Home | History | Annotate | Line # | Download | only in dev
clock.c revision 1.13
      1 /*	$NetBSD: clock.c,v 1.13 1996/04/21 21:10:57 veego Exp $	*/
      2 
      3 /*
      4  * Copyright (c) 1988 University of Utah.
      5  * Copyright (c) 1982, 1990 The Regents of the University of California.
      6  * All rights reserved.
      7  *
      8  * This code is derived from software contributed to Berkeley by
      9  * the Systems Programming Group of the University of Utah Computer
     10  * Science Department.
     11  *
     12  * Redistribution and use in source and binary forms, with or without
     13  * modification, are permitted provided that the following conditions
     14  * are met:
     15  * 1. Redistributions of source code must retain the above copyright
     16  *    notice, this list of conditions and the following disclaimer.
     17  * 2. Redistributions in binary form must reproduce the above copyright
     18  *    notice, this list of conditions and the following disclaimer in the
     19  *    documentation and/or other materials provided with the distribution.
     20  * 3. All advertising materials mentioning features or use of this software
     21  *    must display the following acknowledgement:
     22  *	This product includes software developed by the University of
     23  *	California, Berkeley and its contributors.
     24  * 4. Neither the name of the University nor the names of its contributors
     25  *    may be used to endorse or promote products derived from this software
     26  *    without specific prior written permission.
     27  *
     28  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     29  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     30  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     31  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     32  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     33  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     34  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     35  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     36  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     37  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     38  * SUCH DAMAGE.
     39  *
     40  * from: Utah $Hdr: clock.c 1.18 91/01/21$
     41  *
     42  *	@(#)clock.c	7.6 (Berkeley) 5/7/91
     43  */
     44 
     45 #include <sys/param.h>
     46 #include <sys/kernel.h>
     47 #include <sys/device.h>
     48 #include <sys/systm.h>
     49 #include <machine/psl.h>
     50 #include <machine/cpu.h>
     51 #include <amiga/amiga/device.h>
     52 #include <amiga/amiga/custom.h>
     53 #include <amiga/amiga/cia.h>
     54 #include <amiga/dev/rtc.h>
     55 #include <amiga/dev/zbusvar.h>
     56 
     57 #if defined(PROF) && defined(PROFTIMER)
     58 #include <sys/PROF.h>
     59 #endif
     60 
     61 /* the clocks run at NTSC: 715.909kHz or PAL: 709.379kHz.
     62    We're using a 100 Hz clock. */
     63 
     64 #define CLK_INTERVAL amiga_clk_interval
     65 int amiga_clk_interval;
     66 int eclockfreq;
     67 
     68 /*
     69  * Machine-dependent clock routines.
     70  *
     71  * Startrtclock restarts the real-time clock, which provides
     72  * hardclock interrupts to kern_clock.c.
     73  *
     74  * Inittodr initializes the time of day hardware which provides
     75  * date functions.
     76  *
     77  * Resettodr restores the time of day hardware after a time change.
     78  *
     79  * A note on the real-time clock:
     80  * We actually load the clock with CLK_INTERVAL-1 instead of CLK_INTERVAL.
     81  * This is because the counter decrements to zero after N+1 enabled clock
     82  * periods where N is the value loaded into the counter.
     83  */
     84 
     85 int clockmatch __P((struct device *, void *, void *));
     86 void clockattach __P((struct device *, struct device *, void *));
     87 void cpu_initclocks __P((void));
     88 void setmicspertick __P((void));
     89 
     90 struct cfattach clock_ca = {
     91 	sizeof(struct device), clockmatch, clockattach
     92 };
     93 
     94 struct cfdriver clock_cd = {
     95 	NULL, "clock", DV_DULL, NULL, 0 };
     96 
     97 int
     98 clockmatch(pdp, match, auxp)
     99 	struct device *pdp;
    100 	void *match, *auxp;
    101 {
    102 
    103 	if (matchname("clock", auxp))
    104 		return(1);
    105 	return(0);
    106 }
    107 
    108 /*
    109  * Start the real-time clock.
    110  */
    111 void
    112 clockattach(pdp, dp, auxp)
    113 	struct device *pdp, *dp;
    114 	void *auxp;
    115 {
    116 	unsigned short interval;
    117 
    118 	if (eclockfreq == 0)
    119 		eclockfreq = 715909;	/* guess NTSC */
    120 
    121 	CLK_INTERVAL = (eclockfreq / 100);
    122 
    123 	printf(": system hz %d hardware hz %d\n", hz, eclockfreq);
    124 
    125 	/*
    126 	 * stop timer A
    127 	 */
    128 	ciab.cra = ciab.cra & 0xc0;
    129 	ciab.icr = 1 << 0;		/* disable timer A interrupt */
    130 	interval = ciab.icr;		/* and make sure it's clear */
    131 
    132 	/*
    133 	 * load interval into registers.
    134          * the clocks run at NTSC: 715.909kHz or PAL: 709.379kHz
    135 	 * supprort for PAL WHEN?!?! XXX
    136 	 */
    137 	interval = CLK_INTERVAL - 1;
    138 
    139 	/*
    140 	 * order of setting is important !
    141 	 */
    142 	ciab.talo = interval & 0xff;
    143 	ciab.tahi = interval >> 8;
    144 }
    145 
    146 void
    147 cpu_initclocks()
    148 {
    149 	/*
    150 	 * enable interrupts for timer A
    151 	 */
    152 	ciab.icr = (1<<7) | (1<<0);
    153 
    154 	/*
    155 	 * start timer A in continuous shot mode
    156 	 */
    157 	ciab.cra = (ciab.cra & 0xc0) | 1;
    158 
    159 	/*
    160 	 * and globally enable interrupts for ciab
    161 	 */
    162 	custom.intena = INTF_SETCLR | INTF_EXTER;
    163 }
    164 
    165 void
    166 setstatclockrate(hz)
    167 	int hz;
    168 {
    169 }
    170 
    171 /*
    172  * Returns number of usec since last recorded clock "tick"
    173  * (i.e. clock interrupt).
    174  */
    175 u_long
    176 clkread()
    177 {
    178 	u_char hi, hi2, lo;
    179 	u_int interval;
    180 
    181 	hi  = ciab.tahi;
    182 	lo  = ciab.talo;
    183 	hi2 = ciab.tahi;
    184 	if (hi != hi2) {
    185 		lo = ciab.talo;
    186 		hi = hi2;
    187 	}
    188 
    189 	interval = (CLK_INTERVAL - 1) - ((hi<<8) | lo);
    190 
    191 	/*
    192 	 * should read ICR and if there's an int pending, adjust interval.
    193 	 * However, * since reading ICR clears the interrupt, we'd lose a
    194 	 * hardclock int, and * this is not tolerable.
    195 	 */
    196 
    197 	return((interval * tick) / CLK_INTERVAL);
    198 }
    199 
    200 u_int micspertick;
    201 
    202 /*
    203  * we set up as much of the CIAa as possible
    204  * as all access to chip memory are very slow.
    205  */
    206 void
    207 setmicspertick()
    208 {
    209 	micspertick = (1000000ULL << 20) / 715909;
    210 
    211 	/*
    212 	 * disable interrupts (just in case.)
    213 	 */
    214 	ciaa.icr = 0x3;
    215 
    216 	/*
    217 	 * stop both timers if not already
    218 	 */
    219 	ciaa.cra &= ~1;
    220 	ciaa.crb &= ~1;
    221 
    222 	/*
    223 	 * set timer B in "count timer A underflows" mode
    224 	 * set tiemr A in one-shot mode
    225 	 */
    226 	ciaa.crb = (ciaa.crb & 0x80) | 0x48;
    227 	ciaa.cra = (ciaa.cra & 0xc0) | 0x08;
    228 }
    229 
    230 /*
    231  * this function assumes that on any entry beyond the first
    232  * the following condintions exist:
    233  * Interrupts for Timers A and B are disabled.
    234  * Timers A and B are stoped.
    235  * Timers A and B are in one-shot mode with B counting timer A underflows
    236  *
    237  */
    238 void
    239 delay(mic)
    240 	int mic;
    241 {
    242 	u_int temp;
    243 
    244 	if (micspertick == 0)
    245 		setmicspertick();
    246 
    247 	if (mic <= 1)
    248 		return;
    249 
    250 	/*
    251 	 * basically this is going to do an integer
    252 	 * usec / (1000000 / 715909) with no loss of
    253 	 * precision
    254 	 */
    255 	temp = mic >> 12;
    256 	asm("divul %3,%1:%0" : "=d" (temp) : "d" (mic >> 12), "0" (mic << 20),
    257 	    "d" (micspertick));
    258 
    259 	if ((temp & 0xffff0000) > 0x10000) {
    260 		mic = (temp >> 16) - 1;
    261 		temp &= 0xffff;
    262 
    263 		/*
    264 		 * set timer A in continous mode
    265 		 */
    266 		ciaa.cra = (ciaa.cra & 0xc0) | 0x00;
    267 
    268 		/*
    269 		 * latch/load/start "counts of timer A underflows" in B
    270 		 */
    271 		ciaa.tblo = mic & 0xff;
    272 		ciaa.tbhi = mic >> 8;
    273 
    274 		/*
    275 		 * timer A latches 0xffff
    276 		 * and start it.
    277 		 */
    278 		ciaa.talo = 0xff;
    279 		ciaa.tahi = 0xff;
    280 		ciaa.cra |= 1;
    281 
    282 		while (ciaa.crb & 1)
    283 			;
    284 
    285 		/*
    286 		 * stop timer A
    287 		 */
    288 		ciaa.cra &= ~1;
    289 
    290 		/*
    291 		 * set timer A in one shot mode
    292 		 */
    293 		ciaa.cra = (ciaa.cra & 0xc0) | 0x08;
    294 	} else if ((temp & 0xffff0000) == 0x10000) {
    295 		temp &= 0xffff;
    296 
    297 		/*
    298 		 * timer A is in one shot latch/load/start 1 full turn
    299 		 */
    300 		ciaa.talo = 0xff;
    301 		ciaa.tahi = 0xff;
    302 		while (ciaa.cra & 1)
    303 			;
    304 	}
    305 	if (temp < 1)
    306 		return;
    307 
    308 	/*
    309 	 * temp is now residual ammount, latch/load/start it.
    310 	 */
    311 	ciaa.talo = temp & 0xff;
    312 	ciaa.tahi = temp >> 8;
    313 	while (ciaa.cra & 1)
    314 		;
    315 }
    316 
    317 /*
    318  * Needs to be calibrated for use, its way off most of the time
    319  */
    320 void
    321 DELAY(mic)
    322 	int mic;
    323 {
    324 	u_long n;
    325 	short hpos;
    326 
    327 	/*
    328 	 * this function uses HSync pulses as base units. The custom chips
    329 	 * display only deals with 31.6kHz/2 refresh, this gives us a
    330 	 * resolution of 1/15800 s, which is ~63us (add some fuzz so we really
    331 	 * wait awhile, even if using small timeouts)
    332 	 */
    333 	n = mic/63 + 2;
    334 	do {
    335 		hpos = custom.vhposr & 0xff00;
    336 		while (hpos == (custom.vhposr & 0xff00))
    337 			;
    338 	} while (n--);
    339 }
    340 
    341 #if notyet
    342 
    343 /* implement this later. I'd suggest using both timers in CIA-A, they're
    344    not yet used. */
    345 
    346 #include "clock.h"
    347 #if NCLOCK > 0
    348 /*
    349  * /dev/clock: mappable high resolution timer.
    350  *
    351  * This code implements a 32-bit recycling counter (with a 4 usec period)
    352  * using timers 2 & 3 on the 6840 clock chip.  The counter can be mapped
    353  * RO into a user's address space to achieve low overhead (no system calls),
    354  * high-precision timing.
    355  *
    356  * Note that timer 3 is also used for the high precision profiling timer
    357  * (PROFTIMER code above).  Care should be taken when both uses are
    358  * configured as only a token effort is made to avoid conflicting use.
    359  */
    360 #include <sys/proc.h>
    361 #include <sys/resourcevar.h>
    362 #include <sys/ioctl.h>
    363 #include <sys/malloc.h>
    364 #include <vm/vm.h>
    365 #include <amiga/amiga/clockioctl.h>
    366 #include <sys/specdev.h>
    367 #include <sys/vnode.h>
    368 #include <sys/mman.h>
    369 
    370 int clockon = 0;		/* non-zero if high-res timer enabled */
    371 #ifdef PROFTIMER
    372 int  profprocs = 0;		/* # of procs using profiling timer */
    373 #endif
    374 #ifdef DEBUG
    375 int clockdebug = 0;
    376 #endif
    377 
    378 /*ARGSUSED*/
    379 clockopen(dev, flags)
    380 	dev_t dev;
    381 {
    382 #ifdef PROFTIMER
    383 #ifdef PROF
    384 	/*
    385 	 * Kernel profiling enabled, give up.
    386 	 */
    387 	if (profiling)
    388 		return(EBUSY);
    389 #endif
    390 	/*
    391 	 * If any user processes are profiling, give up.
    392 	 */
    393 	if (profprocs)
    394 		return(EBUSY);
    395 #endif
    396 	if (!clockon) {
    397 		startclock();
    398 		clockon++;
    399 	}
    400 	return(0);
    401 }
    402 
    403 /*ARGSUSED*/
    404 clockclose(dev, flags)
    405 	dev_t dev;
    406 {
    407 	(void) clockunmmap(dev, (caddr_t)0, curproc);	/* XXX */
    408 	stopclock();
    409 	clockon = 0;
    410 	return(0);
    411 }
    412 
    413 /*ARGSUSED*/
    414 clockioctl(dev, cmd, data, flag, p)
    415 	dev_t dev;
    416 	u_long cmd;
    417 	caddr_t data;
    418 	struct proc *p;
    419 {
    420 	int error = 0;
    421 
    422 	switch (cmd) {
    423 
    424 	case CLOCKMAP:
    425 		error = clockmmap(dev, (caddr_t *)data, p);
    426 		break;
    427 
    428 	case CLOCKUNMAP:
    429 		error = clockunmmap(dev, *(caddr_t *)data, p);
    430 		break;
    431 
    432 	case CLOCKGETRES:
    433 		*(int *)data = CLK_RESOLUTION;
    434 		break;
    435 
    436 	default:
    437 		error = EINVAL;
    438 		break;
    439 	}
    440 	return(error);
    441 }
    442 
    443 /*ARGSUSED*/
    444 clockmap(dev, off, prot)
    445 	dev_t dev;
    446 {
    447 	return((off + (INTIOBASE+CLKBASE+CLKSR-1)) >> PGSHIFT);
    448 }
    449 
    450 clockmmap(dev, addrp, p)
    451 	dev_t dev;
    452 	caddr_t *addrp;
    453 	struct proc *p;
    454 {
    455 	int error;
    456 	struct vnode vn;
    457 	struct specinfo si;
    458 	int flags;
    459 
    460 	flags = MAP_FILE|MAP_SHARED;
    461 	if (*addrp)
    462 		flags |= MAP_FIXED;
    463 	else
    464 		*addrp = (caddr_t)0x1000000;	/* XXX */
    465 	vn.v_type = VCHR;			/* XXX */
    466 	vn.v_specinfo = &si;			/* XXX */
    467 	vn.v_rdev = dev;			/* XXX */
    468 	error = vm_mmap(&p->p_vmspace->vm_map, (vm_offset_t *)addrp,
    469 			PAGE_SIZE, VM_PROT_ALL, flags, (caddr_t)&vn, 0);
    470 	return(error);
    471 }
    472 
    473 clockunmmap(dev, addr, p)
    474 	dev_t dev;
    475 	caddr_t addr;
    476 	struct proc *p;
    477 {
    478 	int rv;
    479 
    480 	if (addr == 0)
    481 		return(EINVAL);		/* XXX: how do we deal with this? */
    482 	rv = vm_deallocate(p->p_vmspace->vm_map, (vm_offset_t)addr, PAGE_SIZE);
    483 	return(rv == KERN_SUCCESS ? 0 : EINVAL);
    484 }
    485 
    486 startclock()
    487 {
    488 	register struct clkreg *clk = (struct clkreg *)clkstd[0];
    489 
    490 	clk->clk_msb2 = -1; clk->clk_lsb2 = -1;
    491 	clk->clk_msb3 = -1; clk->clk_lsb3 = -1;
    492 
    493 	clk->clk_cr2 = CLK_CR3;
    494 	clk->clk_cr3 = CLK_OENAB|CLK_8BIT;
    495 	clk->clk_cr2 = CLK_CR1;
    496 	clk->clk_cr1 = CLK_IENAB;
    497 }
    498 
    499 stopclock()
    500 {
    501 	register struct clkreg *clk = (struct clkreg *)clkstd[0];
    502 
    503 	clk->clk_cr2 = CLK_CR3;
    504 	clk->clk_cr3 = 0;
    505 	clk->clk_cr2 = CLK_CR1;
    506 	clk->clk_cr1 = CLK_IENAB;
    507 }
    508 #endif
    509 
    510 #endif
    511 
    512 
    513 #ifdef PROFTIMER
    514 /*
    515  * This code allows the amiga kernel to use one of the extra timers on
    516  * the clock chip for profiling, instead of the regular system timer.
    517  * The advantage of this is that the profiling timer can be turned up to
    518  * a higher interrupt rate, giving finer resolution timing. The profclock
    519  * routine is called from the lev6intr in locore, and is a specialized
    520  * routine that calls addupc. The overhead then is far less than if
    521  * hardclock/softclock was called. Further, the context switch code in
    522  * locore has been changed to turn the profile clock on/off when switching
    523  * into/out of a process that is profiling (startprofclock/stopprofclock).
    524  * This reduces the impact of the profiling clock on other users, and might
    525  * possibly increase the accuracy of the profiling.
    526  */
    527 int  profint   = PRF_INTERVAL;	/* Clock ticks between interrupts */
    528 int  profscale = 0;		/* Scale factor from sys clock to prof clock */
    529 char profon    = 0;		/* Is profiling clock on? */
    530 
    531 /* profon values - do not change, locore.s assumes these values */
    532 #define PRF_NONE	0x00
    533 #define	PRF_USER	0x01
    534 #define	PRF_KERNEL	0x80
    535 
    536 initprofclock()
    537 {
    538 #if NCLOCK > 0
    539 	struct proc *p = curproc;		/* XXX */
    540 
    541 	/*
    542 	 * If the high-res timer is running, force profiling off.
    543 	 * Unfortunately, this gets reflected back to the user not as
    544 	 * an error but as a lack of results.
    545 	 */
    546 	if (clockon) {
    547 		p->p_stats->p_prof.pr_scale = 0;
    548 		return;
    549 	}
    550 	/*
    551 	 * Keep track of the number of user processes that are profiling
    552 	 * by checking the scale value.
    553 	 *
    554 	 * XXX: this all assumes that the profiling code is well behaved;
    555 	 * i.e. profil() is called once per process with pcscale non-zero
    556 	 * to turn it on, and once with pcscale zero to turn it off.
    557 	 * Also assumes you don't do any forks or execs.  Oh well, there
    558 	 * is always adb...
    559 	 */
    560 	if (p->p_stats->p_prof.pr_scale)
    561 		profprocs++;
    562 	else
    563 		profprocs--;
    564 #endif
    565 	/*
    566 	 * The profile interrupt interval must be an even divisor
    567 	 * of the CLK_INTERVAL so that scaling from a system clock
    568 	 * tick to a profile clock tick is possible using integer math.
    569 	 */
    570 	if (profint > CLK_INTERVAL || (CLK_INTERVAL % profint) != 0)
    571 		profint = CLK_INTERVAL;
    572 	profscale = CLK_INTERVAL / profint;
    573 }
    574 
    575 startprofclock()
    576 {
    577   unsigned short interval;
    578 
    579   /* stop timer B */
    580   ciab.crb = ciab.crb & 0xc0;
    581 
    582   /* load interval into registers.
    583      the clocks run at NTSC: 715.909kHz or PAL: 709.379kHz */
    584 
    585   interval = profint - 1;
    586 
    587   /* order of setting is important ! */
    588   ciab.tblo = interval & 0xff;
    589   ciab.tbhi = interval >> 8;
    590 
    591   /* enable interrupts for timer B */
    592   ciab.icr = (1<<7) | (1<<1);
    593 
    594   /* start timer B in continuous shot mode */
    595   ciab.crb = (ciab.crb & 0xc0) | 1;
    596 }
    597 
    598 stopprofclock()
    599 {
    600   /* stop timer B */
    601   ciab.crb = ciab.crb & 0xc0;
    602 }
    603 
    604 #ifdef PROF
    605 /*
    606  * profclock() is expanded in line in lev6intr() unless profiling kernel.
    607  * Assumes it is called with clock interrupts blocked.
    608  */
    609 profclock(pc, ps)
    610 	caddr_t pc;
    611 	int ps;
    612 {
    613 	/*
    614 	 * Came from user mode.
    615 	 * If this process is being profiled record the tick.
    616 	 */
    617 	if (USERMODE(ps)) {
    618 		if (p->p_stats.p_prof.pr_scale)
    619 			addupc(pc, &curproc->p_stats.p_prof, 1);
    620 	}
    621 	/*
    622 	 * Came from kernel (supervisor) mode.
    623 	 * If we are profiling the kernel, record the tick.
    624 	 */
    625 	else if (profiling < 2) {
    626 		register int s = pc - s_lowpc;
    627 
    628 		if (s < s_textsize)
    629 			kcount[s / (HISTFRACTION * sizeof (*kcount))]++;
    630 	}
    631 	/*
    632 	 * Kernel profiling was on but has been disabled.
    633 	 * Mark as no longer profiling kernel and if all profiling done,
    634 	 * disable the clock.
    635 	 */
    636 	if (profiling && (profon & PRF_KERNEL)) {
    637 		profon &= ~PRF_KERNEL;
    638 		if (profon == PRF_NONE)
    639 			stopprofclock();
    640 	}
    641 }
    642 #endif
    643 #endif
    644 
    645 /* this is a hook set by a clock driver for the configured realtime clock,
    646    returning plain current unix-time */
    647 long (*gettod) __P((void));
    648 int (*settod) __P((long));
    649 void *clockaddr;
    650 
    651 long a3gettod __P((void));
    652 long a2gettod __P((void));
    653 int a3settod __P((long));
    654 int a2settod __P((long));
    655 int rtcinit __P((void));
    656 
    657 /*
    658  * Initialize the time of day register, based on the time base which is, e.g.
    659  * from a filesystem.
    660  */
    661 void
    662 inittodr(base)
    663 	time_t base;
    664 {
    665 	u_long timbuf = base;	/* assume no battery clock exists */
    666 
    667 	if (gettod == NULL && rtcinit() == 0)
    668 		printf("WARNING: no battery clock\n");
    669 	else
    670 		timbuf = gettod();
    671 
    672 	if (timbuf < base) {
    673 		printf("WARNING: bad date in battery clock\n");
    674 		timbuf = base;
    675 	}
    676 
    677 	/* Battery clock does not store usec's, so forget about it. */
    678 	time.tv_sec = timbuf;
    679 }
    680 
    681 void
    682 resettodr()
    683 {
    684 	if (settod && settod(time.tv_sec) == 0)
    685 		printf("Cannot set battery backed clock\n");
    686 }
    687 
    688 int
    689 rtcinit()
    690 {
    691 	clockaddr = (void *)ztwomap(0xdc0000);
    692 	if (is_a3000() || is_a4000()) {
    693 		if (a3gettod() == 0)
    694 			return(0);
    695 		gettod = a3gettod;
    696 		settod = a3settod;
    697 	} else {
    698 		if (a2gettod() == 0)
    699 			return(0);
    700 		gettod = a2gettod;
    701 		settod = a2settod;
    702 	}
    703 	return(1);
    704 }
    705 
    706 static int month_days[12] = {
    707 	31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31
    708 };
    709 
    710 long
    711 a3gettod()
    712 {
    713 	struct rtclock3000 *rt;
    714 	int i, year, month, day, wday, hour, min, sec;
    715 	u_long tmp;
    716 
    717 	rt = clockaddr;
    718 
    719 	/* hold clock */
    720 	rt->control1 = A3CONTROL1_HOLD_CLOCK;
    721 
    722 	/* read it */
    723 	sec   = rt->second1 * 10 + rt->second2;
    724 	min   = rt->minute1 * 10 + rt->minute2;
    725 	hour  = rt->hour1   * 10 + rt->hour2;
    726 	wday  = rt->weekday;
    727 	day   = rt->day1    * 10 + rt->day2;
    728 	month = rt->month1  * 10 + rt->month2;
    729 	year  = rt->year1   * 10 + rt->year2   + 1900;
    730 
    731 	/* let it run again.. */
    732 	rt->control1 = A3CONTROL1_FREE_CLOCK;
    733 
    734 	if (range_test(hour, 0, 23))
    735 		return(0);
    736 	if (range_test(wday, 0, 6))
    737 		return(0);
    738 	if (range_test(day, 1, 31))
    739 		return(0);
    740 	if (range_test(month, 1, 12))
    741 		return(0);
    742 	if (range_test(year, STARTOFTIME, 2000))
    743 		return(0);
    744 
    745 	tmp = 0;
    746 
    747 	for (i = STARTOFTIME; i < year; i++)
    748 		tmp += days_in_year(i);
    749 	if (leapyear(year) && month > FEBRUARY)
    750 		tmp++;
    751 
    752 	for (i = 1; i < month; i++)
    753 		tmp += days_in_month(i);
    754 
    755 	tmp += (day - 1);
    756 	tmp = ((tmp * 24 + hour) * 60 + min) * 60 + sec;
    757 
    758 	return(tmp);
    759 }
    760 
    761 int
    762 a3settod(tim)
    763 	long tim;
    764 {
    765 	register int i;
    766 	register long hms, day;
    767 	u_char sec1, sec2;
    768 	u_char min1, min2;
    769 	u_char hour1, hour2;
    770 /*	u_char wday; */
    771 	u_char day1, day2;
    772 	u_char mon1, mon2;
    773 	u_char year1, year2;
    774 	struct rtclock3000 *rt;
    775 
    776 	rt = clockaddr;
    777 	/*
    778 	 * there seem to be problems with the bitfield addressing
    779 	 * currently used..
    780 	 */
    781 
    782 	if (! rt)
    783 		return 0;
    784 
    785 	/* prepare values to be written to clock */
    786 	day = tim / SECDAY;
    787 	hms = tim % SECDAY;
    788 
    789 	hour2 = hms / 3600;
    790 	hour1 = hour2 / 10;
    791 	hour2 %= 10;
    792 
    793 	min2 = (hms % 3600) / 60;
    794 	min1 = min2 / 10;
    795 	min2 %= 10;
    796 
    797 
    798 	sec2 = (hms % 3600) % 60;
    799 	sec1 = sec2 / 10;
    800 	sec2 %= 10;
    801 
    802 	/* Number of years in days */
    803 	for (i = STARTOFTIME - 1900; day >= days_in_year(i); i++)
    804 		day -= days_in_year(i);
    805 	year1 = i / 10;
    806 	year2 = i % 10;
    807 
    808 	/* Number of months in days left */
    809 	if (leapyear(i))
    810 		days_in_month(FEBRUARY) = 29;
    811 	for (i = 1; day >= days_in_month(i); i++)
    812 		day -= days_in_month(i);
    813 	days_in_month(FEBRUARY) = 28;
    814 
    815 	mon1 = i / 10;
    816 	mon2 = i % 10;
    817 
    818 	/* Days are what is left over (+1) from all that. */
    819 	day ++;
    820 	day1 = day / 10;
    821 	day2 = day % 10;
    822 
    823 	rt->control1 = A3CONTROL1_HOLD_CLOCK;
    824 	rt->second1 = sec1;
    825 	rt->second2 = sec2;
    826 	rt->minute1 = min1;
    827 	rt->minute2 = min2;
    828 	rt->hour1   = hour1;
    829 	rt->hour2   = hour2;
    830 /*	rt->weekday = wday; */
    831 	rt->day1    = day1;
    832 	rt->day2    = day2;
    833 	rt->month1  = mon1;
    834 	rt->month2  = mon2;
    835 	rt->year1   = year1;
    836 	rt->year2   = year2;
    837 	rt->control1 = A3CONTROL1_FREE_CLOCK;
    838 
    839 	return 1;
    840 }
    841 
    842 long
    843 a2gettod()
    844 {
    845 	struct rtclock2000 *rt;
    846 	int i, year, month, day, hour, min, sec;
    847 	u_long tmp;
    848 
    849 	rt = clockaddr;
    850 
    851 	/*
    852 	 * hold clock
    853 	 */
    854 	rt->control1 |= A2CONTROL1_HOLD;
    855 	i = 0x1000;
    856 	while (rt->control1 & A2CONTROL1_BUSY && i--)
    857 		;
    858 	if (rt->control1 & A2CONTROL1_BUSY)
    859 		return (0);	/* Give up and say it's not there */
    860 
    861 	/*
    862 	 * read it
    863 	 */
    864 	sec = rt->second1 * 10 + rt->second2;
    865 	min = rt->minute1 * 10 + rt->minute2;
    866 	hour = (rt->hour1 & 3)  * 10 + rt->hour2;
    867 	day = rt->day1 * 10 + rt->day2;
    868 	month = rt->month1 * 10 + rt->month2;
    869 	year = rt->year1 * 10 + rt->year2   + 1900;
    870 
    871 	if ((rt->control3 & A2CONTROL3_24HMODE) == 0) {
    872 		if ((rt->hour1 & A2HOUR1_PM) == 0 && hour == 12)
    873 			hour = 0;
    874 		else if ((rt->hour1 & A2HOUR1_PM) && hour != 12)
    875 			hour += 12;
    876 	}
    877 
    878 	/*
    879 	 * release the clock
    880 	 */
    881 	rt->control1 &= ~A2CONTROL1_HOLD;
    882 
    883 	if (range_test(hour, 0, 23))
    884 		return(0);
    885 	if (range_test(day, 1, 31))
    886 		return(0);
    887 	if (range_test(month, 1, 12))
    888 		return(0);
    889 	if (range_test(year, STARTOFTIME, 2000))
    890 		return(0);
    891 
    892 	tmp = 0;
    893 
    894 	for (i = STARTOFTIME; i < year; i++)
    895 		tmp += days_in_year(i);
    896 	if (leapyear(year) && month > FEBRUARY)
    897 		tmp++;
    898 
    899 	for (i = 1; i < month; i++)
    900 		tmp += days_in_month(i);
    901 
    902 	tmp += (day - 1);
    903 	tmp = ((tmp * 24 + hour) * 60 + min) * 60 + sec;
    904 
    905 	return(tmp);
    906 }
    907 
    908 /*
    909  * there is some question as to whether this works
    910  * I guess
    911  */
    912 int
    913 a2settod(tim)
    914 	long tim;
    915 {
    916 
    917 	int i;
    918 	long hms, day;
    919 	u_char sec1, sec2;
    920 	u_char min1, min2;
    921 	u_char hour1, hour2;
    922 	u_char day1, day2;
    923 	u_char mon1, mon2;
    924 	u_char year1, year2;
    925 	struct rtclock2000 *rt;
    926 
    927 	rt = clockaddr;
    928 	/*
    929 	 * there seem to be problems with the bitfield addressing
    930 	 * currently used..
    931 	 *
    932 	 * XXX Check out the above where we (hour1 & 3)
    933 	 */
    934 	if (! rt)
    935 		return 0;
    936 
    937 	/* prepare values to be written to clock */
    938 	day = tim / SECDAY;
    939 	hms = tim % SECDAY;
    940 
    941 	hour2 = hms / 3600;
    942 	hour1 = hour2 / 10;
    943 	hour2 %= 10;
    944 
    945 	min2 = (hms % 3600) / 60;
    946 	min1 = min2 / 10;
    947 	min2 %= 10;
    948 
    949 
    950 	sec2 = (hms % 3600) % 60;
    951 	sec1 = sec2 / 10;
    952 	sec2 %= 10;
    953 
    954 	/* Number of years in days */
    955 	for (i = STARTOFTIME - 1900; day >= days_in_year(i); i++)
    956 		day -= days_in_year(i);
    957 	year1 = i / 10;
    958 	year2 = i % 10;
    959 
    960 	/* Number of months in days left */
    961 	if (leapyear(i))
    962 		days_in_month(FEBRUARY) = 29;
    963 	for (i = 1; day >= days_in_month(i); i++)
    964 		day -= days_in_month(i);
    965 	days_in_month(FEBRUARY) = 28;
    966 
    967 	mon1 = i / 10;
    968 	mon2 = i % 10;
    969 
    970 	/* Days are what is left over (+1) from all that. */
    971 	day ++;
    972 	day1 = day / 10;
    973 	day2 = day % 10;
    974 
    975 	/*
    976 	 * XXXX spin wait as with reading???
    977 	 */
    978 	rt->control1 |= A2CONTROL1_HOLD;
    979 	rt->second1 = sec1;
    980 	rt->second2 = sec2;
    981 	rt->minute1 = min1;
    982 	rt->minute2 = min2;
    983 	rt->hour1   = hour1;
    984 	rt->hour2   = hour2;
    985 	rt->day1    = day1;
    986 	rt->day2    = day2;
    987 	rt->month1  = mon1;
    988 	rt->month2  = mon2;
    989 	rt->year1   = year1;
    990 	rt->year2   = year2;
    991 	rt->control2 &= ~A2CONTROL1_HOLD;
    992 
    993   return 1;
    994 }
    995