Home | History | Annotate | Line # | Download | only in dev
clock.c revision 1.18
      1 /*	$NetBSD: clock.c,v 1.18 1996/09/29 21:27:40 is Exp $	*/
      2 
      3 /*
      4  * Copyright (c) 1988 University of Utah.
      5  * Copyright (c) 1982, 1990 The Regents of the University of California.
      6  * All rights reserved.
      7  *
      8  * This code is derived from software contributed to Berkeley by
      9  * the Systems Programming Group of the University of Utah Computer
     10  * Science Department.
     11  *
     12  * Redistribution and use in source and binary forms, with or without
     13  * modification, are permitted provided that the following conditions
     14  * are met:
     15  * 1. Redistributions of source code must retain the above copyright
     16  *    notice, this list of conditions and the following disclaimer.
     17  * 2. Redistributions in binary form must reproduce the above copyright
     18  *    notice, this list of conditions and the following disclaimer in the
     19  *    documentation and/or other materials provided with the distribution.
     20  * 3. All advertising materials mentioning features or use of this software
     21  *    must display the following acknowledgement:
     22  *	This product includes software developed by the University of
     23  *	California, Berkeley and its contributors.
     24  * 4. Neither the name of the University nor the names of its contributors
     25  *    may be used to endorse or promote products derived from this software
     26  *    without specific prior written permission.
     27  *
     28  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     29  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     30  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     31  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     32  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     33  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     34  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     35  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     36  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     37  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     38  * SUCH DAMAGE.
     39  *
     40  * from: Utah $Hdr: clock.c 1.18 91/01/21$
     41  *
     42  *	@(#)clock.c	7.6 (Berkeley) 5/7/91
     43  */
     44 
     45 #include <sys/param.h>
     46 #include <sys/kernel.h>
     47 #include <sys/device.h>
     48 #include <sys/systm.h>
     49 #include <machine/psl.h>
     50 #include <machine/cpu.h>
     51 #include <amiga/amiga/device.h>
     52 #include <amiga/amiga/custom.h>
     53 #include <amiga/amiga/cia.h>
     54 #ifdef DRACO
     55 #include <amiga/amiga/drcustom.h>
     56 #endif
     57 #include <amiga/dev/rtc.h>
     58 #include <amiga/dev/zbusvar.h>
     59 
     60 #if defined(PROF) && defined(PROFTIMER)
     61 #include <sys/PROF.h>
     62 #endif
     63 
     64 /* the clocks run at NTSC: 715.909kHz or PAL: 709.379kHz.
     65    We're using a 100 Hz clock. */
     66 
     67 #define CLK_INTERVAL amiga_clk_interval
     68 int amiga_clk_interval;
     69 int eclockfreq;
     70 struct CIA *clockcia;
     71 
     72 /*
     73  * Machine-dependent clock routines.
     74  *
     75  * Startrtclock restarts the real-time clock, which provides
     76  * hardclock interrupts to kern_clock.c.
     77  *
     78  * Inittodr initializes the time of day hardware which provides
     79  * date functions.
     80  *
     81  * Resettodr restores the time of day hardware after a time change.
     82  *
     83  * A note on the real-time clock:
     84  * We actually load the clock with CLK_INTERVAL-1 instead of CLK_INTERVAL.
     85  * This is because the counter decrements to zero after N+1 enabled clock
     86  * periods where N is the value loaded into the counter.
     87  */
     88 
     89 int clockmatch __P((struct device *, void *, void *));
     90 void clockattach __P((struct device *, struct device *, void *));
     91 void cpu_initclocks __P((void));
     92 void calibrate_delay __P((void));
     93 
     94 struct cfattach clock_ca = {
     95 	sizeof(struct device), clockmatch, clockattach
     96 };
     97 
     98 struct cfdriver clock_cd = {
     99 	NULL, "clock", DV_DULL, NULL, 0 };
    100 
    101 int
    102 clockmatch(pdp, match, auxp)
    103 	struct device *pdp;
    104 	void *match, *auxp;
    105 {
    106 	if (matchname("clock", auxp))
    107 		return(1);
    108 	return(0);
    109 }
    110 
    111 /*
    112  * Start the real-time clock.
    113  */
    114 void
    115 clockattach(pdp, dp, auxp)
    116 	struct device *pdp, *dp;
    117 	void *auxp;
    118 {
    119 	char *clockchip;
    120 	unsigned short interval;
    121 #ifdef DRACO
    122 	u_char dracorev;
    123 #endif
    124 
    125 	if (eclockfreq == 0)
    126 		eclockfreq = 715909;	/* guess NTSC */
    127 
    128 	CLK_INTERVAL = (eclockfreq / 100);
    129 
    130 #ifdef DRACO
    131 	dracorev = is_draco();
    132 	if (dracorev >= 4) {
    133 		CLK_INTERVAL = (eclockfreq / 700);
    134 		clockchip = "QuickLogic";
    135 	} else if (dracorev) {
    136 		clockcia = (struct CIA *)CIAAbase;
    137 		clockchip = "CIA A";
    138 	} else
    139 #endif
    140 	{
    141 		clockcia = (struct CIA *)CIABbase;
    142 		clockchip = "CIA B";
    143 	}
    144 
    145 	printf(": %s system hz %d hardware hz %d\n", clockchip, hz,
    146 		dracorev >= 4 ? eclockfreq / 7 : eclockfreq);
    147 
    148 #ifdef DRACO
    149 	if (dracorev >= 4) {
    150 		/*
    151 		 * can't preload anything beforehand, timer is free_running;
    152 		 * but need this for delay calibration.
    153 		 */
    154 
    155 		draco_ioct->io_timerlo = CLK_INTERVAL & 0xff;
    156 		draco_ioct->io_timerhi = CLK_INTERVAL >> 8;
    157 
    158 		calibrate_delay();
    159 
    160 		return;
    161 	}
    162 #endif
    163 	/*
    164 	 * stop timer A
    165 	 */
    166 	clockcia->cra = clockcia->cra & 0xc0;
    167 	clockcia->icr = 1 << 0;		/* disable timer A interrupt */
    168 	interval = clockcia->icr;		/* and make sure it's clear */
    169 
    170 	/*
    171 	 * load interval into registers.
    172          * the clocks run at NTSC: 715.909kHz or PAL: 709.379kHz
    173 	 * supprort for PAL WHEN?!?! XXX
    174 	 */
    175 	interval = CLK_INTERVAL - 1;
    176 
    177 	/*
    178 	 * order of setting is important !
    179 	 */
    180 	clockcia->talo = interval & 0xff;
    181 	clockcia->tahi = interval >> 8;
    182 	/*
    183 	 * start timer A in continuous mode
    184 	 */
    185 	clockcia->cra = (clockcia->cra & 0xc0) | 1;
    186 
    187 	calibrate_delay();
    188 }
    189 
    190 /*
    191  * Calibrate delay loop.
    192  * We use two iterations because we don't have enough bits to do a factor of
    193  * 8 with better than 1%.
    194  *
    195  * XXX Note that we MUST stay below 1 tick if using clkread(), even for
    196  * underestimated values of delaydivisor.
    197  *
    198  * XXX the "ns" below is only correct for a shift of 10 bits, and even then
    199  * off by 2.4%
    200  */
    201 
    202 void calibrate_delay()
    203 {
    204 	unsigned long t1, t2;
    205 	extern u_int32_t delaydivisor;
    206 		/* XXX this should be defined elsewhere */
    207 
    208 	printf("Calibrating delay loop... ");
    209 
    210 	do {
    211 		t1 = clkread();
    212 		delay(1024);
    213 		t2 = clkread();
    214 	} while (t2 <= t1);
    215 	t2 -= t1;
    216 	delaydivisor = (delaydivisor * t2 + 1023) >> 10;
    217 #ifdef DIAGNOSTIC
    218 	printf("\ndiff %ld us, new divisor %u ns\n", t2, delaydivisor);
    219 	do {
    220 		t1 = clkread();
    221 		delay(1024);
    222 		t2 = clkread();
    223 	} while (t2 <= t1);
    224 	t2 -= t1;
    225 	delaydivisor = (delaydivisor * t2 + 1023) >> 10;
    226 	printf("diff %ld us, new divisor %u ns\n", t2, delaydivisor);
    227 #endif
    228 	do {
    229 		t1 = clkread();
    230 		delay(1024);
    231 		t2 = clkread();
    232 	} while (t2 <= t1);
    233 	t2 -= t1;
    234 	delaydivisor = (delaydivisor * t2 + 1023) >> 10;
    235 #ifdef DIAGNOSTIC
    236 	printf("diff %ld us, new divisor ", t2);
    237 #endif
    238 	printf("%u ns\n", delaydivisor);
    239 }
    240 
    241 void
    242 cpu_initclocks()
    243 {
    244 	unsigned char dracorev;
    245 	dracorev = is_draco();
    246 #ifdef DRACO
    247 	if (dracorev >= 4) {
    248 		draco_ioct->io_timerlo = CLK_INTERVAL & 0xFF;
    249 		draco_ioct->io_timerhi = CLK_INTERVAL >> 8;
    250 		draco_ioct->io_timerrst = 0;	/* any value resets */
    251 		draco_ioct->io_status2 |= DRSTAT2_TMRINTENA;
    252 
    253 		return;
    254 	}
    255 #endif
    256 	/*
    257 	 * enable interrupts for timer A
    258 	 */
    259 	clockcia->icr = (1<<7) | (1<<0);
    260 
    261 	/*
    262 	 * start timer A in continuous shot mode
    263 	 */
    264 	clockcia->cra = (clockcia->cra & 0xc0) | 1;
    265 
    266 	/*
    267 	 * and globally enable interrupts for ciab
    268 	 */
    269 #ifdef DRACO
    270 	if (dracorev)		/* we use cia a on DraCo */
    271 		*draco_intena |= DRIRQ_INT2;
    272 	else
    273 #endif
    274 		custom.intena = INTF_SETCLR | INTF_EXTER;
    275 
    276 }
    277 
    278 void
    279 setstatclockrate(hz)
    280 	int hz;
    281 {
    282 }
    283 
    284 /*
    285  * Returns number of usec since last recorded clock "tick"
    286  * (i.e. clock interrupt).
    287  */
    288 u_long
    289 clkread()
    290 {
    291 	u_int interval;
    292 	u_char hi, hi2, lo;
    293 
    294 #ifdef DRACO
    295 	if (is_draco() >= 4) {
    296 		hi2 = draco_ioct->io_chiprev;	/* latch timer */
    297 		hi = draco_ioct->io_timerhi;
    298 		lo = draco_ioct->io_timerlo;
    299 		interval = ((hi<<8) | lo);
    300 		if (interval > CLK_INTERVAL)	/* timer underflow */
    301 			interval = 65536 + CLK_INTERVAL - interval;
    302 		else
    303 			interval = CLK_INTERVAL - interval;
    304 
    305 	} else
    306 #endif
    307 	{
    308 		hi  = clockcia->tahi;
    309 		lo  = clockcia->talo;
    310 		hi2 = clockcia->tahi;
    311 		if (hi != hi2) {
    312 			lo = clockcia->talo;
    313 			hi = hi2;
    314 		}
    315 
    316 		interval = (CLK_INTERVAL - 1) - ((hi<<8) | lo);
    317 
    318 		/*
    319 		 * should read ICR and if there's an int pending, adjust
    320 		 * interval. However, since reading ICR clears the interrupt,
    321 		 * we'd lose a hardclock int, and this is not tolerable.
    322 		 */
    323 	}
    324 
    325 	return((interval * tick) / CLK_INTERVAL);
    326 }
    327 
    328 #if notyet
    329 
    330 /* implement this later. I'd suggest using both timers in CIA-A, they're
    331    not yet used. */
    332 
    333 #include "clock.h"
    334 #if NCLOCK > 0
    335 /*
    336  * /dev/clock: mappable high resolution timer.
    337  *
    338  * This code implements a 32-bit recycling counter (with a 4 usec period)
    339  * using timers 2 & 3 on the 6840 clock chip.  The counter can be mapped
    340  * RO into a user's address space to achieve low overhead (no system calls),
    341  * high-precision timing.
    342  *
    343  * Note that timer 3 is also used for the high precision profiling timer
    344  * (PROFTIMER code above).  Care should be taken when both uses are
    345  * configured as only a token effort is made to avoid conflicting use.
    346  */
    347 #include <sys/proc.h>
    348 #include <sys/resourcevar.h>
    349 #include <sys/ioctl.h>
    350 #include <sys/malloc.h>
    351 #include <vm/vm.h>
    352 #include <amiga/amiga/clockioctl.h>
    353 #include <sys/specdev.h>
    354 #include <sys/vnode.h>
    355 #include <sys/mman.h>
    356 
    357 int clockon = 0;		/* non-zero if high-res timer enabled */
    358 #ifdef PROFTIMER
    359 int  profprocs = 0;		/* # of procs using profiling timer */
    360 #endif
    361 #ifdef DEBUG
    362 int clockdebug = 0;
    363 #endif
    364 
    365 /*ARGSUSED*/
    366 clockopen(dev, flags)
    367 	dev_t dev;
    368 {
    369 #ifdef PROFTIMER
    370 #ifdef PROF
    371 	/*
    372 	 * Kernel profiling enabled, give up.
    373 	 */
    374 	if (profiling)
    375 		return(EBUSY);
    376 #endif
    377 	/*
    378 	 * If any user processes are profiling, give up.
    379 	 */
    380 	if (profprocs)
    381 		return(EBUSY);
    382 #endif
    383 	if (!clockon) {
    384 		startclock();
    385 		clockon++;
    386 	}
    387 	return(0);
    388 }
    389 
    390 /*ARGSUSED*/
    391 clockclose(dev, flags)
    392 	dev_t dev;
    393 {
    394 	(void) clockunmmap(dev, (caddr_t)0, curproc);	/* XXX */
    395 	stopclock();
    396 	clockon = 0;
    397 	return(0);
    398 }
    399 
    400 /*ARGSUSED*/
    401 clockioctl(dev, cmd, data, flag, p)
    402 	dev_t dev;
    403 	u_long cmd;
    404 	caddr_t data;
    405 	struct proc *p;
    406 {
    407 	int error = 0;
    408 
    409 	switch (cmd) {
    410 
    411 	case CLOCKMAP:
    412 		error = clockmmap(dev, (caddr_t *)data, p);
    413 		break;
    414 
    415 	case CLOCKUNMAP:
    416 		error = clockunmmap(dev, *(caddr_t *)data, p);
    417 		break;
    418 
    419 	case CLOCKGETRES:
    420 		*(int *)data = CLK_RESOLUTION;
    421 		break;
    422 
    423 	default:
    424 		error = EINVAL;
    425 		break;
    426 	}
    427 	return(error);
    428 }
    429 
    430 /*ARGSUSED*/
    431 clockmap(dev, off, prot)
    432 	dev_t dev;
    433 {
    434 	return((off + (INTIOBASE+CLKBASE+CLKSR-1)) >> PGSHIFT);
    435 }
    436 
    437 clockmmap(dev, addrp, p)
    438 	dev_t dev;
    439 	caddr_t *addrp;
    440 	struct proc *p;
    441 {
    442 	int error;
    443 	struct vnode vn;
    444 	struct specinfo si;
    445 	int flags;
    446 
    447 	flags = MAP_FILE|MAP_SHARED;
    448 	if (*addrp)
    449 		flags |= MAP_FIXED;
    450 	else
    451 		*addrp = (caddr_t)0x1000000;	/* XXX */
    452 	vn.v_type = VCHR;			/* XXX */
    453 	vn.v_specinfo = &si;			/* XXX */
    454 	vn.v_rdev = dev;			/* XXX */
    455 	error = vm_mmap(&p->p_vmspace->vm_map, (vm_offset_t *)addrp,
    456 			PAGE_SIZE, VM_PROT_ALL, flags, (caddr_t)&vn, 0);
    457 	return(error);
    458 }
    459 
    460 clockunmmap(dev, addr, p)
    461 	dev_t dev;
    462 	caddr_t addr;
    463 	struct proc *p;
    464 {
    465 	int rv;
    466 
    467 	if (addr == 0)
    468 		return(EINVAL);		/* XXX: how do we deal with this? */
    469 	rv = vm_deallocate(p->p_vmspace->vm_map, (vm_offset_t)addr, PAGE_SIZE);
    470 	return(rv == KERN_SUCCESS ? 0 : EINVAL);
    471 }
    472 
    473 startclock()
    474 {
    475 	register struct clkreg *clk = (struct clkreg *)clkstd[0];
    476 
    477 	clk->clk_msb2 = -1; clk->clk_lsb2 = -1;
    478 	clk->clk_msb3 = -1; clk->clk_lsb3 = -1;
    479 
    480 	clk->clk_cr2 = CLK_CR3;
    481 	clk->clk_cr3 = CLK_OENAB|CLK_8BIT;
    482 	clk->clk_cr2 = CLK_CR1;
    483 	clk->clk_cr1 = CLK_IENAB;
    484 }
    485 
    486 stopclock()
    487 {
    488 	register struct clkreg *clk = (struct clkreg *)clkstd[0];
    489 
    490 	clk->clk_cr2 = CLK_CR3;
    491 	clk->clk_cr3 = 0;
    492 	clk->clk_cr2 = CLK_CR1;
    493 	clk->clk_cr1 = CLK_IENAB;
    494 }
    495 #endif
    496 
    497 #endif
    498 
    499 
    500 #ifdef PROFTIMER
    501 /*
    502  * This code allows the amiga kernel to use one of the extra timers on
    503  * the clock chip for profiling, instead of the regular system timer.
    504  * The advantage of this is that the profiling timer can be turned up to
    505  * a higher interrupt rate, giving finer resolution timing. The profclock
    506  * routine is called from the lev6intr in locore, and is a specialized
    507  * routine that calls addupc. The overhead then is far less than if
    508  * hardclock/softclock was called. Further, the context switch code in
    509  * locore has been changed to turn the profile clock on/off when switching
    510  * into/out of a process that is profiling (startprofclock/stopprofclock).
    511  * This reduces the impact of the profiling clock on other users, and might
    512  * possibly increase the accuracy of the profiling.
    513  */
    514 int  profint   = PRF_INTERVAL;	/* Clock ticks between interrupts */
    515 int  profscale = 0;		/* Scale factor from sys clock to prof clock */
    516 char profon    = 0;		/* Is profiling clock on? */
    517 
    518 /* profon values - do not change, locore.s assumes these values */
    519 #define PRF_NONE	0x00
    520 #define	PRF_USER	0x01
    521 #define	PRF_KERNEL	0x80
    522 
    523 initprofclock()
    524 {
    525 #if NCLOCK > 0
    526 	struct proc *p = curproc;		/* XXX */
    527 
    528 	/*
    529 	 * If the high-res timer is running, force profiling off.
    530 	 * Unfortunately, this gets reflected back to the user not as
    531 	 * an error but as a lack of results.
    532 	 */
    533 	if (clockon) {
    534 		p->p_stats->p_prof.pr_scale = 0;
    535 		return;
    536 	}
    537 	/*
    538 	 * Keep track of the number of user processes that are profiling
    539 	 * by checking the scale value.
    540 	 *
    541 	 * XXX: this all assumes that the profiling code is well behaved;
    542 	 * i.e. profil() is called once per process with pcscale non-zero
    543 	 * to turn it on, and once with pcscale zero to turn it off.
    544 	 * Also assumes you don't do any forks or execs.  Oh well, there
    545 	 * is always adb...
    546 	 */
    547 	if (p->p_stats->p_prof.pr_scale)
    548 		profprocs++;
    549 	else
    550 		profprocs--;
    551 #endif
    552 	/*
    553 	 * The profile interrupt interval must be an even divisor
    554 	 * of the CLK_INTERVAL so that scaling from a system clock
    555 	 * tick to a profile clock tick is possible using integer math.
    556 	 */
    557 	if (profint > CLK_INTERVAL || (CLK_INTERVAL % profint) != 0)
    558 		profint = CLK_INTERVAL;
    559 	profscale = CLK_INTERVAL / profint;
    560 }
    561 
    562 startprofclock()
    563 {
    564   unsigned short interval;
    565 
    566   /* stop timer B */
    567   clockcia->crb = clockcia->crb & 0xc0;
    568 
    569   /* load interval into registers.
    570      the clocks run at NTSC: 715.909kHz or PAL: 709.379kHz */
    571 
    572   interval = profint - 1;
    573 
    574   /* order of setting is important ! */
    575   clockcia->tblo = interval & 0xff;
    576   clockcia->tbhi = interval >> 8;
    577 
    578   /* enable interrupts for timer B */
    579   clockcia->icr = (1<<7) | (1<<1);
    580 
    581   /* start timer B in continuous shot mode */
    582   clockcia->crb = (clockcia->crb & 0xc0) | 1;
    583 }
    584 
    585 stopprofclock()
    586 {
    587   /* stop timer B */
    588   clockcia->crb = clockcia->crb & 0xc0;
    589 }
    590 
    591 #ifdef PROF
    592 /*
    593  * profclock() is expanded in line in lev6intr() unless profiling kernel.
    594  * Assumes it is called with clock interrupts blocked.
    595  */
    596 profclock(pc, ps)
    597 	caddr_t pc;
    598 	int ps;
    599 {
    600 	/*
    601 	 * Came from user mode.
    602 	 * If this process is being profiled record the tick.
    603 	 */
    604 	if (USERMODE(ps)) {
    605 		if (p->p_stats.p_prof.pr_scale)
    606 			addupc(pc, &curproc->p_stats.p_prof, 1);
    607 	}
    608 	/*
    609 	 * Came from kernel (supervisor) mode.
    610 	 * If we are profiling the kernel, record the tick.
    611 	 */
    612 	else if (profiling < 2) {
    613 		register int s = pc - s_lowpc;
    614 
    615 		if (s < s_textsize)
    616 			kcount[s / (HISTFRACTION * sizeof (*kcount))]++;
    617 	}
    618 	/*
    619 	 * Kernel profiling was on but has been disabled.
    620 	 * Mark as no longer profiling kernel and if all profiling done,
    621 	 * disable the clock.
    622 	 */
    623 	if (profiling && (profon & PRF_KERNEL)) {
    624 		profon &= ~PRF_KERNEL;
    625 		if (profon == PRF_NONE)
    626 			stopprofclock();
    627 	}
    628 }
    629 #endif
    630 #endif
    631 
    632 /* this is a hook set by a clock driver for the configured realtime clock,
    633    returning plain current unix-time */
    634 long (*gettod) __P((void));
    635 int (*settod) __P((long));
    636 void *clockaddr;
    637 
    638 long a3gettod __P((void));
    639 long a2gettod __P((void));
    640 int a3settod __P((long));
    641 int a2settod __P((long));
    642 int rtcinit __P((void));
    643 
    644 /*
    645  * Initialize the time of day register, based on the time base which is, e.g.
    646  * from a filesystem.
    647  */
    648 void
    649 inittodr(base)
    650 	time_t base;
    651 {
    652 	u_long timbuf = base;	/* assume no battery clock exists */
    653 
    654 	if (gettod == NULL && rtcinit() == 0)
    655 		printf("WARNING: no battery clock\n");
    656 	else
    657 		timbuf = gettod();
    658 
    659 	if (timbuf < base) {
    660 		printf("WARNING: bad date in battery clock\n");
    661 		timbuf = base;
    662 	}
    663 
    664 	/* Battery clock does not store usec's, so forget about it. */
    665 	time.tv_sec = timbuf;
    666 }
    667 
    668 void
    669 resettodr()
    670 {
    671 	if (settod && settod(time.tv_sec) == 0)
    672 		printf("Cannot set battery backed clock\n");
    673 }
    674 
    675 int
    676 rtcinit()
    677 {
    678 	clockaddr = (void *)ztwomap(0xdc0000);
    679 #ifdef DRACO
    680 	if (is_draco()) {
    681 		/* XXX to be done */
    682 		gettod = (void *)0;
    683 		settod = (void *)0;
    684 		return 0;
    685 	} else
    686 #endif
    687 	if (is_a3000() || is_a4000()) {
    688 		if (a3gettod() == 0)
    689 			return(0);
    690 		gettod = a3gettod;
    691 		settod = a3settod;
    692 	} else {
    693 		if (a2gettod() == 0)
    694 			return(0);
    695 		gettod = a2gettod;
    696 		settod = a2settod;
    697 	}
    698 	return(1);
    699 }
    700 
    701 static int month_days[12] = {
    702 	31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31
    703 };
    704 
    705 long
    706 a3gettod()
    707 {
    708 	struct rtclock3000 *rt;
    709 	int i, year, month, day, wday, hour, min, sec;
    710 	u_long tmp;
    711 
    712 	rt = clockaddr;
    713 
    714 	/* hold clock */
    715 	rt->control1 = A3CONTROL1_HOLD_CLOCK;
    716 
    717 	/* read it */
    718 	sec   = rt->second1 * 10 + rt->second2;
    719 	min   = rt->minute1 * 10 + rt->minute2;
    720 	hour  = rt->hour1   * 10 + rt->hour2;
    721 	wday  = rt->weekday;
    722 	day   = rt->day1    * 10 + rt->day2;
    723 	month = rt->month1  * 10 + rt->month2;
    724 	year  = rt->year1   * 10 + rt->year2   + 1900;
    725 
    726 	/* let it run again.. */
    727 	rt->control1 = A3CONTROL1_FREE_CLOCK;
    728 
    729 	if (range_test(hour, 0, 23))
    730 		return(0);
    731 	if (range_test(wday, 0, 6))
    732 		return(0);
    733 	if (range_test(day, 1, 31))
    734 		return(0);
    735 	if (range_test(month, 1, 12))
    736 		return(0);
    737 	if (range_test(year, STARTOFTIME, 2000))
    738 		return(0);
    739 
    740 	tmp = 0;
    741 
    742 	for (i = STARTOFTIME; i < year; i++)
    743 		tmp += days_in_year(i);
    744 	if (leapyear(year) && month > FEBRUARY)
    745 		tmp++;
    746 
    747 	for (i = 1; i < month; i++)
    748 		tmp += days_in_month(i);
    749 
    750 	tmp += (day - 1);
    751 	tmp = ((tmp * 24 + hour) * 60 + min) * 60 + sec;
    752 
    753 	return(tmp);
    754 }
    755 
    756 int
    757 a3settod(tim)
    758 	long tim;
    759 {
    760 	register int i;
    761 	register long hms, day;
    762 	u_char sec1, sec2;
    763 	u_char min1, min2;
    764 	u_char hour1, hour2;
    765 /*	u_char wday; */
    766 	u_char day1, day2;
    767 	u_char mon1, mon2;
    768 	u_char year1, year2;
    769 	struct rtclock3000 *rt;
    770 
    771 	rt = clockaddr;
    772 	/*
    773 	 * there seem to be problems with the bitfield addressing
    774 	 * currently used..
    775 	 */
    776 
    777 	if (! rt)
    778 		return 0;
    779 
    780 	/* prepare values to be written to clock */
    781 	day = tim / SECDAY;
    782 	hms = tim % SECDAY;
    783 
    784 	hour2 = hms / 3600;
    785 	hour1 = hour2 / 10;
    786 	hour2 %= 10;
    787 
    788 	min2 = (hms % 3600) / 60;
    789 	min1 = min2 / 10;
    790 	min2 %= 10;
    791 
    792 
    793 	sec2 = (hms % 3600) % 60;
    794 	sec1 = sec2 / 10;
    795 	sec2 %= 10;
    796 
    797 	/* Number of years in days */
    798 	for (i = STARTOFTIME - 1900; day >= days_in_year(i); i++)
    799 		day -= days_in_year(i);
    800 	year1 = i / 10;
    801 	year2 = i % 10;
    802 
    803 	/* Number of months in days left */
    804 	if (leapyear(i))
    805 		days_in_month(FEBRUARY) = 29;
    806 	for (i = 1; day >= days_in_month(i); i++)
    807 		day -= days_in_month(i);
    808 	days_in_month(FEBRUARY) = 28;
    809 
    810 	mon1 = i / 10;
    811 	mon2 = i % 10;
    812 
    813 	/* Days are what is left over (+1) from all that. */
    814 	day ++;
    815 	day1 = day / 10;
    816 	day2 = day % 10;
    817 
    818 	rt->control1 = A3CONTROL1_HOLD_CLOCK;
    819 	rt->second1 = sec1;
    820 	rt->second2 = sec2;
    821 	rt->minute1 = min1;
    822 	rt->minute2 = min2;
    823 	rt->hour1   = hour1;
    824 	rt->hour2   = hour2;
    825 /*	rt->weekday = wday; */
    826 	rt->day1    = day1;
    827 	rt->day2    = day2;
    828 	rt->month1  = mon1;
    829 	rt->month2  = mon2;
    830 	rt->year1   = year1;
    831 	rt->year2   = year2;
    832 	rt->control1 = A3CONTROL1_FREE_CLOCK;
    833 
    834 	return 1;
    835 }
    836 
    837 long
    838 a2gettod()
    839 {
    840 	struct rtclock2000 *rt;
    841 	int i, year, month, day, hour, min, sec;
    842 	u_long tmp;
    843 
    844 	rt = clockaddr;
    845 
    846 	/*
    847 	 * hold clock
    848 	 */
    849 	rt->control1 |= A2CONTROL1_HOLD;
    850 	i = 0x1000;
    851 	while (rt->control1 & A2CONTROL1_BUSY && i--)
    852 		;
    853 	if (rt->control1 & A2CONTROL1_BUSY)
    854 		return (0);	/* Give up and say it's not there */
    855 
    856 	/*
    857 	 * read it
    858 	 */
    859 	sec = rt->second1 * 10 + rt->second2;
    860 	min = rt->minute1 * 10 + rt->minute2;
    861 	hour = (rt->hour1 & 3)  * 10 + rt->hour2;
    862 	day = rt->day1 * 10 + rt->day2;
    863 	month = rt->month1 * 10 + rt->month2;
    864 	year = rt->year1 * 10 + rt->year2   + 1900;
    865 
    866 	if ((rt->control3 & A2CONTROL3_24HMODE) == 0) {
    867 		if ((rt->hour1 & A2HOUR1_PM) == 0 && hour == 12)
    868 			hour = 0;
    869 		else if ((rt->hour1 & A2HOUR1_PM) && hour != 12)
    870 			hour += 12;
    871 	}
    872 
    873 	/*
    874 	 * release the clock
    875 	 */
    876 	rt->control1 &= ~A2CONTROL1_HOLD;
    877 
    878 	if (range_test(hour, 0, 23))
    879 		return(0);
    880 	if (range_test(day, 1, 31))
    881 		return(0);
    882 	if (range_test(month, 1, 12))
    883 		return(0);
    884 	if (range_test(year, STARTOFTIME, 2000))
    885 		return(0);
    886 
    887 	tmp = 0;
    888 
    889 	for (i = STARTOFTIME; i < year; i++)
    890 		tmp += days_in_year(i);
    891 	if (leapyear(year) && month > FEBRUARY)
    892 		tmp++;
    893 
    894 	for (i = 1; i < month; i++)
    895 		tmp += days_in_month(i);
    896 
    897 	tmp += (day - 1);
    898 	tmp = ((tmp * 24 + hour) * 60 + min) * 60 + sec;
    899 
    900 	return(tmp);
    901 }
    902 
    903 /*
    904  * there is some question as to whether this works
    905  * I guess
    906  */
    907 int
    908 a2settod(tim)
    909 	long tim;
    910 {
    911 
    912 	int i;
    913 	long hms, day;
    914 	u_char sec1, sec2;
    915 	u_char min1, min2;
    916 	u_char hour1, hour2;
    917 	u_char day1, day2;
    918 	u_char mon1, mon2;
    919 	u_char year1, year2;
    920 	struct rtclock2000 *rt;
    921 
    922 	rt = clockaddr;
    923 	/*
    924 	 * there seem to be problems with the bitfield addressing
    925 	 * currently used..
    926 	 *
    927 	 * XXX Check out the above where we (hour1 & 3)
    928 	 */
    929 	if (! rt)
    930 		return 0;
    931 
    932 	/* prepare values to be written to clock */
    933 	day = tim / SECDAY;
    934 	hms = tim % SECDAY;
    935 
    936 	hour2 = hms / 3600;
    937 	hour1 = hour2 / 10;
    938 	hour2 %= 10;
    939 
    940 	min2 = (hms % 3600) / 60;
    941 	min1 = min2 / 10;
    942 	min2 %= 10;
    943 
    944 
    945 	sec2 = (hms % 3600) % 60;
    946 	sec1 = sec2 / 10;
    947 	sec2 %= 10;
    948 
    949 	/* Number of years in days */
    950 	for (i = STARTOFTIME - 1900; day >= days_in_year(i); i++)
    951 		day -= days_in_year(i);
    952 	year1 = i / 10;
    953 	year2 = i % 10;
    954 
    955 	/* Number of months in days left */
    956 	if (leapyear(i))
    957 		days_in_month(FEBRUARY) = 29;
    958 	for (i = 1; day >= days_in_month(i); i++)
    959 		day -= days_in_month(i);
    960 	days_in_month(FEBRUARY) = 28;
    961 
    962 	mon1 = i / 10;
    963 	mon2 = i % 10;
    964 
    965 	/* Days are what is left over (+1) from all that. */
    966 	day ++;
    967 	day1 = day / 10;
    968 	day2 = day % 10;
    969 
    970 	/*
    971 	 * XXXX spin wait as with reading???
    972 	 */
    973 	rt->control1 |= A2CONTROL1_HOLD;
    974 	rt->second1 = sec1;
    975 	rt->second2 = sec2;
    976 	rt->minute1 = min1;
    977 	rt->minute2 = min2;
    978 	rt->hour1   = hour1;
    979 	rt->hour2   = hour2;
    980 	rt->day1    = day1;
    981 	rt->day2    = day2;
    982 	rt->month1  = mon1;
    983 	rt->month2  = mon2;
    984 	rt->year1   = year1;
    985 	rt->year2   = year2;
    986 	rt->control2 &= ~A2CONTROL1_HOLD;
    987 
    988   return 1;
    989 }
    990