Home | History | Annotate | Line # | Download | only in dev
clock.c revision 1.1
      1 /*
      2  * Copyright (c) 1988 University of Utah.
      3  * Copyright (c) 1982, 1990 The Regents of the University of California.
      4  * All rights reserved.
      5  *
      6  * This code is derived from software contributed to Berkeley by
      7  * the Systems Programming Group of the University of Utah Computer
      8  * Science Department.
      9  *
     10  * Redistribution and use in source and binary forms, with or without
     11  * modification, are permitted provided that the following conditions
     12  * are met:
     13  * 1. Redistributions of source code must retain the above copyright
     14  *    notice, this list of conditions and the following disclaimer.
     15  * 2. Redistributions in binary form must reproduce the above copyright
     16  *    notice, this list of conditions and the following disclaimer in the
     17  *    documentation and/or other materials provided with the distribution.
     18  * 3. All advertising materials mentioning features or use of this software
     19  *    must display the following acknowledgement:
     20  *	This product includes software developed by the University of
     21  *	California, Berkeley and its contributors.
     22  * 4. Neither the name of the University nor the names of its contributors
     23  *    may be used to endorse or promote products derived from this software
     24  *    without specific prior written permission.
     25  *
     26  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     27  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     28  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     29  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     30  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     31  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     32  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     33  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     34  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     35  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     36  * SUCH DAMAGE.
     37  *
     38  * from: Utah $Hdr: clock.c 1.18 91/01/21$
     39  *
     40  *	@(#)clock.c	7.6 (Berkeley) 5/7/91
     41  *	$Id: clock.c,v 1.1 1994/05/08 05:52:58 chopps Exp $
     42  */
     43 
     44 #include <sys/param.h>
     45 #include <sys/kernel.h>
     46 #include <sys/device.h>
     47 #include <machine/psl.h>
     48 #include <machine/cpu.h>
     49 #include <amiga/amiga/device.h>
     50 #include <amiga/amiga/custom.h>
     51 #include <amiga/amiga/cia.h>
     52 #include <amiga/dev/rtc.h>
     53 #include <amiga/dev/ztwobusvar.h>
     54 
     55 #if defined(PROF) && defined(PROFTIMER)
     56 #include <sys/PROF.h>
     57 #endif
     58 
     59 /* the clocks run at NTSC: 715.909kHz or PAL: 709.379kHz.
     60    We're using a 100 Hz clock. */
     61 
     62 #define CLK_INTERVAL amiga_clk_interval
     63 int amiga_clk_interval = (715909 / 100);	/* XXX NTSC */
     64 /*
     65  * Machine-dependent clock routines.
     66  *
     67  * Startrtclock restarts the real-time clock, which provides
     68  * hardclock interrupts to kern_clock.c.
     69  *
     70  * Inittodr initializes the time of day hardware which provides
     71  * date functions.
     72  *
     73  * Resettodr restores the time of day hardware after a time change.
     74  *
     75  * A note on the real-time clock:
     76  * We actually load the clock with CLK_INTERVAL-1 instead of CLK_INTERVAL.
     77  * This is because the counter decrements to zero after N+1 enabled clock
     78  * periods where N is the value loaded into the counter.
     79  */
     80 
     81 int clockmatch __P((struct device *, struct cfdata *, void *));
     82 void clockattach __P((struct device *, struct device *, void *));
     83 
     84 struct cfdriver clockcd = {
     85 	NULL, "clock", clockmatch, clockattach,
     86 	DV_DULL, sizeof(struct device), NULL, 0 };
     87 
     88 int
     89 clockmatch(pdp, cfp, auxp)
     90 	struct device *pdp;
     91 	struct cfdata *cfp;
     92 	void *auxp;
     93 {
     94 	if (matchname("clock", auxp))
     95 		return(1);
     96 	return(0);
     97 }
     98 
     99 /*
    100  * Start the real-time clock.
    101  */
    102 void
    103 clockattach(pdp, dp, auxp)
    104 	struct device *pdp, *dp;
    105 	void *auxp;
    106 {
    107 	unsigned short interval;
    108 
    109 	/* be more elaborate XXX, whats the speed */
    110 	printf("\n");
    111 	/*
    112 	 * stop timer A
    113 	 */
    114 	ciab.cra = ciab.cra & 0xc0;
    115 
    116 	/*
    117 	 * load interval into registers.
    118          * the clocks run at NTSC: 715.909kHz or PAL: 709.379kHz
    119 	 * supprort for PAL WHEN?!?! XXX
    120 	 */
    121 	interval = CLK_INTERVAL - 1;
    122 
    123 	/*
    124 	 * order of setting is important !
    125 	 */
    126 	ciab.talo = interval & 0xff;
    127 	ciab.tahi = interval >> 8;
    128 }
    129 
    130 void
    131 cpu_initclocks()
    132 {
    133 	/*
    134 	 * enable interrupts for timer A
    135 	 */
    136 	ciab.icr = (1<<7) | (1<<0);
    137 
    138 	/*
    139 	 * start timer A in continuous shot mode
    140 	 */
    141 	ciab.cra = (ciab.cra & 0xc0) | 1;
    142 
    143 	/*
    144 	 * and globally enable interrupts for ciab
    145 	 */
    146 	custom.intena = INTF_SETCLR | INTF_EXTER;
    147 }
    148 
    149 setstatclockrate(hz)
    150 	int hz;
    151 {
    152 }
    153 
    154 /*
    155  * Returns number of usec since last recorded clock "tick"
    156  * (i.e. clock interrupt).
    157  */
    158 clkread()
    159 {
    160 	u_char hi, hi2, lo;
    161 	u_int interval;
    162 
    163 	hi  = ciab.tahi;
    164 	lo  = ciab.talo;
    165 	hi2 = ciab.tahi;
    166 	if (hi != hi2) {
    167 		lo = ciab.talo;
    168 		hi = hi2;
    169 	}
    170 
    171 	interval = (CLK_INTERVAL - 1) - ((hi<<8) | lo);
    172 
    173 	/*
    174 	 * should read ICR and if there's an int pending, adjust interval.
    175 	 * However, * since reading ICR clears the interrupt, we'd lose a
    176 	 * hardclock int, and * this is not tolerable.
    177 	 */
    178 
    179 	return((interval * tick) / CLK_INTERVAL);
    180 }
    181 
    182 u_int micspertick;
    183 
    184 /*
    185  * we set up as much of the CIAa as possible
    186  * as all access to chip memory are very slow.
    187  */
    188 void
    189 setmicspertick()
    190 {
    191 	micspertick = (1000000ULL << 20) / 715909;
    192 
    193 	/*
    194 	 * disable interrupts (just in case.)
    195 	 */
    196 	ciaa.icr = 0x3;
    197 
    198 	/*
    199 	 * stop both timers if not already
    200 	 */
    201 	ciaa.cra &= ~1;
    202 	ciaa.crb &= ~1;
    203 
    204 	/*
    205 	 * set timer B in "count timer A underflows" mode
    206 	 * set tiemr A in one-shot mode
    207 	 */
    208 	ciaa.crb = (ciaa.crb & 0x80) | 0x48;
    209 	ciaa.cra = (ciaa.cra & 0xc0) | 0x08;
    210 }
    211 
    212 /*
    213  * this function assumes that on any entry beyond the first
    214  * the following condintions exist:
    215  * Interrupts for Timers A and B are disabled.
    216  * Timers A and B are stoped.
    217  * Timers A and B are in one-shot mode with B counting timer A underflows
    218  *
    219  */
    220 void
    221 delay(mic)
    222 	int mic;
    223 {
    224 	u_int temp;
    225 	int s;
    226 
    227 	if (micspertick == 0)
    228 		setmicspertick();
    229 
    230 	if (mic <= 1)
    231 		return;
    232 
    233 	/*
    234 	 * basically this is going to do an integer
    235 	 * usec / (1000000 / 715909) with no loss of
    236 	 * precision
    237 	 */
    238 	temp = mic >> 12;
    239 	asm("divul %3,%1:%0" : "=d" (temp) : "d" (mic >> 12), "0" (mic << 20),
    240 	    "d" (micspertick));
    241 
    242 	if ((temp & 0xffff0000) > 0x10000) {
    243 		mic = (temp >> 16) - 1;
    244 		temp &= 0xffff;
    245 
    246 		/*
    247 		 * set timer A in continous mode
    248 		 */
    249 		ciaa.cra = (ciaa.cra & 0xc0) | 0x00;
    250 
    251 		/*
    252 		 * latch/load/start "counts of timer A underflows" in B
    253 		 */
    254 		ciaa.tblo = mic & 0xff;
    255 		ciaa.tbhi = mic >> 8;
    256 
    257 		/*
    258 		 * timer A latches 0xffff
    259 		 * and start it.
    260 		 */
    261 		ciaa.talo = 0xff;
    262 		ciaa.tahi = 0xff;
    263 		ciaa.cra |= 1;
    264 
    265 		while (ciaa.crb & 1)
    266 			;
    267 
    268 		/*
    269 		 * stop timer A
    270 		 */
    271 		ciaa.cra &= ~1;
    272 
    273 		/*
    274 		 * set timer A in one shot mode
    275 		 */
    276 		ciaa.cra = (ciaa.cra & 0xc0) | 0x08;
    277 	} else if ((temp & 0xffff0000) == 0x10000) {
    278 		temp &= 0xffff;
    279 
    280 		/*
    281 		 * timer A is in one shot latch/load/start 1 full turn
    282 		 */
    283 		ciaa.talo = 0xff;
    284 		ciaa.tahi = 0xff;
    285 		while (ciaa.cra & 1)
    286 			;
    287 	}
    288 	if (temp < 1)
    289 		return;
    290 
    291 	/*
    292 	 * temp is now residual ammount, latch/load/start it.
    293 	 */
    294 	ciaa.talo = temp & 0xff;
    295 	ciaa.tahi = temp >> 8;
    296 	while (ciaa.cra & 1)
    297 		;
    298 }
    299 
    300 int
    301 _delay(mic)
    302 	int mic;
    303 {
    304 	DELAY(100 * mic);
    305 }
    306 
    307 #if 0
    308 /*
    309  * Needs to be calibrated for use, its way off most of the time
    310  */
    311 int
    312 DELAY (mic)
    313     int mic;
    314 {
    315   u_long n;
    316   short hpos;
    317 
    318   /* busy-poll for mic microseconds. This is *no* general timeout function,
    319      it's meant for timing in hardware control, and as such, may not lower
    320      interrupt priorities to really `sleep'. */
    321 
    322   /* this function uses HSync pulses as base units. The custom chips
    323      display only deals with 31.6kHz/2 refresh, this gives us a
    324      resolution of 1/15800 s, which is ~63us (add some fuzz so we really
    325      wait awhile, even if using small timeouts) */
    326   n = mic/63 + 2;
    327   do
    328     {
    329       hpos = custom.vhposr & 0xff00;
    330       while (hpos == (custom.vhposr & 0xff00)) ;
    331     }
    332   while (n--);
    333 }
    334 #endif
    335 
    336 #if notyet
    337 
    338 /* implement this later. I'd suggest using both timers in CIA-A, they're
    339    not yet used. */
    340 
    341 #include "clock.h"
    342 #if NCLOCK > 0
    343 /*
    344  * /dev/clock: mappable high resolution timer.
    345  *
    346  * This code implements a 32-bit recycling counter (with a 4 usec period)
    347  * using timers 2 & 3 on the 6840 clock chip.  The counter can be mapped
    348  * RO into a user's address space to achieve low overhead (no system calls),
    349  * high-precision timing.
    350  *
    351  * Note that timer 3 is also used for the high precision profiling timer
    352  * (PROFTIMER code above).  Care should be taken when both uses are
    353  * configured as only a token effort is made to avoid conflicting use.
    354  */
    355 #include <sys/proc.h>
    356 #include <sys/resourcevar.h>
    357 #include <sys/ioctl.h>
    358 #include <sys/malloc.h>
    359 #include <vm/vm.h>
    360 #include <amiga/amiga/clockioctl.h>
    361 #include <sys/specdev.h>
    362 #include <sys/vnode.h>
    363 #include <sys/mman.h>
    364 
    365 int clockon = 0;		/* non-zero if high-res timer enabled */
    366 #ifdef PROFTIMER
    367 int  profprocs = 0;		/* # of procs using profiling timer */
    368 #endif
    369 #ifdef DEBUG
    370 int clockdebug = 0;
    371 #endif
    372 
    373 /*ARGSUSED*/
    374 clockopen(dev, flags)
    375 	dev_t dev;
    376 {
    377 #ifdef PROFTIMER
    378 #ifdef PROF
    379 	/*
    380 	 * Kernel profiling enabled, give up.
    381 	 */
    382 	if (profiling)
    383 		return(EBUSY);
    384 #endif
    385 	/*
    386 	 * If any user processes are profiling, give up.
    387 	 */
    388 	if (profprocs)
    389 		return(EBUSY);
    390 #endif
    391 	if (!clockon) {
    392 		startclock();
    393 		clockon++;
    394 	}
    395 	return(0);
    396 }
    397 
    398 /*ARGSUSED*/
    399 clockclose(dev, flags)
    400 	dev_t dev;
    401 {
    402 	(void) clockunmmap(dev, (caddr_t)0, curproc);	/* XXX */
    403 	stopclock();
    404 	clockon = 0;
    405 	return(0);
    406 }
    407 
    408 /*ARGSUSED*/
    409 clockioctl(dev, cmd, data, flag, p)
    410 	dev_t dev;
    411 	caddr_t data;
    412 	struct proc *p;
    413 {
    414 	int error = 0;
    415 
    416 	switch (cmd) {
    417 
    418 	case CLOCKMAP:
    419 		error = clockmmap(dev, (caddr_t *)data, p);
    420 		break;
    421 
    422 	case CLOCKUNMAP:
    423 		error = clockunmmap(dev, *(caddr_t *)data, p);
    424 		break;
    425 
    426 	case CLOCKGETRES:
    427 		*(int *)data = CLK_RESOLUTION;
    428 		break;
    429 
    430 	default:
    431 		error = EINVAL;
    432 		break;
    433 	}
    434 	return(error);
    435 }
    436 
    437 /*ARGSUSED*/
    438 clockmap(dev, off, prot)
    439 	dev_t dev;
    440 {
    441 	return((off + (INTIOBASE+CLKBASE+CLKSR-1)) >> PGSHIFT);
    442 }
    443 
    444 clockmmap(dev, addrp, p)
    445 	dev_t dev;
    446 	caddr_t *addrp;
    447 	struct proc *p;
    448 {
    449 	int error;
    450 	struct vnode vn;
    451 	struct specinfo si;
    452 	int flags;
    453 
    454 	flags = MAP_FILE|MAP_SHARED;
    455 	if (*addrp)
    456 		flags |= MAP_FIXED;
    457 	else
    458 		*addrp = (caddr_t)0x1000000;	/* XXX */
    459 	vn.v_type = VCHR;			/* XXX */
    460 	vn.v_specinfo = &si;			/* XXX */
    461 	vn.v_rdev = dev;			/* XXX */
    462 	error = vm_mmap(&p->p_vmspace->vm_map, (vm_offset_t *)addrp,
    463 			PAGE_SIZE, VM_PROT_ALL, flags, (caddr_t)&vn, 0);
    464 	return(error);
    465 }
    466 
    467 clockunmmap(dev, addr, p)
    468 	dev_t dev;
    469 	caddr_t addr;
    470 	struct proc *p;
    471 {
    472 	int rv;
    473 
    474 	if (addr == 0)
    475 		return(EINVAL);		/* XXX: how do we deal with this? */
    476 	rv = vm_deallocate(p->p_vmspace->vm_map, (vm_offset_t)addr, PAGE_SIZE);
    477 	return(rv == KERN_SUCCESS ? 0 : EINVAL);
    478 }
    479 
    480 startclock()
    481 {
    482 	register struct clkreg *clk = (struct clkreg *)clkstd[0];
    483 
    484 	clk->clk_msb2 = -1; clk->clk_lsb2 = -1;
    485 	clk->clk_msb3 = -1; clk->clk_lsb3 = -1;
    486 
    487 	clk->clk_cr2 = CLK_CR3;
    488 	clk->clk_cr3 = CLK_OENAB|CLK_8BIT;
    489 	clk->clk_cr2 = CLK_CR1;
    490 	clk->clk_cr1 = CLK_IENAB;
    491 }
    492 
    493 stopclock()
    494 {
    495 	register struct clkreg *clk = (struct clkreg *)clkstd[0];
    496 
    497 	clk->clk_cr2 = CLK_CR3;
    498 	clk->clk_cr3 = 0;
    499 	clk->clk_cr2 = CLK_CR1;
    500 	clk->clk_cr1 = CLK_IENAB;
    501 }
    502 #endif
    503 
    504 #endif
    505 
    506 
    507 #ifdef PROFTIMER
    508 /*
    509  * This code allows the amiga kernel to use one of the extra timers on
    510  * the clock chip for profiling, instead of the regular system timer.
    511  * The advantage of this is that the profiling timer can be turned up to
    512  * a higher interrupt rate, giving finer resolution timing. The profclock
    513  * routine is called from the lev6intr in locore, and is a specialized
    514  * routine that calls addupc. The overhead then is far less than if
    515  * hardclock/softclock was called. Further, the context switch code in
    516  * locore has been changed to turn the profile clock on/off when switching
    517  * into/out of a process that is profiling (startprofclock/stopprofclock).
    518  * This reduces the impact of the profiling clock on other users, and might
    519  * possibly increase the accuracy of the profiling.
    520  */
    521 int  profint   = PRF_INTERVAL;	/* Clock ticks between interrupts */
    522 int  profscale = 0;		/* Scale factor from sys clock to prof clock */
    523 char profon    = 0;		/* Is profiling clock on? */
    524 
    525 /* profon values - do not change, locore.s assumes these values */
    526 #define PRF_NONE	0x00
    527 #define	PRF_USER	0x01
    528 #define	PRF_KERNEL	0x80
    529 
    530 initprofclock()
    531 {
    532 #if NCLOCK > 0
    533 	struct proc *p = curproc;		/* XXX */
    534 
    535 	/*
    536 	 * If the high-res timer is running, force profiling off.
    537 	 * Unfortunately, this gets reflected back to the user not as
    538 	 * an error but as a lack of results.
    539 	 */
    540 	if (clockon) {
    541 		p->p_stats->p_prof.pr_scale = 0;
    542 		return;
    543 	}
    544 	/*
    545 	 * Keep track of the number of user processes that are profiling
    546 	 * by checking the scale value.
    547 	 *
    548 	 * XXX: this all assumes that the profiling code is well behaved;
    549 	 * i.e. profil() is called once per process with pcscale non-zero
    550 	 * to turn it on, and once with pcscale zero to turn it off.
    551 	 * Also assumes you don't do any forks or execs.  Oh well, there
    552 	 * is always adb...
    553 	 */
    554 	if (p->p_stats->p_prof.pr_scale)
    555 		profprocs++;
    556 	else
    557 		profprocs--;
    558 #endif
    559 	/*
    560 	 * The profile interrupt interval must be an even divisor
    561 	 * of the CLK_INTERVAL so that scaling from a system clock
    562 	 * tick to a profile clock tick is possible using integer math.
    563 	 */
    564 	if (profint > CLK_INTERVAL || (CLK_INTERVAL % profint) != 0)
    565 		profint = CLK_INTERVAL;
    566 	profscale = CLK_INTERVAL / profint;
    567 }
    568 
    569 startprofclock()
    570 {
    571   unsigned short interval;
    572 
    573   /* stop timer B */
    574   ciab.crb = ciab.crb & 0xc0;
    575 
    576   /* load interval into registers.
    577      the clocks run at NTSC: 715.909kHz or PAL: 709.379kHz */
    578 
    579   interval = profint - 1;
    580 
    581   /* order of setting is important ! */
    582   ciab.tblo = interval & 0xff;
    583   ciab.tbhi = interval >> 8;
    584 
    585   /* enable interrupts for timer B */
    586   ciab.icr = (1<<7) | (1<<1);
    587 
    588   /* start timer B in continuous shot mode */
    589   ciab.crb = (ciab.crb & 0xc0) | 1;
    590 }
    591 
    592 stopprofclock()
    593 {
    594   /* stop timer B */
    595   ciab.crb = ciab.crb & 0xc0;
    596 }
    597 
    598 #ifdef PROF
    599 /*
    600  * profclock() is expanded in line in lev6intr() unless profiling kernel.
    601  * Assumes it is called with clock interrupts blocked.
    602  */
    603 profclock(pc, ps)
    604 	caddr_t pc;
    605 	int ps;
    606 {
    607 	/*
    608 	 * Came from user mode.
    609 	 * If this process is being profiled record the tick.
    610 	 */
    611 	if (USERMODE(ps)) {
    612 		if (p->p_stats.p_prof.pr_scale)
    613 			addupc(pc, &curproc->p_stats.p_prof, 1);
    614 	}
    615 	/*
    616 	 * Came from kernel (supervisor) mode.
    617 	 * If we are profiling the kernel, record the tick.
    618 	 */
    619 	else if (profiling < 2) {
    620 		register int s = pc - s_lowpc;
    621 
    622 		if (s < s_textsize)
    623 			kcount[s / (HISTFRACTION * sizeof (*kcount))]++;
    624 	}
    625 	/*
    626 	 * Kernel profiling was on but has been disabled.
    627 	 * Mark as no longer profiling kernel and if all profiling done,
    628 	 * disable the clock.
    629 	 */
    630 	if (profiling && (profon & PRF_KERNEL)) {
    631 		profon &= ~PRF_KERNEL;
    632 		if (profon == PRF_NONE)
    633 			stopprofclock();
    634 	}
    635 }
    636 #endif
    637 #endif
    638 
    639 /* this is a hook set by a clock driver for the configured realtime clock,
    640    returning plain current unix-time */
    641 long (*gettod) __P((void));
    642 int (*settod) __P((long));
    643 void *clockaddr;
    644 
    645 long a3gettod __P((void));
    646 long a2gettod __P((void));
    647 int a3settod __P((long));
    648 int a2settod __P((long));
    649 int rtcinit __P((void));
    650 
    651 /*
    652  * Initialize the time of day register, based on the time base which is, e.g.
    653  * from a filesystem.
    654  */
    655 inittodr(base)
    656 	time_t base;
    657 {
    658 	u_long timbuf = base;	/* assume no battery clock exists */
    659 
    660 	if (gettod == NULL && rtcinit() == 0)
    661 		printf("WARNING: no battery clock\n");
    662 	else
    663 		timbuf = gettod();
    664 
    665 	if (timbuf < base) {
    666 		printf("WARNING: bad date in battery clock\n");
    667 		timbuf = base;
    668 	}
    669 
    670 	/* Battery clock does not store usec's, so forget about it. */
    671 	time.tv_sec = timbuf;
    672 }
    673 
    674 resettodr()
    675 {
    676 	if (settod && settod(time.tv_sec) == 1)
    677 		return;
    678 	printf("Cannot set battery backed clock\n");
    679 }
    680 
    681 int
    682 rtcinit()
    683 {
    684 	clockaddr = (void *)ztwomap(0xdc0000);
    685 	if (is_a3000() || is_a4000()) {
    686 		if (a3gettod() == 0)
    687 			return(0);
    688 		gettod = a3gettod;
    689 		settod = a3settod;
    690 	} else {
    691 		if (a2gettod() == 0)
    692 			return(0);
    693 		gettod = a2gettod;
    694 		settod = a2settod;
    695 	}
    696 	return(1);
    697 }
    698 
    699 static int month_days[12] = {
    700 	31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31
    701 };
    702 
    703 long
    704 a3gettod()
    705 {
    706 	struct rtclock3000 *rt;
    707 	int i, year, month, day, hour, min, sec;
    708 	u_long tmp;
    709 
    710 	rt = clockaddr;
    711 
    712 	/* hold clock */
    713 	rt->control1 = A3CONTROL1_HOLD_CLOCK;
    714 
    715 	/* read it */
    716 	sec   = rt->second1 * 10 + rt->second2;
    717 	min   = rt->minute1 * 10 + rt->minute2;
    718 	hour  = rt->hour1   * 10 + rt->hour2;
    719 	day   = rt->day1    * 10 + rt->day2;
    720 	month = rt->month1  * 10 + rt->month2;
    721 	year  = rt->year1   * 10 + rt->year2   + 1900;
    722 
    723 	/* let it run again.. */
    724 	rt->control1 = A3CONTROL1_FREE_CLOCK;
    725 
    726 	if (range_test(hour, 0, 23))
    727 		return(0);
    728 	if (range_test(day, 1, 31))
    729 		return(0);
    730 	if (range_test(month, 1, 12))
    731 		return(0);
    732 	if (range_test(year, STARTOFTIME, 2000))
    733 		return(0);
    734 
    735 	tmp = 0;
    736 
    737 	for (i = STARTOFTIME; i < year; i++)
    738 		tmp += days_in_year(i);
    739 	if (leapyear(year) && month > FEBRUARY)
    740 		tmp++;
    741 
    742 	for (i = 1; i < month; i++)
    743 		tmp += days_in_month(i);
    744 
    745 	tmp += (day - 1);
    746 	tmp = ((tmp * 24 + hour) * 60 + min) * 60 + sec;
    747 
    748 	return(tmp);
    749 }
    750 
    751 int
    752 a3settod(tim)
    753 	long tim;
    754 {
    755 	register int i;
    756 	register long hms, day;
    757 	u_char sec1, sec2;
    758 	u_char min1, min2;
    759 	u_char hour1, hour2;
    760 	u_char day1, day2;
    761 	u_char mon1, mon2;
    762 	u_char year1, year2;
    763 	struct rtclock3000 *rt;
    764 
    765 	rt = clockaddr;
    766 	/*
    767 	 * there seem to be problems with the bitfield addressing
    768 	 * currently used..
    769 	 */
    770 return(0);
    771 #if not_yet
    772 	if (rt)
    773 		return 0;
    774 
    775 	/* prepare values to be written to clock */
    776 	day = tim / SECDAY;
    777 	hms = tim % SECDAY;
    778 
    779 	hour2 = hms / 3600;
    780 	hour1 = hour2 / 10;
    781 	hour2 %= 10;
    782 
    783 	min2 = (hms % 3600) / 60;
    784 	min1 = min2 / 10;
    785 	min2 %= 10;
    786 
    787 
    788 	sec2 = (hms % 3600) % 60;
    789 	sec1 = sec2 / 10;
    790 	sec2 %= 10;
    791 
    792 	/* Number of years in days */
    793 	for (i = STARTOFTIME - 1900; day >= days_in_year(i); i++)
    794 		day -= days_in_year(i);
    795 	year1 = i / 10;
    796 	year2 = i % 10;
    797 
    798 	/* Number of months in days left */
    799 	if (leapyear(i))
    800 		days_in_month(FEBRUARY) = 29;
    801 	for (i = 1; day >= days_in_month(i); i++)
    802 		day -= days_in_month(i);
    803 	days_in_month(FEBRUARY) = 28;
    804 
    805 	mon1 = i / 10;
    806 	mon2 = i % 10;
    807 
    808 	/* Days are what is left over (+1) from all that. */
    809 	day ++;
    810 	day1 = day / 10;
    811 	day2 = day % 10;
    812 
    813 	rt->control1 = CONTROL1_HOLD_CLOCK;
    814 	rt->second1 = sec1;
    815 	rt->second2 = sec2;
    816 	rt->minute1 = min1;
    817 	rt->minute2 = min2;
    818 	rt->hour1   = hour1;
    819 	rt->hour2   = hour2;
    820 	rt->day1    = day1;
    821 	rt->day2    = day2;
    822 	rt->month1  = mon1;
    823 	rt->month2  = mon2;
    824 	rt->year1   = year1;
    825 	rt->year2   = year2;
    826 	rt->control2 = CONTROL1_FREE_CLOCK;
    827 
    828 	return 1;
    829 #endif
    830 }
    831 
    832 long
    833 a2gettod()
    834 {
    835 	struct rtclock2000 *rt;
    836 	int i, year, month, day, hour, min, sec;
    837 	u_long tmp;
    838 
    839 	rt = clockaddr;
    840 
    841 	/*
    842 	 * hold clock
    843 	 */
    844 	rt->control1 |= A2CONTROL1_HOLD;
    845 	while (rt->control1 & A2CONTROL1_BUSY)
    846 		;
    847 
    848 	/*
    849 	 * read it
    850 	 */
    851 	sec = rt->second1 * 10 + rt->second2;
    852 	min = rt->minute1 * 10 + rt->minute2;
    853 	hour = (rt->hour1 & 3)  * 10 + rt->hour2;
    854 	day = rt->day1 * 10 + rt->day2;
    855 	month = rt->month1 * 10 + rt->month2;
    856 	year = rt->year1 * 10 + rt->year2   + 1900;
    857 
    858 	if ((rt->control3 & A2CONTROL3_24HMODE) == 0) {
    859 		if ((rt->hour1 & A2HOUR1_PM) == 0 && hour == 12)
    860 			hour = 0;
    861 		else if ((rt->hour1 & A2HOUR1_PM) && hour != 12)
    862 			hour += 12;
    863 	}
    864 
    865 	/*
    866 	 * release the clock
    867 	 */
    868 	rt->control1 &= ~A2CONTROL1_HOLD;
    869 
    870 	if (range_test(hour, 0, 23))
    871 		return(0);
    872 	if (range_test(day, 1, 31))
    873 		return(0);
    874 	if (range_test(month, 1, 12))
    875 		return(0);
    876 	if (range_test(year, STARTOFTIME, 2000))
    877 		return(0);
    878 
    879 	tmp = 0;
    880 
    881 	for (i = STARTOFTIME; i < year; i++)
    882 		tmp += days_in_year(i);
    883 	if (leapyear(year) && month > FEBRUARY)
    884 		tmp++;
    885 
    886 	for (i = 1; i < month; i++)
    887 		tmp += days_in_month(i);
    888 
    889 	tmp += (day - 1);
    890 	tmp = ((tmp * 24 + hour) * 60 + min) * 60 + sec;
    891 
    892 	return(tmp);
    893 }
    894 
    895 /*
    896  * there is some question as to whether this works
    897  * I guess
    898  */
    899 int
    900 a2settod(tim)
    901 	long tim;
    902 {
    903 
    904 	int i;
    905 	long hms, day;
    906 	u_char sec1, sec2;
    907 	u_char min1, min2;
    908 	u_char hour1, hour2;
    909 	u_char day1, day2;
    910 	u_char mon1, mon2;
    911 	u_char year1, year2;
    912 	struct rtclock2000 *rt;
    913 
    914 	rt = clockaddr;
    915 	/*
    916 	 * there seem to be problems with the bitfield addressing
    917 	 * currently used..
    918 	 *
    919 	 * XXX Check out the above where we (hour1 & 3)
    920 	 */
    921 return(0);
    922 #if not_yet
    923 	if (! rt)
    924 		return 0;
    925 
    926 	/* prepare values to be written to clock */
    927 	day = tim / SECDAY;
    928 	hms = tim % SECDAY;
    929 
    930 	hour2 = hms / 3600;
    931 	hour1 = hour2 / 10;
    932 	hour2 %= 10;
    933 
    934 	min2 = (hms % 3600) / 60;
    935 	min1 = min2 / 10;
    936 	min2 %= 10;
    937 
    938 
    939 	sec2 = (hms % 3600) % 60;
    940 	sec1 = sec2 / 10;
    941 	sec2 %= 10;
    942 
    943 	/* Number of years in days */
    944 	for (i = STARTOFTIME - 1900; day >= days_in_year(i); i++)
    945 		day -= days_in_year(i);
    946 	year1 = i / 10;
    947 	year2 = i % 10;
    948 
    949 	/* Number of months in days left */
    950 	if (leapyear(i))
    951 		days_in_month(FEBRUARY) = 29;
    952 	for (i = 1; day >= days_in_month(i); i++)
    953 		day -= days_in_month(i);
    954 	days_in_month(FEBRUARY) = 28;
    955 
    956 	mon1 = i / 10;
    957 	mon2 = i % 10;
    958 
    959 	/* Days are what is left over (+1) from all that. */
    960 	day ++;
    961 	day1 = day / 10;
    962 	day2 = day % 10;
    963 
    964 	/*
    965 	 * XXXX spin wait as with reading???
    966 	 */
    967 	rt->control1 = A2CONTROL1_HOLD_CLOCK;
    968 	rt->second1 = sec1;
    969 	rt->second2 = sec2;
    970 	rt->minute1 = min1;
    971 	rt->minute2 = min2;
    972 	rt->hour1   = hour1;
    973 	rt->hour2   = hour2;
    974 	rt->day1    = day1;
    975 	rt->day2    = day2;
    976 	rt->month1  = mon1;
    977 	rt->month2  = mon2;
    978 	rt->year1   = year1;
    979 	rt->year2   = year2;
    980 	rt->control2 = CONTROL1_FREE_CLOCK;
    981 
    982   return 1;
    983 #endif
    984 }
    985