clock.c revision 1.14 1 1.14 is /* $NetBSD: clock.c,v 1.14 1996/05/09 20:31:06 is Exp $ */
2 1.6 cgd
3 1.1 chopps /*
4 1.1 chopps * Copyright (c) 1988 University of Utah.
5 1.1 chopps * Copyright (c) 1982, 1990 The Regents of the University of California.
6 1.1 chopps * All rights reserved.
7 1.1 chopps *
8 1.1 chopps * This code is derived from software contributed to Berkeley by
9 1.1 chopps * the Systems Programming Group of the University of Utah Computer
10 1.1 chopps * Science Department.
11 1.1 chopps *
12 1.1 chopps * Redistribution and use in source and binary forms, with or without
13 1.1 chopps * modification, are permitted provided that the following conditions
14 1.1 chopps * are met:
15 1.1 chopps * 1. Redistributions of source code must retain the above copyright
16 1.1 chopps * notice, this list of conditions and the following disclaimer.
17 1.1 chopps * 2. Redistributions in binary form must reproduce the above copyright
18 1.1 chopps * notice, this list of conditions and the following disclaimer in the
19 1.1 chopps * documentation and/or other materials provided with the distribution.
20 1.1 chopps * 3. All advertising materials mentioning features or use of this software
21 1.1 chopps * must display the following acknowledgement:
22 1.1 chopps * This product includes software developed by the University of
23 1.1 chopps * California, Berkeley and its contributors.
24 1.1 chopps * 4. Neither the name of the University nor the names of its contributors
25 1.1 chopps * may be used to endorse or promote products derived from this software
26 1.1 chopps * without specific prior written permission.
27 1.1 chopps *
28 1.1 chopps * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
29 1.1 chopps * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
30 1.1 chopps * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
31 1.1 chopps * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
32 1.1 chopps * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
33 1.1 chopps * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
34 1.1 chopps * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
35 1.1 chopps * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
36 1.1 chopps * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
37 1.1 chopps * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
38 1.1 chopps * SUCH DAMAGE.
39 1.1 chopps *
40 1.1 chopps * from: Utah $Hdr: clock.c 1.18 91/01/21$
41 1.1 chopps *
42 1.1 chopps * @(#)clock.c 7.6 (Berkeley) 5/7/91
43 1.1 chopps */
44 1.1 chopps
45 1.1 chopps #include <sys/param.h>
46 1.1 chopps #include <sys/kernel.h>
47 1.1 chopps #include <sys/device.h>
48 1.13 veego #include <sys/systm.h>
49 1.1 chopps #include <machine/psl.h>
50 1.1 chopps #include <machine/cpu.h>
51 1.1 chopps #include <amiga/amiga/device.h>
52 1.1 chopps #include <amiga/amiga/custom.h>
53 1.1 chopps #include <amiga/amiga/cia.h>
54 1.14 is #ifdef DRACO
55 1.14 is #include <amiga/amiga/drcustom.h>
56 1.14 is #endif
57 1.1 chopps #include <amiga/dev/rtc.h>
58 1.8 chopps #include <amiga/dev/zbusvar.h>
59 1.1 chopps
60 1.1 chopps #if defined(PROF) && defined(PROFTIMER)
61 1.1 chopps #include <sys/PROF.h>
62 1.1 chopps #endif
63 1.1 chopps
64 1.1 chopps /* the clocks run at NTSC: 715.909kHz or PAL: 709.379kHz.
65 1.1 chopps We're using a 100 Hz clock. */
66 1.1 chopps
67 1.1 chopps #define CLK_INTERVAL amiga_clk_interval
68 1.4 chopps int amiga_clk_interval;
69 1.4 chopps int eclockfreq;
70 1.14 is struct CIA *clockcia;
71 1.4 chopps
72 1.1 chopps /*
73 1.1 chopps * Machine-dependent clock routines.
74 1.1 chopps *
75 1.1 chopps * Startrtclock restarts the real-time clock, which provides
76 1.1 chopps * hardclock interrupts to kern_clock.c.
77 1.1 chopps *
78 1.1 chopps * Inittodr initializes the time of day hardware which provides
79 1.1 chopps * date functions.
80 1.1 chopps *
81 1.1 chopps * Resettodr restores the time of day hardware after a time change.
82 1.1 chopps *
83 1.1 chopps * A note on the real-time clock:
84 1.1 chopps * We actually load the clock with CLK_INTERVAL-1 instead of CLK_INTERVAL.
85 1.1 chopps * This is because the counter decrements to zero after N+1 enabled clock
86 1.1 chopps * periods where N is the value loaded into the counter.
87 1.1 chopps */
88 1.1 chopps
89 1.11 thorpej int clockmatch __P((struct device *, void *, void *));
90 1.1 chopps void clockattach __P((struct device *, struct device *, void *));
91 1.13 veego void cpu_initclocks __P((void));
92 1.13 veego void setmicspertick __P((void));
93 1.1 chopps
94 1.11 thorpej struct cfattach clock_ca = {
95 1.11 thorpej sizeof(struct device), clockmatch, clockattach
96 1.11 thorpej };
97 1.11 thorpej
98 1.11 thorpej struct cfdriver clock_cd = {
99 1.11 thorpej NULL, "clock", DV_DULL, NULL, 0 };
100 1.1 chopps
101 1.1 chopps int
102 1.11 thorpej clockmatch(pdp, match, auxp)
103 1.1 chopps struct device *pdp;
104 1.12 mhitch void *match, *auxp;
105 1.1 chopps {
106 1.11 thorpej
107 1.14 is if (matchname("clock", auxp)
108 1.14 is #ifdef DRACO
109 1.14 is && (is_draco() < 4)
110 1.14 is #endif
111 1.14 is )
112 1.1 chopps return(1);
113 1.1 chopps return(0);
114 1.1 chopps }
115 1.1 chopps
116 1.1 chopps /*
117 1.1 chopps * Start the real-time clock.
118 1.1 chopps */
119 1.1 chopps void
120 1.1 chopps clockattach(pdp, dp, auxp)
121 1.1 chopps struct device *pdp, *dp;
122 1.1 chopps void *auxp;
123 1.1 chopps {
124 1.1 chopps unsigned short interval;
125 1.14 is char cia;
126 1.1 chopps
127 1.4 chopps if (eclockfreq == 0)
128 1.4 chopps eclockfreq = 715909; /* guess NTSC */
129 1.4 chopps
130 1.4 chopps CLK_INTERVAL = (eclockfreq / 100);
131 1.4 chopps
132 1.14 is #ifdef DRACO
133 1.14 is if (is_draco()) {
134 1.14 is clockcia = (struct CIA *)CIAAbase;
135 1.14 is cia = 'A';
136 1.14 is } else
137 1.14 is #endif
138 1.14 is {
139 1.14 is clockcia = (struct CIA *)CIABbase;
140 1.14 is cia = 'B';
141 1.14 is }
142 1.14 is
143 1.14 is printf(": CIA %c system hz %d hardware hz %d\n", cia, hz, eclockfreq);
144 1.4 chopps
145 1.1 chopps /*
146 1.1 chopps * stop timer A
147 1.1 chopps */
148 1.14 is clockcia->cra = clockcia->cra & 0xc0;
149 1.14 is clockcia->icr = 1 << 0; /* disable timer A interrupt */
150 1.14 is interval = clockcia->icr; /* and make sure it's clear */
151 1.1 chopps
152 1.1 chopps /*
153 1.1 chopps * load interval into registers.
154 1.1 chopps * the clocks run at NTSC: 715.909kHz or PAL: 709.379kHz
155 1.1 chopps * supprort for PAL WHEN?!?! XXX
156 1.1 chopps */
157 1.1 chopps interval = CLK_INTERVAL - 1;
158 1.1 chopps
159 1.1 chopps /*
160 1.1 chopps * order of setting is important !
161 1.1 chopps */
162 1.14 is clockcia->talo = interval & 0xff;
163 1.14 is clockcia->tahi = interval >> 8;
164 1.1 chopps }
165 1.1 chopps
166 1.1 chopps void
167 1.1 chopps cpu_initclocks()
168 1.1 chopps {
169 1.1 chopps /*
170 1.1 chopps * enable interrupts for timer A
171 1.1 chopps */
172 1.14 is clockcia->icr = (1<<7) | (1<<0);
173 1.1 chopps
174 1.1 chopps /*
175 1.1 chopps * start timer A in continuous shot mode
176 1.1 chopps */
177 1.14 is clockcia->cra = (clockcia->cra & 0xc0) | 1;
178 1.1 chopps
179 1.1 chopps /*
180 1.1 chopps * and globally enable interrupts for ciab
181 1.1 chopps */
182 1.14 is #ifdef DRACO
183 1.14 is if (is_draco()) /* we use cia a on DraCo */
184 1.14 is *draco_intena |= DRIRQ_INT2;
185 1.14 is else
186 1.14 is #endif
187 1.14 is custom.intena = INTF_SETCLR | INTF_EXTER;
188 1.1 chopps }
189 1.1 chopps
190 1.13 veego void
191 1.1 chopps setstatclockrate(hz)
192 1.1 chopps int hz;
193 1.1 chopps {
194 1.1 chopps }
195 1.1 chopps
196 1.1 chopps /*
197 1.1 chopps * Returns number of usec since last recorded clock "tick"
198 1.1 chopps * (i.e. clock interrupt).
199 1.1 chopps */
200 1.13 veego u_long
201 1.1 chopps clkread()
202 1.1 chopps {
203 1.1 chopps u_char hi, hi2, lo;
204 1.1 chopps u_int interval;
205 1.1 chopps
206 1.14 is hi = clockcia->tahi;
207 1.14 is lo = clockcia->talo;
208 1.14 is hi2 = clockcia->tahi;
209 1.1 chopps if (hi != hi2) {
210 1.14 is lo = clockcia->talo;
211 1.1 chopps hi = hi2;
212 1.1 chopps }
213 1.1 chopps
214 1.1 chopps interval = (CLK_INTERVAL - 1) - ((hi<<8) | lo);
215 1.1 chopps
216 1.1 chopps /*
217 1.1 chopps * should read ICR and if there's an int pending, adjust interval.
218 1.1 chopps * However, * since reading ICR clears the interrupt, we'd lose a
219 1.1 chopps * hardclock int, and * this is not tolerable.
220 1.1 chopps */
221 1.1 chopps
222 1.1 chopps return((interval * tick) / CLK_INTERVAL);
223 1.1 chopps }
224 1.1 chopps
225 1.1 chopps u_int micspertick;
226 1.1 chopps
227 1.1 chopps /*
228 1.1 chopps * we set up as much of the CIAa as possible
229 1.1 chopps * as all access to chip memory are very slow.
230 1.1 chopps */
231 1.1 chopps void
232 1.1 chopps setmicspertick()
233 1.1 chopps {
234 1.14 is #ifdef DRACO
235 1.14 is if (is_draco())
236 1.14 is return; /* XXX */
237 1.14 is #endif
238 1.1 chopps micspertick = (1000000ULL << 20) / 715909;
239 1.1 chopps
240 1.1 chopps /*
241 1.1 chopps * disable interrupts (just in case.)
242 1.1 chopps */
243 1.1 chopps ciaa.icr = 0x3;
244 1.1 chopps
245 1.1 chopps /*
246 1.1 chopps * stop both timers if not already
247 1.1 chopps */
248 1.1 chopps ciaa.cra &= ~1;
249 1.1 chopps ciaa.crb &= ~1;
250 1.1 chopps
251 1.1 chopps /*
252 1.1 chopps * set timer B in "count timer A underflows" mode
253 1.1 chopps * set tiemr A in one-shot mode
254 1.1 chopps */
255 1.1 chopps ciaa.crb = (ciaa.crb & 0x80) | 0x48;
256 1.1 chopps ciaa.cra = (ciaa.cra & 0xc0) | 0x08;
257 1.1 chopps }
258 1.1 chopps
259 1.1 chopps /*
260 1.1 chopps * this function assumes that on any entry beyond the first
261 1.1 chopps * the following condintions exist:
262 1.1 chopps * Interrupts for Timers A and B are disabled.
263 1.1 chopps * Timers A and B are stoped.
264 1.1 chopps * Timers A and B are in one-shot mode with B counting timer A underflows
265 1.1 chopps *
266 1.1 chopps */
267 1.1 chopps void
268 1.1 chopps delay(mic)
269 1.1 chopps int mic;
270 1.1 chopps {
271 1.1 chopps u_int temp;
272 1.14 is int s;
273 1.1 chopps
274 1.14 is #ifdef DRACO
275 1.14 is if (is_draco()) {
276 1.14 is DELAY(mic);
277 1.14 is return;
278 1.14 is }
279 1.14 is #endif
280 1.1 chopps if (micspertick == 0)
281 1.1 chopps setmicspertick();
282 1.1 chopps
283 1.1 chopps if (mic <= 1)
284 1.1 chopps return;
285 1.1 chopps
286 1.1 chopps /*
287 1.1 chopps * basically this is going to do an integer
288 1.1 chopps * usec / (1000000 / 715909) with no loss of
289 1.1 chopps * precision
290 1.1 chopps */
291 1.1 chopps temp = mic >> 12;
292 1.1 chopps asm("divul %3,%1:%0" : "=d" (temp) : "d" (mic >> 12), "0" (mic << 20),
293 1.1 chopps "d" (micspertick));
294 1.1 chopps
295 1.1 chopps if ((temp & 0xffff0000) > 0x10000) {
296 1.1 chopps mic = (temp >> 16) - 1;
297 1.1 chopps temp &= 0xffff;
298 1.1 chopps
299 1.1 chopps /*
300 1.1 chopps * set timer A in continous mode
301 1.1 chopps */
302 1.1 chopps ciaa.cra = (ciaa.cra & 0xc0) | 0x00;
303 1.1 chopps
304 1.1 chopps /*
305 1.1 chopps * latch/load/start "counts of timer A underflows" in B
306 1.1 chopps */
307 1.1 chopps ciaa.tblo = mic & 0xff;
308 1.1 chopps ciaa.tbhi = mic >> 8;
309 1.1 chopps
310 1.1 chopps /*
311 1.1 chopps * timer A latches 0xffff
312 1.1 chopps * and start it.
313 1.1 chopps */
314 1.1 chopps ciaa.talo = 0xff;
315 1.1 chopps ciaa.tahi = 0xff;
316 1.1 chopps ciaa.cra |= 1;
317 1.1 chopps
318 1.1 chopps while (ciaa.crb & 1)
319 1.1 chopps ;
320 1.1 chopps
321 1.1 chopps /*
322 1.1 chopps * stop timer A
323 1.1 chopps */
324 1.1 chopps ciaa.cra &= ~1;
325 1.1 chopps
326 1.1 chopps /*
327 1.1 chopps * set timer A in one shot mode
328 1.1 chopps */
329 1.1 chopps ciaa.cra = (ciaa.cra & 0xc0) | 0x08;
330 1.1 chopps } else if ((temp & 0xffff0000) == 0x10000) {
331 1.1 chopps temp &= 0xffff;
332 1.1 chopps
333 1.1 chopps /*
334 1.1 chopps * timer A is in one shot latch/load/start 1 full turn
335 1.1 chopps */
336 1.1 chopps ciaa.talo = 0xff;
337 1.1 chopps ciaa.tahi = 0xff;
338 1.1 chopps while (ciaa.cra & 1)
339 1.1 chopps ;
340 1.1 chopps }
341 1.1 chopps if (temp < 1)
342 1.1 chopps return;
343 1.1 chopps
344 1.1 chopps /*
345 1.1 chopps * temp is now residual ammount, latch/load/start it.
346 1.1 chopps */
347 1.1 chopps ciaa.talo = temp & 0xff;
348 1.1 chopps ciaa.tahi = temp >> 8;
349 1.1 chopps while (ciaa.cra & 1)
350 1.1 chopps ;
351 1.1 chopps }
352 1.1 chopps
353 1.1 chopps /*
354 1.1 chopps * Needs to be calibrated for use, its way off most of the time
355 1.1 chopps */
356 1.2 chopps void
357 1.2 chopps DELAY(mic)
358 1.2 chopps int mic;
359 1.1 chopps {
360 1.2 chopps u_long n;
361 1.2 chopps short hpos;
362 1.1 chopps
363 1.14 is #ifdef DRACO
364 1.14 is if (is_draco()) {
365 1.14 is while (--mic > 0)
366 1.14 is n = *draco_intena;
367 1.14 is return;
368 1.14 is }
369 1.14 is #endif
370 1.2 chopps /*
371 1.2 chopps * this function uses HSync pulses as base units. The custom chips
372 1.2 chopps * display only deals with 31.6kHz/2 refresh, this gives us a
373 1.2 chopps * resolution of 1/15800 s, which is ~63us (add some fuzz so we really
374 1.2 chopps * wait awhile, even if using small timeouts)
375 1.2 chopps */
376 1.2 chopps n = mic/63 + 2;
377 1.2 chopps do {
378 1.2 chopps hpos = custom.vhposr & 0xff00;
379 1.2 chopps while (hpos == (custom.vhposr & 0xff00))
380 1.2 chopps ;
381 1.2 chopps } while (n--);
382 1.1 chopps }
383 1.1 chopps
384 1.1 chopps #if notyet
385 1.1 chopps
386 1.1 chopps /* implement this later. I'd suggest using both timers in CIA-A, they're
387 1.1 chopps not yet used. */
388 1.1 chopps
389 1.1 chopps #include "clock.h"
390 1.1 chopps #if NCLOCK > 0
391 1.1 chopps /*
392 1.1 chopps * /dev/clock: mappable high resolution timer.
393 1.1 chopps *
394 1.1 chopps * This code implements a 32-bit recycling counter (with a 4 usec period)
395 1.1 chopps * using timers 2 & 3 on the 6840 clock chip. The counter can be mapped
396 1.1 chopps * RO into a user's address space to achieve low overhead (no system calls),
397 1.1 chopps * high-precision timing.
398 1.1 chopps *
399 1.1 chopps * Note that timer 3 is also used for the high precision profiling timer
400 1.1 chopps * (PROFTIMER code above). Care should be taken when both uses are
401 1.1 chopps * configured as only a token effort is made to avoid conflicting use.
402 1.1 chopps */
403 1.1 chopps #include <sys/proc.h>
404 1.1 chopps #include <sys/resourcevar.h>
405 1.1 chopps #include <sys/ioctl.h>
406 1.1 chopps #include <sys/malloc.h>
407 1.1 chopps #include <vm/vm.h>
408 1.1 chopps #include <amiga/amiga/clockioctl.h>
409 1.1 chopps #include <sys/specdev.h>
410 1.1 chopps #include <sys/vnode.h>
411 1.1 chopps #include <sys/mman.h>
412 1.1 chopps
413 1.1 chopps int clockon = 0; /* non-zero if high-res timer enabled */
414 1.1 chopps #ifdef PROFTIMER
415 1.1 chopps int profprocs = 0; /* # of procs using profiling timer */
416 1.1 chopps #endif
417 1.1 chopps #ifdef DEBUG
418 1.1 chopps int clockdebug = 0;
419 1.1 chopps #endif
420 1.1 chopps
421 1.1 chopps /*ARGSUSED*/
422 1.1 chopps clockopen(dev, flags)
423 1.1 chopps dev_t dev;
424 1.1 chopps {
425 1.1 chopps #ifdef PROFTIMER
426 1.1 chopps #ifdef PROF
427 1.1 chopps /*
428 1.1 chopps * Kernel profiling enabled, give up.
429 1.1 chopps */
430 1.1 chopps if (profiling)
431 1.1 chopps return(EBUSY);
432 1.1 chopps #endif
433 1.1 chopps /*
434 1.1 chopps * If any user processes are profiling, give up.
435 1.1 chopps */
436 1.1 chopps if (profprocs)
437 1.1 chopps return(EBUSY);
438 1.1 chopps #endif
439 1.1 chopps if (!clockon) {
440 1.1 chopps startclock();
441 1.1 chopps clockon++;
442 1.1 chopps }
443 1.1 chopps return(0);
444 1.1 chopps }
445 1.1 chopps
446 1.1 chopps /*ARGSUSED*/
447 1.1 chopps clockclose(dev, flags)
448 1.1 chopps dev_t dev;
449 1.1 chopps {
450 1.1 chopps (void) clockunmmap(dev, (caddr_t)0, curproc); /* XXX */
451 1.1 chopps stopclock();
452 1.1 chopps clockon = 0;
453 1.1 chopps return(0);
454 1.1 chopps }
455 1.1 chopps
456 1.1 chopps /*ARGSUSED*/
457 1.1 chopps clockioctl(dev, cmd, data, flag, p)
458 1.1 chopps dev_t dev;
459 1.7 chopps u_long cmd;
460 1.1 chopps caddr_t data;
461 1.1 chopps struct proc *p;
462 1.1 chopps {
463 1.1 chopps int error = 0;
464 1.1 chopps
465 1.1 chopps switch (cmd) {
466 1.1 chopps
467 1.1 chopps case CLOCKMAP:
468 1.1 chopps error = clockmmap(dev, (caddr_t *)data, p);
469 1.1 chopps break;
470 1.1 chopps
471 1.1 chopps case CLOCKUNMAP:
472 1.1 chopps error = clockunmmap(dev, *(caddr_t *)data, p);
473 1.1 chopps break;
474 1.1 chopps
475 1.1 chopps case CLOCKGETRES:
476 1.1 chopps *(int *)data = CLK_RESOLUTION;
477 1.1 chopps break;
478 1.1 chopps
479 1.1 chopps default:
480 1.1 chopps error = EINVAL;
481 1.1 chopps break;
482 1.1 chopps }
483 1.1 chopps return(error);
484 1.1 chopps }
485 1.1 chopps
486 1.1 chopps /*ARGSUSED*/
487 1.1 chopps clockmap(dev, off, prot)
488 1.1 chopps dev_t dev;
489 1.1 chopps {
490 1.1 chopps return((off + (INTIOBASE+CLKBASE+CLKSR-1)) >> PGSHIFT);
491 1.1 chopps }
492 1.1 chopps
493 1.1 chopps clockmmap(dev, addrp, p)
494 1.1 chopps dev_t dev;
495 1.1 chopps caddr_t *addrp;
496 1.1 chopps struct proc *p;
497 1.1 chopps {
498 1.1 chopps int error;
499 1.1 chopps struct vnode vn;
500 1.1 chopps struct specinfo si;
501 1.1 chopps int flags;
502 1.1 chopps
503 1.1 chopps flags = MAP_FILE|MAP_SHARED;
504 1.1 chopps if (*addrp)
505 1.1 chopps flags |= MAP_FIXED;
506 1.1 chopps else
507 1.1 chopps *addrp = (caddr_t)0x1000000; /* XXX */
508 1.1 chopps vn.v_type = VCHR; /* XXX */
509 1.1 chopps vn.v_specinfo = &si; /* XXX */
510 1.1 chopps vn.v_rdev = dev; /* XXX */
511 1.1 chopps error = vm_mmap(&p->p_vmspace->vm_map, (vm_offset_t *)addrp,
512 1.1 chopps PAGE_SIZE, VM_PROT_ALL, flags, (caddr_t)&vn, 0);
513 1.1 chopps return(error);
514 1.1 chopps }
515 1.1 chopps
516 1.1 chopps clockunmmap(dev, addr, p)
517 1.1 chopps dev_t dev;
518 1.1 chopps caddr_t addr;
519 1.1 chopps struct proc *p;
520 1.1 chopps {
521 1.1 chopps int rv;
522 1.1 chopps
523 1.1 chopps if (addr == 0)
524 1.1 chopps return(EINVAL); /* XXX: how do we deal with this? */
525 1.1 chopps rv = vm_deallocate(p->p_vmspace->vm_map, (vm_offset_t)addr, PAGE_SIZE);
526 1.1 chopps return(rv == KERN_SUCCESS ? 0 : EINVAL);
527 1.1 chopps }
528 1.1 chopps
529 1.1 chopps startclock()
530 1.1 chopps {
531 1.1 chopps register struct clkreg *clk = (struct clkreg *)clkstd[0];
532 1.1 chopps
533 1.1 chopps clk->clk_msb2 = -1; clk->clk_lsb2 = -1;
534 1.1 chopps clk->clk_msb3 = -1; clk->clk_lsb3 = -1;
535 1.1 chopps
536 1.1 chopps clk->clk_cr2 = CLK_CR3;
537 1.1 chopps clk->clk_cr3 = CLK_OENAB|CLK_8BIT;
538 1.1 chopps clk->clk_cr2 = CLK_CR1;
539 1.1 chopps clk->clk_cr1 = CLK_IENAB;
540 1.1 chopps }
541 1.1 chopps
542 1.1 chopps stopclock()
543 1.1 chopps {
544 1.1 chopps register struct clkreg *clk = (struct clkreg *)clkstd[0];
545 1.1 chopps
546 1.1 chopps clk->clk_cr2 = CLK_CR3;
547 1.1 chopps clk->clk_cr3 = 0;
548 1.1 chopps clk->clk_cr2 = CLK_CR1;
549 1.1 chopps clk->clk_cr1 = CLK_IENAB;
550 1.1 chopps }
551 1.1 chopps #endif
552 1.1 chopps
553 1.1 chopps #endif
554 1.1 chopps
555 1.1 chopps
556 1.1 chopps #ifdef PROFTIMER
557 1.1 chopps /*
558 1.1 chopps * This code allows the amiga kernel to use one of the extra timers on
559 1.1 chopps * the clock chip for profiling, instead of the regular system timer.
560 1.1 chopps * The advantage of this is that the profiling timer can be turned up to
561 1.1 chopps * a higher interrupt rate, giving finer resolution timing. The profclock
562 1.1 chopps * routine is called from the lev6intr in locore, and is a specialized
563 1.1 chopps * routine that calls addupc. The overhead then is far less than if
564 1.1 chopps * hardclock/softclock was called. Further, the context switch code in
565 1.1 chopps * locore has been changed to turn the profile clock on/off when switching
566 1.1 chopps * into/out of a process that is profiling (startprofclock/stopprofclock).
567 1.1 chopps * This reduces the impact of the profiling clock on other users, and might
568 1.1 chopps * possibly increase the accuracy of the profiling.
569 1.1 chopps */
570 1.1 chopps int profint = PRF_INTERVAL; /* Clock ticks between interrupts */
571 1.1 chopps int profscale = 0; /* Scale factor from sys clock to prof clock */
572 1.1 chopps char profon = 0; /* Is profiling clock on? */
573 1.1 chopps
574 1.1 chopps /* profon values - do not change, locore.s assumes these values */
575 1.1 chopps #define PRF_NONE 0x00
576 1.1 chopps #define PRF_USER 0x01
577 1.1 chopps #define PRF_KERNEL 0x80
578 1.1 chopps
579 1.1 chopps initprofclock()
580 1.1 chopps {
581 1.1 chopps #if NCLOCK > 0
582 1.1 chopps struct proc *p = curproc; /* XXX */
583 1.1 chopps
584 1.1 chopps /*
585 1.1 chopps * If the high-res timer is running, force profiling off.
586 1.1 chopps * Unfortunately, this gets reflected back to the user not as
587 1.1 chopps * an error but as a lack of results.
588 1.1 chopps */
589 1.1 chopps if (clockon) {
590 1.1 chopps p->p_stats->p_prof.pr_scale = 0;
591 1.1 chopps return;
592 1.1 chopps }
593 1.1 chopps /*
594 1.1 chopps * Keep track of the number of user processes that are profiling
595 1.1 chopps * by checking the scale value.
596 1.1 chopps *
597 1.1 chopps * XXX: this all assumes that the profiling code is well behaved;
598 1.1 chopps * i.e. profil() is called once per process with pcscale non-zero
599 1.1 chopps * to turn it on, and once with pcscale zero to turn it off.
600 1.1 chopps * Also assumes you don't do any forks or execs. Oh well, there
601 1.1 chopps * is always adb...
602 1.1 chopps */
603 1.1 chopps if (p->p_stats->p_prof.pr_scale)
604 1.1 chopps profprocs++;
605 1.1 chopps else
606 1.1 chopps profprocs--;
607 1.1 chopps #endif
608 1.1 chopps /*
609 1.1 chopps * The profile interrupt interval must be an even divisor
610 1.1 chopps * of the CLK_INTERVAL so that scaling from a system clock
611 1.1 chopps * tick to a profile clock tick is possible using integer math.
612 1.1 chopps */
613 1.1 chopps if (profint > CLK_INTERVAL || (CLK_INTERVAL % profint) != 0)
614 1.1 chopps profint = CLK_INTERVAL;
615 1.1 chopps profscale = CLK_INTERVAL / profint;
616 1.1 chopps }
617 1.1 chopps
618 1.1 chopps startprofclock()
619 1.1 chopps {
620 1.1 chopps unsigned short interval;
621 1.1 chopps
622 1.1 chopps /* stop timer B */
623 1.14 is clockcia->crb = clockcia->crb & 0xc0;
624 1.1 chopps
625 1.1 chopps /* load interval into registers.
626 1.1 chopps the clocks run at NTSC: 715.909kHz or PAL: 709.379kHz */
627 1.1 chopps
628 1.1 chopps interval = profint - 1;
629 1.1 chopps
630 1.1 chopps /* order of setting is important ! */
631 1.14 is clockcia->tblo = interval & 0xff;
632 1.14 is clockcia->tbhi = interval >> 8;
633 1.1 chopps
634 1.1 chopps /* enable interrupts for timer B */
635 1.14 is clockcia->icr = (1<<7) | (1<<1);
636 1.1 chopps
637 1.1 chopps /* start timer B in continuous shot mode */
638 1.14 is clockcia->crb = (clockcia->crb & 0xc0) | 1;
639 1.1 chopps }
640 1.1 chopps
641 1.1 chopps stopprofclock()
642 1.1 chopps {
643 1.1 chopps /* stop timer B */
644 1.14 is clockcia->crb = clockcia->crb & 0xc0;
645 1.1 chopps }
646 1.1 chopps
647 1.1 chopps #ifdef PROF
648 1.1 chopps /*
649 1.1 chopps * profclock() is expanded in line in lev6intr() unless profiling kernel.
650 1.1 chopps * Assumes it is called with clock interrupts blocked.
651 1.1 chopps */
652 1.1 chopps profclock(pc, ps)
653 1.1 chopps caddr_t pc;
654 1.1 chopps int ps;
655 1.1 chopps {
656 1.1 chopps /*
657 1.1 chopps * Came from user mode.
658 1.1 chopps * If this process is being profiled record the tick.
659 1.1 chopps */
660 1.1 chopps if (USERMODE(ps)) {
661 1.1 chopps if (p->p_stats.p_prof.pr_scale)
662 1.1 chopps addupc(pc, &curproc->p_stats.p_prof, 1);
663 1.1 chopps }
664 1.1 chopps /*
665 1.1 chopps * Came from kernel (supervisor) mode.
666 1.1 chopps * If we are profiling the kernel, record the tick.
667 1.1 chopps */
668 1.1 chopps else if (profiling < 2) {
669 1.1 chopps register int s = pc - s_lowpc;
670 1.1 chopps
671 1.1 chopps if (s < s_textsize)
672 1.1 chopps kcount[s / (HISTFRACTION * sizeof (*kcount))]++;
673 1.1 chopps }
674 1.1 chopps /*
675 1.1 chopps * Kernel profiling was on but has been disabled.
676 1.1 chopps * Mark as no longer profiling kernel and if all profiling done,
677 1.1 chopps * disable the clock.
678 1.1 chopps */
679 1.1 chopps if (profiling && (profon & PRF_KERNEL)) {
680 1.1 chopps profon &= ~PRF_KERNEL;
681 1.1 chopps if (profon == PRF_NONE)
682 1.1 chopps stopprofclock();
683 1.1 chopps }
684 1.1 chopps }
685 1.1 chopps #endif
686 1.1 chopps #endif
687 1.1 chopps
688 1.1 chopps /* this is a hook set by a clock driver for the configured realtime clock,
689 1.1 chopps returning plain current unix-time */
690 1.1 chopps long (*gettod) __P((void));
691 1.1 chopps int (*settod) __P((long));
692 1.1 chopps void *clockaddr;
693 1.1 chopps
694 1.1 chopps long a3gettod __P((void));
695 1.1 chopps long a2gettod __P((void));
696 1.1 chopps int a3settod __P((long));
697 1.1 chopps int a2settod __P((long));
698 1.1 chopps int rtcinit __P((void));
699 1.1 chopps
700 1.1 chopps /*
701 1.1 chopps * Initialize the time of day register, based on the time base which is, e.g.
702 1.1 chopps * from a filesystem.
703 1.1 chopps */
704 1.13 veego void
705 1.1 chopps inittodr(base)
706 1.1 chopps time_t base;
707 1.1 chopps {
708 1.1 chopps u_long timbuf = base; /* assume no battery clock exists */
709 1.1 chopps
710 1.1 chopps if (gettod == NULL && rtcinit() == 0)
711 1.1 chopps printf("WARNING: no battery clock\n");
712 1.1 chopps else
713 1.1 chopps timbuf = gettod();
714 1.1 chopps
715 1.1 chopps if (timbuf < base) {
716 1.1 chopps printf("WARNING: bad date in battery clock\n");
717 1.1 chopps timbuf = base;
718 1.1 chopps }
719 1.1 chopps
720 1.1 chopps /* Battery clock does not store usec's, so forget about it. */
721 1.1 chopps time.tv_sec = timbuf;
722 1.1 chopps }
723 1.1 chopps
724 1.13 veego void
725 1.1 chopps resettodr()
726 1.1 chopps {
727 1.13 veego if (settod && settod(time.tv_sec) == 0)
728 1.13 veego printf("Cannot set battery backed clock\n");
729 1.1 chopps }
730 1.1 chopps
731 1.1 chopps int
732 1.1 chopps rtcinit()
733 1.1 chopps {
734 1.1 chopps clockaddr = (void *)ztwomap(0xdc0000);
735 1.14 is #ifdef DRACO
736 1.14 is if (is_draco()) {
737 1.14 is /* XXX to be done */
738 1.14 is gettod = (void *)0;
739 1.14 is settod = (void *)0;
740 1.14 is return 0;
741 1.14 is } else
742 1.14 is #endif
743 1.1 chopps if (is_a3000() || is_a4000()) {
744 1.1 chopps if (a3gettod() == 0)
745 1.1 chopps return(0);
746 1.1 chopps gettod = a3gettod;
747 1.1 chopps settod = a3settod;
748 1.1 chopps } else {
749 1.1 chopps if (a2gettod() == 0)
750 1.1 chopps return(0);
751 1.1 chopps gettod = a2gettod;
752 1.1 chopps settod = a2settod;
753 1.1 chopps }
754 1.1 chopps return(1);
755 1.1 chopps }
756 1.1 chopps
757 1.1 chopps static int month_days[12] = {
758 1.1 chopps 31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31
759 1.1 chopps };
760 1.1 chopps
761 1.1 chopps long
762 1.1 chopps a3gettod()
763 1.1 chopps {
764 1.1 chopps struct rtclock3000 *rt;
765 1.10 chopps int i, year, month, day, wday, hour, min, sec;
766 1.1 chopps u_long tmp;
767 1.1 chopps
768 1.1 chopps rt = clockaddr;
769 1.1 chopps
770 1.1 chopps /* hold clock */
771 1.1 chopps rt->control1 = A3CONTROL1_HOLD_CLOCK;
772 1.1 chopps
773 1.1 chopps /* read it */
774 1.1 chopps sec = rt->second1 * 10 + rt->second2;
775 1.1 chopps min = rt->minute1 * 10 + rt->minute2;
776 1.1 chopps hour = rt->hour1 * 10 + rt->hour2;
777 1.10 chopps wday = rt->weekday;
778 1.1 chopps day = rt->day1 * 10 + rt->day2;
779 1.1 chopps month = rt->month1 * 10 + rt->month2;
780 1.1 chopps year = rt->year1 * 10 + rt->year2 + 1900;
781 1.1 chopps
782 1.1 chopps /* let it run again.. */
783 1.1 chopps rt->control1 = A3CONTROL1_FREE_CLOCK;
784 1.1 chopps
785 1.1 chopps if (range_test(hour, 0, 23))
786 1.1 chopps return(0);
787 1.10 chopps if (range_test(wday, 0, 6))
788 1.10 chopps return(0);
789 1.1 chopps if (range_test(day, 1, 31))
790 1.1 chopps return(0);
791 1.1 chopps if (range_test(month, 1, 12))
792 1.1 chopps return(0);
793 1.1 chopps if (range_test(year, STARTOFTIME, 2000))
794 1.1 chopps return(0);
795 1.1 chopps
796 1.1 chopps tmp = 0;
797 1.1 chopps
798 1.1 chopps for (i = STARTOFTIME; i < year; i++)
799 1.1 chopps tmp += days_in_year(i);
800 1.1 chopps if (leapyear(year) && month > FEBRUARY)
801 1.1 chopps tmp++;
802 1.1 chopps
803 1.1 chopps for (i = 1; i < month; i++)
804 1.1 chopps tmp += days_in_month(i);
805 1.1 chopps
806 1.1 chopps tmp += (day - 1);
807 1.1 chopps tmp = ((tmp * 24 + hour) * 60 + min) * 60 + sec;
808 1.1 chopps
809 1.1 chopps return(tmp);
810 1.1 chopps }
811 1.1 chopps
812 1.1 chopps int
813 1.1 chopps a3settod(tim)
814 1.1 chopps long tim;
815 1.1 chopps {
816 1.1 chopps register int i;
817 1.1 chopps register long hms, day;
818 1.1 chopps u_char sec1, sec2;
819 1.1 chopps u_char min1, min2;
820 1.1 chopps u_char hour1, hour2;
821 1.10 chopps /* u_char wday; */
822 1.1 chopps u_char day1, day2;
823 1.1 chopps u_char mon1, mon2;
824 1.1 chopps u_char year1, year2;
825 1.1 chopps struct rtclock3000 *rt;
826 1.1 chopps
827 1.1 chopps rt = clockaddr;
828 1.1 chopps /*
829 1.1 chopps * there seem to be problems with the bitfield addressing
830 1.1 chopps * currently used..
831 1.1 chopps */
832 1.10 chopps
833 1.10 chopps if (! rt)
834 1.1 chopps return 0;
835 1.1 chopps
836 1.1 chopps /* prepare values to be written to clock */
837 1.1 chopps day = tim / SECDAY;
838 1.1 chopps hms = tim % SECDAY;
839 1.1 chopps
840 1.1 chopps hour2 = hms / 3600;
841 1.1 chopps hour1 = hour2 / 10;
842 1.1 chopps hour2 %= 10;
843 1.1 chopps
844 1.1 chopps min2 = (hms % 3600) / 60;
845 1.1 chopps min1 = min2 / 10;
846 1.1 chopps min2 %= 10;
847 1.1 chopps
848 1.1 chopps
849 1.1 chopps sec2 = (hms % 3600) % 60;
850 1.1 chopps sec1 = sec2 / 10;
851 1.1 chopps sec2 %= 10;
852 1.1 chopps
853 1.1 chopps /* Number of years in days */
854 1.1 chopps for (i = STARTOFTIME - 1900; day >= days_in_year(i); i++)
855 1.1 chopps day -= days_in_year(i);
856 1.1 chopps year1 = i / 10;
857 1.1 chopps year2 = i % 10;
858 1.1 chopps
859 1.1 chopps /* Number of months in days left */
860 1.1 chopps if (leapyear(i))
861 1.1 chopps days_in_month(FEBRUARY) = 29;
862 1.1 chopps for (i = 1; day >= days_in_month(i); i++)
863 1.1 chopps day -= days_in_month(i);
864 1.1 chopps days_in_month(FEBRUARY) = 28;
865 1.1 chopps
866 1.1 chopps mon1 = i / 10;
867 1.1 chopps mon2 = i % 10;
868 1.1 chopps
869 1.1 chopps /* Days are what is left over (+1) from all that. */
870 1.1 chopps day ++;
871 1.1 chopps day1 = day / 10;
872 1.1 chopps day2 = day % 10;
873 1.1 chopps
874 1.10 chopps rt->control1 = A3CONTROL1_HOLD_CLOCK;
875 1.1 chopps rt->second1 = sec1;
876 1.1 chopps rt->second2 = sec2;
877 1.1 chopps rt->minute1 = min1;
878 1.1 chopps rt->minute2 = min2;
879 1.1 chopps rt->hour1 = hour1;
880 1.1 chopps rt->hour2 = hour2;
881 1.10 chopps /* rt->weekday = wday; */
882 1.1 chopps rt->day1 = day1;
883 1.1 chopps rt->day2 = day2;
884 1.1 chopps rt->month1 = mon1;
885 1.1 chopps rt->month2 = mon2;
886 1.1 chopps rt->year1 = year1;
887 1.1 chopps rt->year2 = year2;
888 1.10 chopps rt->control1 = A3CONTROL1_FREE_CLOCK;
889 1.1 chopps
890 1.1 chopps return 1;
891 1.1 chopps }
892 1.1 chopps
893 1.1 chopps long
894 1.1 chopps a2gettod()
895 1.1 chopps {
896 1.1 chopps struct rtclock2000 *rt;
897 1.1 chopps int i, year, month, day, hour, min, sec;
898 1.1 chopps u_long tmp;
899 1.1 chopps
900 1.1 chopps rt = clockaddr;
901 1.1 chopps
902 1.1 chopps /*
903 1.1 chopps * hold clock
904 1.1 chopps */
905 1.1 chopps rt->control1 |= A2CONTROL1_HOLD;
906 1.9 chopps i = 0x1000;
907 1.9 chopps while (rt->control1 & A2CONTROL1_BUSY && i--)
908 1.1 chopps ;
909 1.9 chopps if (rt->control1 & A2CONTROL1_BUSY)
910 1.9 chopps return (0); /* Give up and say it's not there */
911 1.1 chopps
912 1.1 chopps /*
913 1.1 chopps * read it
914 1.1 chopps */
915 1.1 chopps sec = rt->second1 * 10 + rt->second2;
916 1.1 chopps min = rt->minute1 * 10 + rt->minute2;
917 1.1 chopps hour = (rt->hour1 & 3) * 10 + rt->hour2;
918 1.1 chopps day = rt->day1 * 10 + rt->day2;
919 1.1 chopps month = rt->month1 * 10 + rt->month2;
920 1.1 chopps year = rt->year1 * 10 + rt->year2 + 1900;
921 1.1 chopps
922 1.1 chopps if ((rt->control3 & A2CONTROL3_24HMODE) == 0) {
923 1.1 chopps if ((rt->hour1 & A2HOUR1_PM) == 0 && hour == 12)
924 1.1 chopps hour = 0;
925 1.1 chopps else if ((rt->hour1 & A2HOUR1_PM) && hour != 12)
926 1.1 chopps hour += 12;
927 1.1 chopps }
928 1.1 chopps
929 1.1 chopps /*
930 1.1 chopps * release the clock
931 1.1 chopps */
932 1.1 chopps rt->control1 &= ~A2CONTROL1_HOLD;
933 1.1 chopps
934 1.1 chopps if (range_test(hour, 0, 23))
935 1.1 chopps return(0);
936 1.1 chopps if (range_test(day, 1, 31))
937 1.1 chopps return(0);
938 1.1 chopps if (range_test(month, 1, 12))
939 1.1 chopps return(0);
940 1.1 chopps if (range_test(year, STARTOFTIME, 2000))
941 1.1 chopps return(0);
942 1.1 chopps
943 1.1 chopps tmp = 0;
944 1.1 chopps
945 1.1 chopps for (i = STARTOFTIME; i < year; i++)
946 1.1 chopps tmp += days_in_year(i);
947 1.1 chopps if (leapyear(year) && month > FEBRUARY)
948 1.1 chopps tmp++;
949 1.1 chopps
950 1.1 chopps for (i = 1; i < month; i++)
951 1.1 chopps tmp += days_in_month(i);
952 1.1 chopps
953 1.1 chopps tmp += (day - 1);
954 1.1 chopps tmp = ((tmp * 24 + hour) * 60 + min) * 60 + sec;
955 1.1 chopps
956 1.1 chopps return(tmp);
957 1.1 chopps }
958 1.1 chopps
959 1.1 chopps /*
960 1.1 chopps * there is some question as to whether this works
961 1.1 chopps * I guess
962 1.1 chopps */
963 1.1 chopps int
964 1.1 chopps a2settod(tim)
965 1.1 chopps long tim;
966 1.1 chopps {
967 1.1 chopps
968 1.1 chopps int i;
969 1.1 chopps long hms, day;
970 1.1 chopps u_char sec1, sec2;
971 1.1 chopps u_char min1, min2;
972 1.1 chopps u_char hour1, hour2;
973 1.1 chopps u_char day1, day2;
974 1.1 chopps u_char mon1, mon2;
975 1.1 chopps u_char year1, year2;
976 1.1 chopps struct rtclock2000 *rt;
977 1.1 chopps
978 1.1 chopps rt = clockaddr;
979 1.1 chopps /*
980 1.1 chopps * there seem to be problems with the bitfield addressing
981 1.1 chopps * currently used..
982 1.1 chopps *
983 1.1 chopps * XXX Check out the above where we (hour1 & 3)
984 1.1 chopps */
985 1.1 chopps if (! rt)
986 1.1 chopps return 0;
987 1.1 chopps
988 1.1 chopps /* prepare values to be written to clock */
989 1.1 chopps day = tim / SECDAY;
990 1.1 chopps hms = tim % SECDAY;
991 1.1 chopps
992 1.1 chopps hour2 = hms / 3600;
993 1.1 chopps hour1 = hour2 / 10;
994 1.1 chopps hour2 %= 10;
995 1.1 chopps
996 1.1 chopps min2 = (hms % 3600) / 60;
997 1.1 chopps min1 = min2 / 10;
998 1.1 chopps min2 %= 10;
999 1.1 chopps
1000 1.1 chopps
1001 1.1 chopps sec2 = (hms % 3600) % 60;
1002 1.1 chopps sec1 = sec2 / 10;
1003 1.1 chopps sec2 %= 10;
1004 1.1 chopps
1005 1.1 chopps /* Number of years in days */
1006 1.1 chopps for (i = STARTOFTIME - 1900; day >= days_in_year(i); i++)
1007 1.1 chopps day -= days_in_year(i);
1008 1.1 chopps year1 = i / 10;
1009 1.1 chopps year2 = i % 10;
1010 1.1 chopps
1011 1.1 chopps /* Number of months in days left */
1012 1.1 chopps if (leapyear(i))
1013 1.1 chopps days_in_month(FEBRUARY) = 29;
1014 1.1 chopps for (i = 1; day >= days_in_month(i); i++)
1015 1.1 chopps day -= days_in_month(i);
1016 1.1 chopps days_in_month(FEBRUARY) = 28;
1017 1.1 chopps
1018 1.1 chopps mon1 = i / 10;
1019 1.1 chopps mon2 = i % 10;
1020 1.1 chopps
1021 1.1 chopps /* Days are what is left over (+1) from all that. */
1022 1.1 chopps day ++;
1023 1.1 chopps day1 = day / 10;
1024 1.1 chopps day2 = day % 10;
1025 1.1 chopps
1026 1.1 chopps /*
1027 1.1 chopps * XXXX spin wait as with reading???
1028 1.1 chopps */
1029 1.10 chopps rt->control1 |= A2CONTROL1_HOLD;
1030 1.1 chopps rt->second1 = sec1;
1031 1.1 chopps rt->second2 = sec2;
1032 1.1 chopps rt->minute1 = min1;
1033 1.1 chopps rt->minute2 = min2;
1034 1.1 chopps rt->hour1 = hour1;
1035 1.1 chopps rt->hour2 = hour2;
1036 1.1 chopps rt->day1 = day1;
1037 1.1 chopps rt->day2 = day2;
1038 1.1 chopps rt->month1 = mon1;
1039 1.1 chopps rt->month2 = mon2;
1040 1.1 chopps rt->year1 = year1;
1041 1.1 chopps rt->year2 = year2;
1042 1.10 chopps rt->control2 &= ~A2CONTROL1_HOLD;
1043 1.1 chopps
1044 1.1 chopps return 1;
1045 1.1 chopps }
1046