clock.c revision 1.27 1 1.27 is /* $NetBSD: clock.c,v 1.27 1997/07/06 22:27:19 is Exp $ */
2 1.6 cgd
3 1.1 chopps /*
4 1.1 chopps * Copyright (c) 1988 University of Utah.
5 1.1 chopps * Copyright (c) 1982, 1990 The Regents of the University of California.
6 1.1 chopps * All rights reserved.
7 1.1 chopps *
8 1.1 chopps * This code is derived from software contributed to Berkeley by
9 1.1 chopps * the Systems Programming Group of the University of Utah Computer
10 1.1 chopps * Science Department.
11 1.1 chopps *
12 1.1 chopps * Redistribution and use in source and binary forms, with or without
13 1.1 chopps * modification, are permitted provided that the following conditions
14 1.1 chopps * are met:
15 1.1 chopps * 1. Redistributions of source code must retain the above copyright
16 1.1 chopps * notice, this list of conditions and the following disclaimer.
17 1.1 chopps * 2. Redistributions in binary form must reproduce the above copyright
18 1.1 chopps * notice, this list of conditions and the following disclaimer in the
19 1.1 chopps * documentation and/or other materials provided with the distribution.
20 1.1 chopps * 3. All advertising materials mentioning features or use of this software
21 1.1 chopps * must display the following acknowledgement:
22 1.1 chopps * This product includes software developed by the University of
23 1.1 chopps * California, Berkeley and its contributors.
24 1.1 chopps * 4. Neither the name of the University nor the names of its contributors
25 1.1 chopps * may be used to endorse or promote products derived from this software
26 1.1 chopps * without specific prior written permission.
27 1.1 chopps *
28 1.1 chopps * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
29 1.1 chopps * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
30 1.1 chopps * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
31 1.1 chopps * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
32 1.1 chopps * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
33 1.1 chopps * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
34 1.1 chopps * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
35 1.1 chopps * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
36 1.1 chopps * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
37 1.1 chopps * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
38 1.1 chopps * SUCH DAMAGE.
39 1.1 chopps *
40 1.1 chopps * from: Utah $Hdr: clock.c 1.18 91/01/21$
41 1.1 chopps *
42 1.1 chopps * @(#)clock.c 7.6 (Berkeley) 5/7/91
43 1.1 chopps */
44 1.1 chopps
45 1.1 chopps #include <sys/param.h>
46 1.1 chopps #include <sys/kernel.h>
47 1.1 chopps #include <sys/device.h>
48 1.13 veego #include <sys/systm.h>
49 1.1 chopps #include <machine/psl.h>
50 1.1 chopps #include <machine/cpu.h>
51 1.1 chopps #include <amiga/amiga/device.h>
52 1.1 chopps #include <amiga/amiga/custom.h>
53 1.1 chopps #include <amiga/amiga/cia.h>
54 1.14 is #ifdef DRACO
55 1.27 is #include <dev/ic/ds.h>
56 1.14 is #include <amiga/amiga/drcustom.h>
57 1.14 is #endif
58 1.1 chopps #include <amiga/dev/rtc.h>
59 1.8 chopps #include <amiga/dev/zbusvar.h>
60 1.1 chopps
61 1.26 veego #include <dev/clock_subr.h>
62 1.26 veego
63 1.1 chopps #if defined(PROF) && defined(PROFTIMER)
64 1.1 chopps #include <sys/PROF.h>
65 1.1 chopps #endif
66 1.1 chopps
67 1.1 chopps /* the clocks run at NTSC: 715.909kHz or PAL: 709.379kHz.
68 1.1 chopps We're using a 100 Hz clock. */
69 1.1 chopps
70 1.1 chopps #define CLK_INTERVAL amiga_clk_interval
71 1.4 chopps int amiga_clk_interval;
72 1.4 chopps int eclockfreq;
73 1.14 is struct CIA *clockcia;
74 1.4 chopps
75 1.1 chopps /*
76 1.1 chopps * Machine-dependent clock routines.
77 1.1 chopps *
78 1.1 chopps * Startrtclock restarts the real-time clock, which provides
79 1.1 chopps * hardclock interrupts to kern_clock.c.
80 1.1 chopps *
81 1.1 chopps * Inittodr initializes the time of day hardware which provides
82 1.1 chopps * date functions.
83 1.1 chopps *
84 1.1 chopps * Resettodr restores the time of day hardware after a time change.
85 1.1 chopps *
86 1.1 chopps * A note on the real-time clock:
87 1.1 chopps * We actually load the clock with CLK_INTERVAL-1 instead of CLK_INTERVAL.
88 1.1 chopps * This is because the counter decrements to zero after N+1 enabled clock
89 1.1 chopps * periods where N is the value loaded into the counter.
90 1.1 chopps */
91 1.1 chopps
92 1.24 veego int clockmatch __P((struct device *, struct cfdata *, void *));
93 1.1 chopps void clockattach __P((struct device *, struct device *, void *));
94 1.13 veego void cpu_initclocks __P((void));
95 1.23 is void calibrate_delay __P((struct device *));
96 1.1 chopps
97 1.11 thorpej struct cfattach clock_ca = {
98 1.11 thorpej sizeof(struct device), clockmatch, clockattach
99 1.11 thorpej };
100 1.11 thorpej
101 1.11 thorpej struct cfdriver clock_cd = {
102 1.11 thorpej NULL, "clock", DV_DULL, NULL, 0 };
103 1.1 chopps
104 1.1 chopps int
105 1.24 veego clockmatch(pdp, cfp, auxp)
106 1.1 chopps struct device *pdp;
107 1.24 veego struct cfdata *cfp;
108 1.24 veego void *auxp;
109 1.1 chopps {
110 1.18 is if (matchname("clock", auxp))
111 1.1 chopps return(1);
112 1.1 chopps return(0);
113 1.1 chopps }
114 1.1 chopps
115 1.1 chopps /*
116 1.1 chopps * Start the real-time clock.
117 1.1 chopps */
118 1.1 chopps void
119 1.1 chopps clockattach(pdp, dp, auxp)
120 1.1 chopps struct device *pdp, *dp;
121 1.1 chopps void *auxp;
122 1.1 chopps {
123 1.18 is char *clockchip;
124 1.1 chopps unsigned short interval;
125 1.18 is #ifdef DRACO
126 1.18 is u_char dracorev;
127 1.18 is #endif
128 1.1 chopps
129 1.4 chopps if (eclockfreq == 0)
130 1.4 chopps eclockfreq = 715909; /* guess NTSC */
131 1.4 chopps
132 1.4 chopps CLK_INTERVAL = (eclockfreq / 100);
133 1.4 chopps
134 1.14 is #ifdef DRACO
135 1.18 is dracorev = is_draco();
136 1.18 is if (dracorev >= 4) {
137 1.18 is CLK_INTERVAL = (eclockfreq / 700);
138 1.18 is clockchip = "QuickLogic";
139 1.18 is } else if (dracorev) {
140 1.14 is clockcia = (struct CIA *)CIAAbase;
141 1.18 is clockchip = "CIA A";
142 1.14 is } else
143 1.14 is #endif
144 1.14 is {
145 1.14 is clockcia = (struct CIA *)CIABbase;
146 1.18 is clockchip = "CIA B";
147 1.14 is }
148 1.14 is
149 1.25 is if (dp)
150 1.23 is printf(": %s system hz %d hardware hz %d\n", clockchip, hz,
151 1.20 mhitch #ifdef DRACO
152 1.18 is dracorev >= 4 ? eclockfreq / 7 : eclockfreq);
153 1.20 mhitch #else
154 1.20 mhitch eclockfreq);
155 1.20 mhitch #endif
156 1.18 is
157 1.18 is #ifdef DRACO
158 1.18 is if (dracorev >= 4) {
159 1.18 is /*
160 1.18 is * can't preload anything beforehand, timer is free_running;
161 1.18 is * but need this for delay calibration.
162 1.18 is */
163 1.18 is
164 1.18 is draco_ioct->io_timerlo = CLK_INTERVAL & 0xff;
165 1.18 is draco_ioct->io_timerhi = CLK_INTERVAL >> 8;
166 1.4 chopps
167 1.25 is calibrate_delay(dp);
168 1.18 is
169 1.18 is return;
170 1.18 is }
171 1.18 is #endif
172 1.1 chopps /*
173 1.1 chopps * stop timer A
174 1.1 chopps */
175 1.14 is clockcia->cra = clockcia->cra & 0xc0;
176 1.14 is clockcia->icr = 1 << 0; /* disable timer A interrupt */
177 1.14 is interval = clockcia->icr; /* and make sure it's clear */
178 1.1 chopps
179 1.1 chopps /*
180 1.1 chopps * load interval into registers.
181 1.1 chopps * the clocks run at NTSC: 715.909kHz or PAL: 709.379kHz
182 1.1 chopps * supprort for PAL WHEN?!?! XXX
183 1.1 chopps */
184 1.1 chopps interval = CLK_INTERVAL - 1;
185 1.1 chopps
186 1.1 chopps /*
187 1.1 chopps * order of setting is important !
188 1.1 chopps */
189 1.14 is clockcia->talo = interval & 0xff;
190 1.14 is clockcia->tahi = interval >> 8;
191 1.18 is /*
192 1.18 is * start timer A in continuous mode
193 1.18 is */
194 1.18 is clockcia->cra = (clockcia->cra & 0xc0) | 1;
195 1.18 is
196 1.25 is calibrate_delay(dp);
197 1.18 is }
198 1.18 is
199 1.18 is /*
200 1.18 is * Calibrate delay loop.
201 1.18 is * We use two iterations because we don't have enough bits to do a factor of
202 1.18 is * 8 with better than 1%.
203 1.18 is *
204 1.18 is * XXX Note that we MUST stay below 1 tick if using clkread(), even for
205 1.18 is * underestimated values of delaydivisor.
206 1.18 is *
207 1.18 is * XXX the "ns" below is only correct for a shift of 10 bits, and even then
208 1.18 is * off by 2.4%
209 1.18 is */
210 1.18 is
211 1.25 is void calibrate_delay(dp)
212 1.25 is struct device *dp;
213 1.18 is {
214 1.18 is unsigned long t1, t2;
215 1.18 is extern u_int32_t delaydivisor;
216 1.18 is /* XXX this should be defined elsewhere */
217 1.18 is
218 1.25 is if (dp)
219 1.23 is printf("Calibrating delay loop... ");
220 1.18 is
221 1.18 is do {
222 1.18 is t1 = clkread();
223 1.18 is delay(1024);
224 1.18 is t2 = clkread();
225 1.18 is } while (t2 <= t1);
226 1.18 is t2 -= t1;
227 1.18 is delaydivisor = (delaydivisor * t2 + 1023) >> 10;
228 1.18 is #ifdef DIAGNOSTIC
229 1.25 is if (dp)
230 1.25 is printf("\ndiff %ld us, new divisor %u/1024 us\n", t2,
231 1.25 is delaydivisor);
232 1.18 is do {
233 1.18 is t1 = clkread();
234 1.18 is delay(1024);
235 1.18 is t2 = clkread();
236 1.18 is } while (t2 <= t1);
237 1.18 is t2 -= t1;
238 1.18 is delaydivisor = (delaydivisor * t2 + 1023) >> 10;
239 1.25 is if (dp)
240 1.25 is printf("diff %ld us, new divisor %u/1024 us\n", t2,
241 1.25 is delaydivisor);
242 1.18 is #endif
243 1.18 is do {
244 1.18 is t1 = clkread();
245 1.18 is delay(1024);
246 1.18 is t2 = clkread();
247 1.18 is } while (t2 <= t1);
248 1.18 is t2 -= t1;
249 1.18 is delaydivisor = (delaydivisor * t2 + 1023) >> 10;
250 1.18 is #ifdef DIAGNOSTIC
251 1.25 is if (dp)
252 1.23 is printf("diff %ld us, new divisor ", t2);
253 1.18 is #endif
254 1.25 is if (dp)
255 1.25 is printf("%u/1024 us\n", delaydivisor);
256 1.1 chopps }
257 1.1 chopps
258 1.1 chopps void
259 1.1 chopps cpu_initclocks()
260 1.1 chopps {
261 1.20 mhitch #ifdef DRACO
262 1.18 is unsigned char dracorev;
263 1.18 is dracorev = is_draco();
264 1.18 is if (dracorev >= 4) {
265 1.18 is draco_ioct->io_timerlo = CLK_INTERVAL & 0xFF;
266 1.18 is draco_ioct->io_timerhi = CLK_INTERVAL >> 8;
267 1.18 is draco_ioct->io_timerrst = 0; /* any value resets */
268 1.18 is draco_ioct->io_status2 |= DRSTAT2_TMRINTENA;
269 1.18 is
270 1.18 is return;
271 1.18 is }
272 1.18 is #endif
273 1.1 chopps /*
274 1.1 chopps * enable interrupts for timer A
275 1.1 chopps */
276 1.14 is clockcia->icr = (1<<7) | (1<<0);
277 1.1 chopps
278 1.1 chopps /*
279 1.1 chopps * start timer A in continuous shot mode
280 1.1 chopps */
281 1.14 is clockcia->cra = (clockcia->cra & 0xc0) | 1;
282 1.1 chopps
283 1.1 chopps /*
284 1.1 chopps * and globally enable interrupts for ciab
285 1.1 chopps */
286 1.14 is #ifdef DRACO
287 1.18 is if (dracorev) /* we use cia a on DraCo */
288 1.14 is *draco_intena |= DRIRQ_INT2;
289 1.14 is else
290 1.14 is #endif
291 1.14 is custom.intena = INTF_SETCLR | INTF_EXTER;
292 1.18 is
293 1.1 chopps }
294 1.1 chopps
295 1.13 veego void
296 1.1 chopps setstatclockrate(hz)
297 1.1 chopps int hz;
298 1.1 chopps {
299 1.1 chopps }
300 1.1 chopps
301 1.1 chopps /*
302 1.1 chopps * Returns number of usec since last recorded clock "tick"
303 1.1 chopps * (i.e. clock interrupt).
304 1.1 chopps */
305 1.13 veego u_long
306 1.1 chopps clkread()
307 1.1 chopps {
308 1.18 is u_int interval;
309 1.1 chopps u_char hi, hi2, lo;
310 1.1 chopps
311 1.14 is #ifdef DRACO
312 1.18 is if (is_draco() >= 4) {
313 1.18 is hi2 = draco_ioct->io_chiprev; /* latch timer */
314 1.18 is hi = draco_ioct->io_timerhi;
315 1.18 is lo = draco_ioct->io_timerlo;
316 1.18 is interval = ((hi<<8) | lo);
317 1.18 is if (interval > CLK_INTERVAL) /* timer underflow */
318 1.18 is interval = 65536 + CLK_INTERVAL - interval;
319 1.18 is else
320 1.18 is interval = CLK_INTERVAL - interval;
321 1.1 chopps
322 1.18 is } else
323 1.14 is #endif
324 1.18 is {
325 1.18 is hi = clockcia->tahi;
326 1.18 is lo = clockcia->talo;
327 1.18 is hi2 = clockcia->tahi;
328 1.18 is if (hi != hi2) {
329 1.18 is lo = clockcia->talo;
330 1.18 is hi = hi2;
331 1.18 is }
332 1.1 chopps
333 1.18 is interval = (CLK_INTERVAL - 1) - ((hi<<8) | lo);
334 1.18 is
335 1.1 chopps /*
336 1.18 is * should read ICR and if there's an int pending, adjust
337 1.18 is * interval. However, since reading ICR clears the interrupt,
338 1.18 is * we'd lose a hardclock int, and this is not tolerable.
339 1.1 chopps */
340 1.1 chopps }
341 1.1 chopps
342 1.18 is return((interval * tick) / CLK_INTERVAL);
343 1.1 chopps }
344 1.1 chopps
345 1.1 chopps #if notyet
346 1.1 chopps
347 1.1 chopps /* implement this later. I'd suggest using both timers in CIA-A, they're
348 1.1 chopps not yet used. */
349 1.1 chopps
350 1.1 chopps #include "clock.h"
351 1.1 chopps #if NCLOCK > 0
352 1.1 chopps /*
353 1.1 chopps * /dev/clock: mappable high resolution timer.
354 1.1 chopps *
355 1.1 chopps * This code implements a 32-bit recycling counter (with a 4 usec period)
356 1.1 chopps * using timers 2 & 3 on the 6840 clock chip. The counter can be mapped
357 1.1 chopps * RO into a user's address space to achieve low overhead (no system calls),
358 1.1 chopps * high-precision timing.
359 1.1 chopps *
360 1.1 chopps * Note that timer 3 is also used for the high precision profiling timer
361 1.1 chopps * (PROFTIMER code above). Care should be taken when both uses are
362 1.1 chopps * configured as only a token effort is made to avoid conflicting use.
363 1.1 chopps */
364 1.1 chopps #include <sys/proc.h>
365 1.1 chopps #include <sys/resourcevar.h>
366 1.1 chopps #include <sys/ioctl.h>
367 1.1 chopps #include <sys/malloc.h>
368 1.1 chopps #include <vm/vm.h>
369 1.1 chopps #include <amiga/amiga/clockioctl.h>
370 1.1 chopps #include <sys/specdev.h>
371 1.1 chopps #include <sys/vnode.h>
372 1.1 chopps #include <sys/mman.h>
373 1.1 chopps
374 1.1 chopps int clockon = 0; /* non-zero if high-res timer enabled */
375 1.1 chopps #ifdef PROFTIMER
376 1.1 chopps int profprocs = 0; /* # of procs using profiling timer */
377 1.1 chopps #endif
378 1.1 chopps #ifdef DEBUG
379 1.1 chopps int clockdebug = 0;
380 1.1 chopps #endif
381 1.1 chopps
382 1.1 chopps /*ARGSUSED*/
383 1.1 chopps clockopen(dev, flags)
384 1.1 chopps dev_t dev;
385 1.1 chopps {
386 1.1 chopps #ifdef PROFTIMER
387 1.1 chopps #ifdef PROF
388 1.1 chopps /*
389 1.1 chopps * Kernel profiling enabled, give up.
390 1.1 chopps */
391 1.1 chopps if (profiling)
392 1.1 chopps return(EBUSY);
393 1.1 chopps #endif
394 1.1 chopps /*
395 1.1 chopps * If any user processes are profiling, give up.
396 1.1 chopps */
397 1.1 chopps if (profprocs)
398 1.1 chopps return(EBUSY);
399 1.1 chopps #endif
400 1.1 chopps if (!clockon) {
401 1.1 chopps startclock();
402 1.1 chopps clockon++;
403 1.1 chopps }
404 1.1 chopps return(0);
405 1.1 chopps }
406 1.1 chopps
407 1.1 chopps /*ARGSUSED*/
408 1.1 chopps clockclose(dev, flags)
409 1.1 chopps dev_t dev;
410 1.1 chopps {
411 1.1 chopps (void) clockunmmap(dev, (caddr_t)0, curproc); /* XXX */
412 1.1 chopps stopclock();
413 1.1 chopps clockon = 0;
414 1.1 chopps return(0);
415 1.1 chopps }
416 1.1 chopps
417 1.1 chopps /*ARGSUSED*/
418 1.1 chopps clockioctl(dev, cmd, data, flag, p)
419 1.1 chopps dev_t dev;
420 1.7 chopps u_long cmd;
421 1.1 chopps caddr_t data;
422 1.1 chopps struct proc *p;
423 1.1 chopps {
424 1.1 chopps int error = 0;
425 1.1 chopps
426 1.1 chopps switch (cmd) {
427 1.1 chopps
428 1.1 chopps case CLOCKMAP:
429 1.1 chopps error = clockmmap(dev, (caddr_t *)data, p);
430 1.1 chopps break;
431 1.1 chopps
432 1.1 chopps case CLOCKUNMAP:
433 1.1 chopps error = clockunmmap(dev, *(caddr_t *)data, p);
434 1.1 chopps break;
435 1.1 chopps
436 1.1 chopps case CLOCKGETRES:
437 1.1 chopps *(int *)data = CLK_RESOLUTION;
438 1.1 chopps break;
439 1.1 chopps
440 1.1 chopps default:
441 1.1 chopps error = EINVAL;
442 1.1 chopps break;
443 1.1 chopps }
444 1.1 chopps return(error);
445 1.1 chopps }
446 1.1 chopps
447 1.1 chopps /*ARGSUSED*/
448 1.1 chopps clockmap(dev, off, prot)
449 1.1 chopps dev_t dev;
450 1.1 chopps {
451 1.1 chopps return((off + (INTIOBASE+CLKBASE+CLKSR-1)) >> PGSHIFT);
452 1.1 chopps }
453 1.1 chopps
454 1.1 chopps clockmmap(dev, addrp, p)
455 1.1 chopps dev_t dev;
456 1.1 chopps caddr_t *addrp;
457 1.1 chopps struct proc *p;
458 1.1 chopps {
459 1.1 chopps int error;
460 1.1 chopps struct vnode vn;
461 1.1 chopps struct specinfo si;
462 1.1 chopps int flags;
463 1.1 chopps
464 1.1 chopps flags = MAP_FILE|MAP_SHARED;
465 1.1 chopps if (*addrp)
466 1.1 chopps flags |= MAP_FIXED;
467 1.1 chopps else
468 1.1 chopps *addrp = (caddr_t)0x1000000; /* XXX */
469 1.1 chopps vn.v_type = VCHR; /* XXX */
470 1.1 chopps vn.v_specinfo = &si; /* XXX */
471 1.1 chopps vn.v_rdev = dev; /* XXX */
472 1.1 chopps error = vm_mmap(&p->p_vmspace->vm_map, (vm_offset_t *)addrp,
473 1.1 chopps PAGE_SIZE, VM_PROT_ALL, flags, (caddr_t)&vn, 0);
474 1.1 chopps return(error);
475 1.1 chopps }
476 1.1 chopps
477 1.1 chopps clockunmmap(dev, addr, p)
478 1.1 chopps dev_t dev;
479 1.1 chopps caddr_t addr;
480 1.1 chopps struct proc *p;
481 1.1 chopps {
482 1.1 chopps int rv;
483 1.1 chopps
484 1.1 chopps if (addr == 0)
485 1.1 chopps return(EINVAL); /* XXX: how do we deal with this? */
486 1.1 chopps rv = vm_deallocate(p->p_vmspace->vm_map, (vm_offset_t)addr, PAGE_SIZE);
487 1.1 chopps return(rv == KERN_SUCCESS ? 0 : EINVAL);
488 1.1 chopps }
489 1.1 chopps
490 1.1 chopps startclock()
491 1.1 chopps {
492 1.1 chopps register struct clkreg *clk = (struct clkreg *)clkstd[0];
493 1.1 chopps
494 1.1 chopps clk->clk_msb2 = -1; clk->clk_lsb2 = -1;
495 1.1 chopps clk->clk_msb3 = -1; clk->clk_lsb3 = -1;
496 1.1 chopps
497 1.1 chopps clk->clk_cr2 = CLK_CR3;
498 1.1 chopps clk->clk_cr3 = CLK_OENAB|CLK_8BIT;
499 1.1 chopps clk->clk_cr2 = CLK_CR1;
500 1.1 chopps clk->clk_cr1 = CLK_IENAB;
501 1.1 chopps }
502 1.1 chopps
503 1.1 chopps stopclock()
504 1.1 chopps {
505 1.1 chopps register struct clkreg *clk = (struct clkreg *)clkstd[0];
506 1.1 chopps
507 1.1 chopps clk->clk_cr2 = CLK_CR3;
508 1.1 chopps clk->clk_cr3 = 0;
509 1.1 chopps clk->clk_cr2 = CLK_CR1;
510 1.1 chopps clk->clk_cr1 = CLK_IENAB;
511 1.1 chopps }
512 1.1 chopps #endif
513 1.1 chopps
514 1.1 chopps #endif
515 1.1 chopps
516 1.1 chopps
517 1.1 chopps #ifdef PROFTIMER
518 1.1 chopps /*
519 1.1 chopps * This code allows the amiga kernel to use one of the extra timers on
520 1.1 chopps * the clock chip for profiling, instead of the regular system timer.
521 1.1 chopps * The advantage of this is that the profiling timer can be turned up to
522 1.1 chopps * a higher interrupt rate, giving finer resolution timing. The profclock
523 1.1 chopps * routine is called from the lev6intr in locore, and is a specialized
524 1.1 chopps * routine that calls addupc. The overhead then is far less than if
525 1.1 chopps * hardclock/softclock was called. Further, the context switch code in
526 1.1 chopps * locore has been changed to turn the profile clock on/off when switching
527 1.1 chopps * into/out of a process that is profiling (startprofclock/stopprofclock).
528 1.1 chopps * This reduces the impact of the profiling clock on other users, and might
529 1.1 chopps * possibly increase the accuracy of the profiling.
530 1.1 chopps */
531 1.1 chopps int profint = PRF_INTERVAL; /* Clock ticks between interrupts */
532 1.1 chopps int profscale = 0; /* Scale factor from sys clock to prof clock */
533 1.1 chopps char profon = 0; /* Is profiling clock on? */
534 1.1 chopps
535 1.1 chopps /* profon values - do not change, locore.s assumes these values */
536 1.1 chopps #define PRF_NONE 0x00
537 1.1 chopps #define PRF_USER 0x01
538 1.1 chopps #define PRF_KERNEL 0x80
539 1.1 chopps
540 1.1 chopps initprofclock()
541 1.1 chopps {
542 1.1 chopps #if NCLOCK > 0
543 1.1 chopps struct proc *p = curproc; /* XXX */
544 1.1 chopps
545 1.1 chopps /*
546 1.1 chopps * If the high-res timer is running, force profiling off.
547 1.1 chopps * Unfortunately, this gets reflected back to the user not as
548 1.1 chopps * an error but as a lack of results.
549 1.1 chopps */
550 1.1 chopps if (clockon) {
551 1.1 chopps p->p_stats->p_prof.pr_scale = 0;
552 1.1 chopps return;
553 1.1 chopps }
554 1.1 chopps /*
555 1.1 chopps * Keep track of the number of user processes that are profiling
556 1.1 chopps * by checking the scale value.
557 1.1 chopps *
558 1.1 chopps * XXX: this all assumes that the profiling code is well behaved;
559 1.1 chopps * i.e. profil() is called once per process with pcscale non-zero
560 1.1 chopps * to turn it on, and once with pcscale zero to turn it off.
561 1.1 chopps * Also assumes you don't do any forks or execs. Oh well, there
562 1.1 chopps * is always adb...
563 1.1 chopps */
564 1.1 chopps if (p->p_stats->p_prof.pr_scale)
565 1.1 chopps profprocs++;
566 1.1 chopps else
567 1.1 chopps profprocs--;
568 1.1 chopps #endif
569 1.1 chopps /*
570 1.1 chopps * The profile interrupt interval must be an even divisor
571 1.1 chopps * of the CLK_INTERVAL so that scaling from a system clock
572 1.1 chopps * tick to a profile clock tick is possible using integer math.
573 1.1 chopps */
574 1.1 chopps if (profint > CLK_INTERVAL || (CLK_INTERVAL % profint) != 0)
575 1.1 chopps profint = CLK_INTERVAL;
576 1.1 chopps profscale = CLK_INTERVAL / profint;
577 1.1 chopps }
578 1.1 chopps
579 1.1 chopps startprofclock()
580 1.1 chopps {
581 1.1 chopps unsigned short interval;
582 1.1 chopps
583 1.1 chopps /* stop timer B */
584 1.14 is clockcia->crb = clockcia->crb & 0xc0;
585 1.1 chopps
586 1.1 chopps /* load interval into registers.
587 1.1 chopps the clocks run at NTSC: 715.909kHz or PAL: 709.379kHz */
588 1.1 chopps
589 1.1 chopps interval = profint - 1;
590 1.1 chopps
591 1.1 chopps /* order of setting is important ! */
592 1.14 is clockcia->tblo = interval & 0xff;
593 1.14 is clockcia->tbhi = interval >> 8;
594 1.1 chopps
595 1.1 chopps /* enable interrupts for timer B */
596 1.14 is clockcia->icr = (1<<7) | (1<<1);
597 1.1 chopps
598 1.1 chopps /* start timer B in continuous shot mode */
599 1.14 is clockcia->crb = (clockcia->crb & 0xc0) | 1;
600 1.1 chopps }
601 1.1 chopps
602 1.1 chopps stopprofclock()
603 1.1 chopps {
604 1.1 chopps /* stop timer B */
605 1.14 is clockcia->crb = clockcia->crb & 0xc0;
606 1.1 chopps }
607 1.1 chopps
608 1.1 chopps #ifdef PROF
609 1.1 chopps /*
610 1.1 chopps * profclock() is expanded in line in lev6intr() unless profiling kernel.
611 1.1 chopps * Assumes it is called with clock interrupts blocked.
612 1.1 chopps */
613 1.1 chopps profclock(pc, ps)
614 1.1 chopps caddr_t pc;
615 1.1 chopps int ps;
616 1.1 chopps {
617 1.1 chopps /*
618 1.1 chopps * Came from user mode.
619 1.1 chopps * If this process is being profiled record the tick.
620 1.1 chopps */
621 1.1 chopps if (USERMODE(ps)) {
622 1.1 chopps if (p->p_stats.p_prof.pr_scale)
623 1.1 chopps addupc(pc, &curproc->p_stats.p_prof, 1);
624 1.1 chopps }
625 1.1 chopps /*
626 1.1 chopps * Came from kernel (supervisor) mode.
627 1.1 chopps * If we are profiling the kernel, record the tick.
628 1.1 chopps */
629 1.1 chopps else if (profiling < 2) {
630 1.1 chopps register int s = pc - s_lowpc;
631 1.1 chopps
632 1.1 chopps if (s < s_textsize)
633 1.1 chopps kcount[s / (HISTFRACTION * sizeof (*kcount))]++;
634 1.1 chopps }
635 1.1 chopps /*
636 1.1 chopps * Kernel profiling was on but has been disabled.
637 1.1 chopps * Mark as no longer profiling kernel and if all profiling done,
638 1.1 chopps * disable the clock.
639 1.1 chopps */
640 1.1 chopps if (profiling && (profon & PRF_KERNEL)) {
641 1.1 chopps profon &= ~PRF_KERNEL;
642 1.1 chopps if (profon == PRF_NONE)
643 1.1 chopps stopprofclock();
644 1.1 chopps }
645 1.1 chopps }
646 1.1 chopps #endif
647 1.1 chopps #endif
648 1.1 chopps
649 1.1 chopps /* this is a hook set by a clock driver for the configured realtime clock,
650 1.1 chopps returning plain current unix-time */
651 1.26 veego time_t (*gettod) __P((void));
652 1.26 veego int (*settod) __P((time_t));
653 1.1 chopps void *clockaddr;
654 1.1 chopps
655 1.26 veego time_t a3gettod __P((void));
656 1.26 veego time_t a2gettod __P((void));
657 1.26 veego int a3settod __P((time_t));
658 1.26 veego int a2settod __P((time_t));
659 1.27 is
660 1.27 is #ifdef DRACO
661 1.27 is int draco_ds_read_bit __P((void *));
662 1.27 is void draco_ds_write_bit __P((void *, int));
663 1.27 is void draco_ds_reset __P((void *));
664 1.27 is
665 1.27 is time_t dracogettod __P((void));
666 1.27 is
667 1.27 is #ifdef __NOTYET__
668 1.27 is int dracosettod __P((time_t));
669 1.27 is #endif
670 1.27 is #endif
671 1.27 is
672 1.1 chopps int rtcinit __P((void));
673 1.1 chopps
674 1.1 chopps /*
675 1.1 chopps * Initialize the time of day register, based on the time base which is, e.g.
676 1.1 chopps * from a filesystem.
677 1.1 chopps */
678 1.13 veego void
679 1.1 chopps inittodr(base)
680 1.1 chopps time_t base;
681 1.1 chopps {
682 1.26 veego time_t timbuf = base; /* assume no battery clock exists */
683 1.1 chopps
684 1.1 chopps if (gettod == NULL && rtcinit() == 0)
685 1.21 christos printf("WARNING: no battery clock\n");
686 1.1 chopps else
687 1.1 chopps timbuf = gettod();
688 1.26 veego
689 1.1 chopps if (timbuf < base) {
690 1.21 christos printf("WARNING: bad date in battery clock\n");
691 1.1 chopps timbuf = base;
692 1.1 chopps }
693 1.1 chopps
694 1.1 chopps /* Battery clock does not store usec's, so forget about it. */
695 1.1 chopps time.tv_sec = timbuf;
696 1.1 chopps }
697 1.1 chopps
698 1.13 veego void
699 1.1 chopps resettodr()
700 1.1 chopps {
701 1.13 veego if (settod && settod(time.tv_sec) == 0)
702 1.21 christos printf("Cannot set battery backed clock\n");
703 1.1 chopps }
704 1.1 chopps
705 1.1 chopps int
706 1.1 chopps rtcinit()
707 1.1 chopps {
708 1.1 chopps clockaddr = (void *)ztwomap(0xdc0000);
709 1.14 is #ifdef DRACO
710 1.14 is if (is_draco()) {
711 1.14 is /* XXX to be done */
712 1.27 is gettod = dracogettod;
713 1.14 is settod = (void *)0;
714 1.14 is } else
715 1.14 is #endif
716 1.1 chopps if (is_a3000() || is_a4000()) {
717 1.1 chopps if (a3gettod() == 0)
718 1.1 chopps return(0);
719 1.1 chopps gettod = a3gettod;
720 1.1 chopps settod = a3settod;
721 1.1 chopps } else {
722 1.1 chopps if (a2gettod() == 0)
723 1.1 chopps return(0);
724 1.1 chopps gettod = a2gettod;
725 1.1 chopps settod = a2settod;
726 1.1 chopps }
727 1.1 chopps return(1);
728 1.1 chopps }
729 1.1 chopps
730 1.26 veego time_t
731 1.1 chopps a3gettod()
732 1.1 chopps {
733 1.1 chopps struct rtclock3000 *rt;
734 1.26 veego struct clock_ymdhms dt;
735 1.26 veego time_t secs;
736 1.1 chopps
737 1.1 chopps rt = clockaddr;
738 1.1 chopps
739 1.1 chopps /* hold clock */
740 1.1 chopps rt->control1 = A3CONTROL1_HOLD_CLOCK;
741 1.1 chopps
742 1.26 veego /* Copy the info. Careful about the order! */
743 1.26 veego dt.dt_sec = rt->second1 * 10 + rt->second2;
744 1.26 veego dt.dt_min = rt->minute1 * 10 + rt->minute2;
745 1.26 veego dt.dt_hour = rt->hour1 * 10 + rt->hour2;
746 1.26 veego dt.dt_wday = rt->weekday;
747 1.26 veego dt.dt_day = rt->day1 * 10 + rt->day2;
748 1.26 veego dt.dt_mon = rt->month1 * 10 + rt->month2;
749 1.26 veego dt.dt_year = rt->year1 * 10 + rt->year2;
750 1.26 veego
751 1.26 veego dt.dt_year += CLOCK_BASE_YEAR;
752 1.1 chopps
753 1.1 chopps /* let it run again.. */
754 1.1 chopps rt->control1 = A3CONTROL1_FREE_CLOCK;
755 1.1 chopps
756 1.26 veego if ((dt.dt_hour > 23) ||
757 1.26 veego (dt.dt_wday > 6) ||
758 1.26 veego (dt.dt_day > 31) ||
759 1.26 veego (dt.dt_mon > 12) ||
760 1.26 veego (dt.dt_year < STARTOFTIME) || (dt.dt_year > 2036))
761 1.26 veego return (0);
762 1.1 chopps
763 1.26 veego secs = clock_ymdhms_to_secs(&dt);
764 1.26 veego return (secs);
765 1.1 chopps }
766 1.1 chopps
767 1.1 chopps int
768 1.26 veego a3settod(secs)
769 1.26 veego time_t secs;
770 1.1 chopps {
771 1.1 chopps struct rtclock3000 *rt;
772 1.26 veego struct clock_ymdhms dt;
773 1.1 chopps
774 1.1 chopps rt = clockaddr;
775 1.1 chopps /*
776 1.1 chopps * there seem to be problems with the bitfield addressing
777 1.1 chopps * currently used..
778 1.1 chopps */
779 1.10 chopps
780 1.10 chopps if (! rt)
781 1.26 veego return (0);
782 1.1 chopps
783 1.26 veego clock_secs_to_ymdhms(secs, &dt);
784 1.26 veego dt.dt_year -= CLOCK_BASE_YEAR;
785 1.1 chopps
786 1.10 chopps rt->control1 = A3CONTROL1_HOLD_CLOCK;
787 1.26 veego rt->second1 = dt.dt_sec / 10;
788 1.26 veego rt->second2 = dt.dt_sec % 10;
789 1.26 veego rt->minute1 = dt.dt_min / 10;
790 1.26 veego rt->minute2 = dt.dt_min % 10;
791 1.26 veego rt->hour1 = dt.dt_hour / 10;
792 1.26 veego rt->hour2 = dt.dt_hour % 10;
793 1.26 veego rt->weekday = dt.dt_wday;
794 1.26 veego rt->day1 = dt.dt_day / 10;
795 1.26 veego rt->day2 = dt.dt_day % 10;
796 1.26 veego rt->month1 = dt.dt_mon / 10;
797 1.26 veego rt->month2 = dt.dt_mon % 10;
798 1.26 veego rt->year1 = dt.dt_year / 10;
799 1.26 veego rt->year2 = dt.dt_year % 10;
800 1.10 chopps rt->control1 = A3CONTROL1_FREE_CLOCK;
801 1.1 chopps
802 1.26 veego return (1);
803 1.1 chopps }
804 1.1 chopps
805 1.26 veego time_t
806 1.1 chopps a2gettod()
807 1.1 chopps {
808 1.1 chopps struct rtclock2000 *rt;
809 1.26 veego struct clock_ymdhms dt;
810 1.26 veego time_t secs;
811 1.26 veego int i;
812 1.1 chopps
813 1.1 chopps rt = clockaddr;
814 1.1 chopps
815 1.1 chopps /*
816 1.1 chopps * hold clock
817 1.1 chopps */
818 1.1 chopps rt->control1 |= A2CONTROL1_HOLD;
819 1.9 chopps i = 0x1000;
820 1.9 chopps while (rt->control1 & A2CONTROL1_BUSY && i--)
821 1.1 chopps ;
822 1.9 chopps if (rt->control1 & A2CONTROL1_BUSY)
823 1.9 chopps return (0); /* Give up and say it's not there */
824 1.1 chopps
825 1.26 veego /* Copy the info. Careful about the order! */
826 1.26 veego dt.dt_sec = rt->second1 * 10 + rt->second2;
827 1.26 veego dt.dt_min = rt->minute1 * 10 + rt->minute2;
828 1.26 veego dt.dt_hour = (rt->hour1 & 3) * 10 + rt->hour2;
829 1.26 veego dt.dt_day = rt->day1 * 10 + rt->day2;
830 1.26 veego dt.dt_mon = rt->month1 * 10 + rt->month2;
831 1.26 veego dt.dt_year = rt->year1 * 10 + rt->year2;
832 1.26 veego dt.dt_wday = rt->weekday;
833 1.26 veego
834 1.1 chopps /*
835 1.26 veego * The oki clock chip has a register to put the clock into
836 1.26 veego * 12/24h mode.
837 1.26 veego *
838 1.26 veego * clockmode | A2HOUR1_PM
839 1.26 veego * 24h 12h | am = 0, pm = 1
840 1.26 veego * ---------------------------------
841 1.26 veego * 0 12 | 0
842 1.26 veego * 1 1 | 0
843 1.26 veego * .. .. | 0
844 1.26 veego * 11 11 | 0
845 1.26 veego * 12 12 | 1
846 1.26 veego * 13 1 | 1
847 1.26 veego * .. .. | 1
848 1.26 veego * 23 11 | 1
849 1.26 veego *
850 1.1 chopps */
851 1.1 chopps
852 1.1 chopps if ((rt->control3 & A2CONTROL3_24HMODE) == 0) {
853 1.26 veego if ((rt->hour1 & A2HOUR1_PM) == 0 && dt.dt_hour == 12)
854 1.26 veego dt.dt_hour = 0;
855 1.26 veego else if ((rt->hour1 & A2HOUR1_PM) && dt.dt_hour != 12)
856 1.26 veego dt.dt_hour += 12;
857 1.1 chopps }
858 1.1 chopps
859 1.1 chopps /*
860 1.1 chopps * release the clock
861 1.1 chopps */
862 1.1 chopps rt->control1 &= ~A2CONTROL1_HOLD;
863 1.1 chopps
864 1.26 veego dt.dt_year += CLOCK_BASE_YEAR;
865 1.26 veego
866 1.26 veego if ((dt.dt_hour > 23) ||
867 1.26 veego (dt.dt_day > 31) ||
868 1.26 veego (dt.dt_mon > 12) ||
869 1.26 veego (dt.dt_year < STARTOFTIME) || (dt.dt_year > 2036))
870 1.26 veego return (0);
871 1.1 chopps
872 1.26 veego secs = clock_ymdhms_to_secs(&dt);
873 1.26 veego return (secs);
874 1.1 chopps }
875 1.1 chopps
876 1.1 chopps int
877 1.26 veego a2settod(secs)
878 1.26 veego time_t secs;
879 1.1 chopps {
880 1.1 chopps struct rtclock2000 *rt;
881 1.26 veego struct clock_ymdhms dt;
882 1.26 veego int ampm, i;
883 1.1 chopps
884 1.1 chopps rt = clockaddr;
885 1.1 chopps /*
886 1.1 chopps * there seem to be problems with the bitfield addressing
887 1.1 chopps * currently used..
888 1.1 chopps */
889 1.1 chopps if (! rt)
890 1.26 veego return (0);
891 1.26 veego
892 1.26 veego clock_secs_to_ymdhms(secs, &dt);
893 1.26 veego dt.dt_year -= CLOCK_BASE_YEAR;
894 1.1 chopps
895 1.26 veego /*
896 1.26 veego * hold clock
897 1.26 veego */
898 1.26 veego rt->control1 |= A2CONTROL1_HOLD;
899 1.26 veego i = 0x1000;
900 1.26 veego while (rt->control1 & A2CONTROL1_BUSY && i--)
901 1.26 veego ;
902 1.26 veego if (rt->control1 & A2CONTROL1_BUSY)
903 1.26 veego return (0); /* Give up and say it's not there */
904 1.1 chopps
905 1.26 veego ampm = 0;
906 1.26 veego if ((rt->control3 & A2CONTROL3_24HMODE) == 0) {
907 1.26 veego if (dt.dt_hour >= 12) {
908 1.26 veego ampm = A2HOUR1_PM;
909 1.26 veego if (dt.dt_hour != 12)
910 1.26 veego dt.dt_hour -= 12;
911 1.26 veego } else if (dt.dt_hour == 0) {
912 1.26 veego dt.dt_hour = 12;
913 1.26 veego }
914 1.26 veego }
915 1.26 veego rt->hour1 = (dt.dt_hour / 10) | ampm;
916 1.26 veego rt->hour2 = dt.dt_hour % 10;
917 1.26 veego rt->second1 = dt.dt_sec / 10;
918 1.26 veego rt->second2 = dt.dt_sec % 10;
919 1.26 veego rt->minute1 = dt.dt_min / 10;
920 1.26 veego rt->minute2 = dt.dt_min % 10;
921 1.26 veego rt->day1 = dt.dt_day / 10;
922 1.26 veego rt->day2 = dt.dt_day % 10;
923 1.26 veego rt->month1 = dt.dt_mon / 10;
924 1.26 veego rt->month2 = dt.dt_mon % 10;
925 1.26 veego rt->year1 = dt.dt_year / 10;
926 1.26 veego rt->year2 = dt.dt_year % 10;
927 1.26 veego rt->weekday = dt.dt_wday;
928 1.1 chopps
929 1.1 chopps /*
930 1.26 veego * release the clock
931 1.1 chopps */
932 1.10 chopps rt->control2 &= ~A2CONTROL1_HOLD;
933 1.1 chopps
934 1.26 veego return (1);
935 1.1 chopps }
936 1.27 is
937 1.27 is #ifdef DRACO
938 1.27 is
939 1.27 is
940 1.27 is int
941 1.27 is draco_ds_read_bit(p)
942 1.27 is void *p;
943 1.27 is {
944 1.27 is struct drioct *draco_ioct;
945 1.27 is
946 1.27 is draco_ioct = p;
947 1.27 is
948 1.27 is while (draco_ioct->io_status & DRSTAT_CLKBUSY);
949 1.27 is
950 1.27 is draco_ioct->io_clockw1 = 0;
951 1.27 is
952 1.27 is while (draco_ioct->io_status & DRSTAT_CLKBUSY);
953 1.27 is
954 1.27 is return (draco_ioct->io_status & DRSTAT_CLKDAT);
955 1.27 is }
956 1.27 is
957 1.27 is void
958 1.27 is draco_ds_write_bit(p, b)
959 1.27 is void *p;
960 1.27 is int b;
961 1.27 is {
962 1.27 is struct drioct *draco_ioct;
963 1.27 is
964 1.27 is draco_ioct = p;
965 1.27 is
966 1.27 is while (draco_ioct->io_status & DRSTAT_CLKBUSY);
967 1.27 is
968 1.27 is if (b)
969 1.27 is draco_ioct->io_clockw1 = 0;
970 1.27 is else
971 1.27 is draco_ioct->io_clockw0 = 0;
972 1.27 is }
973 1.27 is
974 1.27 is void
975 1.27 is draco_ds_reset(p)
976 1.27 is void *p;
977 1.27 is {
978 1.27 is struct drioct *draco_ioct;
979 1.27 is
980 1.27 is draco_ioct = p;
981 1.27 is
982 1.27 is draco_ioct->io_clockrst = 0;
983 1.27 is }
984 1.27 is
985 1.27 is /*
986 1.27 is * We could return 1/256 of a seconds, but would need to change the interface
987 1.27 is */
988 1.27 is
989 1.27 is time_t
990 1.27 is dracogettod()
991 1.27 is {
992 1.27 is u_int32_t clkbuf;
993 1.27 is u_int8_t rombuf[8];
994 1.27 is int i;
995 1.27 is struct ds_handle draco_dsh;
996 1.27 is
997 1.27 is draco_dsh.ds_read_bit = draco_ds_read_bit;
998 1.27 is draco_dsh.ds_write_bit = draco_ds_write_bit;
999 1.27 is draco_dsh.ds_reset = draco_ds_reset;
1000 1.27 is draco_dsh.ds_hw_handle = (void *)(DRCCADDR + DRIOCTLPG*NBPG);
1001 1.27 is
1002 1.27 is draco_dsh.ds_reset(draco_dsh.ds_hw_handle);
1003 1.27 is
1004 1.27 is ds_write_byte(&draco_dsh, DS_ROM_READ);
1005 1.27 is for (i=0; i<8; ++i)
1006 1.27 is rombuf[i] = ds_read_byte(&draco_dsh);
1007 1.27 is
1008 1.27 is printf("DraCo RTC: sernum %d (ROM %02x%02x%02x%02x%02x%02x%02x%02x)\n",
1009 1.27 is (rombuf[3] << 24) + (rombuf[2] << 16) +
1010 1.27 is (rombuf[1] << 8) + rombuf[7],
1011 1.27 is rombuf[7], rombuf[6], rombuf[5], rombuf[4],
1012 1.27 is rombuf[3], rombuf[2], rombuf[1], rombuf[0]);
1013 1.27 is
1014 1.27 is
1015 1.27 is ds_write_byte(&draco_dsh, DS_MEM_READ_MEMORY);
1016 1.27 is ds_write_byte(&draco_dsh, 0x03); /* low ads byte of realtime second */
1017 1.27 is ds_write_byte(&draco_dsh, 0x02); /* high ads byte of realtime second */
1018 1.27 is
1019 1.27 is clkbuf = ds_read_byte(&draco_dsh)
1020 1.27 is + (ds_read_byte(&draco_dsh)<<8)
1021 1.27 is + (ds_read_byte(&draco_dsh)<<16)
1022 1.27 is + (ds_read_byte(&draco_dsh)<<24);
1023 1.27 is
1024 1.27 is /* BSD time is wr. 1.1.1970; AmigaOS time wrt. 1.1.1978 */
1025 1.27 is
1026 1.27 is clkbuf += (8*365 + 2) * 86400;
1027 1.27 is
1028 1.27 is return ((time_t)clkbuf);
1029 1.27 is }
1030 1.27 is
1031 1.27 is #endif
1032