {
     88  1.11  thorpej 	sizeof(struct device), clockmatch, clockattach
     89  1.11  thorpej };
     90  1.11  thorpej 
     91  1.11  thorpej struct cfdriver clock_cd = {
     92  1.11  thorpej 	NULL, "clock", DV_DULL, NULL, 0 };
     93   1.1   chopps 
     94   1.1   chopps int
     95  1.11  thorpej clockmatch(pdp, match, auxp)
     96   1.1   chopps 	struct device *pdp;
     97  1.12   mhitch 	void *match, *auxp;
     98   1.1   chopps {
     99  1.11  thorpej 	struct cfdata *cfp = match;
    100  1.11  thorpej 
    101   1.1   chopps 	if (matchname("clock", auxp))
    102   1.1   chopps 		return(1);
    103   1.1   chopps 	return(0);
    104   1.1   chopps }
    105   1.1   chopps 
    106   1.1   chopps /*
    107   1.1   chopps  * Start the real-time clock.
    108   1.1   chopps  */
    109   1.1   chopps void
    110   1.1   chopps clockattach(pdp, dp, auxp)
    111   1.1   chopps 	struct device *pdp, *dp;
    112   1.1   chopps 	void *auxp;
    113   1.1   chopps {
    114   1.1   chopps 	unsigned short interval;
    115   1.1   chopps 
    116   1.4   chopps 	if (eclockfreq == 0)
    117   1.4   chopps 		eclockfreq = 715909;	/* guess NTSC */
    118   1.4   chopps 
    119   1.4   chopps 	CLK_INTERVAL = (eclockfreq / 100);
    120   1.4   chopps 
    121   1.5   chopps 	printf(": system hz %d hardware hz %d\n", hz, eclockfreq);
    122   1.4   chopps 
    123   1.1   chopps 	/*
    124   1.1   chopps 	 * stop timer A
    125   1.1   chopps 	 */
    126   1.1   chopps 	ciab.cra = ciab.cra & 0xc0;
    127   1.3   chopps 	ciab.icr = 1 << 0;		/* disable timer A interrupt */
    128   1.3   chopps 	interval = ciab.icr;		/* and make sure it's clear */
    129   1.1   chopps 
    130   1.1   chopps 	/*
    131   1.1   chopps 	 * load interval into registers.
    132   1.1   chopps          * the clocks run at NTSC: 715.909kHz or PAL: 709.379kHz
    133   1.1   chopps 	 * supprort for PAL WHEN?!?! XXX
    134   1.1   chopps 	 */
    135   1.1   chopps 	interval = CLK_INTERVAL - 1;
    136   1.1   chopps 
    137   1.1   chopps 	/*
    138   1.1   chopps 	 * order of setting is important !
    139   1.1   chopps 	 */
    140   1.1   chopps 	ciab.talo = interval & 0xff;
    141   1.1   chopps 	ciab.tahi = interval >> 8;
    142   1.1   chopps }
    143   1.1   chopps 
    144   1.1   chopps void
    145   1.1   chopps cpu_initclocks()
    146   1.1   chopps {
    147   1.1   chopps 	/*
    148   1.1   chopps 	 * enable interrupts for timer A
    149   1.1   chopps 	 */
    150   1.1   chopps 	ciab.icr = (1<<7) | (1<<0);
    151   1.1   chopps 
    152   1.1   chopps 	/*
    153   1.1   chopps 	 * start timer A in continuous shot mode
    154   1.1   chopps 	 */
    155   1.1   chopps 	ciab.cra = (ciab.cra & 0xc0) | 1;
    156   1.1   chopps 
    157   1.1   chopps 	/*
    158   1.1   chopps 	 * and globally enable interrupts for ciab
    159   1.1   chopps 	 */
    160   1.1   chopps 	custom.intena = INTF_SETCLR | INTF_EXTER;
    161   1.1   chopps }
    162   1.1   chopps 
    163   1.1   chopps setstatclockrate(hz)
    164   1.1   chopps 	int hz;
    165   1.1   chopps {
    166   1.1   chopps }
    167   1.1   chopps 
    168   1.1   chopps /*
    169   1.1   chopps  * Returns number of usec since last recorded clock "tick"
    170   1.1   chopps  * (i.e. clock interrupt).
    171   1.1   chopps  */
    172   1.1   chopps clkread()
    173   1.1   chopps {
    174   1.1   chopps 	u_char hi, hi2, lo;
    175   1.1   chopps 	u_int interval;
    176   1.1   chopps 
    177   1.1   chopps 	hi  = ciab.tahi;
    178   1.1   chopps 	lo  = ciab.talo;
    179   1.1   chopps 	hi2 = ciab.tahi;
    180   1.1   chopps 	if (hi != hi2) {
    181   1.1   chopps 		lo = ciab.talo;
    182   1.1   chopps 		hi = hi2;
    183   1.1   chopps 	}
    184   1.1   chopps 
    185   1.1   chopps 	interval = (CLK_INTERVAL - 1) - ((hi<<8) | lo);
    186   1.1   chopps 
    187   1.1   chopps 	/*
    188   1.1   chopps 	 * should read ICR and if there's an int pending, adjust interval.
    189   1.1   chopps 	 * However, * since reading ICR clears the interrupt, we'd lose a
    190   1.1   chopps 	 * hardclock int, and * this is not tolerable.
    191   1.1   chopps 	 */
    192   1.1   chopps 
    193   1.1   chopps 	return((interval * tick) / CLK_INTERVAL);
    194   1.1   chopps }
    195   1.1   chopps 
    196   1.1   chopps u_int micspertick;
    197   1.1   chopps 
    198   1.1   chopps /*
    199   1.1   chopps  * we set up as much of the CIAa as possible
    200   1.1   chopps  * as all access to chip memory are very slow.
    201   1.1   chopps  */
    202   1.1   chopps void
    203   1.1   chopps setmicspertick()
    204   1.1   chopps {
    205   1.1   chopps 	micspertick = (1000000ULL << 20) / 715909;
    206   1.1   chopps 
    207   1.1   chopps 	/*
    208   1.1   chopps 	 * disable interrupts (just in case.)
    209   1.1   chopps 	 */
    210   1.1   chopps 	ciaa.icr = 0x3;
    211   1.1   chopps 
    212   1.1   chopps 	/*
    213   1.1   chopps 	 * stop both timers if not already
    214   1.1   chopps 	 */
    215   1.1   chopps 	ciaa.cra &= ~1;
    216   1.1   chopps 	ciaa.crb &= ~1;
    217   1.1   chopps 
    218   1.1   chopps 	/*
    219   1.1   chopps 	 * set timer B in "count timer A underflows" mode
    220   1.1   chopps 	 * set tiemr A in one-shot mode
    221   1.1   chopps 	 */
    222   1.1   chopps 	ciaa.crb = (ciaa.crb & 0x80) | 0x48;
    223   1.1   chopps 	ciaa.cra = (ciaa.cra & 0xc0) | 0x08;
    224   1.1   chopps }
    225   1.1   chopps 
    226   1.1   chopps /*
    227   1.1   chopps  * this function assumes that on any entry beyond the first
    228   1.1   chopps  * the following condintions exist:
    229   1.1   chopps  * Interrupts for Timers A and B are disabled.
    230   1.1   chopps  * Timers A and B are stoped.
    231   1.1   chopps  * Timers A and B are in one-shot mode with B counting timer A underflows
    232   1.1   chopps  *
    233   1.1   chopps  */
    234   1.1   chopps void
    235   1.1   chopps delay(mic)
    236   1.1   chopps 	int mic;
    237   1.1   chopps {
    238   1.1   chopps 	u_int temp;
    239   1.1   chopps 	int s;
    240   1.1   chopps 
    241   1.1   chopps 	if (micspertick == 0)
    242   1.1   chopps 		setmicspertick();
    243   1.1   chopps 
    244   1.1   chopps 	if (mic <= 1)
    245   1.1   chopps 		return;
    246   1.1   chopps 
    247   1.1   chopps 	/*
    248   1.1   chopps 	 * basically this is going to do an integer
    249   1.1   chopps 	 * usec / (1000000 / 715909) with no loss of
    250   1.1   chopps 	 * precision
    251   1.1   chopps 	 */
    252   1.1   chopps 	temp = mic >> 12;
    253   1.1   chopps 	asm("divul %3,%1:%0" : "=d" (temp) : "d" (mic >> 12), "0" (mic << 20),
    254   1.1   chopps 	    "d" (micspertick));
    255   1.1   chopps 
    256   1.1   chopps 	if ((temp & 0xffff0000) > 0x10000) {
    257   1.1   chopps 		mic = (temp >> 16) - 1;
    258   1.1   chopps 		temp &= 0xffff;
    259   1.1   chopps 
    260   1.1   chopps 		/*
    261   1.1   chopps 		 * set timer A in continous mode
    262   1.1   chopps 		 */
    263   1.1   chopps 		ciaa.cra = (ciaa.cra & 0xc0) | 0x00;
    264   1.1   chopps 
    265   1.1   chopps 		/*
    266   1.1   chopps 		 * latch/load/start "counts of timer A underflows" in B
    267   1.1   chopps 		 */
    268   1.1   chopps 		ciaa.tblo = mic & 0xff;
    269   1.1   chopps 		ciaa.tbhi = mic >> 8;
    270   1.1   chopps 
    271   1.1   chopps 		/*
    272   1.1   chopps 		 * timer A latches 0xffff
    273   1.1   chopps 		 * and start it.
    274   1.1   chopps 		 */
    275   1.1   chopps 		ciaa.talo = 0xff;
    276   1.1   chopps 		ciaa.tahi = 0xff;
    277   1.1   chopps 		ciaa.cra |= 1;
    278   1.1   chopps 
    279   1.1   chopps 		while (ciaa.crb & 1)
    280   1.1   chopps 			;
    281   1.1   chopps 
    282   1.1   chopps 		/*
    283   1.1   chopps 		 * stop timer A
    284   1.1   chopps 		 */
    285   1.1   chopps 		ciaa.cra &= ~1;
    286   1.1   chopps 
    287   1.1   chopps 		/*
    288   1.1   chopps 		 * set timer A in one shot mode
    289   1.1   chopps 		 */
    290   1.1   chopps 		ciaa.cra = (ciaa.cra & 0xc0) | 0x08;
    291   1.1   chopps 	} else if ((temp & 0xffff0000) == 0x10000) {
    292   1.1   chopps 		temp &= 0xffff;
    293   1.1   chopps 
    294   1.1   chopps 		/*
    295   1.1   chopps 		 * timer A is in one shot latch/load/start 1 full turn
    296   1.1   chopps 		 */
    297   1.1   chopps 		ciaa.talo = 0xff;
    298   1.1   chopps 		ciaa.tahi = 0xff;
    299   1.1   chopps 		while (ciaa.cra & 1)
    300   1.1   chopps 			;
    301   1.1   chopps 	}
    302   1.1   chopps 	if (temp < 1)
    303   1.1   chopps 		return;
    304   1.1   chopps 
    305   1.1   chopps 	/*
    306   1.1   chopps 	 * temp is now residual ammount, latch/load/start it.
    307   1.1   chopps 	 */
    308   1.1   chopps 	ciaa.talo = temp & 0xff;
    309   1.1   chopps 	ciaa.tahi = temp >> 8;
    310   1.1   chopps 	while (ciaa.cra & 1)
    311   1.1   chopps 		;
    312   1.1   chopps }
    313   1.1   chopps 
    314   1.1   chopps /*
    315   1.1   chopps  * Needs to be calibrated for use, its way off most of the time
    316   1.1   chopps  */
    317   1.2   chopps void
    318   1.2   chopps DELAY(mic)
    319   1.2   chopps 	int mic;
    320   1.1   chopps {
    321   1.2   chopps 	u_long n;
    322   1.2   chopps 	short hpos;
    323   1.1   chopps 
    324   1.2   chopps 	/*
    325   1.2   chopps 	 * this function uses HSync pulses as base units. The custom chips
    326   1.2   chopps 	 * display only deals with 31.6kHz/2 refresh, this gives us a
    327   1.2   chopps 	 * resolution of 1/15800 s, which is ~63us (add some fuzz so we really
    328   1.2   chopps 	 * wait awhile, even if using small timeouts)
    329   1.2   chopps 	 */
    330   1.2   chopps 	n = mic/63 + 2;
    331   1.2   chopps 	do {
    332   1.2   chopps 		hpos = custom.vhposr & 0xff00;
    333   1.2   chopps 		while (hpos == (custom.vhposr & 0xff00))
    334   1.2   chopps 			;
    335   1.2   chopps 	} while (n--);
    336   1.1   chopps }
    337   1.1   chopps 
    338   1.1   chopps #if notyet
    339   1.1   chopps 
    340   1.1   chopps /* implement this later. I'd suggest using both timers in CIA-A, they're
    341   1.1   chopps    not yet used. */
    342   1.1   chopps 
    343   1.1   chopps #include "clock.h"
    344   1.1   chopps #if NCLOCK > 0
    345   1.1   chopps /*
    346   1.1   chopps  * /dev/clock: mappable high resolution timer.
    347   1.1   chopps  *
    348   1.1   chopps  * This code implements a 32-bit recycling counter (with a 4 usec period)
    349   1.1   chopps  * using timers 2 & 3 on the 6840 clock chip.  The counter can be mapped
    350   1.1   chopps  * RO into a user's address space to achieve low overhead (no system calls),
    351   1.1   chopps  * high-precision timing.
    352   1.1   chopps  *
    353   1.1   chopps  * Note that timer 3 is also used for the high precision profiling timer
    354   1.1   chopps  * (PROFTIMER code above).  Care should be taken when both uses are
    355   1.1   chopps  * configured as only a token effort is made to avoid conflicting use.
    356   1.1   chopps  */
    357   1.1   chopps #include <sys/proc.h>
    358   1.1   chopps #include <sys/resourcevar.h>
    359   1.1   chopps #include <sys/ioctl.h>
    360   1.1   chopps #include <sys/malloc.h>
    361   1.1   chopps #include <vm/vm.h>
    362   1.1   chopps #include <amiga/amiga/clockioctl.h>
    363   1.1   chopps #include <sys/specdev.h>
    364   1.1   chopps #include <sys/vnode.h>
    365   1.1   chopps #include <sys/mman.h>
    366   1.1   chopps 
    367   1.1   chopps int clockon = 0;		/* non-zero if high-res timer enabled */
    368   1.1   chopps #ifdef PROFTIMER
    369   1.1   chopps int  profprocs = 0;		/* # of procs using profiling timer */
    370   1.1   chopps #endif
    371   1.1   chopps #ifdef DEBUG
    372   1.1   chopps int clockdebug = 0;
    373   1.1   chopps #endif
    374   1.1   chopps 
    375   1.1   chopps /*ARGSUSED*/
    376   1.1   chopps clockopen(dev, flags)
    377   1.1   chopps 	dev_t dev;
    378   1.1   chopps {
    379   1.1   chopps #ifdef PROFTIMER
    380   1.1   chopps #ifdef PROF
    381   1.1   chopps 	/*
    382   1.1   chopps 	 * Kernel profiling enabled, give up.
    383   1.1   chopps 	 */
    384   1.1   chopps 	if (profiling)
    385   1.1   chopps 		return(EBUSY);
    386   1.1   chopps #endif
    387   1.1   chopps 	/*
    388   1.1   chopps 	 * If any user processes are profiling, give up.
    389   1.1   chopps 	 */
    390   1.1   chopps 	if (profprocs)
    391   1.1   chopps 		return(EBUSY);
    392   1.1   chopps #endif
    393   1.1   chopps 	if (!clockon) {
    394   1.1   chopps 		startclock();
    395   1.1   chopps 		clockon++;
    396   1.1   chopps 	}
    397   1.1   chopps 	return(0);
    398   1.1   chopps }
    399   1.1   chopps 
    400   1.1   chopps /*ARGSUSED*/
    401   1.1   chopps clockclose(dev, flags)
    402   1.1   chopps 	dev_t dev;
    403   1.1   chopps {
    404   1.1   chopps 	(void) clockunmmap(dev, (caddr_t)0, curproc);	/* XXX */
    405   1.1   chopps 	stopclock();
    406   1.1   chopps 	clockon = 0;
    407   1.1   chopps 	return(0);
    408   1.1   chopps }
    409   1.1   chopps 
    410   1.1   chopps /*ARGSUSED*/
    411   1.1   chopps clockioctl(dev, cmd, data, flag, p)
    412   1.1   chopps 	dev_t dev;
    413   1.7   chopps 	u_long cmd;
    414   1.1   chopps 	caddr_t data;
    415   1.1   chopps 	struct proc *p;
    416   1.1   chopps {
    417   1.1   chopps 	int error = 0;
    418   1.1   chopps 
    419   1.1   chopps 	switch (cmd) {
    420   1.1   chopps 
    421   1.1   chopps 	case CLOCKMAP:
    422   1.1   chopps 		error = clockmmap(dev, (caddr_t *)data, p);
    423   1.1   chopps 		break;
    424   1.1   chopps 
    425   1.1   chopps 	case CLOCKUNMAP:
    426   1.1   chopps 		error = clockunmmap(dev, *(caddr_t *)data, p);
    427   1.1   chopps 		break;
    428   1.1   chopps 
    429   1.1   chopps 	case CLOCKGETRES:
    430   1.1   chopps 		*(int *)data = CLK_RESOLUTION;
    431   1.1   chopps 		break;
    432   1.1   chopps 
    433   1.1   chopps 	default:
    434   1.1   chopps 		error = EINVAL;
    435   1.1   chopps 		break;
    436   1.1   chopps 	}
    437   1.1   chopps 	return(error);
    438   1.1   chopps }
    439   1.1   chopps 
    440   1.1   chopps /*ARGSUSED*/
    441   1.1   chopps clockmap(dev, off, prot)
    442   1.1   chopps 	dev_t dev;
    443   1.1   chopps {
    444   1.1   chopps 	return((off + (INTIOBASE+CLKBASE+CLKSR-1)) >> PGSHIFT);
    445   1.1   chopps }
    446   1.1   chopps 
    447   1.1   chopps clockmmap(dev, addrp, p)
    448   1.1   chopps 	dev_t dev;
    449   1.1   chopps 	caddr_t *addrp;
    450   1.1   chopps 	struct proc *p;
    451   1.1   chopps {
    452   1.1   chopps 	int error;
    453   1.1   chopps 	struct vnode vn;
    454   1.1   chopps 	struct specinfo si;
    455   1.1   chopps 	int flags;
    456   1.1   chopps 
    457   1.1   chopps 	flags = MAP_FILE|MAP_SHARED;
    458   1.1   chopps 	if (*addrp)
    459   1.1   chopps 		flags |= MAP_FIXED;
    460   1.1   chopps 	else
    461   1.1   chopps 		*addrp = (caddr_t)0x1000000;	/* XXX */
    462   1.1   chopps 	vn.v_type = VCHR;			/* XXX */
    463   1.1   chopps 	vn.v_specinfo = &si;			/* XXX */
    464   1.1   chopps 	vn.v_rdev = dev;			/* XXX */
    465   1.1   chopps 	error = vm_mmap(&p->p_vmspace->vm_map, (vm_offset_t *)addrp,
    466   1.1   chopps 			PAGE_SIZE, VM_PROT_ALL, flags, (caddr_t)&vn, 0);
    467   1.1   chopps 	return(error);
    468   1.1   chopps }
    469   1.1   chopps 
    470   1.1   chopps clockunmmap(dev, addr, p)
    471   1.1   chopps 	dev_t dev;
    472   1.1   chopps 	caddr_t addr;
    473   1.1   chopps 	struct proc *p;
    474   1.1   chopps {
    475   1.1   chopps 	int rv;
    476   1.1   chopps 
    477   1.1   chopps 	if (addr == 0)
    478   1.1   chopps 		return(EINVAL);		/* XXX: how do we deal with this? */
    479   1.1   chopps 	rv = vm_deallocate(p->p_vmspace->vm_map, (vm_offset_t)addr, PAGE_SIZE);
    480   1.1   chopps 	return(rv == KERN_SUCCESS ? 0 : EINVAL);
    481   1.1   chopps }
    482   1.1   chopps 
    483   1.1   chopps startclock()
    484   1.1   chopps {
    485   1.1   chopps 	register struct clkreg *clk = (struct clkreg *)clkstd[0];
    486   1.1   chopps 
    487   1.1   chopps 	clk->clk_msb2 = -1; clk->clk_lsb2 = -1;
    488   1.1   chopps 	clk->clk_msb3 = -1; clk->clk_lsb3 = -1;
    489   1.1   chopps 
    490   1.1   chopps 	clk->clk_cr2 = CLK_CR3;
    491   1.1   chopps 	clk->clk_cr3 = CLK_OENAB|CLK_8BIT;
    492   1.1   chopps 	clk->clk_cr2 = CLK_CR1;
    493   1.1   chopps 	clk->clk_cr1 = CLK_IENAB;
    494   1.1   chopps }
    495   1.1   chopps 
    496   1.1   chopps stopclock()
    497   1.1   chopps {
    498   1.1   chopps 	register struct clkreg *clk = (struct clkreg *)clkstd[0];
    499   1.1   chopps 
    500   1.1   chopps 	clk->clk_cr2 = CLK_CR3;
    501   1.1   chopps 	clk->clk_cr3 = 0;
    502   1.1   chopps 	clk->clk_cr2 = CLK_CR1;
    503   1.1   chopps 	clk->clk_cr1 = CLK_IENAB;
    504   1.1   chopps }
    505   1.1   chopps #endif
    506   1.1   chopps 
    507   1.1   chopps #endif
    508   1.1   chopps 
    509   1.1   chopps 
    510   1.1   chopps #ifdef PROFTIMER
    511   1.1   chopps /*
    512   1.1   chopps  * This code allows the amiga kernel to use one of the extra timers on
    513   1.1   chopps  * the clock chip for profiling, instead of the regular system timer.
    514   1.1   chopps  * The advantage of this is that the profiling timer can be turned up to
    515   1.1   chopps  * a higher interrupt rate, giving finer resolution timing. The profclock
    516   1.1   chopps  * routine is called from the lev6intr in locore, and is a specialized
    517   1.1   chopps  * routine that calls addupc. The overhead then is far less than if
    518   1.1   chopps  * hardclock/softclock was called. Further, the context switch code in
    519   1.1   chopps  * locore has been changed to turn the profile clock on/off when switching
    520   1.1   chopps  * into/out of a process that is profiling (startprofclock/stopprofclock).
    521   1.1   chopps  * This reduces the impact of the profiling clock on other users, and might
    522   1.1   chopps  * possibly increase the accuracy of the profiling.
    523   1.1   chopps  */
    524   1.1   chopps int  profint   = PRF_INTERVAL;	/* Clock ticks between interrupts */
    525   1.1   chopps int  profscale = 0;		/* Scale factor from sys clock to prof clock */
    526   1.1   chopps char profon    = 0;		/* Is profiling clock on? */
    527   1.1   chopps 
    528   1.1   chopps /* profon values - do not change, locore.s assumes these values */
    529   1.1   chopps #define PRF_NONE	0x00
    530   1.1   chopps #define	PRF_USER	0x01
    531   1.1   chopps #define	PRF_KERNEL	0x80
    532   1.1   chopps 
    533   1.1   chopps initprofclock()
    534   1.1   chopps {
    535   1.1   chopps #if NCLOCK > 0
    536   1.1   chopps 	struct proc *p = curproc;		/* XXX */
    537   1.1   chopps 
    538   1.1   chopps 	/*
    539   1.1   chopps 	 * If the high-res timer is running, force profiling off.
    540   1.1   chopps 	 * Unfortunately, this gets reflected back to the user not as
    541   1.1   chopps 	 * an error but as a lack of results.
    542   1.1   chopps 	 */
    543   1.1   chopps 	if (clockon) {
    544   1.1   chopps 		p->p_stats->p_prof.pr_scale = 0;
    545   1.1   chopps 		return;
    546   1.1   chopps 	}
    547   1.1   chopps 	/*
    548   1.1   chopps 	 * Keep track of the number of user processes that are profiling
    549   1.1   chopps 	 * by checking the scale value.
    550   1.1   chopps 	 *
    551   1.1   chopps 	 * XXX: this all assumes that the profiling code is well behaved;
    552   1.1   chopps 	 * i.e. profil() is called once per process with pcscale non-zero
    553   1.1   chopps 	 * to turn it on, and once with pcscale zero to turn it off.
    554   1.1   chopps 	 * Also assumes you don't do any forks or execs.  Oh well, there
    555   1.1   chopps 	 * is always adb...
    556   1.1   chopps 	 */
    557   1.1   chopps 	if (p->p_stats->p_prof.pr_scale)
    558   1.1   chopps 		profprocs++;
    559   1.1   chopps 	else
    560   1.1   chopps 		profprocs--;
    561   1.1   chopps #endif
    562   1.1   chopps 	/*
    563   1.1   chopps 	 * The profile interrupt interval must be an even divisor
    564   1.1   chopps 	 * of the CLK_INTERVAL so that scaling from a system clock
    565   1.1   chopps 	 * tick to a profile clock tick is possible using integer math.
    566   1.1   chopps 	 */
    567   1.1   chopps 	if (profint > CLK_INTERVAL || (CLK_INTERVAL % profint) != 0)
    568   1.1   chopps 		profint = CLK_INTERVAL;
    569   1.1   chopps 	profscale = CLK_INTERVAL / profint;
    570   1.1   chopps }
    571   1.1   chopps 
    572   1.1   chopps startprofclock()
    573   1.1   chopps {
    574   1.1   chopps   unsigned short interval;
    575   1.1   chopps 
    576   1.1   chopps   /* stop timer B */
    577   1.1   chopps   ciab.crb = ciab.crb & 0xc0;
    578   1.1   chopps 
    579   1.1   chopps   /* load interval into registers.
    580   1.1   chopps      the clocks run at NTSC: 715.909kHz or PAL: 709.379kHz */
    581   1.1   chopps 
    582   1.1   chopps   interval = profint - 1;
    583   1.1   chopps 
    584   1.1   chopps   /* order of setting is important ! */
    585   1.1   chopps   ciab.tblo = interval & 0xff;
    586   1.1   chopps   ciab.tbhi = interval >> 8;
    587   1.1   chopps 
    588   1.1   chopps   /* enable interrupts for timer B */
    589   1.1   chopps   ciab.icr = (1<<7) | (1<<1);
    590   1.1   chopps 
    591   1.1   chopps   /* start timer B in continuous shot mode */
    592   1.1   chopps   ciab.crb = (ciab.crb & 0xc0) | 1;
    593   1.1   chopps }
    594   1.1   chopps 
    595   1.1   chopps stopprofclock()
    596   1.1   chopps {
    597   1.1   chopps   /* stop timer B */
    598   1.1   chopps   ciab.crb = ciab.crb & 0xc0;
    599   1.1   chopps }
    600   1.1   chopps 
    601   1.1   chopps #ifdef PROF
    602   1.1   chopps /*
    603   1.1   chopps  * profclock() is expanded in line in lev6intr() unless profiling kernel.
    604   1.1   chopps  * Assumes it is called with clock interrupts blocked.
    605   1.1   chopps  */
    606   1.1   chopps profclock(pc, ps)
    607   1.1   chopps 	caddr_t pc;
    608   1.1   chopps 	int ps;
    609   1.1   chopps {
    610   1.1   chopps 	/*
    611   1.1   chopps 	 * Came from user mode.
    612   1.1   chopps 	 * If this process is being profiled record the tick.
    613   1.1   chopps 	 */
    614   1.1   chopps 	if (USERMODE(ps)) {
    615   1.1   chopps 		if (p->p_stats.p_prof.pr_scale)
    616   1.1   chopps 			addupc(pc, &curproc->p_stats.p_prof, 1);
    617   1.1   chopps 	}
    618   1.1   chopps 	/*
    619   1.1   chopps 	 * Came from kernel (supervisor) mode.
    620   1.1   chopps 	 * If we are profiling the kernel, record the tick.
    621   1.1   chopps 	 */
    622   1.1   chopps 	else if (profiling < 2) {
    623   1.1   chopps 		register int s = pc - s_lowpc;
    624   1.1   chopps 
    625   1.1   chopps 		if (s < s_textsize)
    626   1.1   chopps 			kcount[s / (HISTFRACTION * sizeof (*kcount))]++;
    627   1.1   chopps 	}
    628   1.1   chopps 	/*
    629   1.1   chopps 	 * Kernel profiling was on but has been disabled.
    630   1.1   chopps 	 * Mark as no longer profiling kernel and if all profiling done,
    631   1.1   chopps 	 * disable the clock.
    632   1.1   chopps 	 */
    633   1.1   chopps 	if (profiling && (profon & PRF_KERNEL)) {
    634   1.1   chopps 		profon &= ~PRF_KERNEL;
    635   1.1   chopps 		if (profon == PRF_NONE)
    636   1.1   chopps 			stopprofclock();
    637   1.1   chopps 	}
    638   1.1   chopps }
    639   1.1   chopps #endif
    640   1.1   chopps #endif
    641   1.1   chopps 
    642   1.1   chopps /* this is a hook set by a clock driver for the configured realtime clock,
    643   1.1   chopps    returning plain current unix-time */
    644   1.1   chopps long (*gettod) __P((void));
    645   1.1   chopps int (*settod) __P((long));
    646   1.1   chopps void *clockaddr;
    647   1.1   chopps 
    648   1.1   chopps long a3gettod __P((void));
    649   1.1   chopps long a2gettod __P((void));
    650   1.1   chopps int a3settod __P((long));
    651   1.1   chopps int a2settod __P((long));
    652   1.1   chopps int rtcinit __P((void));
    653   1.1   chopps 
    654   1.1   chopps /*
    655   1.1   chopps  * Initialize the time of day register, based on the time base which is, e.g.
    656   1.1   chopps  * from a filesystem.
    657   1.1   chopps  */
    658   1.1   chopps inittodr(base)
    659   1.1   chopps 	time_t base;
    660   1.1   chopps {
    661   1.1   chopps 	u_long timbuf = base;	/* assume no battery clock exists */
    662   1.1   chopps 
    663   1.1   chopps 	if (gettod == NULL && rtcinit() == 0)
    664   1.1   chopps 		printf("WARNING: no battery clock\n");
    665   1.1   chopps 	else
    666   1.1   chopps 		timbuf = gettod();
    667   1.1   chopps 
    668   1.1   chopps 	if (timbuf < base) {
    669   1.1   chopps 		printf("WARNING: bad date in battery clock\n");
    670   1.1   chopps 		timbuf = base;
    671   1.1   chopps 	}
    672   1.1   chopps 
    673   1.1   chopps 	/* Battery clock does not store usec's, so forget about it. */
    674   1.1   chopps 	time.tv_sec = timbuf;
    675   1.1   chopps }
    676   1.1   chopps 
    677   1.1   chopps resettodr()
    678   1.1   chopps {
    679   1.1   chopps 	if (settod && settod(time.tv_sec) == 1)
    680   1.1   chopps 		return;
    681   1.1   chopps 	printf("Cannot set battery backed clock\n");
    682   1.1   chopps }
    683   1.1   chopps 
    684   1.1   chopps int
    685   1.1   chopps rtcinit()
    686   1.1   chopps {
    687   1.1   chopps 	clockaddr = (void *)ztwomap(0xdc0000);
    688   1.1   chopps 	if (is_a3000() || is_a4000()) {
    689   1.1   chopps 		if (a3gettod() == 0)
    690   1.1   chopps 			return(0);
    691   1.1   chopps 		gettod = a3gettod;
    692   1.1   chopps 		settod = a3settod;
    693   1.1   chopps 	} else {
    694   1.1   chopps 		if (a2gettod() == 0)
    695   1.1   chopps 			return(0);
    696   1.1   chopps 		gettod = a2gettod;
    697   1.1   chopps 		settod = a2settod;
    698   1.1   chopps 	}
    699   1.1   chopps 	return(1);
    700   1.1   chopps }
    701   1.1   chopps 
    702   1.1   chopps static int month_days[12] = {
    703   1.1   chopps 	31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31
    704   1.1   chopps };
    705   1.1   chopps 
    706   1.1   chopps long
    707   1.1   chopps a3gettod()
    708   1.1   chopps {
    709   1.1   chopps 	struct rtclock3000 *rt;
    710  1.10   chopps 	int i, year, month, day, wday, hour, min, sec;
    711   1.1   chopps 	u_long tmp;
    712   1.1   chopps 
    713   1.1   chopps 	rt = clockaddr;
    714   1.1   chopps 
    715   1.1   chopps 	/* hold clock */
    716   1.1   chopps 	rt->control1 = A3CONTROL1_HOLD_CLOCK;
    717   1.1   chopps 
    718   1.1   chopps 	/* read it */
    719   1.1   chopps 	sec   = rt->second1 * 10 + rt->second2;
    720   1.1   chopps 	min   = rt->minute1 * 10 + rt->minute2;
    721   1.1   chopps 	hour  = rt->hour1   * 10 + rt->hour2;
    722  1.10   chopps 	wday  = rt->weekday;
    723   1.1   chopps 	day   = rt->day1    * 10 + rt->day2;
    724   1.1   chopps 	month = rt->month1  * 10 + rt->month2;
    725   1.1   chopps 	year  = rt->year1   * 10 + rt->year2   + 1900;
    726   1.1   chopps 
    727   1.1   chopps 	/* let it run again.. */
    728   1.1   chopps 	rt->control1 = A3CONTROL1_FREE_CLOCK;
    729   1.1   chopps 
    730   1.1   chopps 	if (range_test(hour, 0, 23))
    731   1.1   chopps 		return(0);
    732  1.10   chopps 	if (range_test(wday, 0, 6))
    733  1.10   chopps 		return(0);
    734   1.1   chopps 	if (range_test(day, 1, 31))
    735   1.1   chopps 		return(0);
    736   1.1   chopps 	if (range_test(month, 1, 12))
    737   1.1   chopps 		return(0);
    738   1.1   chopps 	if (range_test(year, STARTOFTIME, 2000))
    739   1.1   chopps 		return(0);
    740   1.1   chopps 
    741   1.1   chopps 	tmp = 0;
    742   1.1   chopps 
    743   1.1   chopps 	for (i = STARTOFTIME; i < year; i++)
    744   1.1   chopps 		tmp += days_in_year(i);
    745   1.1   chopps 	if (leapyear(year) && month > FEBRUARY)
    746   1.1   chopps 		tmp++;
    747   1.1   chopps 
    748   1.1   chopps 	for (i = 1; i < month; i++)
    749   1.1   chopps 		tmp += days_in_month(i);
    750   1.1   chopps 
    751   1.1   chopps 	tmp += (day - 1);
    752   1.1   chopps 	tmp = ((tmp * 24 + hour) * 60 + min) * 60 + sec;
    753   1.1   chopps 
    754   1.1   chopps 	return(tmp);
    755   1.1   chopps }
    756   1.1   chopps 
    757   1.1   chopps int
    758   1.1   chopps a3settod(tim)
    759   1.1   chopps 	long tim;
    760   1.1   chopps {
    761   1.1   chopps 	register int i;
    762   1.1   chopps 	register long hms, day;
    763   1.1   chopps 	u_char sec1, sec2;
    764   1.1   chopps 	u_char min1, min2;
    765   1.1   chopps 	u_char hour1, hour2;
    766  1.10   chopps /*	u_char wday; */
    767   1.1   chopps 	u_char day1, day2;
    768   1.1   chopps 	u_char mon1, mon2;
    769   1.1   chopps 	u_char year1, year2;
    770   1.1   chopps 	struct rtclock3000 *rt;
    771   1.1   chopps 
    772   1.1   chopps 	rt = clockaddr;
    773   1.1   chopps 	/*
    774   1.1   chopps 	 * there seem to be problems with the bitfield addressing
    775   1.1   chopps 	 * currently used..
    776   1.1   chopps 	 */
    777  1.10   chopps 
    778  1.10   chopps 	if (! rt)
    779   1.1   chopps 		return 0;
    780   1.1   chopps 
    781   1.1   chopps 	/* prepare values to be written to clock */
    782   1.1   chopps 	day = tim / SECDAY;
    783   1.1   chopps 	hms = tim % SECDAY;
    784   1.1   chopps 
    785   1.1   chopps 	hour2 = hms / 3600;
    786   1.1   chopps 	hour1 = hour2 / 10;
    787   1.1   chopps 	hour2 %= 10;
    788   1.1   chopps 
    789   1.1   chopps 	min2 = (hms % 3600) / 60;
    790   1.1   chopps 	min1 = min2 / 10;
    791   1.1   chopps 	min2 %= 10;
    792   1.1   chopps 
    793   1.1   chopps 
    794   1.1   chopps 	sec2 = (hms % 3600) % 60;
    795   1.1   chopps 	sec1 = sec2 / 10;
    796   1.1   chopps 	sec2 %= 10;
    797   1.1   chopps 
    798   1.1   chopps 	/* Number of years in days */
    799   1.1   chopps 	for (i = STARTOFTIME - 1900; day >= days_in_year(i); i++)
    800   1.1   chopps 		day -= days_in_year(i);
    801   1.1   chopps 	year1 = i / 10;
    802   1.1   chopps 	year2 = i % 10;
    803   1.1   chopps 
    804   1.1   chopps 	/* Number of months in days left */
    805   1.1   chopps 	if (leapyear(i))
    806   1.1   chopps 		days_in_month(FEBRUARY) = 29;
    807   1.1   chopps 	for (i = 1; day >= days_in_month(i); i++)
    808   1.1   chopps 		day -= days_in_month(i);
    809   1.1   chopps 	days_in_month(FEBRUARY) = 28;
    810   1.1   chopps 
    811   1.1   chopps 	mon1 = i / 10;
    812   1.1   chopps 	mon2 = i % 10;
    813   1.1   chopps 
    814   1.1   chopps 	/* Days are what is left over (+1) from all that. */
    815   1.1   chopps 	day ++;
    816   1.1   chopps 	day1 = day / 10;
    817   1.1   chopps 	day2 = day % 10;
    818   1.1   chopps 
    819  1.10   chopps 	rt->control1 = A3CONTROL1_HOLD_CLOCK;
    820   1.1   chopps 	rt->second1 = sec1;
    821   1.1   chopps 	rt->second2 = sec2;
    822   1.1   chopps 	rt->minute1 = min1;
    823   1.1   chopps 	rt->minute2 = min2;
    824   1.1   chopps 	rt->hour1   = hour1;
    825   1.1   chopps 	rt->hour2   = hour2;
    826  1.10   chopps /*	rt->weekday = wday; */
    827   1.1   chopps 	rt->day1    = day1;
    828   1.1   chopps 	rt->day2    = day2;
    829   1.1   chopps 	rt->month1  = mon1;
    830   1.1   chopps 	rt->month2  = mon2;
    831   1.1   chopps 	rt->year1   = year1;
    832   1.1   chopps 	rt->year2   = year2;
    833  1.10   chopps 	rt->control1 = A3CONTROL1_FREE_CLOCK;
    834   1.1   chopps 
    835   1.1   chopps 	return 1;
    836   1.1   chopps }
    837   1.1   chopps 
    838   1.1   chopps long
    839   1.1   chopps a2gettod()
    840   1.1   chopps {
    841   1.1   chopps 	struct rtclock2000 *rt;
    842   1.1   chopps 	int i, year, month, day, hour, min, sec;
    843   1.1   chopps 	u_long tmp;
    844   1.1   chopps 
    845   1.1   chopps 	rt = clockaddr;
    846   1.1   chopps 
    847   1.1   chopps 	/*
    848   1.1   chopps 	 * hold clock
    849   1.1   chopps 	 */
    850   1.1   chopps 	rt->control1 |= A2CONTROL1_HOLD;
    851   1.9   chopps 	i = 0x1000;
    852   1.9   chopps 	while (rt->control1 & A2CONTROL1_BUSY && i--)
    853   1.1   chopps 		;
    854   1.9   chopps 	if (rt->control1 & A2CONTROL1_BUSY)
    855   1.9   chopps 		return (0);	/* Give up and say it's not there */
    856   1.1   chopps 
    857   1.1   chopps 	/*
    858   1.1   chopps 	 * read it
    859   1.1   chopps 	 */
    860   1.1   chopps 	sec = rt->second1 * 10 + rt->second2;
    861   1.1   chopps 	min = rt->minute1 * 10 + rt->minute2;
    862   1.1   chopps 	hour = (rt->hour1 & 3)  * 10 + rt->hour2;
    863   1.1   chopps 	day = rt->day1 * 10 + rt->day2;
    864   1.1   chopps 	month = rt->month1 * 10 + rt->month2;
    865   1.1   chopps 	year = rt->year1 * 10 + rt->year2   + 1900;
    866   1.1   chopps 
    867   1.1   chopps 	if ((rt->control3 & A2CONTROL3_24HMODE) == 0) {
    868   1.1   chopps 		if ((rt->hour1 & A2HOUR1_PM) == 0 && hour == 12)
    869   1.1   chopps 			hour = 0;
    870   1.1   chopps 		else if ((rt->hour1 & A2HOUR1_PM) && hour != 12)
    871   1.1   chopps 			hour += 12;
    872   1.1   chopps 	}
    873   1.1   chopps 
    874   1.1   chopps 	/*
    875   1.1   chopps 	 * release the clock
    876   1.1   chopps 	 */
    877   1.1   chopps 	rt->control1 &= ~A2CONTROL1_HOLD;
    878   1.1   chopps 
    879   1.1   chopps 	if (range_test(hour, 0, 23))
    880   1.1   chopps 		return(0);
    881   1.1   chopps 	if (range_test(day, 1, 31))
    882   1.1   chopps 		return(0);
    883   1.1   chopps 	if (range_test(month, 1, 12))
    884   1.1   chopps 		return(0);
    885   1.1   chopps 	if (range_test(year, STARTOFTIME, 2000))
    886   1.1   chopps 		return(0);
    887   1.1   chopps 
    888   1.1   chopps 	tmp = 0;
    889   1.1   chopps 
    890   1.1   chopps 	for (i = STARTOFTIME; i < year; i++)
    891   1.1   chopps 		tmp += days_in_year(i);
    892   1.1   chopps 	if (leapyear(year) && month > FEBRUARY)
    893   1.1   chopps 		tmp++;
    894   1.1   chopps 
    895   1.1   chopps 	for (i = 1; i < month; i++)
    896   1.1   chopps 		tmp += days_in_month(i);
    897   1.1   chopps 
    898   1.1   chopps 	tmp += (day - 1);
    899   1.1   chopps 	tmp = ((tmp * 24 + hour) * 60 + min) * 60 + sec;
    900   1.1   chopps 
    901   1.1   chopps 	return(tmp);
    902   1.1   chopps }
    903   1.1   chopps 
    904   1.1   chopps /*
    905   1.1   chopps  * there is some question as to whether this works
    906   1.1   chopps  * I guess
    907   1.1   chopps  */
    908   1.1   chopps int
    909   1.1   chopps a2settod(tim)
    910   1.1   chopps 	long tim;
    911   1.1   chopps {
    912   1.1   chopps 
    913   1.1   chopps 	int i;
    914   1.1   chopps 	long hms, day;
    915   1.1   chopps 	u_char sec1, sec2;
    916   1.1   chopps 	u_char min1, min2;
    917   1.1   chopps 	u_char hour1, hour2;
    918   1.1   chopps 	u_char day1, day2;
    919   1.1   chopps 	u_char mon1, mon2;
    920   1.1   chopps 	u_char year1, year2;
    921   1.1   chopps 	struct rtclock2000 *rt;
    922   1.1   chopps 
    923   1.1   chopps 	rt = clockaddr;
    924   1.1   chopps 	/*
    925   1.1   chopps 	 * there seem to be problems with the bitfield addressing
    926   1.1   chopps 	 * currently used..
    927   1.1   chopps 	 *
    928   1.1   chopps 	 * XXX Check out the above where we (hour1 & 3)
    929   1.1   chopps 	 */
    930   1.1   chopps 	if (! rt)
    931   1.1   chopps 		return 0;
    932   1.1   chopps 
    933   1.1   chopps 	/* prepare values to be written to clock */
    934   1.1   chopps 	day = tim / SECDAY;
    935   1.1   chopps 	hms = tim % SECDAY;
    936   1.1   chopps 
    937   1.1   chopps 	hour2 = hms / 3600;
    938   1.1   chopps 	hour1 = hour2 / 10;
    939   1.1   chopps 	hour2 %= 10;
    940   1.1   chopps 
    941   1.1   chopps 	min2 = (hms % 3600) / 60;
    942   1.1   chopps 	min1 = min2 / 10;
    943   1.1   chopps 	min2 %= 10;
    944   1.1   chopps 
    945   1.1   chopps 
    946   1.1   chopps 	sec2 = (hms % 3600) % 60;
    947   1.1   chopps 	sec1 = sec2 / 10;
    948   1.1   chopps 	sec2 %= 10;
    949   1.1   chopps 
    950   1.1   chopps 	/* Number of years in days */
    951   1.1   chopps 	for (i = STARTOFTIME - 1900; day >= days_in_year(i); i++)
    952   1.1   chopps 		day -= days_in_year(i);
    953   1.1   chopps 	year1 = i / 10;
    954   1.1   chopps 	year2 = i % 10;
    955   1.1   chopps 
    956   1.1   chopps 	/* Number of months in days left */
    957   1.1   chopps 	if (leapyear(i))
    958   1.1   chopps 		days_in_month(FEBRUARY) = 29;
    959   1.1   chopps 	for (i = 1; day >= days_in_month(i); i++)
    960   1.1   chopps 		day -= days_in_month(i);
    961   1.1   chopps 	days_in_month(FEBRUARY) = 28;
    962   1.1   chopps 
    963   1.1   chopps 	mon1 = i / 10;
    964   1.1   chopps 	mon2 = i % 10;
    965   1.1   chopps 
    966   1.1   chopps 	/* Days are what is left over (+1) from all that. */
    967   1.1   chopps 	day ++;
    968   1.1   chopps 	day1 = day / 10;
    969   1.1   chopps 	day2 = day % 10;
    970   1.1   chopps 
    971   1.1   chopps 	/*
    972   1.1   chopps 	 * XXXX spin wait as with reading???
    973   1.1   chopps 	 */
    974  1.10   chopps 	rt->control1 |= A2CONTROL1_HOLD;
    975   1.1   chopps 	rt->second1 = sec1;
    976   1.1   chopps 	rt->second2 = sec2;
    977   1.1   chopps 	rt->minute1 = min1;
    978   1.1   chopps 	rt->minute2 = min2;
    979   1.1   chopps 	rt->hour1   = hour1;
    980   1.1   chopps 	rt->hour2   = hour2;
    981   1.1   chopps 	rt->day1    = day1;
    982   1.1   chopps 	rt->day2    = day2;
    983   1.1   chopps 	rt->month1  = mon1;
    984   1.1   chopps 	rt->month2  = mon2;
    985   1.1   chopps 	rt->year1   = year1;
    986   1.1   chopps 	rt->year2   = year2;
    987  1.10   chopps 	rt->control2 &= ~A2CONTROL1_HOLD;
    988   1.1   chopps 
    989   1.1   chopps   return 1;
    990   1.1   chopps }
    991