clock.c revision 1.4 1 1.1 chopps /*
2 1.1 chopps * Copyright (c) 1988 University of Utah.
3 1.1 chopps * Copyright (c) 1982, 1990 The Regents of the University of California.
4 1.1 chopps * All rights reserved.
5 1.1 chopps *
6 1.1 chopps * This code is derived from software contributed to Berkeley by
7 1.1 chopps * the Systems Programming Group of the University of Utah Computer
8 1.1 chopps * Science Department.
9 1.1 chopps *
10 1.1 chopps * Redistribution and use in source and binary forms, with or without
11 1.1 chopps * modification, are permitted provided that the following conditions
12 1.1 chopps * are met:
13 1.1 chopps * 1. Redistributions of source code must retain the above copyright
14 1.1 chopps * notice, this list of conditions and the following disclaimer.
15 1.1 chopps * 2. Redistributions in binary form must reproduce the above copyright
16 1.1 chopps * notice, this list of conditions and the following disclaimer in the
17 1.1 chopps * documentation and/or other materials provided with the distribution.
18 1.1 chopps * 3. All advertising materials mentioning features or use of this software
19 1.1 chopps * must display the following acknowledgement:
20 1.1 chopps * This product includes software developed by the University of
21 1.1 chopps * California, Berkeley and its contributors.
22 1.1 chopps * 4. Neither the name of the University nor the names of its contributors
23 1.1 chopps * may be used to endorse or promote products derived from this software
24 1.1 chopps * without specific prior written permission.
25 1.1 chopps *
26 1.1 chopps * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
27 1.1 chopps * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
28 1.1 chopps * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
29 1.1 chopps * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
30 1.1 chopps * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
31 1.1 chopps * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
32 1.1 chopps * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
33 1.1 chopps * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
34 1.1 chopps * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
35 1.1 chopps * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
36 1.1 chopps * SUCH DAMAGE.
37 1.1 chopps *
38 1.1 chopps * from: Utah $Hdr: clock.c 1.18 91/01/21$
39 1.1 chopps *
40 1.1 chopps * @(#)clock.c 7.6 (Berkeley) 5/7/91
41 1.4 chopps * $Id: clock.c,v 1.4 1994/06/15 19:05:55 chopps Exp $
42 1.1 chopps */
43 1.1 chopps
44 1.1 chopps #include <sys/param.h>
45 1.1 chopps #include <sys/kernel.h>
46 1.1 chopps #include <sys/device.h>
47 1.1 chopps #include <machine/psl.h>
48 1.1 chopps #include <machine/cpu.h>
49 1.1 chopps #include <amiga/amiga/device.h>
50 1.1 chopps #include <amiga/amiga/custom.h>
51 1.1 chopps #include <amiga/amiga/cia.h>
52 1.1 chopps #include <amiga/dev/rtc.h>
53 1.1 chopps #include <amiga/dev/ztwobusvar.h>
54 1.1 chopps
55 1.1 chopps #if defined(PROF) && defined(PROFTIMER)
56 1.1 chopps #include <sys/PROF.h>
57 1.1 chopps #endif
58 1.1 chopps
59 1.1 chopps /* the clocks run at NTSC: 715.909kHz or PAL: 709.379kHz.
60 1.1 chopps We're using a 100 Hz clock. */
61 1.1 chopps
62 1.1 chopps #define CLK_INTERVAL amiga_clk_interval
63 1.4 chopps int amiga_clk_interval;
64 1.4 chopps int eclockfreq;
65 1.4 chopps
66 1.1 chopps /*
67 1.1 chopps * Machine-dependent clock routines.
68 1.1 chopps *
69 1.1 chopps * Startrtclock restarts the real-time clock, which provides
70 1.1 chopps * hardclock interrupts to kern_clock.c.
71 1.1 chopps *
72 1.1 chopps * Inittodr initializes the time of day hardware which provides
73 1.1 chopps * date functions.
74 1.1 chopps *
75 1.1 chopps * Resettodr restores the time of day hardware after a time change.
76 1.1 chopps *
77 1.1 chopps * A note on the real-time clock:
78 1.1 chopps * We actually load the clock with CLK_INTERVAL-1 instead of CLK_INTERVAL.
79 1.1 chopps * This is because the counter decrements to zero after N+1 enabled clock
80 1.1 chopps * periods where N is the value loaded into the counter.
81 1.1 chopps */
82 1.1 chopps
83 1.1 chopps int clockmatch __P((struct device *, struct cfdata *, void *));
84 1.1 chopps void clockattach __P((struct device *, struct device *, void *));
85 1.1 chopps
86 1.1 chopps struct cfdriver clockcd = {
87 1.1 chopps NULL, "clock", clockmatch, clockattach,
88 1.1 chopps DV_DULL, sizeof(struct device), NULL, 0 };
89 1.1 chopps
90 1.1 chopps int
91 1.1 chopps clockmatch(pdp, cfp, auxp)
92 1.1 chopps struct device *pdp;
93 1.1 chopps struct cfdata *cfp;
94 1.1 chopps void *auxp;
95 1.1 chopps {
96 1.1 chopps if (matchname("clock", auxp))
97 1.1 chopps return(1);
98 1.1 chopps return(0);
99 1.1 chopps }
100 1.1 chopps
101 1.1 chopps /*
102 1.1 chopps * Start the real-time clock.
103 1.1 chopps */
104 1.1 chopps void
105 1.1 chopps clockattach(pdp, dp, auxp)
106 1.1 chopps struct device *pdp, *dp;
107 1.1 chopps void *auxp;
108 1.1 chopps {
109 1.1 chopps unsigned short interval;
110 1.1 chopps
111 1.4 chopps if (eclockfreq == 0)
112 1.4 chopps eclockfreq = 715909; /* guess NTSC */
113 1.4 chopps
114 1.4 chopps CLK_INTERVAL = (eclockfreq / 100);
115 1.4 chopps
116 1.4 chopps printf(": system hz %d hardware hz %d \n", hz, eclockfreq);
117 1.4 chopps
118 1.1 chopps /*
119 1.1 chopps * stop timer A
120 1.1 chopps */
121 1.1 chopps ciab.cra = ciab.cra & 0xc0;
122 1.3 chopps ciab.icr = 1 << 0; /* disable timer A interrupt */
123 1.3 chopps interval = ciab.icr; /* and make sure it's clear */
124 1.1 chopps
125 1.1 chopps /*
126 1.1 chopps * load interval into registers.
127 1.1 chopps * the clocks run at NTSC: 715.909kHz or PAL: 709.379kHz
128 1.1 chopps * supprort for PAL WHEN?!?! XXX
129 1.1 chopps */
130 1.1 chopps interval = CLK_INTERVAL - 1;
131 1.1 chopps
132 1.1 chopps /*
133 1.1 chopps * order of setting is important !
134 1.1 chopps */
135 1.1 chopps ciab.talo = interval & 0xff;
136 1.1 chopps ciab.tahi = interval >> 8;
137 1.1 chopps }
138 1.1 chopps
139 1.1 chopps void
140 1.1 chopps cpu_initclocks()
141 1.1 chopps {
142 1.1 chopps /*
143 1.1 chopps * enable interrupts for timer A
144 1.1 chopps */
145 1.1 chopps ciab.icr = (1<<7) | (1<<0);
146 1.1 chopps
147 1.1 chopps /*
148 1.1 chopps * start timer A in continuous shot mode
149 1.1 chopps */
150 1.1 chopps ciab.cra = (ciab.cra & 0xc0) | 1;
151 1.1 chopps
152 1.1 chopps /*
153 1.1 chopps * and globally enable interrupts for ciab
154 1.1 chopps */
155 1.1 chopps custom.intena = INTF_SETCLR | INTF_EXTER;
156 1.1 chopps }
157 1.1 chopps
158 1.1 chopps setstatclockrate(hz)
159 1.1 chopps int hz;
160 1.1 chopps {
161 1.1 chopps }
162 1.1 chopps
163 1.1 chopps /*
164 1.1 chopps * Returns number of usec since last recorded clock "tick"
165 1.1 chopps * (i.e. clock interrupt).
166 1.1 chopps */
167 1.1 chopps clkread()
168 1.1 chopps {
169 1.1 chopps u_char hi, hi2, lo;
170 1.1 chopps u_int interval;
171 1.1 chopps
172 1.1 chopps hi = ciab.tahi;
173 1.1 chopps lo = ciab.talo;
174 1.1 chopps hi2 = ciab.tahi;
175 1.1 chopps if (hi != hi2) {
176 1.1 chopps lo = ciab.talo;
177 1.1 chopps hi = hi2;
178 1.1 chopps }
179 1.1 chopps
180 1.1 chopps interval = (CLK_INTERVAL - 1) - ((hi<<8) | lo);
181 1.1 chopps
182 1.1 chopps /*
183 1.1 chopps * should read ICR and if there's an int pending, adjust interval.
184 1.1 chopps * However, * since reading ICR clears the interrupt, we'd lose a
185 1.1 chopps * hardclock int, and * this is not tolerable.
186 1.1 chopps */
187 1.1 chopps
188 1.1 chopps return((interval * tick) / CLK_INTERVAL);
189 1.1 chopps }
190 1.1 chopps
191 1.1 chopps u_int micspertick;
192 1.1 chopps
193 1.1 chopps /*
194 1.1 chopps * we set up as much of the CIAa as possible
195 1.1 chopps * as all access to chip memory are very slow.
196 1.1 chopps */
197 1.1 chopps void
198 1.1 chopps setmicspertick()
199 1.1 chopps {
200 1.1 chopps micspertick = (1000000ULL << 20) / 715909;
201 1.1 chopps
202 1.1 chopps /*
203 1.1 chopps * disable interrupts (just in case.)
204 1.1 chopps */
205 1.1 chopps ciaa.icr = 0x3;
206 1.1 chopps
207 1.1 chopps /*
208 1.1 chopps * stop both timers if not already
209 1.1 chopps */
210 1.1 chopps ciaa.cra &= ~1;
211 1.1 chopps ciaa.crb &= ~1;
212 1.1 chopps
213 1.1 chopps /*
214 1.1 chopps * set timer B in "count timer A underflows" mode
215 1.1 chopps * set tiemr A in one-shot mode
216 1.1 chopps */
217 1.1 chopps ciaa.crb = (ciaa.crb & 0x80) | 0x48;
218 1.1 chopps ciaa.cra = (ciaa.cra & 0xc0) | 0x08;
219 1.1 chopps }
220 1.1 chopps
221 1.1 chopps /*
222 1.1 chopps * this function assumes that on any entry beyond the first
223 1.1 chopps * the following condintions exist:
224 1.1 chopps * Interrupts for Timers A and B are disabled.
225 1.1 chopps * Timers A and B are stoped.
226 1.1 chopps * Timers A and B are in one-shot mode with B counting timer A underflows
227 1.1 chopps *
228 1.1 chopps */
229 1.1 chopps void
230 1.1 chopps delay(mic)
231 1.1 chopps int mic;
232 1.1 chopps {
233 1.1 chopps u_int temp;
234 1.1 chopps int s;
235 1.1 chopps
236 1.1 chopps if (micspertick == 0)
237 1.1 chopps setmicspertick();
238 1.1 chopps
239 1.1 chopps if (mic <= 1)
240 1.1 chopps return;
241 1.1 chopps
242 1.1 chopps /*
243 1.1 chopps * basically this is going to do an integer
244 1.1 chopps * usec / (1000000 / 715909) with no loss of
245 1.1 chopps * precision
246 1.1 chopps */
247 1.1 chopps temp = mic >> 12;
248 1.1 chopps asm("divul %3,%1:%0" : "=d" (temp) : "d" (mic >> 12), "0" (mic << 20),
249 1.1 chopps "d" (micspertick));
250 1.1 chopps
251 1.1 chopps if ((temp & 0xffff0000) > 0x10000) {
252 1.1 chopps mic = (temp >> 16) - 1;
253 1.1 chopps temp &= 0xffff;
254 1.1 chopps
255 1.1 chopps /*
256 1.1 chopps * set timer A in continous mode
257 1.1 chopps */
258 1.1 chopps ciaa.cra = (ciaa.cra & 0xc0) | 0x00;
259 1.1 chopps
260 1.1 chopps /*
261 1.1 chopps * latch/load/start "counts of timer A underflows" in B
262 1.1 chopps */
263 1.1 chopps ciaa.tblo = mic & 0xff;
264 1.1 chopps ciaa.tbhi = mic >> 8;
265 1.1 chopps
266 1.1 chopps /*
267 1.1 chopps * timer A latches 0xffff
268 1.1 chopps * and start it.
269 1.1 chopps */
270 1.1 chopps ciaa.talo = 0xff;
271 1.1 chopps ciaa.tahi = 0xff;
272 1.1 chopps ciaa.cra |= 1;
273 1.1 chopps
274 1.1 chopps while (ciaa.crb & 1)
275 1.1 chopps ;
276 1.1 chopps
277 1.1 chopps /*
278 1.1 chopps * stop timer A
279 1.1 chopps */
280 1.1 chopps ciaa.cra &= ~1;
281 1.1 chopps
282 1.1 chopps /*
283 1.1 chopps * set timer A in one shot mode
284 1.1 chopps */
285 1.1 chopps ciaa.cra = (ciaa.cra & 0xc0) | 0x08;
286 1.1 chopps } else if ((temp & 0xffff0000) == 0x10000) {
287 1.1 chopps temp &= 0xffff;
288 1.1 chopps
289 1.1 chopps /*
290 1.1 chopps * timer A is in one shot latch/load/start 1 full turn
291 1.1 chopps */
292 1.1 chopps ciaa.talo = 0xff;
293 1.1 chopps ciaa.tahi = 0xff;
294 1.1 chopps while (ciaa.cra & 1)
295 1.1 chopps ;
296 1.1 chopps }
297 1.1 chopps if (temp < 1)
298 1.1 chopps return;
299 1.1 chopps
300 1.1 chopps /*
301 1.1 chopps * temp is now residual ammount, latch/load/start it.
302 1.1 chopps */
303 1.1 chopps ciaa.talo = temp & 0xff;
304 1.1 chopps ciaa.tahi = temp >> 8;
305 1.1 chopps while (ciaa.cra & 1)
306 1.1 chopps ;
307 1.1 chopps }
308 1.1 chopps
309 1.1 chopps /*
310 1.1 chopps * Needs to be calibrated for use, its way off most of the time
311 1.1 chopps */
312 1.2 chopps void
313 1.2 chopps DELAY(mic)
314 1.2 chopps int mic;
315 1.1 chopps {
316 1.2 chopps u_long n;
317 1.2 chopps short hpos;
318 1.1 chopps
319 1.2 chopps /*
320 1.2 chopps * this function uses HSync pulses as base units. The custom chips
321 1.2 chopps * display only deals with 31.6kHz/2 refresh, this gives us a
322 1.2 chopps * resolution of 1/15800 s, which is ~63us (add some fuzz so we really
323 1.2 chopps * wait awhile, even if using small timeouts)
324 1.2 chopps */
325 1.2 chopps n = mic/63 + 2;
326 1.2 chopps do {
327 1.2 chopps hpos = custom.vhposr & 0xff00;
328 1.2 chopps while (hpos == (custom.vhposr & 0xff00))
329 1.2 chopps ;
330 1.2 chopps } while (n--);
331 1.1 chopps }
332 1.1 chopps
333 1.1 chopps #if notyet
334 1.1 chopps
335 1.1 chopps /* implement this later. I'd suggest using both timers in CIA-A, they're
336 1.1 chopps not yet used. */
337 1.1 chopps
338 1.1 chopps #include "clock.h"
339 1.1 chopps #if NCLOCK > 0
340 1.1 chopps /*
341 1.1 chopps * /dev/clock: mappable high resolution timer.
342 1.1 chopps *
343 1.1 chopps * This code implements a 32-bit recycling counter (with a 4 usec period)
344 1.1 chopps * using timers 2 & 3 on the 6840 clock chip. The counter can be mapped
345 1.1 chopps * RO into a user's address space to achieve low overhead (no system calls),
346 1.1 chopps * high-precision timing.
347 1.1 chopps *
348 1.1 chopps * Note that timer 3 is also used for the high precision profiling timer
349 1.1 chopps * (PROFTIMER code above). Care should be taken when both uses are
350 1.1 chopps * configured as only a token effort is made to avoid conflicting use.
351 1.1 chopps */
352 1.1 chopps #include <sys/proc.h>
353 1.1 chopps #include <sys/resourcevar.h>
354 1.1 chopps #include <sys/ioctl.h>
355 1.1 chopps #include <sys/malloc.h>
356 1.1 chopps #include <vm/vm.h>
357 1.1 chopps #include <amiga/amiga/clockioctl.h>
358 1.1 chopps #include <sys/specdev.h>
359 1.1 chopps #include <sys/vnode.h>
360 1.1 chopps #include <sys/mman.h>
361 1.1 chopps
362 1.1 chopps int clockon = 0; /* non-zero if high-res timer enabled */
363 1.1 chopps #ifdef PROFTIMER
364 1.1 chopps int profprocs = 0; /* # of procs using profiling timer */
365 1.1 chopps #endif
366 1.1 chopps #ifdef DEBUG
367 1.1 chopps int clockdebug = 0;
368 1.1 chopps #endif
369 1.1 chopps
370 1.1 chopps /*ARGSUSED*/
371 1.1 chopps clockopen(dev, flags)
372 1.1 chopps dev_t dev;
373 1.1 chopps {
374 1.1 chopps #ifdef PROFTIMER
375 1.1 chopps #ifdef PROF
376 1.1 chopps /*
377 1.1 chopps * Kernel profiling enabled, give up.
378 1.1 chopps */
379 1.1 chopps if (profiling)
380 1.1 chopps return(EBUSY);
381 1.1 chopps #endif
382 1.1 chopps /*
383 1.1 chopps * If any user processes are profiling, give up.
384 1.1 chopps */
385 1.1 chopps if (profprocs)
386 1.1 chopps return(EBUSY);
387 1.1 chopps #endif
388 1.1 chopps if (!clockon) {
389 1.1 chopps startclock();
390 1.1 chopps clockon++;
391 1.1 chopps }
392 1.1 chopps return(0);
393 1.1 chopps }
394 1.1 chopps
395 1.1 chopps /*ARGSUSED*/
396 1.1 chopps clockclose(dev, flags)
397 1.1 chopps dev_t dev;
398 1.1 chopps {
399 1.1 chopps (void) clockunmmap(dev, (caddr_t)0, curproc); /* XXX */
400 1.1 chopps stopclock();
401 1.1 chopps clockon = 0;
402 1.1 chopps return(0);
403 1.1 chopps }
404 1.1 chopps
405 1.1 chopps /*ARGSUSED*/
406 1.1 chopps clockioctl(dev, cmd, data, flag, p)
407 1.1 chopps dev_t dev;
408 1.1 chopps caddr_t data;
409 1.1 chopps struct proc *p;
410 1.1 chopps {
411 1.1 chopps int error = 0;
412 1.1 chopps
413 1.1 chopps switch (cmd) {
414 1.1 chopps
415 1.1 chopps case CLOCKMAP:
416 1.1 chopps error = clockmmap(dev, (caddr_t *)data, p);
417 1.1 chopps break;
418 1.1 chopps
419 1.1 chopps case CLOCKUNMAP:
420 1.1 chopps error = clockunmmap(dev, *(caddr_t *)data, p);
421 1.1 chopps break;
422 1.1 chopps
423 1.1 chopps case CLOCKGETRES:
424 1.1 chopps *(int *)data = CLK_RESOLUTION;
425 1.1 chopps break;
426 1.1 chopps
427 1.1 chopps default:
428 1.1 chopps error = EINVAL;
429 1.1 chopps break;
430 1.1 chopps }
431 1.1 chopps return(error);
432 1.1 chopps }
433 1.1 chopps
434 1.1 chopps /*ARGSUSED*/
435 1.1 chopps clockmap(dev, off, prot)
436 1.1 chopps dev_t dev;
437 1.1 chopps {
438 1.1 chopps return((off + (INTIOBASE+CLKBASE+CLKSR-1)) >> PGSHIFT);
439 1.1 chopps }
440 1.1 chopps
441 1.1 chopps clockmmap(dev, addrp, p)
442 1.1 chopps dev_t dev;
443 1.1 chopps caddr_t *addrp;
444 1.1 chopps struct proc *p;
445 1.1 chopps {
446 1.1 chopps int error;
447 1.1 chopps struct vnode vn;
448 1.1 chopps struct specinfo si;
449 1.1 chopps int flags;
450 1.1 chopps
451 1.1 chopps flags = MAP_FILE|MAP_SHARED;
452 1.1 chopps if (*addrp)
453 1.1 chopps flags |= MAP_FIXED;
454 1.1 chopps else
455 1.1 chopps *addrp = (caddr_t)0x1000000; /* XXX */
456 1.1 chopps vn.v_type = VCHR; /* XXX */
457 1.1 chopps vn.v_specinfo = &si; /* XXX */
458 1.1 chopps vn.v_rdev = dev; /* XXX */
459 1.1 chopps error = vm_mmap(&p->p_vmspace->vm_map, (vm_offset_t *)addrp,
460 1.1 chopps PAGE_SIZE, VM_PROT_ALL, flags, (caddr_t)&vn, 0);
461 1.1 chopps return(error);
462 1.1 chopps }
463 1.1 chopps
464 1.1 chopps clockunmmap(dev, addr, p)
465 1.1 chopps dev_t dev;
466 1.1 chopps caddr_t addr;
467 1.1 chopps struct proc *p;
468 1.1 chopps {
469 1.1 chopps int rv;
470 1.1 chopps
471 1.1 chopps if (addr == 0)
472 1.1 chopps return(EINVAL); /* XXX: how do we deal with this? */
473 1.1 chopps rv = vm_deallocate(p->p_vmspace->vm_map, (vm_offset_t)addr, PAGE_SIZE);
474 1.1 chopps return(rv == KERN_SUCCESS ? 0 : EINVAL);
475 1.1 chopps }
476 1.1 chopps
477 1.1 chopps startclock()
478 1.1 chopps {
479 1.1 chopps register struct clkreg *clk = (struct clkreg *)clkstd[0];
480 1.1 chopps
481 1.1 chopps clk->clk_msb2 = -1; clk->clk_lsb2 = -1;
482 1.1 chopps clk->clk_msb3 = -1; clk->clk_lsb3 = -1;
483 1.1 chopps
484 1.1 chopps clk->clk_cr2 = CLK_CR3;
485 1.1 chopps clk->clk_cr3 = CLK_OENAB|CLK_8BIT;
486 1.1 chopps clk->clk_cr2 = CLK_CR1;
487 1.1 chopps clk->clk_cr1 = CLK_IENAB;
488 1.1 chopps }
489 1.1 chopps
490 1.1 chopps stopclock()
491 1.1 chopps {
492 1.1 chopps register struct clkreg *clk = (struct clkreg *)clkstd[0];
493 1.1 chopps
494 1.1 chopps clk->clk_cr2 = CLK_CR3;
495 1.1 chopps clk->clk_cr3 = 0;
496 1.1 chopps clk->clk_cr2 = CLK_CR1;
497 1.1 chopps clk->clk_cr1 = CLK_IENAB;
498 1.1 chopps }
499 1.1 chopps #endif
500 1.1 chopps
501 1.1 chopps #endif
502 1.1 chopps
503 1.1 chopps
504 1.1 chopps #ifdef PROFTIMER
505 1.1 chopps /*
506 1.1 chopps * This code allows the amiga kernel to use one of the extra timers on
507 1.1 chopps * the clock chip for profiling, instead of the regular system timer.
508 1.1 chopps * The advantage of this is that the profiling timer can be turned up to
509 1.1 chopps * a higher interrupt rate, giving finer resolution timing. The profclock
510 1.1 chopps * routine is called from the lev6intr in locore, and is a specialized
511 1.1 chopps * routine that calls addupc. The overhead then is far less than if
512 1.1 chopps * hardclock/softclock was called. Further, the context switch code in
513 1.1 chopps * locore has been changed to turn the profile clock on/off when switching
514 1.1 chopps * into/out of a process that is profiling (startprofclock/stopprofclock).
515 1.1 chopps * This reduces the impact of the profiling clock on other users, and might
516 1.1 chopps * possibly increase the accuracy of the profiling.
517 1.1 chopps */
518 1.1 chopps int profint = PRF_INTERVAL; /* Clock ticks between interrupts */
519 1.1 chopps int profscale = 0; /* Scale factor from sys clock to prof clock */
520 1.1 chopps char profon = 0; /* Is profiling clock on? */
521 1.1 chopps
522 1.1 chopps /* profon values - do not change, locore.s assumes these values */
523 1.1 chopps #define PRF_NONE 0x00
524 1.1 chopps #define PRF_USER 0x01
525 1.1 chopps #define PRF_KERNEL 0x80
526 1.1 chopps
527 1.1 chopps initprofclock()
528 1.1 chopps {
529 1.1 chopps #if NCLOCK > 0
530 1.1 chopps struct proc *p = curproc; /* XXX */
531 1.1 chopps
532 1.1 chopps /*
533 1.1 chopps * If the high-res timer is running, force profiling off.
534 1.1 chopps * Unfortunately, this gets reflected back to the user not as
535 1.1 chopps * an error but as a lack of results.
536 1.1 chopps */
537 1.1 chopps if (clockon) {
538 1.1 chopps p->p_stats->p_prof.pr_scale = 0;
539 1.1 chopps return;
540 1.1 chopps }
541 1.1 chopps /*
542 1.1 chopps * Keep track of the number of user processes that are profiling
543 1.1 chopps * by checking the scale value.
544 1.1 chopps *
545 1.1 chopps * XXX: this all assumes that the profiling code is well behaved;
546 1.1 chopps * i.e. profil() is called once per process with pcscale non-zero
547 1.1 chopps * to turn it on, and once with pcscale zero to turn it off.
548 1.1 chopps * Also assumes you don't do any forks or execs. Oh well, there
549 1.1 chopps * is always adb...
550 1.1 chopps */
551 1.1 chopps if (p->p_stats->p_prof.pr_scale)
552 1.1 chopps profprocs++;
553 1.1 chopps else
554 1.1 chopps profprocs--;
555 1.1 chopps #endif
556 1.1 chopps /*
557 1.1 chopps * The profile interrupt interval must be an even divisor
558 1.1 chopps * of the CLK_INTERVAL so that scaling from a system clock
559 1.1 chopps * tick to a profile clock tick is possible using integer math.
560 1.1 chopps */
561 1.1 chopps if (profint > CLK_INTERVAL || (CLK_INTERVAL % profint) != 0)
562 1.1 chopps profint = CLK_INTERVAL;
563 1.1 chopps profscale = CLK_INTERVAL / profint;
564 1.1 chopps }
565 1.1 chopps
566 1.1 chopps startprofclock()
567 1.1 chopps {
568 1.1 chopps unsigned short interval;
569 1.1 chopps
570 1.1 chopps /* stop timer B */
571 1.1 chopps ciab.crb = ciab.crb & 0xc0;
572 1.1 chopps
573 1.1 chopps /* load interval into registers.
574 1.1 chopps the clocks run at NTSC: 715.909kHz or PAL: 709.379kHz */
575 1.1 chopps
576 1.1 chopps interval = profint - 1;
577 1.1 chopps
578 1.1 chopps /* order of setting is important ! */
579 1.1 chopps ciab.tblo = interval & 0xff;
580 1.1 chopps ciab.tbhi = interval >> 8;
581 1.1 chopps
582 1.1 chopps /* enable interrupts for timer B */
583 1.1 chopps ciab.icr = (1<<7) | (1<<1);
584 1.1 chopps
585 1.1 chopps /* start timer B in continuous shot mode */
586 1.1 chopps ciab.crb = (ciab.crb & 0xc0) | 1;
587 1.1 chopps }
588 1.1 chopps
589 1.1 chopps stopprofclock()
590 1.1 chopps {
591 1.1 chopps /* stop timer B */
592 1.1 chopps ciab.crb = ciab.crb & 0xc0;
593 1.1 chopps }
594 1.1 chopps
595 1.1 chopps #ifdef PROF
596 1.1 chopps /*
597 1.1 chopps * profclock() is expanded in line in lev6intr() unless profiling kernel.
598 1.1 chopps * Assumes it is called with clock interrupts blocked.
599 1.1 chopps */
600 1.1 chopps profclock(pc, ps)
601 1.1 chopps caddr_t pc;
602 1.1 chopps int ps;
603 1.1 chopps {
604 1.1 chopps /*
605 1.1 chopps * Came from user mode.
606 1.1 chopps * If this process is being profiled record the tick.
607 1.1 chopps */
608 1.1 chopps if (USERMODE(ps)) {
609 1.1 chopps if (p->p_stats.p_prof.pr_scale)
610 1.1 chopps addupc(pc, &curproc->p_stats.p_prof, 1);
611 1.1 chopps }
612 1.1 chopps /*
613 1.1 chopps * Came from kernel (supervisor) mode.
614 1.1 chopps * If we are profiling the kernel, record the tick.
615 1.1 chopps */
616 1.1 chopps else if (profiling < 2) {
617 1.1 chopps register int s = pc - s_lowpc;
618 1.1 chopps
619 1.1 chopps if (s < s_textsize)
620 1.1 chopps kcount[s / (HISTFRACTION * sizeof (*kcount))]++;
621 1.1 chopps }
622 1.1 chopps /*
623 1.1 chopps * Kernel profiling was on but has been disabled.
624 1.1 chopps * Mark as no longer profiling kernel and if all profiling done,
625 1.1 chopps * disable the clock.
626 1.1 chopps */
627 1.1 chopps if (profiling && (profon & PRF_KERNEL)) {
628 1.1 chopps profon &= ~PRF_KERNEL;
629 1.1 chopps if (profon == PRF_NONE)
630 1.1 chopps stopprofclock();
631 1.1 chopps }
632 1.1 chopps }
633 1.1 chopps #endif
634 1.1 chopps #endif
635 1.1 chopps
636 1.1 chopps /* this is a hook set by a clock driver for the configured realtime clock,
637 1.1 chopps returning plain current unix-time */
638 1.1 chopps long (*gettod) __P((void));
639 1.1 chopps int (*settod) __P((long));
640 1.1 chopps void *clockaddr;
641 1.1 chopps
642 1.1 chopps long a3gettod __P((void));
643 1.1 chopps long a2gettod __P((void));
644 1.1 chopps int a3settod __P((long));
645 1.1 chopps int a2settod __P((long));
646 1.1 chopps int rtcinit __P((void));
647 1.1 chopps
648 1.1 chopps /*
649 1.1 chopps * Initialize the time of day register, based on the time base which is, e.g.
650 1.1 chopps * from a filesystem.
651 1.1 chopps */
652 1.1 chopps inittodr(base)
653 1.1 chopps time_t base;
654 1.1 chopps {
655 1.1 chopps u_long timbuf = base; /* assume no battery clock exists */
656 1.1 chopps
657 1.1 chopps if (gettod == NULL && rtcinit() == 0)
658 1.1 chopps printf("WARNING: no battery clock\n");
659 1.1 chopps else
660 1.1 chopps timbuf = gettod();
661 1.1 chopps
662 1.1 chopps if (timbuf < base) {
663 1.1 chopps printf("WARNING: bad date in battery clock\n");
664 1.1 chopps timbuf = base;
665 1.1 chopps }
666 1.1 chopps
667 1.1 chopps /* Battery clock does not store usec's, so forget about it. */
668 1.1 chopps time.tv_sec = timbuf;
669 1.1 chopps }
670 1.1 chopps
671 1.1 chopps resettodr()
672 1.1 chopps {
673 1.1 chopps if (settod && settod(time.tv_sec) == 1)
674 1.1 chopps return;
675 1.1 chopps printf("Cannot set battery backed clock\n");
676 1.1 chopps }
677 1.1 chopps
678 1.1 chopps int
679 1.1 chopps rtcinit()
680 1.1 chopps {
681 1.1 chopps clockaddr = (void *)ztwomap(0xdc0000);
682 1.1 chopps if (is_a3000() || is_a4000()) {
683 1.1 chopps if (a3gettod() == 0)
684 1.1 chopps return(0);
685 1.1 chopps gettod = a3gettod;
686 1.1 chopps settod = a3settod;
687 1.1 chopps } else {
688 1.1 chopps if (a2gettod() == 0)
689 1.1 chopps return(0);
690 1.1 chopps gettod = a2gettod;
691 1.1 chopps settod = a2settod;
692 1.1 chopps }
693 1.1 chopps return(1);
694 1.1 chopps }
695 1.1 chopps
696 1.1 chopps static int month_days[12] = {
697 1.1 chopps 31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31
698 1.1 chopps };
699 1.1 chopps
700 1.1 chopps long
701 1.1 chopps a3gettod()
702 1.1 chopps {
703 1.1 chopps struct rtclock3000 *rt;
704 1.1 chopps int i, year, month, day, hour, min, sec;
705 1.1 chopps u_long tmp;
706 1.1 chopps
707 1.1 chopps rt = clockaddr;
708 1.1 chopps
709 1.1 chopps /* hold clock */
710 1.1 chopps rt->control1 = A3CONTROL1_HOLD_CLOCK;
711 1.1 chopps
712 1.1 chopps /* read it */
713 1.1 chopps sec = rt->second1 * 10 + rt->second2;
714 1.1 chopps min = rt->minute1 * 10 + rt->minute2;
715 1.1 chopps hour = rt->hour1 * 10 + rt->hour2;
716 1.1 chopps day = rt->day1 * 10 + rt->day2;
717 1.1 chopps month = rt->month1 * 10 + rt->month2;
718 1.1 chopps year = rt->year1 * 10 + rt->year2 + 1900;
719 1.1 chopps
720 1.1 chopps /* let it run again.. */
721 1.1 chopps rt->control1 = A3CONTROL1_FREE_CLOCK;
722 1.1 chopps
723 1.1 chopps if (range_test(hour, 0, 23))
724 1.1 chopps return(0);
725 1.1 chopps if (range_test(day, 1, 31))
726 1.1 chopps return(0);
727 1.1 chopps if (range_test(month, 1, 12))
728 1.1 chopps return(0);
729 1.1 chopps if (range_test(year, STARTOFTIME, 2000))
730 1.1 chopps return(0);
731 1.1 chopps
732 1.1 chopps tmp = 0;
733 1.1 chopps
734 1.1 chopps for (i = STARTOFTIME; i < year; i++)
735 1.1 chopps tmp += days_in_year(i);
736 1.1 chopps if (leapyear(year) && month > FEBRUARY)
737 1.1 chopps tmp++;
738 1.1 chopps
739 1.1 chopps for (i = 1; i < month; i++)
740 1.1 chopps tmp += days_in_month(i);
741 1.1 chopps
742 1.1 chopps tmp += (day - 1);
743 1.1 chopps tmp = ((tmp * 24 + hour) * 60 + min) * 60 + sec;
744 1.1 chopps
745 1.1 chopps return(tmp);
746 1.1 chopps }
747 1.1 chopps
748 1.1 chopps int
749 1.1 chopps a3settod(tim)
750 1.1 chopps long tim;
751 1.1 chopps {
752 1.1 chopps register int i;
753 1.1 chopps register long hms, day;
754 1.1 chopps u_char sec1, sec2;
755 1.1 chopps u_char min1, min2;
756 1.1 chopps u_char hour1, hour2;
757 1.1 chopps u_char day1, day2;
758 1.1 chopps u_char mon1, mon2;
759 1.1 chopps u_char year1, year2;
760 1.1 chopps struct rtclock3000 *rt;
761 1.1 chopps
762 1.1 chopps rt = clockaddr;
763 1.1 chopps /*
764 1.1 chopps * there seem to be problems with the bitfield addressing
765 1.1 chopps * currently used..
766 1.1 chopps */
767 1.1 chopps return(0);
768 1.1 chopps #if not_yet
769 1.1 chopps if (rt)
770 1.1 chopps return 0;
771 1.1 chopps
772 1.1 chopps /* prepare values to be written to clock */
773 1.1 chopps day = tim / SECDAY;
774 1.1 chopps hms = tim % SECDAY;
775 1.1 chopps
776 1.1 chopps hour2 = hms / 3600;
777 1.1 chopps hour1 = hour2 / 10;
778 1.1 chopps hour2 %= 10;
779 1.1 chopps
780 1.1 chopps min2 = (hms % 3600) / 60;
781 1.1 chopps min1 = min2 / 10;
782 1.1 chopps min2 %= 10;
783 1.1 chopps
784 1.1 chopps
785 1.1 chopps sec2 = (hms % 3600) % 60;
786 1.1 chopps sec1 = sec2 / 10;
787 1.1 chopps sec2 %= 10;
788 1.1 chopps
789 1.1 chopps /* Number of years in days */
790 1.1 chopps for (i = STARTOFTIME - 1900; day >= days_in_year(i); i++)
791 1.1 chopps day -= days_in_year(i);
792 1.1 chopps year1 = i / 10;
793 1.1 chopps year2 = i % 10;
794 1.1 chopps
795 1.1 chopps /* Number of months in days left */
796 1.1 chopps if (leapyear(i))
797 1.1 chopps days_in_month(FEBRUARY) = 29;
798 1.1 chopps for (i = 1; day >= days_in_month(i); i++)
799 1.1 chopps day -= days_in_month(i);
800 1.1 chopps days_in_month(FEBRUARY) = 28;
801 1.1 chopps
802 1.1 chopps mon1 = i / 10;
803 1.1 chopps mon2 = i % 10;
804 1.1 chopps
805 1.1 chopps /* Days are what is left over (+1) from all that. */
806 1.1 chopps day ++;
807 1.1 chopps day1 = day / 10;
808 1.1 chopps day2 = day % 10;
809 1.1 chopps
810 1.1 chopps rt->control1 = CONTROL1_HOLD_CLOCK;
811 1.1 chopps rt->second1 = sec1;
812 1.1 chopps rt->second2 = sec2;
813 1.1 chopps rt->minute1 = min1;
814 1.1 chopps rt->minute2 = min2;
815 1.1 chopps rt->hour1 = hour1;
816 1.1 chopps rt->hour2 = hour2;
817 1.1 chopps rt->day1 = day1;
818 1.1 chopps rt->day2 = day2;
819 1.1 chopps rt->month1 = mon1;
820 1.1 chopps rt->month2 = mon2;
821 1.1 chopps rt->year1 = year1;
822 1.1 chopps rt->year2 = year2;
823 1.1 chopps rt->control2 = CONTROL1_FREE_CLOCK;
824 1.1 chopps
825 1.1 chopps return 1;
826 1.1 chopps #endif
827 1.1 chopps }
828 1.1 chopps
829 1.1 chopps long
830 1.1 chopps a2gettod()
831 1.1 chopps {
832 1.1 chopps struct rtclock2000 *rt;
833 1.1 chopps int i, year, month, day, hour, min, sec;
834 1.1 chopps u_long tmp;
835 1.1 chopps
836 1.1 chopps rt = clockaddr;
837 1.1 chopps
838 1.1 chopps /*
839 1.1 chopps * hold clock
840 1.1 chopps */
841 1.1 chopps rt->control1 |= A2CONTROL1_HOLD;
842 1.1 chopps while (rt->control1 & A2CONTROL1_BUSY)
843 1.1 chopps ;
844 1.1 chopps
845 1.1 chopps /*
846 1.1 chopps * read it
847 1.1 chopps */
848 1.1 chopps sec = rt->second1 * 10 + rt->second2;
849 1.1 chopps min = rt->minute1 * 10 + rt->minute2;
850 1.1 chopps hour = (rt->hour1 & 3) * 10 + rt->hour2;
851 1.1 chopps day = rt->day1 * 10 + rt->day2;
852 1.1 chopps month = rt->month1 * 10 + rt->month2;
853 1.1 chopps year = rt->year1 * 10 + rt->year2 + 1900;
854 1.1 chopps
855 1.1 chopps if ((rt->control3 & A2CONTROL3_24HMODE) == 0) {
856 1.1 chopps if ((rt->hour1 & A2HOUR1_PM) == 0 && hour == 12)
857 1.1 chopps hour = 0;
858 1.1 chopps else if ((rt->hour1 & A2HOUR1_PM) && hour != 12)
859 1.1 chopps hour += 12;
860 1.1 chopps }
861 1.1 chopps
862 1.1 chopps /*
863 1.1 chopps * release the clock
864 1.1 chopps */
865 1.1 chopps rt->control1 &= ~A2CONTROL1_HOLD;
866 1.1 chopps
867 1.1 chopps if (range_test(hour, 0, 23))
868 1.1 chopps return(0);
869 1.1 chopps if (range_test(day, 1, 31))
870 1.1 chopps return(0);
871 1.1 chopps if (range_test(month, 1, 12))
872 1.1 chopps return(0);
873 1.1 chopps if (range_test(year, STARTOFTIME, 2000))
874 1.1 chopps return(0);
875 1.1 chopps
876 1.1 chopps tmp = 0;
877 1.1 chopps
878 1.1 chopps for (i = STARTOFTIME; i < year; i++)
879 1.1 chopps tmp += days_in_year(i);
880 1.1 chopps if (leapyear(year) && month > FEBRUARY)
881 1.1 chopps tmp++;
882 1.1 chopps
883 1.1 chopps for (i = 1; i < month; i++)
884 1.1 chopps tmp += days_in_month(i);
885 1.1 chopps
886 1.1 chopps tmp += (day - 1);
887 1.1 chopps tmp = ((tmp * 24 + hour) * 60 + min) * 60 + sec;
888 1.1 chopps
889 1.1 chopps return(tmp);
890 1.1 chopps }
891 1.1 chopps
892 1.1 chopps /*
893 1.1 chopps * there is some question as to whether this works
894 1.1 chopps * I guess
895 1.1 chopps */
896 1.1 chopps int
897 1.1 chopps a2settod(tim)
898 1.1 chopps long tim;
899 1.1 chopps {
900 1.1 chopps
901 1.1 chopps int i;
902 1.1 chopps long hms, day;
903 1.1 chopps u_char sec1, sec2;
904 1.1 chopps u_char min1, min2;
905 1.1 chopps u_char hour1, hour2;
906 1.1 chopps u_char day1, day2;
907 1.1 chopps u_char mon1, mon2;
908 1.1 chopps u_char year1, year2;
909 1.1 chopps struct rtclock2000 *rt;
910 1.1 chopps
911 1.1 chopps rt = clockaddr;
912 1.1 chopps /*
913 1.1 chopps * there seem to be problems with the bitfield addressing
914 1.1 chopps * currently used..
915 1.1 chopps *
916 1.1 chopps * XXX Check out the above where we (hour1 & 3)
917 1.1 chopps */
918 1.1 chopps return(0);
919 1.1 chopps #if not_yet
920 1.1 chopps if (! rt)
921 1.1 chopps return 0;
922 1.1 chopps
923 1.1 chopps /* prepare values to be written to clock */
924 1.1 chopps day = tim / SECDAY;
925 1.1 chopps hms = tim % SECDAY;
926 1.1 chopps
927 1.1 chopps hour2 = hms / 3600;
928 1.1 chopps hour1 = hour2 / 10;
929 1.1 chopps hour2 %= 10;
930 1.1 chopps
931 1.1 chopps min2 = (hms % 3600) / 60;
932 1.1 chopps min1 = min2 / 10;
933 1.1 chopps min2 %= 10;
934 1.1 chopps
935 1.1 chopps
936 1.1 chopps sec2 = (hms % 3600) % 60;
937 1.1 chopps sec1 = sec2 / 10;
938 1.1 chopps sec2 %= 10;
939 1.1 chopps
940 1.1 chopps /* Number of years in days */
941 1.1 chopps for (i = STARTOFTIME - 1900; day >= days_in_year(i); i++)
942 1.1 chopps day -= days_in_year(i);
943 1.1 chopps year1 = i / 10;
944 1.1 chopps year2 = i % 10;
945 1.1 chopps
946 1.1 chopps /* Number of months in days left */
947 1.1 chopps if (leapyear(i))
948 1.1 chopps days_in_month(FEBRUARY) = 29;
949 1.1 chopps for (i = 1; day >= days_in_month(i); i++)
950 1.1 chopps day -= days_in_month(i);
951 1.1 chopps days_in_month(FEBRUARY) = 28;
952 1.1 chopps
953 1.1 chopps mon1 = i / 10;
954 1.1 chopps mon2 = i % 10;
955 1.1 chopps
956 1.1 chopps /* Days are what is left over (+1) from all that. */
957 1.1 chopps day ++;
958 1.1 chopps day1 = day / 10;
959 1.1 chopps day2 = day % 10;
960 1.1 chopps
961 1.1 chopps /*
962 1.1 chopps * XXXX spin wait as with reading???
963 1.1 chopps */
964 1.1 chopps rt->control1 = A2CONTROL1_HOLD_CLOCK;
965 1.1 chopps rt->second1 = sec1;
966 1.1 chopps rt->second2 = sec2;
967 1.1 chopps rt->minute1 = min1;
968 1.1 chopps rt->minute2 = min2;
969 1.1 chopps rt->hour1 = hour1;
970 1.1 chopps rt->hour2 = hour2;
971 1.1 chopps rt->day1 = day1;
972 1.1 chopps rt->day2 = day2;
973 1.1 chopps rt->month1 = mon1;
974 1.1 chopps rt->month2 = mon2;
975 1.1 chopps rt->year1 = year1;
976 1.1 chopps rt->year2 = year2;
977 1.1 chopps rt->control2 = CONTROL1_FREE_CLOCK;
978 1.1 chopps
979 1.1 chopps return 1;
980 1.1 chopps #endif
981 1.1 chopps }
982