clock.c revision 1.26 1 1.26 veego /* $NetBSD: clock.c,v 1.26 1997/05/25 22:11:48 veego Exp $ */
2 1.6 cgd
3 1.1 chopps /*
4 1.1 chopps * Copyright (c) 1988 University of Utah.
5 1.1 chopps * Copyright (c) 1982, 1990 The Regents of the University of California.
6 1.1 chopps * All rights reserved.
7 1.1 chopps *
8 1.1 chopps * This code is derived from software contributed to Berkeley by
9 1.1 chopps * the Systems Programming Group of the University of Utah Computer
10 1.1 chopps * Science Department.
11 1.1 chopps *
12 1.1 chopps * Redistribution and use in source and binary forms, with or without
13 1.1 chopps * modification, are permitted provided that the following conditions
14 1.1 chopps * are met:
15 1.1 chopps * 1. Redistributions of source code must retain the above copyright
16 1.1 chopps * notice, this list of conditions and the following disclaimer.
17 1.1 chopps * 2. Redistributions in binary form must reproduce the above copyright
18 1.1 chopps * notice, this list of conditions and the following disclaimer in the
19 1.1 chopps * documentation and/or other materials provided with the distribution.
20 1.1 chopps * 3. All advertising materials mentioning features or use of this software
21 1.1 chopps * must display the following acknowledgement:
22 1.1 chopps * This product includes software developed by the University of
23 1.1 chopps * California, Berkeley and its contributors.
24 1.1 chopps * 4. Neither the name of the University nor the names of its contributors
25 1.1 chopps * may be used to endorse or promote products derived from this software
26 1.1 chopps * without specific prior written permission.
27 1.1 chopps *
28 1.1 chopps * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
29 1.1 chopps * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
30 1.1 chopps * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
31 1.1 chopps * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
32 1.1 chopps * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
33 1.1 chopps * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
34 1.1 chopps * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
35 1.1 chopps * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
36 1.1 chopps * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
37 1.1 chopps * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
38 1.1 chopps * SUCH DAMAGE.
39 1.1 chopps *
40 1.1 chopps * from: Utah $Hdr: clock.c 1.18 91/01/21$
41 1.1 chopps *
42 1.1 chopps * @(#)clock.c 7.6 (Berkeley) 5/7/91
43 1.1 chopps */
44 1.1 chopps
45 1.1 chopps #include <sys/param.h>
46 1.1 chopps #include <sys/kernel.h>
47 1.1 chopps #include <sys/device.h>
48 1.13 veego #include <sys/systm.h>
49 1.1 chopps #include <machine/psl.h>
50 1.1 chopps #include <machine/cpu.h>
51 1.1 chopps #include <amiga/amiga/device.h>
52 1.1 chopps #include <amiga/amiga/custom.h>
53 1.1 chopps #include <amiga/amiga/cia.h>
54 1.14 is #ifdef DRACO
55 1.14 is #include <amiga/amiga/drcustom.h>
56 1.14 is #endif
57 1.1 chopps #include <amiga/dev/rtc.h>
58 1.8 chopps #include <amiga/dev/zbusvar.h>
59 1.1 chopps
60 1.26 veego #include <dev/clock_subr.h>
61 1.26 veego
62 1.1 chopps #if defined(PROF) && defined(PROFTIMER)
63 1.1 chopps #include <sys/PROF.h>
64 1.1 chopps #endif
65 1.1 chopps
66 1.1 chopps /* the clocks run at NTSC: 715.909kHz or PAL: 709.379kHz.
67 1.1 chopps We're using a 100 Hz clock. */
68 1.1 chopps
69 1.1 chopps #define CLK_INTERVAL amiga_clk_interval
70 1.4 chopps int amiga_clk_interval;
71 1.4 chopps int eclockfreq;
72 1.14 is struct CIA *clockcia;
73 1.4 chopps
74 1.1 chopps /*
75 1.1 chopps * Machine-dependent clock routines.
76 1.1 chopps *
77 1.1 chopps * Startrtclock restarts the real-time clock, which provides
78 1.1 chopps * hardclock interrupts to kern_clock.c.
79 1.1 chopps *
80 1.1 chopps * Inittodr initializes the time of day hardware which provides
81 1.1 chopps * date functions.
82 1.1 chopps *
83 1.1 chopps * Resettodr restores the time of day hardware after a time change.
84 1.1 chopps *
85 1.1 chopps * A note on the real-time clock:
86 1.1 chopps * We actually load the clock with CLK_INTERVAL-1 instead of CLK_INTERVAL.
87 1.1 chopps * This is because the counter decrements to zero after N+1 enabled clock
88 1.1 chopps * periods where N is the value loaded into the counter.
89 1.1 chopps */
90 1.1 chopps
91 1.24 veego int clockmatch __P((struct device *, struct cfdata *, void *));
92 1.1 chopps void clockattach __P((struct device *, struct device *, void *));
93 1.13 veego void cpu_initclocks __P((void));
94 1.23 is void calibrate_delay __P((struct device *));
95 1.1 chopps
96 1.11 thorpej struct cfattach clock_ca = {
97 1.11 thorpej sizeof(struct device), clockmatch, clockattach
98 1.11 thorpej };
99 1.11 thorpej
100 1.11 thorpej struct cfdriver clock_cd = {
101 1.11 thorpej NULL, "clock", DV_DULL, NULL, 0 };
102 1.1 chopps
103 1.1 chopps int
104 1.24 veego clockmatch(pdp, cfp, auxp)
105 1.1 chopps struct device *pdp;
106 1.24 veego struct cfdata *cfp;
107 1.24 veego void *auxp;
108 1.1 chopps {
109 1.18 is if (matchname("clock", auxp))
110 1.1 chopps return(1);
111 1.1 chopps return(0);
112 1.1 chopps }
113 1.1 chopps
114 1.1 chopps /*
115 1.1 chopps * Start the real-time clock.
116 1.1 chopps */
117 1.1 chopps void
118 1.1 chopps clockattach(pdp, dp, auxp)
119 1.1 chopps struct device *pdp, *dp;
120 1.1 chopps void *auxp;
121 1.1 chopps {
122 1.18 is char *clockchip;
123 1.1 chopps unsigned short interval;
124 1.18 is #ifdef DRACO
125 1.18 is u_char dracorev;
126 1.18 is #endif
127 1.1 chopps
128 1.4 chopps if (eclockfreq == 0)
129 1.4 chopps eclockfreq = 715909; /* guess NTSC */
130 1.4 chopps
131 1.4 chopps CLK_INTERVAL = (eclockfreq / 100);
132 1.4 chopps
133 1.14 is #ifdef DRACO
134 1.18 is dracorev = is_draco();
135 1.18 is if (dracorev >= 4) {
136 1.18 is CLK_INTERVAL = (eclockfreq / 700);
137 1.18 is clockchip = "QuickLogic";
138 1.18 is } else if (dracorev) {
139 1.14 is clockcia = (struct CIA *)CIAAbase;
140 1.18 is clockchip = "CIA A";
141 1.14 is } else
142 1.14 is #endif
143 1.14 is {
144 1.14 is clockcia = (struct CIA *)CIABbase;
145 1.18 is clockchip = "CIA B";
146 1.14 is }
147 1.14 is
148 1.25 is if (dp)
149 1.23 is printf(": %s system hz %d hardware hz %d\n", clockchip, hz,
150 1.20 mhitch #ifdef DRACO
151 1.18 is dracorev >= 4 ? eclockfreq / 7 : eclockfreq);
152 1.20 mhitch #else
153 1.20 mhitch eclockfreq);
154 1.20 mhitch #endif
155 1.18 is
156 1.18 is #ifdef DRACO
157 1.18 is if (dracorev >= 4) {
158 1.18 is /*
159 1.18 is * can't preload anything beforehand, timer is free_running;
160 1.18 is * but need this for delay calibration.
161 1.18 is */
162 1.18 is
163 1.18 is draco_ioct->io_timerlo = CLK_INTERVAL & 0xff;
164 1.18 is draco_ioct->io_timerhi = CLK_INTERVAL >> 8;
165 1.4 chopps
166 1.25 is calibrate_delay(dp);
167 1.18 is
168 1.18 is return;
169 1.18 is }
170 1.18 is #endif
171 1.1 chopps /*
172 1.1 chopps * stop timer A
173 1.1 chopps */
174 1.14 is clockcia->cra = clockcia->cra & 0xc0;
175 1.14 is clockcia->icr = 1 << 0; /* disable timer A interrupt */
176 1.14 is interval = clockcia->icr; /* and make sure it's clear */
177 1.1 chopps
178 1.1 chopps /*
179 1.1 chopps * load interval into registers.
180 1.1 chopps * the clocks run at NTSC: 715.909kHz or PAL: 709.379kHz
181 1.1 chopps * supprort for PAL WHEN?!?! XXX
182 1.1 chopps */
183 1.1 chopps interval = CLK_INTERVAL - 1;
184 1.1 chopps
185 1.1 chopps /*
186 1.1 chopps * order of setting is important !
187 1.1 chopps */
188 1.14 is clockcia->talo = interval & 0xff;
189 1.14 is clockcia->tahi = interval >> 8;
190 1.18 is /*
191 1.18 is * start timer A in continuous mode
192 1.18 is */
193 1.18 is clockcia->cra = (clockcia->cra & 0xc0) | 1;
194 1.18 is
195 1.25 is calibrate_delay(dp);
196 1.18 is }
197 1.18 is
198 1.18 is /*
199 1.18 is * Calibrate delay loop.
200 1.18 is * We use two iterations because we don't have enough bits to do a factor of
201 1.18 is * 8 with better than 1%.
202 1.18 is *
203 1.18 is * XXX Note that we MUST stay below 1 tick if using clkread(), even for
204 1.18 is * underestimated values of delaydivisor.
205 1.18 is *
206 1.18 is * XXX the "ns" below is only correct for a shift of 10 bits, and even then
207 1.18 is * off by 2.4%
208 1.18 is */
209 1.18 is
210 1.25 is void calibrate_delay(dp)
211 1.25 is struct device *dp;
212 1.18 is {
213 1.18 is unsigned long t1, t2;
214 1.18 is extern u_int32_t delaydivisor;
215 1.18 is /* XXX this should be defined elsewhere */
216 1.18 is
217 1.25 is if (dp)
218 1.23 is printf("Calibrating delay loop... ");
219 1.18 is
220 1.18 is do {
221 1.18 is t1 = clkread();
222 1.18 is delay(1024);
223 1.18 is t2 = clkread();
224 1.18 is } while (t2 <= t1);
225 1.18 is t2 -= t1;
226 1.18 is delaydivisor = (delaydivisor * t2 + 1023) >> 10;
227 1.18 is #ifdef DIAGNOSTIC
228 1.25 is if (dp)
229 1.25 is printf("\ndiff %ld us, new divisor %u/1024 us\n", t2,
230 1.25 is delaydivisor);
231 1.18 is do {
232 1.18 is t1 = clkread();
233 1.18 is delay(1024);
234 1.18 is t2 = clkread();
235 1.18 is } while (t2 <= t1);
236 1.18 is t2 -= t1;
237 1.18 is delaydivisor = (delaydivisor * t2 + 1023) >> 10;
238 1.25 is if (dp)
239 1.25 is printf("diff %ld us, new divisor %u/1024 us\n", t2,
240 1.25 is delaydivisor);
241 1.18 is #endif
242 1.18 is do {
243 1.18 is t1 = clkread();
244 1.18 is delay(1024);
245 1.18 is t2 = clkread();
246 1.18 is } while (t2 <= t1);
247 1.18 is t2 -= t1;
248 1.18 is delaydivisor = (delaydivisor * t2 + 1023) >> 10;
249 1.18 is #ifdef DIAGNOSTIC
250 1.25 is if (dp)
251 1.23 is printf("diff %ld us, new divisor ", t2);
252 1.18 is #endif
253 1.25 is if (dp)
254 1.25 is printf("%u/1024 us\n", delaydivisor);
255 1.1 chopps }
256 1.1 chopps
257 1.1 chopps void
258 1.1 chopps cpu_initclocks()
259 1.1 chopps {
260 1.20 mhitch #ifdef DRACO
261 1.18 is unsigned char dracorev;
262 1.18 is dracorev = is_draco();
263 1.18 is if (dracorev >= 4) {
264 1.18 is draco_ioct->io_timerlo = CLK_INTERVAL & 0xFF;
265 1.18 is draco_ioct->io_timerhi = CLK_INTERVAL >> 8;
266 1.18 is draco_ioct->io_timerrst = 0; /* any value resets */
267 1.18 is draco_ioct->io_status2 |= DRSTAT2_TMRINTENA;
268 1.18 is
269 1.18 is return;
270 1.18 is }
271 1.18 is #endif
272 1.1 chopps /*
273 1.1 chopps * enable interrupts for timer A
274 1.1 chopps */
275 1.14 is clockcia->icr = (1<<7) | (1<<0);
276 1.1 chopps
277 1.1 chopps /*
278 1.1 chopps * start timer A in continuous shot mode
279 1.1 chopps */
280 1.14 is clockcia->cra = (clockcia->cra & 0xc0) | 1;
281 1.1 chopps
282 1.1 chopps /*
283 1.1 chopps * and globally enable interrupts for ciab
284 1.1 chopps */
285 1.14 is #ifdef DRACO
286 1.18 is if (dracorev) /* we use cia a on DraCo */
287 1.14 is *draco_intena |= DRIRQ_INT2;
288 1.14 is else
289 1.14 is #endif
290 1.14 is custom.intena = INTF_SETCLR | INTF_EXTER;
291 1.18 is
292 1.1 chopps }
293 1.1 chopps
294 1.13 veego void
295 1.1 chopps setstatclockrate(hz)
296 1.1 chopps int hz;
297 1.1 chopps {
298 1.1 chopps }
299 1.1 chopps
300 1.1 chopps /*
301 1.1 chopps * Returns number of usec since last recorded clock "tick"
302 1.1 chopps * (i.e. clock interrupt).
303 1.1 chopps */
304 1.13 veego u_long
305 1.1 chopps clkread()
306 1.1 chopps {
307 1.18 is u_int interval;
308 1.1 chopps u_char hi, hi2, lo;
309 1.1 chopps
310 1.14 is #ifdef DRACO
311 1.18 is if (is_draco() >= 4) {
312 1.18 is hi2 = draco_ioct->io_chiprev; /* latch timer */
313 1.18 is hi = draco_ioct->io_timerhi;
314 1.18 is lo = draco_ioct->io_timerlo;
315 1.18 is interval = ((hi<<8) | lo);
316 1.18 is if (interval > CLK_INTERVAL) /* timer underflow */
317 1.18 is interval = 65536 + CLK_INTERVAL - interval;
318 1.18 is else
319 1.18 is interval = CLK_INTERVAL - interval;
320 1.1 chopps
321 1.18 is } else
322 1.14 is #endif
323 1.18 is {
324 1.18 is hi = clockcia->tahi;
325 1.18 is lo = clockcia->talo;
326 1.18 is hi2 = clockcia->tahi;
327 1.18 is if (hi != hi2) {
328 1.18 is lo = clockcia->talo;
329 1.18 is hi = hi2;
330 1.18 is }
331 1.1 chopps
332 1.18 is interval = (CLK_INTERVAL - 1) - ((hi<<8) | lo);
333 1.18 is
334 1.1 chopps /*
335 1.18 is * should read ICR and if there's an int pending, adjust
336 1.18 is * interval. However, since reading ICR clears the interrupt,
337 1.18 is * we'd lose a hardclock int, and this is not tolerable.
338 1.1 chopps */
339 1.1 chopps }
340 1.1 chopps
341 1.18 is return((interval * tick) / CLK_INTERVAL);
342 1.1 chopps }
343 1.1 chopps
344 1.1 chopps #if notyet
345 1.1 chopps
346 1.1 chopps /* implement this later. I'd suggest using both timers in CIA-A, they're
347 1.1 chopps not yet used. */
348 1.1 chopps
349 1.1 chopps #include "clock.h"
350 1.1 chopps #if NCLOCK > 0
351 1.1 chopps /*
352 1.1 chopps * /dev/clock: mappable high resolution timer.
353 1.1 chopps *
354 1.1 chopps * This code implements a 32-bit recycling counter (with a 4 usec period)
355 1.1 chopps * using timers 2 & 3 on the 6840 clock chip. The counter can be mapped
356 1.1 chopps * RO into a user's address space to achieve low overhead (no system calls),
357 1.1 chopps * high-precision timing.
358 1.1 chopps *
359 1.1 chopps * Note that timer 3 is also used for the high precision profiling timer
360 1.1 chopps * (PROFTIMER code above). Care should be taken when both uses are
361 1.1 chopps * configured as only a token effort is made to avoid conflicting use.
362 1.1 chopps */
363 1.1 chopps #include <sys/proc.h>
364 1.1 chopps #include <sys/resourcevar.h>
365 1.1 chopps #include <sys/ioctl.h>
366 1.1 chopps #include <sys/malloc.h>
367 1.1 chopps #include <vm/vm.h>
368 1.1 chopps #include <amiga/amiga/clockioctl.h>
369 1.1 chopps #include <sys/specdev.h>
370 1.1 chopps #include <sys/vnode.h>
371 1.1 chopps #include <sys/mman.h>
372 1.1 chopps
373 1.1 chopps int clockon = 0; /* non-zero if high-res timer enabled */
374 1.1 chopps #ifdef PROFTIMER
375 1.1 chopps int profprocs = 0; /* # of procs using profiling timer */
376 1.1 chopps #endif
377 1.1 chopps #ifdef DEBUG
378 1.1 chopps int clockdebug = 0;
379 1.1 chopps #endif
380 1.1 chopps
381 1.1 chopps /*ARGSUSED*/
382 1.1 chopps clockopen(dev, flags)
383 1.1 chopps dev_t dev;
384 1.1 chopps {
385 1.1 chopps #ifdef PROFTIMER
386 1.1 chopps #ifdef PROF
387 1.1 chopps /*
388 1.1 chopps * Kernel profiling enabled, give up.
389 1.1 chopps */
390 1.1 chopps if (profiling)
391 1.1 chopps return(EBUSY);
392 1.1 chopps #endif
393 1.1 chopps /*
394 1.1 chopps * If any user processes are profiling, give up.
395 1.1 chopps */
396 1.1 chopps if (profprocs)
397 1.1 chopps return(EBUSY);
398 1.1 chopps #endif
399 1.1 chopps if (!clockon) {
400 1.1 chopps startclock();
401 1.1 chopps clockon++;
402 1.1 chopps }
403 1.1 chopps return(0);
404 1.1 chopps }
405 1.1 chopps
406 1.1 chopps /*ARGSUSED*/
407 1.1 chopps clockclose(dev, flags)
408 1.1 chopps dev_t dev;
409 1.1 chopps {
410 1.1 chopps (void) clockunmmap(dev, (caddr_t)0, curproc); /* XXX */
411 1.1 chopps stopclock();
412 1.1 chopps clockon = 0;
413 1.1 chopps return(0);
414 1.1 chopps }
415 1.1 chopps
416 1.1 chopps /*ARGSUSED*/
417 1.1 chopps clockioctl(dev, cmd, data, flag, p)
418 1.1 chopps dev_t dev;
419 1.7 chopps u_long cmd;
420 1.1 chopps caddr_t data;
421 1.1 chopps struct proc *p;
422 1.1 chopps {
423 1.1 chopps int error = 0;
424 1.1 chopps
425 1.1 chopps switch (cmd) {
426 1.1 chopps
427 1.1 chopps case CLOCKMAP:
428 1.1 chopps error = clockmmap(dev, (caddr_t *)data, p);
429 1.1 chopps break;
430 1.1 chopps
431 1.1 chopps case CLOCKUNMAP:
432 1.1 chopps error = clockunmmap(dev, *(caddr_t *)data, p);
433 1.1 chopps break;
434 1.1 chopps
435 1.1 chopps case CLOCKGETRES:
436 1.1 chopps *(int *)data = CLK_RESOLUTION;
437 1.1 chopps break;
438 1.1 chopps
439 1.1 chopps default:
440 1.1 chopps error = EINVAL;
441 1.1 chopps break;
442 1.1 chopps }
443 1.1 chopps return(error);
444 1.1 chopps }
445 1.1 chopps
446 1.1 chopps /*ARGSUSED*/
447 1.1 chopps clockmap(dev, off, prot)
448 1.1 chopps dev_t dev;
449 1.1 chopps {
450 1.1 chopps return((off + (INTIOBASE+CLKBASE+CLKSR-1)) >> PGSHIFT);
451 1.1 chopps }
452 1.1 chopps
453 1.1 chopps clockmmap(dev, addrp, p)
454 1.1 chopps dev_t dev;
455 1.1 chopps caddr_t *addrp;
456 1.1 chopps struct proc *p;
457 1.1 chopps {
458 1.1 chopps int error;
459 1.1 chopps struct vnode vn;
460 1.1 chopps struct specinfo si;
461 1.1 chopps int flags;
462 1.1 chopps
463 1.1 chopps flags = MAP_FILE|MAP_SHARED;
464 1.1 chopps if (*addrp)
465 1.1 chopps flags |= MAP_FIXED;
466 1.1 chopps else
467 1.1 chopps *addrp = (caddr_t)0x1000000; /* XXX */
468 1.1 chopps vn.v_type = VCHR; /* XXX */
469 1.1 chopps vn.v_specinfo = &si; /* XXX */
470 1.1 chopps vn.v_rdev = dev; /* XXX */
471 1.1 chopps error = vm_mmap(&p->p_vmspace->vm_map, (vm_offset_t *)addrp,
472 1.1 chopps PAGE_SIZE, VM_PROT_ALL, flags, (caddr_t)&vn, 0);
473 1.1 chopps return(error);
474 1.1 chopps }
475 1.1 chopps
476 1.1 chopps clockunmmap(dev, addr, p)
477 1.1 chopps dev_t dev;
478 1.1 chopps caddr_t addr;
479 1.1 chopps struct proc *p;
480 1.1 chopps {
481 1.1 chopps int rv;
482 1.1 chopps
483 1.1 chopps if (addr == 0)
484 1.1 chopps return(EINVAL); /* XXX: how do we deal with this? */
485 1.1 chopps rv = vm_deallocate(p->p_vmspace->vm_map, (vm_offset_t)addr, PAGE_SIZE);
486 1.1 chopps return(rv == KERN_SUCCESS ? 0 : EINVAL);
487 1.1 chopps }
488 1.1 chopps
489 1.1 chopps startclock()
490 1.1 chopps {
491 1.1 chopps register struct clkreg *clk = (struct clkreg *)clkstd[0];
492 1.1 chopps
493 1.1 chopps clk->clk_msb2 = -1; clk->clk_lsb2 = -1;
494 1.1 chopps clk->clk_msb3 = -1; clk->clk_lsb3 = -1;
495 1.1 chopps
496 1.1 chopps clk->clk_cr2 = CLK_CR3;
497 1.1 chopps clk->clk_cr3 = CLK_OENAB|CLK_8BIT;
498 1.1 chopps clk->clk_cr2 = CLK_CR1;
499 1.1 chopps clk->clk_cr1 = CLK_IENAB;
500 1.1 chopps }
501 1.1 chopps
502 1.1 chopps stopclock()
503 1.1 chopps {
504 1.1 chopps register struct clkreg *clk = (struct clkreg *)clkstd[0];
505 1.1 chopps
506 1.1 chopps clk->clk_cr2 = CLK_CR3;
507 1.1 chopps clk->clk_cr3 = 0;
508 1.1 chopps clk->clk_cr2 = CLK_CR1;
509 1.1 chopps clk->clk_cr1 = CLK_IENAB;
510 1.1 chopps }
511 1.1 chopps #endif
512 1.1 chopps
513 1.1 chopps #endif
514 1.1 chopps
515 1.1 chopps
516 1.1 chopps #ifdef PROFTIMER
517 1.1 chopps /*
518 1.1 chopps * This code allows the amiga kernel to use one of the extra timers on
519 1.1 chopps * the clock chip for profiling, instead of the regular system timer.
520 1.1 chopps * The advantage of this is that the profiling timer can be turned up to
521 1.1 chopps * a higher interrupt rate, giving finer resolution timing. The profclock
522 1.1 chopps * routine is called from the lev6intr in locore, and is a specialized
523 1.1 chopps * routine that calls addupc. The overhead then is far less than if
524 1.1 chopps * hardclock/softclock was called. Further, the context switch code in
525 1.1 chopps * locore has been changed to turn the profile clock on/off when switching
526 1.1 chopps * into/out of a process that is profiling (startprofclock/stopprofclock).
527 1.1 chopps * This reduces the impact of the profiling clock on other users, and might
528 1.1 chopps * possibly increase the accuracy of the profiling.
529 1.1 chopps */
530 1.1 chopps int profint = PRF_INTERVAL; /* Clock ticks between interrupts */
531 1.1 chopps int profscale = 0; /* Scale factor from sys clock to prof clock */
532 1.1 chopps char profon = 0; /* Is profiling clock on? */
533 1.1 chopps
534 1.1 chopps /* profon values - do not change, locore.s assumes these values */
535 1.1 chopps #define PRF_NONE 0x00
536 1.1 chopps #define PRF_USER 0x01
537 1.1 chopps #define PRF_KERNEL 0x80
538 1.1 chopps
539 1.1 chopps initprofclock()
540 1.1 chopps {
541 1.1 chopps #if NCLOCK > 0
542 1.1 chopps struct proc *p = curproc; /* XXX */
543 1.1 chopps
544 1.1 chopps /*
545 1.1 chopps * If the high-res timer is running, force profiling off.
546 1.1 chopps * Unfortunately, this gets reflected back to the user not as
547 1.1 chopps * an error but as a lack of results.
548 1.1 chopps */
549 1.1 chopps if (clockon) {
550 1.1 chopps p->p_stats->p_prof.pr_scale = 0;
551 1.1 chopps return;
552 1.1 chopps }
553 1.1 chopps /*
554 1.1 chopps * Keep track of the number of user processes that are profiling
555 1.1 chopps * by checking the scale value.
556 1.1 chopps *
557 1.1 chopps * XXX: this all assumes that the profiling code is well behaved;
558 1.1 chopps * i.e. profil() is called once per process with pcscale non-zero
559 1.1 chopps * to turn it on, and once with pcscale zero to turn it off.
560 1.1 chopps * Also assumes you don't do any forks or execs. Oh well, there
561 1.1 chopps * is always adb...
562 1.1 chopps */
563 1.1 chopps if (p->p_stats->p_prof.pr_scale)
564 1.1 chopps profprocs++;
565 1.1 chopps else
566 1.1 chopps profprocs--;
567 1.1 chopps #endif
568 1.1 chopps /*
569 1.1 chopps * The profile interrupt interval must be an even divisor
570 1.1 chopps * of the CLK_INTERVAL so that scaling from a system clock
571 1.1 chopps * tick to a profile clock tick is possible using integer math.
572 1.1 chopps */
573 1.1 chopps if (profint > CLK_INTERVAL || (CLK_INTERVAL % profint) != 0)
574 1.1 chopps profint = CLK_INTERVAL;
575 1.1 chopps profscale = CLK_INTERVAL / profint;
576 1.1 chopps }
577 1.1 chopps
578 1.1 chopps startprofclock()
579 1.1 chopps {
580 1.1 chopps unsigned short interval;
581 1.1 chopps
582 1.1 chopps /* stop timer B */
583 1.14 is clockcia->crb = clockcia->crb & 0xc0;
584 1.1 chopps
585 1.1 chopps /* load interval into registers.
586 1.1 chopps the clocks run at NTSC: 715.909kHz or PAL: 709.379kHz */
587 1.1 chopps
588 1.1 chopps interval = profint - 1;
589 1.1 chopps
590 1.1 chopps /* order of setting is important ! */
591 1.14 is clockcia->tblo = interval & 0xff;
592 1.14 is clockcia->tbhi = interval >> 8;
593 1.1 chopps
594 1.1 chopps /* enable interrupts for timer B */
595 1.14 is clockcia->icr = (1<<7) | (1<<1);
596 1.1 chopps
597 1.1 chopps /* start timer B in continuous shot mode */
598 1.14 is clockcia->crb = (clockcia->crb & 0xc0) | 1;
599 1.1 chopps }
600 1.1 chopps
601 1.1 chopps stopprofclock()
602 1.1 chopps {
603 1.1 chopps /* stop timer B */
604 1.14 is clockcia->crb = clockcia->crb & 0xc0;
605 1.1 chopps }
606 1.1 chopps
607 1.1 chopps #ifdef PROF
608 1.1 chopps /*
609 1.1 chopps * profclock() is expanded in line in lev6intr() unless profiling kernel.
610 1.1 chopps * Assumes it is called with clock interrupts blocked.
611 1.1 chopps */
612 1.1 chopps profclock(pc, ps)
613 1.1 chopps caddr_t pc;
614 1.1 chopps int ps;
615 1.1 chopps {
616 1.1 chopps /*
617 1.1 chopps * Came from user mode.
618 1.1 chopps * If this process is being profiled record the tick.
619 1.1 chopps */
620 1.1 chopps if (USERMODE(ps)) {
621 1.1 chopps if (p->p_stats.p_prof.pr_scale)
622 1.1 chopps addupc(pc, &curproc->p_stats.p_prof, 1);
623 1.1 chopps }
624 1.1 chopps /*
625 1.1 chopps * Came from kernel (supervisor) mode.
626 1.1 chopps * If we are profiling the kernel, record the tick.
627 1.1 chopps */
628 1.1 chopps else if (profiling < 2) {
629 1.1 chopps register int s = pc - s_lowpc;
630 1.1 chopps
631 1.1 chopps if (s < s_textsize)
632 1.1 chopps kcount[s / (HISTFRACTION * sizeof (*kcount))]++;
633 1.1 chopps }
634 1.1 chopps /*
635 1.1 chopps * Kernel profiling was on but has been disabled.
636 1.1 chopps * Mark as no longer profiling kernel and if all profiling done,
637 1.1 chopps * disable the clock.
638 1.1 chopps */
639 1.1 chopps if (profiling && (profon & PRF_KERNEL)) {
640 1.1 chopps profon &= ~PRF_KERNEL;
641 1.1 chopps if (profon == PRF_NONE)
642 1.1 chopps stopprofclock();
643 1.1 chopps }
644 1.1 chopps }
645 1.1 chopps #endif
646 1.1 chopps #endif
647 1.1 chopps
648 1.1 chopps /* this is a hook set by a clock driver for the configured realtime clock,
649 1.1 chopps returning plain current unix-time */
650 1.26 veego time_t (*gettod) __P((void));
651 1.26 veego int (*settod) __P((time_t));
652 1.1 chopps void *clockaddr;
653 1.1 chopps
654 1.26 veego time_t a3gettod __P((void));
655 1.26 veego time_t a2gettod __P((void));
656 1.26 veego int a3settod __P((time_t));
657 1.26 veego int a2settod __P((time_t));
658 1.1 chopps int rtcinit __P((void));
659 1.1 chopps
660 1.1 chopps /*
661 1.1 chopps * Initialize the time of day register, based on the time base which is, e.g.
662 1.1 chopps * from a filesystem.
663 1.1 chopps */
664 1.13 veego void
665 1.1 chopps inittodr(base)
666 1.1 chopps time_t base;
667 1.1 chopps {
668 1.26 veego time_t timbuf = base; /* assume no battery clock exists */
669 1.1 chopps
670 1.1 chopps if (gettod == NULL && rtcinit() == 0)
671 1.21 christos printf("WARNING: no battery clock\n");
672 1.1 chopps else
673 1.1 chopps timbuf = gettod();
674 1.26 veego
675 1.1 chopps if (timbuf < base) {
676 1.21 christos printf("WARNING: bad date in battery clock\n");
677 1.1 chopps timbuf = base;
678 1.1 chopps }
679 1.1 chopps
680 1.1 chopps /* Battery clock does not store usec's, so forget about it. */
681 1.1 chopps time.tv_sec = timbuf;
682 1.1 chopps }
683 1.1 chopps
684 1.13 veego void
685 1.1 chopps resettodr()
686 1.1 chopps {
687 1.13 veego if (settod && settod(time.tv_sec) == 0)
688 1.21 christos printf("Cannot set battery backed clock\n");
689 1.1 chopps }
690 1.1 chopps
691 1.1 chopps int
692 1.1 chopps rtcinit()
693 1.1 chopps {
694 1.1 chopps clockaddr = (void *)ztwomap(0xdc0000);
695 1.14 is #ifdef DRACO
696 1.14 is if (is_draco()) {
697 1.14 is /* XXX to be done */
698 1.14 is gettod = (void *)0;
699 1.14 is settod = (void *)0;
700 1.14 is return 0;
701 1.14 is } else
702 1.14 is #endif
703 1.1 chopps if (is_a3000() || is_a4000()) {
704 1.1 chopps if (a3gettod() == 0)
705 1.1 chopps return(0);
706 1.1 chopps gettod = a3gettod;
707 1.1 chopps settod = a3settod;
708 1.1 chopps } else {
709 1.1 chopps if (a2gettod() == 0)
710 1.1 chopps return(0);
711 1.1 chopps gettod = a2gettod;
712 1.1 chopps settod = a2settod;
713 1.1 chopps }
714 1.1 chopps return(1);
715 1.1 chopps }
716 1.1 chopps
717 1.26 veego time_t
718 1.1 chopps a3gettod()
719 1.1 chopps {
720 1.1 chopps struct rtclock3000 *rt;
721 1.26 veego struct clock_ymdhms dt;
722 1.26 veego time_t secs;
723 1.1 chopps
724 1.1 chopps rt = clockaddr;
725 1.1 chopps
726 1.1 chopps /* hold clock */
727 1.1 chopps rt->control1 = A3CONTROL1_HOLD_CLOCK;
728 1.1 chopps
729 1.26 veego /* Copy the info. Careful about the order! */
730 1.26 veego dt.dt_sec = rt->second1 * 10 + rt->second2;
731 1.26 veego dt.dt_min = rt->minute1 * 10 + rt->minute2;
732 1.26 veego dt.dt_hour = rt->hour1 * 10 + rt->hour2;
733 1.26 veego dt.dt_wday = rt->weekday;
734 1.26 veego dt.dt_day = rt->day1 * 10 + rt->day2;
735 1.26 veego dt.dt_mon = rt->month1 * 10 + rt->month2;
736 1.26 veego dt.dt_year = rt->year1 * 10 + rt->year2;
737 1.26 veego
738 1.26 veego dt.dt_year += CLOCK_BASE_YEAR;
739 1.1 chopps
740 1.1 chopps /* let it run again.. */
741 1.1 chopps rt->control1 = A3CONTROL1_FREE_CLOCK;
742 1.1 chopps
743 1.26 veego if ((dt.dt_hour > 23) ||
744 1.26 veego (dt.dt_wday > 6) ||
745 1.26 veego (dt.dt_day > 31) ||
746 1.26 veego (dt.dt_mon > 12) ||
747 1.26 veego (dt.dt_year < STARTOFTIME) || (dt.dt_year > 2036))
748 1.26 veego return (0);
749 1.1 chopps
750 1.26 veego secs = clock_ymdhms_to_secs(&dt);
751 1.26 veego return (secs);
752 1.1 chopps }
753 1.1 chopps
754 1.1 chopps int
755 1.26 veego a3settod(secs)
756 1.26 veego time_t secs;
757 1.1 chopps {
758 1.1 chopps struct rtclock3000 *rt;
759 1.26 veego struct clock_ymdhms dt;
760 1.1 chopps
761 1.1 chopps rt = clockaddr;
762 1.1 chopps /*
763 1.1 chopps * there seem to be problems with the bitfield addressing
764 1.1 chopps * currently used..
765 1.1 chopps */
766 1.10 chopps
767 1.10 chopps if (! rt)
768 1.26 veego return (0);
769 1.1 chopps
770 1.26 veego clock_secs_to_ymdhms(secs, &dt);
771 1.26 veego dt.dt_year -= CLOCK_BASE_YEAR;
772 1.1 chopps
773 1.10 chopps rt->control1 = A3CONTROL1_HOLD_CLOCK;
774 1.26 veego rt->second1 = dt.dt_sec / 10;
775 1.26 veego rt->second2 = dt.dt_sec % 10;
776 1.26 veego rt->minute1 = dt.dt_min / 10;
777 1.26 veego rt->minute2 = dt.dt_min % 10;
778 1.26 veego rt->hour1 = dt.dt_hour / 10;
779 1.26 veego rt->hour2 = dt.dt_hour % 10;
780 1.26 veego rt->weekday = dt.dt_wday;
781 1.26 veego rt->day1 = dt.dt_day / 10;
782 1.26 veego rt->day2 = dt.dt_day % 10;
783 1.26 veego rt->month1 = dt.dt_mon / 10;
784 1.26 veego rt->month2 = dt.dt_mon % 10;
785 1.26 veego rt->year1 = dt.dt_year / 10;
786 1.26 veego rt->year2 = dt.dt_year % 10;
787 1.10 chopps rt->control1 = A3CONTROL1_FREE_CLOCK;
788 1.1 chopps
789 1.26 veego return (1);
790 1.1 chopps }
791 1.1 chopps
792 1.26 veego time_t
793 1.1 chopps a2gettod()
794 1.1 chopps {
795 1.1 chopps struct rtclock2000 *rt;
796 1.26 veego struct clock_ymdhms dt;
797 1.26 veego time_t secs;
798 1.26 veego int i;
799 1.1 chopps
800 1.1 chopps rt = clockaddr;
801 1.1 chopps
802 1.1 chopps /*
803 1.1 chopps * hold clock
804 1.1 chopps */
805 1.1 chopps rt->control1 |= A2CONTROL1_HOLD;
806 1.9 chopps i = 0x1000;
807 1.9 chopps while (rt->control1 & A2CONTROL1_BUSY && i--)
808 1.1 chopps ;
809 1.9 chopps if (rt->control1 & A2CONTROL1_BUSY)
810 1.9 chopps return (0); /* Give up and say it's not there */
811 1.1 chopps
812 1.26 veego /* Copy the info. Careful about the order! */
813 1.26 veego dt.dt_sec = rt->second1 * 10 + rt->second2;
814 1.26 veego dt.dt_min = rt->minute1 * 10 + rt->minute2;
815 1.26 veego dt.dt_hour = (rt->hour1 & 3) * 10 + rt->hour2;
816 1.26 veego dt.dt_day = rt->day1 * 10 + rt->day2;
817 1.26 veego dt.dt_mon = rt->month1 * 10 + rt->month2;
818 1.26 veego dt.dt_year = rt->year1 * 10 + rt->year2;
819 1.26 veego dt.dt_wday = rt->weekday;
820 1.26 veego
821 1.1 chopps /*
822 1.26 veego * The oki clock chip has a register to put the clock into
823 1.26 veego * 12/24h mode.
824 1.26 veego *
825 1.26 veego * clockmode | A2HOUR1_PM
826 1.26 veego * 24h 12h | am = 0, pm = 1
827 1.26 veego * ---------------------------------
828 1.26 veego * 0 12 | 0
829 1.26 veego * 1 1 | 0
830 1.26 veego * .. .. | 0
831 1.26 veego * 11 11 | 0
832 1.26 veego * 12 12 | 1
833 1.26 veego * 13 1 | 1
834 1.26 veego * .. .. | 1
835 1.26 veego * 23 11 | 1
836 1.26 veego *
837 1.1 chopps */
838 1.1 chopps
839 1.1 chopps if ((rt->control3 & A2CONTROL3_24HMODE) == 0) {
840 1.26 veego if ((rt->hour1 & A2HOUR1_PM) == 0 && dt.dt_hour == 12)
841 1.26 veego dt.dt_hour = 0;
842 1.26 veego else if ((rt->hour1 & A2HOUR1_PM) && dt.dt_hour != 12)
843 1.26 veego dt.dt_hour += 12;
844 1.1 chopps }
845 1.1 chopps
846 1.1 chopps /*
847 1.1 chopps * release the clock
848 1.1 chopps */
849 1.1 chopps rt->control1 &= ~A2CONTROL1_HOLD;
850 1.1 chopps
851 1.26 veego dt.dt_year += CLOCK_BASE_YEAR;
852 1.26 veego
853 1.26 veego if ((dt.dt_hour > 23) ||
854 1.26 veego (dt.dt_day > 31) ||
855 1.26 veego (dt.dt_mon > 12) ||
856 1.26 veego (dt.dt_year < STARTOFTIME) || (dt.dt_year > 2036))
857 1.26 veego return (0);
858 1.1 chopps
859 1.26 veego secs = clock_ymdhms_to_secs(&dt);
860 1.26 veego return (secs);
861 1.1 chopps }
862 1.1 chopps
863 1.1 chopps int
864 1.26 veego a2settod(secs)
865 1.26 veego time_t secs;
866 1.1 chopps {
867 1.1 chopps struct rtclock2000 *rt;
868 1.26 veego struct clock_ymdhms dt;
869 1.26 veego int ampm, i;
870 1.1 chopps
871 1.1 chopps rt = clockaddr;
872 1.1 chopps /*
873 1.1 chopps * there seem to be problems with the bitfield addressing
874 1.1 chopps * currently used..
875 1.1 chopps */
876 1.1 chopps if (! rt)
877 1.26 veego return (0);
878 1.26 veego
879 1.26 veego clock_secs_to_ymdhms(secs, &dt);
880 1.26 veego dt.dt_year -= CLOCK_BASE_YEAR;
881 1.1 chopps
882 1.26 veego /*
883 1.26 veego * hold clock
884 1.26 veego */
885 1.26 veego rt->control1 |= A2CONTROL1_HOLD;
886 1.26 veego i = 0x1000;
887 1.26 veego while (rt->control1 & A2CONTROL1_BUSY && i--)
888 1.26 veego ;
889 1.26 veego if (rt->control1 & A2CONTROL1_BUSY)
890 1.26 veego return (0); /* Give up and say it's not there */
891 1.1 chopps
892 1.26 veego ampm = 0;
893 1.26 veego if ((rt->control3 & A2CONTROL3_24HMODE) == 0) {
894 1.26 veego if (dt.dt_hour >= 12) {
895 1.26 veego ampm = A2HOUR1_PM;
896 1.26 veego if (dt.dt_hour != 12)
897 1.26 veego dt.dt_hour -= 12;
898 1.26 veego } else if (dt.dt_hour == 0) {
899 1.26 veego dt.dt_hour = 12;
900 1.26 veego }
901 1.26 veego }
902 1.26 veego rt->hour1 = (dt.dt_hour / 10) | ampm;
903 1.26 veego rt->hour2 = dt.dt_hour % 10;
904 1.26 veego rt->second1 = dt.dt_sec / 10;
905 1.26 veego rt->second2 = dt.dt_sec % 10;
906 1.26 veego rt->minute1 = dt.dt_min / 10;
907 1.26 veego rt->minute2 = dt.dt_min % 10;
908 1.26 veego rt->day1 = dt.dt_day / 10;
909 1.26 veego rt->day2 = dt.dt_day % 10;
910 1.26 veego rt->month1 = dt.dt_mon / 10;
911 1.26 veego rt->month2 = dt.dt_mon % 10;
912 1.26 veego rt->year1 = dt.dt_year / 10;
913 1.26 veego rt->year2 = dt.dt_year % 10;
914 1.26 veego rt->weekday = dt.dt_wday;
915 1.1 chopps
916 1.1 chopps /*
917 1.26 veego * release the clock
918 1.1 chopps */
919 1.10 chopps rt->control2 &= ~A2CONTROL1_HOLD;
920 1.1 chopps
921 1.26 veego return (1);
922 1.1 chopps }
923