clock.c revision 1.6 1 1.6 cgd /* $NetBSD: clock.c,v 1.6 1994/10/26 02:02:51 cgd Exp $ */
2 1.6 cgd
3 1.1 chopps /*
4 1.1 chopps * Copyright (c) 1988 University of Utah.
5 1.1 chopps * Copyright (c) 1982, 1990 The Regents of the University of California.
6 1.1 chopps * All rights reserved.
7 1.1 chopps *
8 1.1 chopps * This code is derived from software contributed to Berkeley by
9 1.1 chopps * the Systems Programming Group of the University of Utah Computer
10 1.1 chopps * Science Department.
11 1.1 chopps *
12 1.1 chopps * Redistribution and use in source and binary forms, with or without
13 1.1 chopps * modification, are permitted provided that the following conditions
14 1.1 chopps * are met:
15 1.1 chopps * 1. Redistributions of source code must retain the above copyright
16 1.1 chopps * notice, this list of conditions and the following disclaimer.
17 1.1 chopps * 2. Redistributions in binary form must reproduce the above copyright
18 1.1 chopps * notice, this list of conditions and the following disclaimer in the
19 1.1 chopps * documentation and/or other materials provided with the distribution.
20 1.1 chopps * 3. All advertising materials mentioning features or use of this software
21 1.1 chopps * must display the following acknowledgement:
22 1.1 chopps * This product includes software developed by the University of
23 1.1 chopps * California, Berkeley and its contributors.
24 1.1 chopps * 4. Neither the name of the University nor the names of its contributors
25 1.1 chopps * may be used to endorse or promote products derived from this software
26 1.1 chopps * without specific prior written permission.
27 1.1 chopps *
28 1.1 chopps * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
29 1.1 chopps * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
30 1.1 chopps * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
31 1.1 chopps * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
32 1.1 chopps * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
33 1.1 chopps * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
34 1.1 chopps * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
35 1.1 chopps * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
36 1.1 chopps * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
37 1.1 chopps * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
38 1.1 chopps * SUCH DAMAGE.
39 1.1 chopps *
40 1.1 chopps * from: Utah $Hdr: clock.c 1.18 91/01/21$
41 1.1 chopps *
42 1.1 chopps * @(#)clock.c 7.6 (Berkeley) 5/7/91
43 1.1 chopps */
44 1.1 chopps
45 1.1 chopps #include <sys/param.h>
46 1.1 chopps #include <sys/kernel.h>
47 1.1 chopps #include <sys/device.h>
48 1.1 chopps #include <machine/psl.h>
49 1.1 chopps #include <machine/cpu.h>
50 1.1 chopps #include <amiga/amiga/device.h>
51 1.1 chopps #include <amiga/amiga/custom.h>
52 1.1 chopps #include <amiga/amiga/cia.h>
53 1.1 chopps #include <amiga/dev/rtc.h>
54 1.1 chopps #include <amiga/dev/ztwobusvar.h>
55 1.1 chopps
56 1.1 chopps #if defined(PROF) && defined(PROFTIMER)
57 1.1 chopps #include <sys/PROF.h>
58 1.1 chopps #endif
59 1.1 chopps
60 1.1 chopps /* the clocks run at NTSC: 715.909kHz or PAL: 709.379kHz.
61 1.1 chopps We're using a 100 Hz clock. */
62 1.1 chopps
63 1.1 chopps #define CLK_INTERVAL amiga_clk_interval
64 1.4 chopps int amiga_clk_interval;
65 1.4 chopps int eclockfreq;
66 1.4 chopps
67 1.1 chopps /*
68 1.1 chopps * Machine-dependent clock routines.
69 1.1 chopps *
70 1.1 chopps * Startrtclock restarts the real-time clock, which provides
71 1.1 chopps * hardclock interrupts to kern_clock.c.
72 1.1 chopps *
73 1.1 chopps * Inittodr initializes the time of day hardware which provides
74 1.1 chopps * date functions.
75 1.1 chopps *
76 1.1 chopps * Resettodr restores the time of day hardware after a time change.
77 1.1 chopps *
78 1.1 chopps * A note on the real-time clock:
79 1.1 chopps * We actually load the clock with CLK_INTERVAL-1 instead of CLK_INTERVAL.
80 1.1 chopps * This is because the counter decrements to zero after N+1 enabled clock
81 1.1 chopps * periods where N is the value loaded into the counter.
82 1.1 chopps */
83 1.1 chopps
84 1.1 chopps int clockmatch __P((struct device *, struct cfdata *, void *));
85 1.1 chopps void clockattach __P((struct device *, struct device *, void *));
86 1.1 chopps
87 1.1 chopps struct cfdriver clockcd = {
88 1.1 chopps NULL, "clock", clockmatch, clockattach,
89 1.1 chopps DV_DULL, sizeof(struct device), NULL, 0 };
90 1.1 chopps
91 1.1 chopps int
92 1.1 chopps clockmatch(pdp, cfp, auxp)
93 1.1 chopps struct device *pdp;
94 1.1 chopps struct cfdata *cfp;
95 1.1 chopps void *auxp;
96 1.1 chopps {
97 1.1 chopps if (matchname("clock", auxp))
98 1.1 chopps return(1);
99 1.1 chopps return(0);
100 1.1 chopps }
101 1.1 chopps
102 1.1 chopps /*
103 1.1 chopps * Start the real-time clock.
104 1.1 chopps */
105 1.1 chopps void
106 1.1 chopps clockattach(pdp, dp, auxp)
107 1.1 chopps struct device *pdp, *dp;
108 1.1 chopps void *auxp;
109 1.1 chopps {
110 1.1 chopps unsigned short interval;
111 1.1 chopps
112 1.4 chopps if (eclockfreq == 0)
113 1.4 chopps eclockfreq = 715909; /* guess NTSC */
114 1.4 chopps
115 1.4 chopps CLK_INTERVAL = (eclockfreq / 100);
116 1.4 chopps
117 1.5 chopps printf(": system hz %d hardware hz %d\n", hz, eclockfreq);
118 1.4 chopps
119 1.1 chopps /*
120 1.1 chopps * stop timer A
121 1.1 chopps */
122 1.1 chopps ciab.cra = ciab.cra & 0xc0;
123 1.3 chopps ciab.icr = 1 << 0; /* disable timer A interrupt */
124 1.3 chopps interval = ciab.icr; /* and make sure it's clear */
125 1.1 chopps
126 1.1 chopps /*
127 1.1 chopps * load interval into registers.
128 1.1 chopps * the clocks run at NTSC: 715.909kHz or PAL: 709.379kHz
129 1.1 chopps * supprort for PAL WHEN?!?! XXX
130 1.1 chopps */
131 1.1 chopps interval = CLK_INTERVAL - 1;
132 1.1 chopps
133 1.1 chopps /*
134 1.1 chopps * order of setting is important !
135 1.1 chopps */
136 1.1 chopps ciab.talo = interval & 0xff;
137 1.1 chopps ciab.tahi = interval >> 8;
138 1.1 chopps }
139 1.1 chopps
140 1.1 chopps void
141 1.1 chopps cpu_initclocks()
142 1.1 chopps {
143 1.1 chopps /*
144 1.1 chopps * enable interrupts for timer A
145 1.1 chopps */
146 1.1 chopps ciab.icr = (1<<7) | (1<<0);
147 1.1 chopps
148 1.1 chopps /*
149 1.1 chopps * start timer A in continuous shot mode
150 1.1 chopps */
151 1.1 chopps ciab.cra = (ciab.cra & 0xc0) | 1;
152 1.1 chopps
153 1.1 chopps /*
154 1.1 chopps * and globally enable interrupts for ciab
155 1.1 chopps */
156 1.1 chopps custom.intena = INTF_SETCLR | INTF_EXTER;
157 1.1 chopps }
158 1.1 chopps
159 1.1 chopps setstatclockrate(hz)
160 1.1 chopps int hz;
161 1.1 chopps {
162 1.1 chopps }
163 1.1 chopps
164 1.1 chopps /*
165 1.1 chopps * Returns number of usec since last recorded clock "tick"
166 1.1 chopps * (i.e. clock interrupt).
167 1.1 chopps */
168 1.1 chopps clkread()
169 1.1 chopps {
170 1.1 chopps u_char hi, hi2, lo;
171 1.1 chopps u_int interval;
172 1.1 chopps
173 1.1 chopps hi = ciab.tahi;
174 1.1 chopps lo = ciab.talo;
175 1.1 chopps hi2 = ciab.tahi;
176 1.1 chopps if (hi != hi2) {
177 1.1 chopps lo = ciab.talo;
178 1.1 chopps hi = hi2;
179 1.1 chopps }
180 1.1 chopps
181 1.1 chopps interval = (CLK_INTERVAL - 1) - ((hi<<8) | lo);
182 1.1 chopps
183 1.1 chopps /*
184 1.1 chopps * should read ICR and if there's an int pending, adjust interval.
185 1.1 chopps * However, * since reading ICR clears the interrupt, we'd lose a
186 1.1 chopps * hardclock int, and * this is not tolerable.
187 1.1 chopps */
188 1.1 chopps
189 1.1 chopps return((interval * tick) / CLK_INTERVAL);
190 1.1 chopps }
191 1.1 chopps
192 1.1 chopps u_int micspertick;
193 1.1 chopps
194 1.1 chopps /*
195 1.1 chopps * we set up as much of the CIAa as possible
196 1.1 chopps * as all access to chip memory are very slow.
197 1.1 chopps */
198 1.1 chopps void
199 1.1 chopps setmicspertick()
200 1.1 chopps {
201 1.1 chopps micspertick = (1000000ULL << 20) / 715909;
202 1.1 chopps
203 1.1 chopps /*
204 1.1 chopps * disable interrupts (just in case.)
205 1.1 chopps */
206 1.1 chopps ciaa.icr = 0x3;
207 1.1 chopps
208 1.1 chopps /*
209 1.1 chopps * stop both timers if not already
210 1.1 chopps */
211 1.1 chopps ciaa.cra &= ~1;
212 1.1 chopps ciaa.crb &= ~1;
213 1.1 chopps
214 1.1 chopps /*
215 1.1 chopps * set timer B in "count timer A underflows" mode
216 1.1 chopps * set tiemr A in one-shot mode
217 1.1 chopps */
218 1.1 chopps ciaa.crb = (ciaa.crb & 0x80) | 0x48;
219 1.1 chopps ciaa.cra = (ciaa.cra & 0xc0) | 0x08;
220 1.1 chopps }
221 1.1 chopps
222 1.1 chopps /*
223 1.1 chopps * this function assumes that on any entry beyond the first
224 1.1 chopps * the following condintions exist:
225 1.1 chopps * Interrupts for Timers A and B are disabled.
226 1.1 chopps * Timers A and B are stoped.
227 1.1 chopps * Timers A and B are in one-shot mode with B counting timer A underflows
228 1.1 chopps *
229 1.1 chopps */
230 1.1 chopps void
231 1.1 chopps delay(mic)
232 1.1 chopps int mic;
233 1.1 chopps {
234 1.1 chopps u_int temp;
235 1.1 chopps int s;
236 1.1 chopps
237 1.1 chopps if (micspertick == 0)
238 1.1 chopps setmicspertick();
239 1.1 chopps
240 1.1 chopps if (mic <= 1)
241 1.1 chopps return;
242 1.1 chopps
243 1.1 chopps /*
244 1.1 chopps * basically this is going to do an integer
245 1.1 chopps * usec / (1000000 / 715909) with no loss of
246 1.1 chopps * precision
247 1.1 chopps */
248 1.1 chopps temp = mic >> 12;
249 1.1 chopps asm("divul %3,%1:%0" : "=d" (temp) : "d" (mic >> 12), "0" (mic << 20),
250 1.1 chopps "d" (micspertick));
251 1.1 chopps
252 1.1 chopps if ((temp & 0xffff0000) > 0x10000) {
253 1.1 chopps mic = (temp >> 16) - 1;
254 1.1 chopps temp &= 0xffff;
255 1.1 chopps
256 1.1 chopps /*
257 1.1 chopps * set timer A in continous mode
258 1.1 chopps */
259 1.1 chopps ciaa.cra = (ciaa.cra & 0xc0) | 0x00;
260 1.1 chopps
261 1.1 chopps /*
262 1.1 chopps * latch/load/start "counts of timer A underflows" in B
263 1.1 chopps */
264 1.1 chopps ciaa.tblo = mic & 0xff;
265 1.1 chopps ciaa.tbhi = mic >> 8;
266 1.1 chopps
267 1.1 chopps /*
268 1.1 chopps * timer A latches 0xffff
269 1.1 chopps * and start it.
270 1.1 chopps */
271 1.1 chopps ciaa.talo = 0xff;
272 1.1 chopps ciaa.tahi = 0xff;
273 1.1 chopps ciaa.cra |= 1;
274 1.1 chopps
275 1.1 chopps while (ciaa.crb & 1)
276 1.1 chopps ;
277 1.1 chopps
278 1.1 chopps /*
279 1.1 chopps * stop timer A
280 1.1 chopps */
281 1.1 chopps ciaa.cra &= ~1;
282 1.1 chopps
283 1.1 chopps /*
284 1.1 chopps * set timer A in one shot mode
285 1.1 chopps */
286 1.1 chopps ciaa.cra = (ciaa.cra & 0xc0) | 0x08;
287 1.1 chopps } else if ((temp & 0xffff0000) == 0x10000) {
288 1.1 chopps temp &= 0xffff;
289 1.1 chopps
290 1.1 chopps /*
291 1.1 chopps * timer A is in one shot latch/load/start 1 full turn
292 1.1 chopps */
293 1.1 chopps ciaa.talo = 0xff;
294 1.1 chopps ciaa.tahi = 0xff;
295 1.1 chopps while (ciaa.cra & 1)
296 1.1 chopps ;
297 1.1 chopps }
298 1.1 chopps if (temp < 1)
299 1.1 chopps return;
300 1.1 chopps
301 1.1 chopps /*
302 1.1 chopps * temp is now residual ammount, latch/load/start it.
303 1.1 chopps */
304 1.1 chopps ciaa.talo = temp & 0xff;
305 1.1 chopps ciaa.tahi = temp >> 8;
306 1.1 chopps while (ciaa.cra & 1)
307 1.1 chopps ;
308 1.1 chopps }
309 1.1 chopps
310 1.1 chopps /*
311 1.1 chopps * Needs to be calibrated for use, its way off most of the time
312 1.1 chopps */
313 1.2 chopps void
314 1.2 chopps DELAY(mic)
315 1.2 chopps int mic;
316 1.1 chopps {
317 1.2 chopps u_long n;
318 1.2 chopps short hpos;
319 1.1 chopps
320 1.2 chopps /*
321 1.2 chopps * this function uses HSync pulses as base units. The custom chips
322 1.2 chopps * display only deals with 31.6kHz/2 refresh, this gives us a
323 1.2 chopps * resolution of 1/15800 s, which is ~63us (add some fuzz so we really
324 1.2 chopps * wait awhile, even if using small timeouts)
325 1.2 chopps */
326 1.2 chopps n = mic/63 + 2;
327 1.2 chopps do {
328 1.2 chopps hpos = custom.vhposr & 0xff00;
329 1.2 chopps while (hpos == (custom.vhposr & 0xff00))
330 1.2 chopps ;
331 1.2 chopps } while (n--);
332 1.1 chopps }
333 1.1 chopps
334 1.1 chopps #if notyet
335 1.1 chopps
336 1.1 chopps /* implement this later. I'd suggest using both timers in CIA-A, they're
337 1.1 chopps not yet used. */
338 1.1 chopps
339 1.1 chopps #include "clock.h"
340 1.1 chopps #if NCLOCK > 0
341 1.1 chopps /*
342 1.1 chopps * /dev/clock: mappable high resolution timer.
343 1.1 chopps *
344 1.1 chopps * This code implements a 32-bit recycling counter (with a 4 usec period)
345 1.1 chopps * using timers 2 & 3 on the 6840 clock chip. The counter can be mapped
346 1.1 chopps * RO into a user's address space to achieve low overhead (no system calls),
347 1.1 chopps * high-precision timing.
348 1.1 chopps *
349 1.1 chopps * Note that timer 3 is also used for the high precision profiling timer
350 1.1 chopps * (PROFTIMER code above). Care should be taken when both uses are
351 1.1 chopps * configured as only a token effort is made to avoid conflicting use.
352 1.1 chopps */
353 1.1 chopps #include <sys/proc.h>
354 1.1 chopps #include <sys/resourcevar.h>
355 1.1 chopps #include <sys/ioctl.h>
356 1.1 chopps #include <sys/malloc.h>
357 1.1 chopps #include <vm/vm.h>
358 1.1 chopps #include <amiga/amiga/clockioctl.h>
359 1.1 chopps #include <sys/specdev.h>
360 1.1 chopps #include <sys/vnode.h>
361 1.1 chopps #include <sys/mman.h>
362 1.1 chopps
363 1.1 chopps int clockon = 0; /* non-zero if high-res timer enabled */
364 1.1 chopps #ifdef PROFTIMER
365 1.1 chopps int profprocs = 0; /* # of procs using profiling timer */
366 1.1 chopps #endif
367 1.1 chopps #ifdef DEBUG
368 1.1 chopps int clockdebug = 0;
369 1.1 chopps #endif
370 1.1 chopps
371 1.1 chopps /*ARGSUSED*/
372 1.1 chopps clockopen(dev, flags)
373 1.1 chopps dev_t dev;
374 1.1 chopps {
375 1.1 chopps #ifdef PROFTIMER
376 1.1 chopps #ifdef PROF
377 1.1 chopps /*
378 1.1 chopps * Kernel profiling enabled, give up.
379 1.1 chopps */
380 1.1 chopps if (profiling)
381 1.1 chopps return(EBUSY);
382 1.1 chopps #endif
383 1.1 chopps /*
384 1.1 chopps * If any user processes are profiling, give up.
385 1.1 chopps */
386 1.1 chopps if (profprocs)
387 1.1 chopps return(EBUSY);
388 1.1 chopps #endif
389 1.1 chopps if (!clockon) {
390 1.1 chopps startclock();
391 1.1 chopps clockon++;
392 1.1 chopps }
393 1.1 chopps return(0);
394 1.1 chopps }
395 1.1 chopps
396 1.1 chopps /*ARGSUSED*/
397 1.1 chopps clockclose(dev, flags)
398 1.1 chopps dev_t dev;
399 1.1 chopps {
400 1.1 chopps (void) clockunmmap(dev, (caddr_t)0, curproc); /* XXX */
401 1.1 chopps stopclock();
402 1.1 chopps clockon = 0;
403 1.1 chopps return(0);
404 1.1 chopps }
405 1.1 chopps
406 1.1 chopps /*ARGSUSED*/
407 1.1 chopps clockioctl(dev, cmd, data, flag, p)
408 1.1 chopps dev_t dev;
409 1.1 chopps caddr_t data;
410 1.1 chopps struct proc *p;
411 1.1 chopps {
412 1.1 chopps int error = 0;
413 1.1 chopps
414 1.1 chopps switch (cmd) {
415 1.1 chopps
416 1.1 chopps case CLOCKMAP:
417 1.1 chopps error = clockmmap(dev, (caddr_t *)data, p);
418 1.1 chopps break;
419 1.1 chopps
420 1.1 chopps case CLOCKUNMAP:
421 1.1 chopps error = clockunmmap(dev, *(caddr_t *)data, p);
422 1.1 chopps break;
423 1.1 chopps
424 1.1 chopps case CLOCKGETRES:
425 1.1 chopps *(int *)data = CLK_RESOLUTION;
426 1.1 chopps break;
427 1.1 chopps
428 1.1 chopps default:
429 1.1 chopps error = EINVAL;
430 1.1 chopps break;
431 1.1 chopps }
432 1.1 chopps return(error);
433 1.1 chopps }
434 1.1 chopps
435 1.1 chopps /*ARGSUSED*/
436 1.1 chopps clockmap(dev, off, prot)
437 1.1 chopps dev_t dev;
438 1.1 chopps {
439 1.1 chopps return((off + (INTIOBASE+CLKBASE+CLKSR-1)) >> PGSHIFT);
440 1.1 chopps }
441 1.1 chopps
442 1.1 chopps clockmmap(dev, addrp, p)
443 1.1 chopps dev_t dev;
444 1.1 chopps caddr_t *addrp;
445 1.1 chopps struct proc *p;
446 1.1 chopps {
447 1.1 chopps int error;
448 1.1 chopps struct vnode vn;
449 1.1 chopps struct specinfo si;
450 1.1 chopps int flags;
451 1.1 chopps
452 1.1 chopps flags = MAP_FILE|MAP_SHARED;
453 1.1 chopps if (*addrp)
454 1.1 chopps flags |= MAP_FIXED;
455 1.1 chopps else
456 1.1 chopps *addrp = (caddr_t)0x1000000; /* XXX */
457 1.1 chopps vn.v_type = VCHR; /* XXX */
458 1.1 chopps vn.v_specinfo = &si; /* XXX */
459 1.1 chopps vn.v_rdev = dev; /* XXX */
460 1.1 chopps error = vm_mmap(&p->p_vmspace->vm_map, (vm_offset_t *)addrp,
461 1.1 chopps PAGE_SIZE, VM_PROT_ALL, flags, (caddr_t)&vn, 0);
462 1.1 chopps return(error);
463 1.1 chopps }
464 1.1 chopps
465 1.1 chopps clockunmmap(dev, addr, p)
466 1.1 chopps dev_t dev;
467 1.1 chopps caddr_t addr;
468 1.1 chopps struct proc *p;
469 1.1 chopps {
470 1.1 chopps int rv;
471 1.1 chopps
472 1.1 chopps if (addr == 0)
473 1.1 chopps return(EINVAL); /* XXX: how do we deal with this? */
474 1.1 chopps rv = vm_deallocate(p->p_vmspace->vm_map, (vm_offset_t)addr, PAGE_SIZE);
475 1.1 chopps return(rv == KERN_SUCCESS ? 0 : EINVAL);
476 1.1 chopps }
477 1.1 chopps
478 1.1 chopps startclock()
479 1.1 chopps {
480 1.1 chopps register struct clkreg *clk = (struct clkreg *)clkstd[0];
481 1.1 chopps
482 1.1 chopps clk->clk_msb2 = -1; clk->clk_lsb2 = -1;
483 1.1 chopps clk->clk_msb3 = -1; clk->clk_lsb3 = -1;
484 1.1 chopps
485 1.1 chopps clk->clk_cr2 = CLK_CR3;
486 1.1 chopps clk->clk_cr3 = CLK_OENAB|CLK_8BIT;
487 1.1 chopps clk->clk_cr2 = CLK_CR1;
488 1.1 chopps clk->clk_cr1 = CLK_IENAB;
489 1.1 chopps }
490 1.1 chopps
491 1.1 chopps stopclock()
492 1.1 chopps {
493 1.1 chopps register struct clkreg *clk = (struct clkreg *)clkstd[0];
494 1.1 chopps
495 1.1 chopps clk->clk_cr2 = CLK_CR3;
496 1.1 chopps clk->clk_cr3 = 0;
497 1.1 chopps clk->clk_cr2 = CLK_CR1;
498 1.1 chopps clk->clk_cr1 = CLK_IENAB;
499 1.1 chopps }
500 1.1 chopps #endif
501 1.1 chopps
502 1.1 chopps #endif
503 1.1 chopps
504 1.1 chopps
505 1.1 chopps #ifdef PROFTIMER
506 1.1 chopps /*
507 1.1 chopps * This code allows the amiga kernel to use one of the extra timers on
508 1.1 chopps * the clock chip for profiling, instead of the regular system timer.
509 1.1 chopps * The advantage of this is that the profiling timer can be turned up to
510 1.1 chopps * a higher interrupt rate, giving finer resolution timing. The profclock
511 1.1 chopps * routine is called from the lev6intr in locore, and is a specialized
512 1.1 chopps * routine that calls addupc. The overhead then is far less than if
513 1.1 chopps * hardclock/softclock was called. Further, the context switch code in
514 1.1 chopps * locore has been changed to turn the profile clock on/off when switching
515 1.1 chopps * into/out of a process that is profiling (startprofclock/stopprofclock).
516 1.1 chopps * This reduces the impact of the profiling clock on other users, and might
517 1.1 chopps * possibly increase the accuracy of the profiling.
518 1.1 chopps */
519 1.1 chopps int profint = PRF_INTERVAL; /* Clock ticks between interrupts */
520 1.1 chopps int profscale = 0; /* Scale factor from sys clock to prof clock */
521 1.1 chopps char profon = 0; /* Is profiling clock on? */
522 1.1 chopps
523 1.1 chopps /* profon values - do not change, locore.s assumes these values */
524 1.1 chopps #define PRF_NONE 0x00
525 1.1 chopps #define PRF_USER 0x01
526 1.1 chopps #define PRF_KERNEL 0x80
527 1.1 chopps
528 1.1 chopps initprofclock()
529 1.1 chopps {
530 1.1 chopps #if NCLOCK > 0
531 1.1 chopps struct proc *p = curproc; /* XXX */
532 1.1 chopps
533 1.1 chopps /*
534 1.1 chopps * If the high-res timer is running, force profiling off.
535 1.1 chopps * Unfortunately, this gets reflected back to the user not as
536 1.1 chopps * an error but as a lack of results.
537 1.1 chopps */
538 1.1 chopps if (clockon) {
539 1.1 chopps p->p_stats->p_prof.pr_scale = 0;
540 1.1 chopps return;
541 1.1 chopps }
542 1.1 chopps /*
543 1.1 chopps * Keep track of the number of user processes that are profiling
544 1.1 chopps * by checking the scale value.
545 1.1 chopps *
546 1.1 chopps * XXX: this all assumes that the profiling code is well behaved;
547 1.1 chopps * i.e. profil() is called once per process with pcscale non-zero
548 1.1 chopps * to turn it on, and once with pcscale zero to turn it off.
549 1.1 chopps * Also assumes you don't do any forks or execs. Oh well, there
550 1.1 chopps * is always adb...
551 1.1 chopps */
552 1.1 chopps if (p->p_stats->p_prof.pr_scale)
553 1.1 chopps profprocs++;
554 1.1 chopps else
555 1.1 chopps profprocs--;
556 1.1 chopps #endif
557 1.1 chopps /*
558 1.1 chopps * The profile interrupt interval must be an even divisor
559 1.1 chopps * of the CLK_INTERVAL so that scaling from a system clock
560 1.1 chopps * tick to a profile clock tick is possible using integer math.
561 1.1 chopps */
562 1.1 chopps if (profint > CLK_INTERVAL || (CLK_INTERVAL % profint) != 0)
563 1.1 chopps profint = CLK_INTERVAL;
564 1.1 chopps profscale = CLK_INTERVAL / profint;
565 1.1 chopps }
566 1.1 chopps
567 1.1 chopps startprofclock()
568 1.1 chopps {
569 1.1 chopps unsigned short interval;
570 1.1 chopps
571 1.1 chopps /* stop timer B */
572 1.1 chopps ciab.crb = ciab.crb & 0xc0;
573 1.1 chopps
574 1.1 chopps /* load interval into registers.
575 1.1 chopps the clocks run at NTSC: 715.909kHz or PAL: 709.379kHz */
576 1.1 chopps
577 1.1 chopps interval = profint - 1;
578 1.1 chopps
579 1.1 chopps /* order of setting is important ! */
580 1.1 chopps ciab.tblo = interval & 0xff;
581 1.1 chopps ciab.tbhi = interval >> 8;
582 1.1 chopps
583 1.1 chopps /* enable interrupts for timer B */
584 1.1 chopps ciab.icr = (1<<7) | (1<<1);
585 1.1 chopps
586 1.1 chopps /* start timer B in continuous shot mode */
587 1.1 chopps ciab.crb = (ciab.crb & 0xc0) | 1;
588 1.1 chopps }
589 1.1 chopps
590 1.1 chopps stopprofclock()
591 1.1 chopps {
592 1.1 chopps /* stop timer B */
593 1.1 chopps ciab.crb = ciab.crb & 0xc0;
594 1.1 chopps }
595 1.1 chopps
596 1.1 chopps #ifdef PROF
597 1.1 chopps /*
598 1.1 chopps * profclock() is expanded in line in lev6intr() unless profiling kernel.
599 1.1 chopps * Assumes it is called with clock interrupts blocked.
600 1.1 chopps */
601 1.1 chopps profclock(pc, ps)
602 1.1 chopps caddr_t pc;
603 1.1 chopps int ps;
604 1.1 chopps {
605 1.1 chopps /*
606 1.1 chopps * Came from user mode.
607 1.1 chopps * If this process is being profiled record the tick.
608 1.1 chopps */
609 1.1 chopps if (USERMODE(ps)) {
610 1.1 chopps if (p->p_stats.p_prof.pr_scale)
611 1.1 chopps addupc(pc, &curproc->p_stats.p_prof, 1);
612 1.1 chopps }
613 1.1 chopps /*
614 1.1 chopps * Came from kernel (supervisor) mode.
615 1.1 chopps * If we are profiling the kernel, record the tick.
616 1.1 chopps */
617 1.1 chopps else if (profiling < 2) {
618 1.1 chopps register int s = pc - s_lowpc;
619 1.1 chopps
620 1.1 chopps if (s < s_textsize)
621 1.1 chopps kcount[s / (HISTFRACTION * sizeof (*kcount))]++;
622 1.1 chopps }
623 1.1 chopps /*
624 1.1 chopps * Kernel profiling was on but has been disabled.
625 1.1 chopps * Mark as no longer profiling kernel and if all profiling done,
626 1.1 chopps * disable the clock.
627 1.1 chopps */
628 1.1 chopps if (profiling && (profon & PRF_KERNEL)) {
629 1.1 chopps profon &= ~PRF_KERNEL;
630 1.1 chopps if (profon == PRF_NONE)
631 1.1 chopps stopprofclock();
632 1.1 chopps }
633 1.1 chopps }
634 1.1 chopps #endif
635 1.1 chopps #endif
636 1.1 chopps
637 1.1 chopps /* this is a hook set by a clock driver for the configured realtime clock,
638 1.1 chopps returning plain current unix-time */
639 1.1 chopps long (*gettod) __P((void));
640 1.1 chopps int (*settod) __P((long));
641 1.1 chopps void *clockaddr;
642 1.1 chopps
643 1.1 chopps long a3gettod __P((void));
644 1.1 chopps long a2gettod __P((void));
645 1.1 chopps int a3settod __P((long));
646 1.1 chopps int a2settod __P((long));
647 1.1 chopps int rtcinit __P((void));
648 1.1 chopps
649 1.1 chopps /*
650 1.1 chopps * Initialize the time of day register, based on the time base which is, e.g.
651 1.1 chopps * from a filesystem.
652 1.1 chopps */
653 1.1 chopps inittodr(base)
654 1.1 chopps time_t base;
655 1.1 chopps {
656 1.1 chopps u_long timbuf = base; /* assume no battery clock exists */
657 1.1 chopps
658 1.1 chopps if (gettod == NULL && rtcinit() == 0)
659 1.1 chopps printf("WARNING: no battery clock\n");
660 1.1 chopps else
661 1.1 chopps timbuf = gettod();
662 1.1 chopps
663 1.1 chopps if (timbuf < base) {
664 1.1 chopps printf("WARNING: bad date in battery clock\n");
665 1.1 chopps timbuf = base;
666 1.1 chopps }
667 1.1 chopps
668 1.1 chopps /* Battery clock does not store usec's, so forget about it. */
669 1.1 chopps time.tv_sec = timbuf;
670 1.1 chopps }
671 1.1 chopps
672 1.1 chopps resettodr()
673 1.1 chopps {
674 1.1 chopps if (settod && settod(time.tv_sec) == 1)
675 1.1 chopps return;
676 1.1 chopps printf("Cannot set battery backed clock\n");
677 1.1 chopps }
678 1.1 chopps
679 1.1 chopps int
680 1.1 chopps rtcinit()
681 1.1 chopps {
682 1.1 chopps clockaddr = (void *)ztwomap(0xdc0000);
683 1.1 chopps if (is_a3000() || is_a4000()) {
684 1.1 chopps if (a3gettod() == 0)
685 1.1 chopps return(0);
686 1.1 chopps gettod = a3gettod;
687 1.1 chopps settod = a3settod;
688 1.1 chopps } else {
689 1.1 chopps if (a2gettod() == 0)
690 1.1 chopps return(0);
691 1.1 chopps gettod = a2gettod;
692 1.1 chopps settod = a2settod;
693 1.1 chopps }
694 1.1 chopps return(1);
695 1.1 chopps }
696 1.1 chopps
697 1.1 chopps static int month_days[12] = {
698 1.1 chopps 31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31
699 1.1 chopps };
700 1.1 chopps
701 1.1 chopps long
702 1.1 chopps a3gettod()
703 1.1 chopps {
704 1.1 chopps struct rtclock3000 *rt;
705 1.1 chopps int i, year, month, day, hour, min, sec;
706 1.1 chopps u_long tmp;
707 1.1 chopps
708 1.1 chopps rt = clockaddr;
709 1.1 chopps
710 1.1 chopps /* hold clock */
711 1.1 chopps rt->control1 = A3CONTROL1_HOLD_CLOCK;
712 1.1 chopps
713 1.1 chopps /* read it */
714 1.1 chopps sec = rt->second1 * 10 + rt->second2;
715 1.1 chopps min = rt->minute1 * 10 + rt->minute2;
716 1.1 chopps hour = rt->hour1 * 10 + rt->hour2;
717 1.1 chopps day = rt->day1 * 10 + rt->day2;
718 1.1 chopps month = rt->month1 * 10 + rt->month2;
719 1.1 chopps year = rt->year1 * 10 + rt->year2 + 1900;
720 1.1 chopps
721 1.1 chopps /* let it run again.. */
722 1.1 chopps rt->control1 = A3CONTROL1_FREE_CLOCK;
723 1.1 chopps
724 1.1 chopps if (range_test(hour, 0, 23))
725 1.1 chopps return(0);
726 1.1 chopps if (range_test(day, 1, 31))
727 1.1 chopps return(0);
728 1.1 chopps if (range_test(month, 1, 12))
729 1.1 chopps return(0);
730 1.1 chopps if (range_test(year, STARTOFTIME, 2000))
731 1.1 chopps return(0);
732 1.1 chopps
733 1.1 chopps tmp = 0;
734 1.1 chopps
735 1.1 chopps for (i = STARTOFTIME; i < year; i++)
736 1.1 chopps tmp += days_in_year(i);
737 1.1 chopps if (leapyear(year) && month > FEBRUARY)
738 1.1 chopps tmp++;
739 1.1 chopps
740 1.1 chopps for (i = 1; i < month; i++)
741 1.1 chopps tmp += days_in_month(i);
742 1.1 chopps
743 1.1 chopps tmp += (day - 1);
744 1.1 chopps tmp = ((tmp * 24 + hour) * 60 + min) * 60 + sec;
745 1.1 chopps
746 1.1 chopps return(tmp);
747 1.1 chopps }
748 1.1 chopps
749 1.1 chopps int
750 1.1 chopps a3settod(tim)
751 1.1 chopps long tim;
752 1.1 chopps {
753 1.1 chopps register int i;
754 1.1 chopps register long hms, day;
755 1.1 chopps u_char sec1, sec2;
756 1.1 chopps u_char min1, min2;
757 1.1 chopps u_char hour1, hour2;
758 1.1 chopps u_char day1, day2;
759 1.1 chopps u_char mon1, mon2;
760 1.1 chopps u_char year1, year2;
761 1.1 chopps struct rtclock3000 *rt;
762 1.1 chopps
763 1.1 chopps rt = clockaddr;
764 1.1 chopps /*
765 1.1 chopps * there seem to be problems with the bitfield addressing
766 1.1 chopps * currently used..
767 1.1 chopps */
768 1.1 chopps return(0);
769 1.1 chopps #if not_yet
770 1.1 chopps if (rt)
771 1.1 chopps return 0;
772 1.1 chopps
773 1.1 chopps /* prepare values to be written to clock */
774 1.1 chopps day = tim / SECDAY;
775 1.1 chopps hms = tim % SECDAY;
776 1.1 chopps
777 1.1 chopps hour2 = hms / 3600;
778 1.1 chopps hour1 = hour2 / 10;
779 1.1 chopps hour2 %= 10;
780 1.1 chopps
781 1.1 chopps min2 = (hms % 3600) / 60;
782 1.1 chopps min1 = min2 / 10;
783 1.1 chopps min2 %= 10;
784 1.1 chopps
785 1.1 chopps
786 1.1 chopps sec2 = (hms % 3600) % 60;
787 1.1 chopps sec1 = sec2 / 10;
788 1.1 chopps sec2 %= 10;
789 1.1 chopps
790 1.1 chopps /* Number of years in days */
791 1.1 chopps for (i = STARTOFTIME - 1900; day >= days_in_year(i); i++)
792 1.1 chopps day -= days_in_year(i);
793 1.1 chopps year1 = i / 10;
794 1.1 chopps year2 = i % 10;
795 1.1 chopps
796 1.1 chopps /* Number of months in days left */
797 1.1 chopps if (leapyear(i))
798 1.1 chopps days_in_month(FEBRUARY) = 29;
799 1.1 chopps for (i = 1; day >= days_in_month(i); i++)
800 1.1 chopps day -= days_in_month(i);
801 1.1 chopps days_in_month(FEBRUARY) = 28;
802 1.1 chopps
803 1.1 chopps mon1 = i / 10;
804 1.1 chopps mon2 = i % 10;
805 1.1 chopps
806 1.1 chopps /* Days are what is left over (+1) from all that. */
807 1.1 chopps day ++;
808 1.1 chopps day1 = day / 10;
809 1.1 chopps day2 = day % 10;
810 1.1 chopps
811 1.1 chopps rt->control1 = CONTROL1_HOLD_CLOCK;
812 1.1 chopps rt->second1 = sec1;
813 1.1 chopps rt->second2 = sec2;
814 1.1 chopps rt->minute1 = min1;
815 1.1 chopps rt->minute2 = min2;
816 1.1 chopps rt->hour1 = hour1;
817 1.1 chopps rt->hour2 = hour2;
818 1.1 chopps rt->day1 = day1;
819 1.1 chopps rt->day2 = day2;
820 1.1 chopps rt->month1 = mon1;
821 1.1 chopps rt->month2 = mon2;
822 1.1 chopps rt->year1 = year1;
823 1.1 chopps rt->year2 = year2;
824 1.1 chopps rt->control2 = CONTROL1_FREE_CLOCK;
825 1.1 chopps
826 1.1 chopps return 1;
827 1.1 chopps #endif
828 1.1 chopps }
829 1.1 chopps
830 1.1 chopps long
831 1.1 chopps a2gettod()
832 1.1 chopps {
833 1.1 chopps struct rtclock2000 *rt;
834 1.1 chopps int i, year, month, day, hour, min, sec;
835 1.1 chopps u_long tmp;
836 1.1 chopps
837 1.1 chopps rt = clockaddr;
838 1.1 chopps
839 1.1 chopps /*
840 1.1 chopps * hold clock
841 1.1 chopps */
842 1.1 chopps rt->control1 |= A2CONTROL1_HOLD;
843 1.1 chopps while (rt->control1 & A2CONTROL1_BUSY)
844 1.1 chopps ;
845 1.1 chopps
846 1.1 chopps /*
847 1.1 chopps * read it
848 1.1 chopps */
849 1.1 chopps sec = rt->second1 * 10 + rt->second2;
850 1.1 chopps min = rt->minute1 * 10 + rt->minute2;
851 1.1 chopps hour = (rt->hour1 & 3) * 10 + rt->hour2;
852 1.1 chopps day = rt->day1 * 10 + rt->day2;
853 1.1 chopps month = rt->month1 * 10 + rt->month2;
854 1.1 chopps year = rt->year1 * 10 + rt->year2 + 1900;
855 1.1 chopps
856 1.1 chopps if ((rt->control3 & A2CONTROL3_24HMODE) == 0) {
857 1.1 chopps if ((rt->hour1 & A2HOUR1_PM) == 0 && hour == 12)
858 1.1 chopps hour = 0;
859 1.1 chopps else if ((rt->hour1 & A2HOUR1_PM) && hour != 12)
860 1.1 chopps hour += 12;
861 1.1 chopps }
862 1.1 chopps
863 1.1 chopps /*
864 1.1 chopps * release the clock
865 1.1 chopps */
866 1.1 chopps rt->control1 &= ~A2CONTROL1_HOLD;
867 1.1 chopps
868 1.1 chopps if (range_test(hour, 0, 23))
869 1.1 chopps return(0);
870 1.1 chopps if (range_test(day, 1, 31))
871 1.1 chopps return(0);
872 1.1 chopps if (range_test(month, 1, 12))
873 1.1 chopps return(0);
874 1.1 chopps if (range_test(year, STARTOFTIME, 2000))
875 1.1 chopps return(0);
876 1.1 chopps
877 1.1 chopps tmp = 0;
878 1.1 chopps
879 1.1 chopps for (i = STARTOFTIME; i < year; i++)
880 1.1 chopps tmp += days_in_year(i);
881 1.1 chopps if (leapyear(year) && month > FEBRUARY)
882 1.1 chopps tmp++;
883 1.1 chopps
884 1.1 chopps for (i = 1; i < month; i++)
885 1.1 chopps tmp += days_in_month(i);
886 1.1 chopps
887 1.1 chopps tmp += (day - 1);
888 1.1 chopps tmp = ((tmp * 24 + hour) * 60 + min) * 60 + sec;
889 1.1 chopps
890 1.1 chopps return(tmp);
891 1.1 chopps }
892 1.1 chopps
893 1.1 chopps /*
894 1.1 chopps * there is some question as to whether this works
895 1.1 chopps * I guess
896 1.1 chopps */
897 1.1 chopps int
898 1.1 chopps a2settod(tim)
899 1.1 chopps long tim;
900 1.1 chopps {
901 1.1 chopps
902 1.1 chopps int i;
903 1.1 chopps long hms, day;
904 1.1 chopps u_char sec1, sec2;
905 1.1 chopps u_char min1, min2;
906 1.1 chopps u_char hour1, hour2;
907 1.1 chopps u_char day1, day2;
908 1.1 chopps u_char mon1, mon2;
909 1.1 chopps u_char year1, year2;
910 1.1 chopps struct rtclock2000 *rt;
911 1.1 chopps
912 1.1 chopps rt = clockaddr;
913 1.1 chopps /*
914 1.1 chopps * there seem to be problems with the bitfield addressing
915 1.1 chopps * currently used..
916 1.1 chopps *
917 1.1 chopps * XXX Check out the above where we (hour1 & 3)
918 1.1 chopps */
919 1.1 chopps return(0);
920 1.1 chopps #if not_yet
921 1.1 chopps if (! rt)
922 1.1 chopps return 0;
923 1.1 chopps
924 1.1 chopps /* prepare values to be written to clock */
925 1.1 chopps day = tim / SECDAY;
926 1.1 chopps hms = tim % SECDAY;
927 1.1 chopps
928 1.1 chopps hour2 = hms / 3600;
929 1.1 chopps hour1 = hour2 / 10;
930 1.1 chopps hour2 %= 10;
931 1.1 chopps
932 1.1 chopps min2 = (hms % 3600) / 60;
933 1.1 chopps min1 = min2 / 10;
934 1.1 chopps min2 %= 10;
935 1.1 chopps
936 1.1 chopps
937 1.1 chopps sec2 = (hms % 3600) % 60;
938 1.1 chopps sec1 = sec2 / 10;
939 1.1 chopps sec2 %= 10;
940 1.1 chopps
941 1.1 chopps /* Number of years in days */
942 1.1 chopps for (i = STARTOFTIME - 1900; day >= days_in_year(i); i++)
943 1.1 chopps day -= days_in_year(i);
944 1.1 chopps year1 = i / 10;
945 1.1 chopps year2 = i % 10;
946 1.1 chopps
947 1.1 chopps /* Number of months in days left */
948 1.1 chopps if (leapyear(i))
949 1.1 chopps days_in_month(FEBRUARY) = 29;
950 1.1 chopps for (i = 1; day >= days_in_month(i); i++)
951 1.1 chopps day -= days_in_month(i);
952 1.1 chopps days_in_month(FEBRUARY) = 28;
953 1.1 chopps
954 1.1 chopps mon1 = i / 10;
955 1.1 chopps mon2 = i % 10;
956 1.1 chopps
957 1.1 chopps /* Days are what is left over (+1) from all that. */
958 1.1 chopps day ++;
959 1.1 chopps day1 = day / 10;
960 1.1 chopps day2 = day % 10;
961 1.1 chopps
962 1.1 chopps /*
963 1.1 chopps * XXXX spin wait as with reading???
964 1.1 chopps */
965 1.1 chopps rt->control1 = A2CONTROL1_HOLD_CLOCK;
966 1.1 chopps rt->second1 = sec1;
967 1.1 chopps rt->second2 = sec2;
968 1.1 chopps rt->minute1 = min1;
969 1.1 chopps rt->minute2 = min2;
970 1.1 chopps rt->hour1 = hour1;
971 1.1 chopps rt->hour2 = hour2;
972 1.1 chopps rt->day1 = day1;
973 1.1 chopps rt->day2 = day2;
974 1.1 chopps rt->month1 = mon1;
975 1.1 chopps rt->month2 = mon2;
976 1.1 chopps rt->year1 = year1;
977 1.1 chopps rt->year2 = year2;
978 1.1 chopps rt->control2 = CONTROL1_FREE_CLOCK;
979 1.1 chopps
980 1.1 chopps return 1;
981 1.1 chopps #endif
982 1.1 chopps }
983