Home | History | Annotate | Line # | Download | only in dev
clock.c revision 1.14
      1 /*	$NetBSD: clock.c,v 1.14 1996/05/09 20:31:06 is Exp $	*/
      2 
      3 /*
      4  * Copyright (c) 1988 University of Utah.
      5  * Copyright (c) 1982, 1990 The Regents of the University of California.
      6  * All rights reserved.
      7  *
      8  * This code is derived from software contributed to Berkeley by
      9  * the Systems Programming Group of the University of Utah Computer
     10  * Science Department.
     11  *
     12  * Redistribution and use in source and binary forms, with or without
     13  * modification, are permitted provided that the following conditions
     14  * are met:
     15  * 1. Redistributions of source code must retain the above copyright
     16  *    notice, this list of conditions and the following disclaimer.
     17  * 2. Redistributions in binary form must reproduce the above copyright
     18  *    notice, this list of conditions and the following disclaimer in the
     19  *    documentation and/or other materials provided with the distribution.
     20  * 3. All advertising materials mentioning features or use of this software
     21  *    must display the following acknowledgement:
     22  *	This product includes software developed by the University of
     23  *	California, Berkeley and its contributors.
     24  * 4. Neither the name of the University nor the names of its contributors
     25  *    may be used to endorse or promote products derived from this software
     26  *    without specific prior written permission.
     27  *
     28  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     29  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     30  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     31  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     32  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     33  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     34  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     35  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     36  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     37  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     38  * SUCH DAMAGE.
     39  *
     40  * from: Utah $Hdr: clock.c 1.18 91/01/21$
     41  *
     42  *	@(#)clock.c	7.6 (Berkeley) 5/7/91
     43  */
     44 
     45 #include <sys/param.h>
     46 #include <sys/kernel.h>
     47 #include <sys/device.h>
     48 #include <sys/systm.h>
     49 #include <machine/psl.h>
     50 #include <machine/cpu.h>
     51 #include <amiga/amiga/device.h>
     52 #include <amiga/amiga/custom.h>
     53 #include <amiga/amiga/cia.h>
     54 #ifdef DRACO
     55 #include <amiga/amiga/drcustom.h>
     56 #endif
     57 #include <amiga/dev/rtc.h>
     58 #include <amiga/dev/zbusvar.h>
     59 
     60 #if defined(PROF) && defined(PROFTIMER)
     61 #include <sys/PROF.h>
     62 #endif
     63 
     64 /* the clocks run at NTSC: 715.909kHz or PAL: 709.379kHz.
     65    We're using a 100 Hz clock. */
     66 
     67 #define CLK_INTERVAL amiga_clk_interval
     68 int amiga_clk_interval;
     69 int eclockfreq;
     70 struct CIA *clockcia;
     71 
     72 /*
     73  * Machine-dependent clock routines.
     74  *
     75  * Startrtclock restarts the real-time clock, which provides
     76  * hardclock interrupts to kern_clock.c.
     77  *
     78  * Inittodr initializes the time of day hardware which provides
     79  * date functions.
     80  *
     81  * Resettodr restores the time of day hardware after a time change.
     82  *
     83  * A note on the real-time clock:
     84  * We actually load the clock with CLK_INTERVAL-1 instead of CLK_INTERVAL.
     85  * This is because the counter decrements to zero after N+1 enabled clock
     86  * periods where N is the value loaded into the counter.
     87  */
     88 
     89 int clockmatch __P((struct device *, void *, void *));
     90 void clockattach __P((struct device *, struct device *, void *));
     91 void cpu_initclocks __P((void));
     92 void setmicspertick __P((void));
     93 
     94 struct cfattach clock_ca = {
     95 	sizeof(struct device), clockmatch, clockattach
     96 };
     97 
     98 struct cfdriver clock_cd = {
     99 	NULL, "clock", DV_DULL, NULL, 0 };
    100 
    101 int
    102 clockmatch(pdp, match, auxp)
    103 	struct device *pdp;
    104 	void *match, *auxp;
    105 {
    106 
    107 	if (matchname("clock", auxp)
    108 #ifdef DRACO
    109 	    && (is_draco() < 4)
    110 #endif
    111 	    )
    112 		return(1);
    113 	return(0);
    114 }
    115 
    116 /*
    117  * Start the real-time clock.
    118  */
    119 void
    120 clockattach(pdp, dp, auxp)
    121 	struct device *pdp, *dp;
    122 	void *auxp;
    123 {
    124 	unsigned short interval;
    125 	char cia;
    126 
    127 	if (eclockfreq == 0)
    128 		eclockfreq = 715909;	/* guess NTSC */
    129 
    130 	CLK_INTERVAL = (eclockfreq / 100);
    131 
    132 #ifdef DRACO
    133 	if (is_draco()) {
    134 		clockcia = (struct CIA *)CIAAbase;
    135 		cia = 'A';
    136 	} else
    137 #endif
    138 	{
    139 		clockcia = (struct CIA *)CIABbase;
    140 		cia = 'B';
    141 	}
    142 
    143 	printf(": CIA %c system hz %d hardware hz %d\n", cia, hz, eclockfreq);
    144 
    145 	/*
    146 	 * stop timer A
    147 	 */
    148 	clockcia->cra = clockcia->cra & 0xc0;
    149 	clockcia->icr = 1 << 0;		/* disable timer A interrupt */
    150 	interval = clockcia->icr;		/* and make sure it's clear */
    151 
    152 	/*
    153 	 * load interval into registers.
    154          * the clocks run at NTSC: 715.909kHz or PAL: 709.379kHz
    155 	 * supprort for PAL WHEN?!?! XXX
    156 	 */
    157 	interval = CLK_INTERVAL - 1;
    158 
    159 	/*
    160 	 * order of setting is important !
    161 	 */
    162 	clockcia->talo = interval & 0xff;
    163 	clockcia->tahi = interval >> 8;
    164 }
    165 
    166 void
    167 cpu_initclocks()
    168 {
    169 	/*
    170 	 * enable interrupts for timer A
    171 	 */
    172 	clockcia->icr = (1<<7) | (1<<0);
    173 
    174 	/*
    175 	 * start timer A in continuous shot mode
    176 	 */
    177 	clockcia->cra = (clockcia->cra & 0xc0) | 1;
    178 
    179 	/*
    180 	 * and globally enable interrupts for ciab
    181 	 */
    182 #ifdef DRACO
    183 	if (is_draco())		/* we use cia a on DraCo */
    184 		*draco_intena |= DRIRQ_INT2;
    185 	else
    186 #endif
    187 		custom.intena = INTF_SETCLR | INTF_EXTER;
    188 }
    189 
    190 void
    191 setstatclockrate(hz)
    192 	int hz;
    193 {
    194 }
    195 
    196 /*
    197  * Returns number of usec since last recorded clock "tick"
    198  * (i.e. clock interrupt).
    199  */
    200 u_long
    201 clkread()
    202 {
    203 	u_char hi, hi2, lo;
    204 	u_int interval;
    205 
    206 	hi  = clockcia->tahi;
    207 	lo  = clockcia->talo;
    208 	hi2 = clockcia->tahi;
    209 	if (hi != hi2) {
    210 		lo = clockcia->talo;
    211 		hi = hi2;
    212 	}
    213 
    214 	interval = (CLK_INTERVAL - 1) - ((hi<<8) | lo);
    215 
    216 	/*
    217 	 * should read ICR and if there's an int pending, adjust interval.
    218 	 * However, * since reading ICR clears the interrupt, we'd lose a
    219 	 * hardclock int, and * this is not tolerable.
    220 	 */
    221 
    222 	return((interval * tick) / CLK_INTERVAL);
    223 }
    224 
    225 u_int micspertick;
    226 
    227 /*
    228  * we set up as much of the CIAa as possible
    229  * as all access to chip memory are very slow.
    230  */
    231 void
    232 setmicspertick()
    233 {
    234 #ifdef DRACO
    235 	if (is_draco())
    236 		return;	/* XXX */
    237 #endif
    238 	micspertick = (1000000ULL << 20) / 715909;
    239 
    240 	/*
    241 	 * disable interrupts (just in case.)
    242 	 */
    243 	ciaa.icr = 0x3;
    244 
    245 	/*
    246 	 * stop both timers if not already
    247 	 */
    248 	ciaa.cra &= ~1;
    249 	ciaa.crb &= ~1;
    250 
    251 	/*
    252 	 * set timer B in "count timer A underflows" mode
    253 	 * set tiemr A in one-shot mode
    254 	 */
    255 	ciaa.crb = (ciaa.crb & 0x80) | 0x48;
    256 	ciaa.cra = (ciaa.cra & 0xc0) | 0x08;
    257 }
    258 
    259 /*
    260  * this function assumes that on any entry beyond the first
    261  * the following condintions exist:
    262  * Interrupts for Timers A and B are disabled.
    263  * Timers A and B are stoped.
    264  * Timers A and B are in one-shot mode with B counting timer A underflows
    265  *
    266  */
    267 void
    268 delay(mic)
    269 	int mic;
    270 {
    271 	u_int temp;
    272 	int s;
    273 
    274 #ifdef DRACO
    275 	if (is_draco()) {
    276 		DELAY(mic);
    277 		return;
    278 	}
    279 #endif
    280 	if (micspertick == 0)
    281 		setmicspertick();
    282 
    283 	if (mic <= 1)
    284 		return;
    285 
    286 	/*
    287 	 * basically this is going to do an integer
    288 	 * usec / (1000000 / 715909) with no loss of
    289 	 * precision
    290 	 */
    291 	temp = mic >> 12;
    292 	asm("divul %3,%1:%0" : "=d" (temp) : "d" (mic >> 12), "0" (mic << 20),
    293 	    "d" (micspertick));
    294 
    295 	if ((temp & 0xffff0000) > 0x10000) {
    296 		mic = (temp >> 16) - 1;
    297 		temp &= 0xffff;
    298 
    299 		/*
    300 		 * set timer A in continous mode
    301 		 */
    302 		ciaa.cra = (ciaa.cra & 0xc0) | 0x00;
    303 
    304 		/*
    305 		 * latch/load/start "counts of timer A underflows" in B
    306 		 */
    307 		ciaa.tblo = mic & 0xff;
    308 		ciaa.tbhi = mic >> 8;
    309 
    310 		/*
    311 		 * timer A latches 0xffff
    312 		 * and start it.
    313 		 */
    314 		ciaa.talo = 0xff;
    315 		ciaa.tahi = 0xff;
    316 		ciaa.cra |= 1;
    317 
    318 		while (ciaa.crb & 1)
    319 			;
    320 
    321 		/*
    322 		 * stop timer A
    323 		 */
    324 		ciaa.cra &= ~1;
    325 
    326 		/*
    327 		 * set timer A in one shot mode
    328 		 */
    329 		ciaa.cra = (ciaa.cra & 0xc0) | 0x08;
    330 	} else if ((temp & 0xffff0000) == 0x10000) {
    331 		temp &= 0xffff;
    332 
    333 		/*
    334 		 * timer A is in one shot latch/load/start 1 full turn
    335 		 */
    336 		ciaa.talo = 0xff;
    337 		ciaa.tahi = 0xff;
    338 		while (ciaa.cra & 1)
    339 			;
    340 	}
    341 	if (temp < 1)
    342 		return;
    343 
    344 	/*
    345 	 * temp is now residual ammount, latch/load/start it.
    346 	 */
    347 	ciaa.talo = temp & 0xff;
    348 	ciaa.tahi = temp >> 8;
    349 	while (ciaa.cra & 1)
    350 		;
    351 }
    352 
    353 /*
    354  * Needs to be calibrated for use, its way off most of the time
    355  */
    356 void
    357 DELAY(mic)
    358 	int mic;
    359 {
    360 	u_long n;
    361 	short hpos;
    362 
    363 #ifdef DRACO
    364 	if (is_draco()) {
    365 		while (--mic > 0)
    366 			n = *draco_intena;
    367 		return;
    368 	}
    369 #endif
    370 	/*
    371 	 * this function uses HSync pulses as base units. The custom chips
    372 	 * display only deals with 31.6kHz/2 refresh, this gives us a
    373 	 * resolution of 1/15800 s, which is ~63us (add some fuzz so we really
    374 	 * wait awhile, even if using small timeouts)
    375 	 */
    376 	n = mic/63 + 2;
    377 	do {
    378 		hpos = custom.vhposr & 0xff00;
    379 		while (hpos == (custom.vhposr & 0xff00))
    380 			;
    381 	} while (n--);
    382 }
    383 
    384 #if notyet
    385 
    386 /* implement this later. I'd suggest using both timers in CIA-A, they're
    387    not yet used. */
    388 
    389 #include "clock.h"
    390 #if NCLOCK > 0
    391 /*
    392  * /dev/clock: mappable high resolution timer.
    393  *
    394  * This code implements a 32-bit recycling counter (with a 4 usec period)
    395  * using timers 2 & 3 on the 6840 clock chip.  The counter can be mapped
    396  * RO into a user's address space to achieve low overhead (no system calls),
    397  * high-precision timing.
    398  *
    399  * Note that timer 3 is also used for the high precision profiling timer
    400  * (PROFTIMER code above).  Care should be taken when both uses are
    401  * configured as only a token effort is made to avoid conflicting use.
    402  */
    403 #include <sys/proc.h>
    404 #include <sys/resourcevar.h>
    405 #include <sys/ioctl.h>
    406 #include <sys/malloc.h>
    407 #include <vm/vm.h>
    408 #include <amiga/amiga/clockioctl.h>
    409 #include <sys/specdev.h>
    410 #include <sys/vnode.h>
    411 #include <sys/mman.h>
    412 
    413 int clockon = 0;		/* non-zero if high-res timer enabled */
    414 #ifdef PROFTIMER
    415 int  profprocs = 0;		/* # of procs using profiling timer */
    416 #endif
    417 #ifdef DEBUG
    418 int clockdebug = 0;
    419 #endif
    420 
    421 /*ARGSUSED*/
    422 clockopen(dev, flags)
    423 	dev_t dev;
    424 {
    425 #ifdef PROFTIMER
    426 #ifdef PROF
    427 	/*
    428 	 * Kernel profiling enabled, give up.
    429 	 */
    430 	if (profiling)
    431 		return(EBUSY);
    432 #endif
    433 	/*
    434 	 * If any user processes are profiling, give up.
    435 	 */
    436 	if (profprocs)
    437 		return(EBUSY);
    438 #endif
    439 	if (!clockon) {
    440 		startclock();
    441 		clockon++;
    442 	}
    443 	return(0);
    444 }
    445 
    446 /*ARGSUSED*/
    447 clockclose(dev, flags)
    448 	dev_t dev;
    449 {
    450 	(void) clockunmmap(dev, (caddr_t)0, curproc);	/* XXX */
    451 	stopclock();
    452 	clockon = 0;
    453 	return(0);
    454 }
    455 
    456 /*ARGSUSED*/
    457 clockioctl(dev, cmd, data, flag, p)
    458 	dev_t dev;
    459 	u_long cmd;
    460 	caddr_t data;
    461 	struct proc *p;
    462 {
    463 	int error = 0;
    464 
    465 	switch (cmd) {
    466 
    467 	case CLOCKMAP:
    468 		error = clockmmap(dev, (caddr_t *)data, p);
    469 		break;
    470 
    471 	case CLOCKUNMAP:
    472 		error = clockunmmap(dev, *(caddr_t *)data, p);
    473 		break;
    474 
    475 	case CLOCKGETRES:
    476 		*(int *)data = CLK_RESOLUTION;
    477 		break;
    478 
    479 	default:
    480 		error = EINVAL;
    481 		break;
    482 	}
    483 	return(error);
    484 }
    485 
    486 /*ARGSUSED*/
    487 clockmap(dev, off, prot)
    488 	dev_t dev;
    489 {
    490 	return((off + (INTIOBASE+CLKBASE+CLKSR-1)) >> PGSHIFT);
    491 }
    492 
    493 clockmmap(dev, addrp, p)
    494 	dev_t dev;
    495 	caddr_t *addrp;
    496 	struct proc *p;
    497 {
    498 	int error;
    499 	struct vnode vn;
    500 	struct specinfo si;
    501 	int flags;
    502 
    503 	flags = MAP_FILE|MAP_SHARED;
    504 	if (*addrp)
    505 		flags |= MAP_FIXED;
    506 	else
    507 		*addrp = (caddr_t)0x1000000;	/* XXX */
    508 	vn.v_type = VCHR;			/* XXX */
    509 	vn.v_specinfo = &si;			/* XXX */
    510 	vn.v_rdev = dev;			/* XXX */
    511 	error = vm_mmap(&p->p_vmspace->vm_map, (vm_offset_t *)addrp,
    512 			PAGE_SIZE, VM_PROT_ALL, flags, (caddr_t)&vn, 0);
    513 	return(error);
    514 }
    515 
    516 clockunmmap(dev, addr, p)
    517 	dev_t dev;
    518 	caddr_t addr;
    519 	struct proc *p;
    520 {
    521 	int rv;
    522 
    523 	if (addr == 0)
    524 		return(EINVAL);		/* XXX: how do we deal with this? */
    525 	rv = vm_deallocate(p->p_vmspace->vm_map, (vm_offset_t)addr, PAGE_SIZE);
    526 	return(rv == KERN_SUCCESS ? 0 : EINVAL);
    527 }
    528 
    529 startclock()
    530 {
    531 	register struct clkreg *clk = (struct clkreg *)clkstd[0];
    532 
    533 	clk->clk_msb2 = -1; clk->clk_lsb2 = -1;
    534 	clk->clk_msb3 = -1; clk->clk_lsb3 = -1;
    535 
    536 	clk->clk_cr2 = CLK_CR3;
    537 	clk->clk_cr3 = CLK_OENAB|CLK_8BIT;
    538 	clk->clk_cr2 = CLK_CR1;
    539 	clk->clk_cr1 = CLK_IENAB;
    540 }
    541 
    542 stopclock()
    543 {
    544 	register struct clkreg *clk = (struct clkreg *)clkstd[0];
    545 
    546 	clk->clk_cr2 = CLK_CR3;
    547 	clk->clk_cr3 = 0;
    548 	clk->clk_cr2 = CLK_CR1;
    549 	clk->clk_cr1 = CLK_IENAB;
    550 }
    551 #endif
    552 
    553 #endif
    554 
    555 
    556 #ifdef PROFTIMER
    557 /*
    558  * This code allows the amiga kernel to use one of the extra timers on
    559  * the clock chip for profiling, instead of the regular system timer.
    560  * The advantage of this is that the profiling timer can be turned up to
    561  * a higher interrupt rate, giving finer resolution timing. The profclock
    562  * routine is called from the lev6intr in locore, and is a specialized
    563  * routine that calls addupc. The overhead then is far less than if
    564  * hardclock/softclock was called. Further, the context switch code in
    565  * locore has been changed to turn the profile clock on/off when switching
    566  * into/out of a process that is profiling (startprofclock/stopprofclock).
    567  * This reduces the impact of the profiling clock on other users, and might
    568  * possibly increase the accuracy of the profiling.
    569  */
    570 int  profint   = PRF_INTERVAL;	/* Clock ticks between interrupts */
    571 int  profscale = 0;		/* Scale factor from sys clock to prof clock */
    572 char profon    = 0;		/* Is profiling clock on? */
    573 
    574 /* profon values - do not change, locore.s assumes these values */
    575 #define PRF_NONE	0x00
    576 #define	PRF_USER	0x01
    577 #define	PRF_KERNEL	0x80
    578 
    579 initprofclock()
    580 {
    581 #if NCLOCK > 0
    582 	struct proc *p = curproc;		/* XXX */
    583 
    584 	/*
    585 	 * If the high-res timer is running, force profiling off.
    586 	 * Unfortunately, this gets reflected back to the user not as
    587 	 * an error but as a lack of results.
    588 	 */
    589 	if (clockon) {
    590 		p->p_stats->p_prof.pr_scale = 0;
    591 		return;
    592 	}
    593 	/*
    594 	 * Keep track of the number of user processes that are profiling
    595 	 * by checking the scale value.
    596 	 *
    597 	 * XXX: this all assumes that the profiling code is well behaved;
    598 	 * i.e. profil() is called once per process with pcscale non-zero
    599 	 * to turn it on, and once with pcscale zero to turn it off.
    600 	 * Also assumes you don't do any forks or execs.  Oh well, there
    601 	 * is always adb...
    602 	 */
    603 	if (p->p_stats->p_prof.pr_scale)
    604 		profprocs++;
    605 	else
    606 		profprocs--;
    607 #endif
    608 	/*
    609 	 * The profile interrupt interval must be an even divisor
    610 	 * of the CLK_INTERVAL so that scaling from a system clock
    611 	 * tick to a profile clock tick is possible using integer math.
    612 	 */
    613 	if (profint > CLK_INTERVAL || (CLK_INTERVAL % profint) != 0)
    614 		profint = CLK_INTERVAL;
    615 	profscale = CLK_INTERVAL / profint;
    616 }
    617 
    618 startprofclock()
    619 {
    620   unsigned short interval;
    621 
    622   /* stop timer B */
    623   clockcia->crb = clockcia->crb & 0xc0;
    624 
    625   /* load interval into registers.
    626      the clocks run at NTSC: 715.909kHz or PAL: 709.379kHz */
    627 
    628   interval = profint - 1;
    629 
    630   /* order of setting is important ! */
    631   clockcia->tblo = interval & 0xff;
    632   clockcia->tbhi = interval >> 8;
    633 
    634   /* enable interrupts for timer B */
    635   clockcia->icr = (1<<7) | (1<<1);
    636 
    637   /* start timer B in continuous shot mode */
    638   clockcia->crb = (clockcia->crb & 0xc0) | 1;
    639 }
    640 
    641 stopprofclock()
    642 {
    643   /* stop timer B */
    644   clockcia->crb = clockcia->crb & 0xc0;
    645 }
    646 
    647 #ifdef PROF
    648 /*
    649  * profclock() is expanded in line in lev6intr() unless profiling kernel.
    650  * Assumes it is called with clock interrupts blocked.
    651  */
    652 profclock(pc, ps)
    653 	caddr_t pc;
    654 	int ps;
    655 {
    656 	/*
    657 	 * Came from user mode.
    658 	 * If this process is being profiled record the tick.
    659 	 */
    660 	if (USERMODE(ps)) {
    661 		if (p->p_stats.p_prof.pr_scale)
    662 			addupc(pc, &curproc->p_stats.p_prof, 1);
    663 	}
    664 	/*
    665 	 * Came from kernel (supervisor) mode.
    666 	 * If we are profiling the kernel, record the tick.
    667 	 */
    668 	else if (profiling < 2) {
    669 		register int s = pc - s_lowpc;
    670 
    671 		if (s < s_textsize)
    672 			kcount[s / (HISTFRACTION * sizeof (*kcount))]++;
    673 	}
    674 	/*
    675 	 * Kernel profiling was on but has been disabled.
    676 	 * Mark as no longer profiling kernel and if all profiling done,
    677 	 * disable the clock.
    678 	 */
    679 	if (profiling && (profon & PRF_KERNEL)) {
    680 		profon &= ~PRF_KERNEL;
    681 		if (profon == PRF_NONE)
    682 			stopprofclock();
    683 	}
    684 }
    685 #endif
    686 #endif
    687 
    688 /* this is a hook set by a clock driver for the configured realtime clock,
    689    returning plain current unix-time */
    690 long (*gettod) __P((void));
    691 int (*settod) __P((long));
    692 void *clockaddr;
    693 
    694 long a3gettod __P((void));
    695 long a2gettod __P((void));
    696 int a3settod __P((long));
    697 int a2settod __P((long));
    698 int rtcinit __P((void));
    699 
    700 /*
    701  * Initialize the time of day register, based on the time base which is, e.g.
    702  * from a filesystem.
    703  */
    704 void
    705 inittodr(base)
    706 	time_t base;
    707 {
    708 	u_long timbuf = base;	/* assume no battery clock exists */
    709 
    710 	if (gettod == NULL && rtcinit() == 0)
    711 		printf("WARNING: no battery clock\n");
    712 	else
    713 		timbuf = gettod();
    714 
    715 	if (timbuf < base) {
    716 		printf("WARNING: bad date in battery clock\n");
    717 		timbuf = base;
    718 	}
    719 
    720 	/* Battery clock does not store usec's, so forget about it. */
    721 	time.tv_sec = timbuf;
    722 }
    723 
    724 void
    725 resettodr()
    726 {
    727 	if (settod && settod(time.tv_sec) == 0)
    728 		printf("Cannot set battery backed clock\n");
    729 }
    730 
    731 int
    732 rtcinit()
    733 {
    734 	clockaddr = (void *)ztwomap(0xdc0000);
    735 #ifdef DRACO
    736 	if (is_draco()) {
    737 		/* XXX to be done */
    738 		gettod = (void *)0;
    739 		settod = (void *)0;
    740 		return 0;
    741 	} else
    742 #endif
    743 	if (is_a3000() || is_a4000()) {
    744 		if (a3gettod() == 0)
    745 			return(0);
    746 		gettod = a3gettod;
    747 		settod = a3settod;
    748 	} else {
    749 		if (a2gettod() == 0)
    750 			return(0);
    751 		gettod = a2gettod;
    752 		settod = a2settod;
    753 	}
    754 	return(1);
    755 }
    756 
    757 static int month_days[12] = {
    758 	31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31
    759 };
    760 
    761 long
    762 a3gettod()
    763 {
    764 	struct rtclock3000 *rt;
    765 	int i, year, month, day, wday, hour, min, sec;
    766 	u_long tmp;
    767 
    768 	rt = clockaddr;
    769 
    770 	/* hold clock */
    771 	rt->control1 = A3CONTROL1_HOLD_CLOCK;
    772 
    773 	/* read it */
    774 	sec   = rt->second1 * 10 + rt->second2;
    775 	min   = rt->minute1 * 10 + rt->minute2;
    776 	hour  = rt->hour1   * 10 + rt->hour2;
    777 	wday  = rt->weekday;
    778 	day   = rt->day1    * 10 + rt->day2;
    779 	month = rt->month1  * 10 + rt->month2;
    780 	year  = rt->year1   * 10 + rt->year2   + 1900;
    781 
    782 	/* let it run again.. */
    783 	rt->control1 = A3CONTROL1_FREE_CLOCK;
    784 
    785 	if (range_test(hour, 0, 23))
    786 		return(0);
    787 	if (range_test(wday, 0, 6))
    788 		return(0);
    789 	if (range_test(day, 1, 31))
    790 		return(0);
    791 	if (range_test(month, 1, 12))
    792 		return(0);
    793 	if (range_test(year, STARTOFTIME, 2000))
    794 		return(0);
    795 
    796 	tmp = 0;
    797 
    798 	for (i = STARTOFTIME; i < year; i++)
    799 		tmp += days_in_year(i);
    800 	if (leapyear(year) && month > FEBRUARY)
    801 		tmp++;
    802 
    803 	for (i = 1; i < month; i++)
    804 		tmp += days_in_month(i);
    805 
    806 	tmp += (day - 1);
    807 	tmp = ((tmp * 24 + hour) * 60 + min) * 60 + sec;
    808 
    809 	return(tmp);
    810 }
    811 
    812 int
    813 a3settod(tim)
    814 	long tim;
    815 {
    816 	register int i;
    817 	register long hms, day;
    818 	u_char sec1, sec2;
    819 	u_char min1, min2;
    820 	u_char hour1, hour2;
    821 /*	u_char wday; */
    822 	u_char day1, day2;
    823 	u_char mon1, mon2;
    824 	u_char year1, year2;
    825 	struct rtclock3000 *rt;
    826 
    827 	rt = clockaddr;
    828 	/*
    829 	 * there seem to be problems with the bitfield addressing
    830 	 * currently used..
    831 	 */
    832 
    833 	if (! rt)
    834 		return 0;
    835 
    836 	/* prepare values to be written to clock */
    837 	day = tim / SECDAY;
    838 	hms = tim % SECDAY;
    839 
    840 	hour2 = hms / 3600;
    841 	hour1 = hour2 / 10;
    842 	hour2 %= 10;
    843 
    844 	min2 = (hms % 3600) / 60;
    845 	min1 = min2 / 10;
    846 	min2 %= 10;
    847 
    848 
    849 	sec2 = (hms % 3600) % 60;
    850 	sec1 = sec2 / 10;
    851 	sec2 %= 10;
    852 
    853 	/* Number of years in days */
    854 	for (i = STARTOFTIME - 1900; day >= days_in_year(i); i++)
    855 		day -= days_in_year(i);
    856 	year1 = i / 10;
    857 	year2 = i % 10;
    858 
    859 	/* Number of months in days left */
    860 	if (leapyear(i))
    861 		days_in_month(FEBRUARY) = 29;
    862 	for (i = 1; day >= days_in_month(i); i++)
    863 		day -= days_in_month(i);
    864 	days_in_month(FEBRUARY) = 28;
    865 
    866 	mon1 = i / 10;
    867 	mon2 = i % 10;
    868 
    869 	/* Days are what is left over (+1) from all that. */
    870 	day ++;
    871 	day1 = day / 10;
    872 	day2 = day % 10;
    873 
    874 	rt->control1 = A3CONTROL1_HOLD_CLOCK;
    875 	rt->second1 = sec1;
    876 	rt->second2 = sec2;
    877 	rt->minute1 = min1;
    878 	rt->minute2 = min2;
    879 	rt->hour1   = hour1;
    880 	rt->hour2   = hour2;
    881 /*	rt->weekday = wday; */
    882 	rt->day1    = day1;
    883 	rt->day2    = day2;
    884 	rt->month1  = mon1;
    885 	rt->month2  = mon2;
    886 	rt->year1   = year1;
    887 	rt->year2   = year2;
    888 	rt->control1 = A3CONTROL1_FREE_CLOCK;
    889 
    890 	return 1;
    891 }
    892 
    893 long
    894 a2gettod()
    895 {
    896 	struct rtclock2000 *rt;
    897 	int i, year, month, day, hour, min, sec;
    898 	u_long tmp;
    899 
    900 	rt = clockaddr;
    901 
    902 	/*
    903 	 * hold clock
    904 	 */
    905 	rt->control1 |= A2CONTROL1_HOLD;
    906 	i = 0x1000;
    907 	while (rt->control1 & A2CONTROL1_BUSY && i--)
    908 		;
    909 	if (rt->control1 & A2CONTROL1_BUSY)
    910 		return (0);	/* Give up and say it's not there */
    911 
    912 	/*
    913 	 * read it
    914 	 */
    915 	sec = rt->second1 * 10 + rt->second2;
    916 	min = rt->minute1 * 10 + rt->minute2;
    917 	hour = (rt->hour1 & 3)  * 10 + rt->hour2;
    918 	day = rt->day1 * 10 + rt->day2;
    919 	month = rt->month1 * 10 + rt->month2;
    920 	year = rt->year1 * 10 + rt->year2   + 1900;
    921 
    922 	if ((rt->control3 & A2CONTROL3_24HMODE) == 0) {
    923 		if ((rt->hour1 & A2HOUR1_PM) == 0 && hour == 12)
    924 			hour = 0;
    925 		else if ((rt->hour1 & A2HOUR1_PM) && hour != 12)
    926 			hour += 12;
    927 	}
    928 
    929 	/*
    930 	 * release the clock
    931 	 */
    932 	rt->control1 &= ~A2CONTROL1_HOLD;
    933 
    934 	if (range_test(hour, 0, 23))
    935 		return(0);
    936 	if (range_test(day, 1, 31))
    937 		return(0);
    938 	if (range_test(month, 1, 12))
    939 		return(0);
    940 	if (range_test(year, STARTOFTIME, 2000))
    941 		return(0);
    942 
    943 	tmp = 0;
    944 
    945 	for (i = STARTOFTIME; i < year; i++)
    946 		tmp += days_in_year(i);
    947 	if (leapyear(year) && month > FEBRUARY)
    948 		tmp++;
    949 
    950 	for (i = 1; i < month; i++)
    951 		tmp += days_in_month(i);
    952 
    953 	tmp += (day - 1);
    954 	tmp = ((tmp * 24 + hour) * 60 + min) * 60 + sec;
    955 
    956 	return(tmp);
    957 }
    958 
    959 /*
    960  * there is some question as to whether this works
    961  * I guess
    962  */
    963 int
    964 a2settod(tim)
    965 	long tim;
    966 {
    967 
    968 	int i;
    969 	long hms, day;
    970 	u_char sec1, sec2;
    971 	u_char min1, min2;
    972 	u_char hour1, hour2;
    973 	u_char day1, day2;
    974 	u_char mon1, mon2;
    975 	u_char year1, year2;
    976 	struct rtclock2000 *rt;
    977 
    978 	rt = clockaddr;
    979 	/*
    980 	 * there seem to be problems with the bitfield addressing
    981 	 * currently used..
    982 	 *
    983 	 * XXX Check out the above where we (hour1 & 3)
    984 	 */
    985 	if (! rt)
    986 		return 0;
    987 
    988 	/* prepare values to be written to clock */
    989 	day = tim / SECDAY;
    990 	hms = tim % SECDAY;
    991 
    992 	hour2 = hms / 3600;
    993 	hour1 = hour2 / 10;
    994 	hour2 %= 10;
    995 
    996 	min2 = (hms % 3600) / 60;
    997 	min1 = min2 / 10;
    998 	min2 %= 10;
    999 
   1000 
   1001 	sec2 = (hms % 3600) % 60;
   1002 	sec1 = sec2 / 10;
   1003 	sec2 %= 10;
   1004 
   1005 	/* Number of years in days */
   1006 	for (i = STARTOFTIME - 1900; day >= days_in_year(i); i++)
   1007 		day -= days_in_year(i);
   1008 	year1 = i / 10;
   1009 	year2 = i % 10;
   1010 
   1011 	/* Number of months in days left */
   1012 	if (leapyear(i))
   1013 		days_in_month(FEBRUARY) = 29;
   1014 	for (i = 1; day >= days_in_month(i); i++)
   1015 		day -= days_in_month(i);
   1016 	days_in_month(FEBRUARY) = 28;
   1017 
   1018 	mon1 = i / 10;
   1019 	mon2 = i % 10;
   1020 
   1021 	/* Days are what is left over (+1) from all that. */
   1022 	day ++;
   1023 	day1 = day / 10;
   1024 	day2 = day % 10;
   1025 
   1026 	/*
   1027 	 * XXXX spin wait as with reading???
   1028 	 */
   1029 	rt->control1 |= A2CONTROL1_HOLD;
   1030 	rt->second1 = sec1;
   1031 	rt->second2 = sec2;
   1032 	rt->minute1 = min1;
   1033 	rt->minute2 = min2;
   1034 	rt->hour1   = hour1;
   1035 	rt->hour2   = hour2;
   1036 	rt->day1    = day1;
   1037 	rt->day2    = day2;
   1038 	rt->month1  = mon1;
   1039 	rt->month2  = mon2;
   1040 	rt->year1   = year1;
   1041 	rt->year2   = year2;
   1042 	rt->control2 &= ~A2CONTROL1_HOLD;
   1043 
   1044   return 1;
   1045 }
   1046