Home | History | Annotate | Line # | Download | only in dev
clock.c revision 1.2
      1 /*
      2  * Copyright (c) 1988 University of Utah.
      3  * Copyright (c) 1982, 1990 The Regents of the University of California.
      4  * All rights reserved.
      5  *
      6  * This code is derived from software contributed to Berkeley by
      7  * the Systems Programming Group of the University of Utah Computer
      8  * Science Department.
      9  *
     10  * Redistribution and use in source and binary forms, with or without
     11  * modification, are permitted provided that the following conditions
     12  * are met:
     13  * 1. Redistributions of source code must retain the above copyright
     14  *    notice, this list of conditions and the following disclaimer.
     15  * 2. Redistributions in binary form must reproduce the above copyright
     16  *    notice, this list of conditions and the following disclaimer in the
     17  *    documentation and/or other materials provided with the distribution.
     18  * 3. All advertising materials mentioning features or use of this software
     19  *    must display the following acknowledgement:
     20  *	This product includes software developed by the University of
     21  *	California, Berkeley and its contributors.
     22  * 4. Neither the name of the University nor the names of its contributors
     23  *    may be used to endorse or promote products derived from this software
     24  *    without specific prior written permission.
     25  *
     26  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     27  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     28  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     29  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     30  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     31  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     32  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     33  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     34  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     35  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     36  * SUCH DAMAGE.
     37  *
     38  * from: Utah $Hdr: clock.c 1.18 91/01/21$
     39  *
     40  *	@(#)clock.c	7.6 (Berkeley) 5/7/91
     41  *	$Id: clock.c,v 1.2 1994/05/09 06:38:37 chopps Exp $
     42  */
     43 
     44 #include <sys/param.h>
     45 #include <sys/kernel.h>
     46 #include <sys/device.h>
     47 #include <machine/psl.h>
     48 #include <machine/cpu.h>
     49 #include <amiga/amiga/device.h>
     50 #include <amiga/amiga/custom.h>
     51 #include <amiga/amiga/cia.h>
     52 #include <amiga/dev/rtc.h>
     53 #include <amiga/dev/ztwobusvar.h>
     54 
     55 #if defined(PROF) && defined(PROFTIMER)
     56 #include <sys/PROF.h>
     57 #endif
     58 
     59 /* the clocks run at NTSC: 715.909kHz or PAL: 709.379kHz.
     60    We're using a 100 Hz clock. */
     61 
     62 #define CLK_INTERVAL amiga_clk_interval
     63 int amiga_clk_interval = (715909 / 100);	/* XXX NTSC */
     64 /*
     65  * Machine-dependent clock routines.
     66  *
     67  * Startrtclock restarts the real-time clock, which provides
     68  * hardclock interrupts to kern_clock.c.
     69  *
     70  * Inittodr initializes the time of day hardware which provides
     71  * date functions.
     72  *
     73  * Resettodr restores the time of day hardware after a time change.
     74  *
     75  * A note on the real-time clock:
     76  * We actually load the clock with CLK_INTERVAL-1 instead of CLK_INTERVAL.
     77  * This is because the counter decrements to zero after N+1 enabled clock
     78  * periods where N is the value loaded into the counter.
     79  */
     80 
     81 int clockmatch __P((struct device *, struct cfdata *, void *));
     82 void clockattach __P((struct device *, struct device *, void *));
     83 
     84 struct cfdriver clockcd = {
     85 	NULL, "clock", clockmatch, clockattach,
     86 	DV_DULL, sizeof(struct device), NULL, 0 };
     87 
     88 int
     89 clockmatch(pdp, cfp, auxp)
     90 	struct device *pdp;
     91 	struct cfdata *cfp;
     92 	void *auxp;
     93 {
     94 	if (matchname("clock", auxp))
     95 		return(1);
     96 	return(0);
     97 }
     98 
     99 /*
    100  * Start the real-time clock.
    101  */
    102 void
    103 clockattach(pdp, dp, auxp)
    104 	struct device *pdp, *dp;
    105 	void *auxp;
    106 {
    107 	unsigned short interval;
    108 
    109 	/* be more elaborate XXX, whats the speed */
    110 	printf("\n");
    111 	/*
    112 	 * stop timer A
    113 	 */
    114 	ciab.cra = ciab.cra & 0xc0;
    115 
    116 	/*
    117 	 * load interval into registers.
    118          * the clocks run at NTSC: 715.909kHz or PAL: 709.379kHz
    119 	 * supprort for PAL WHEN?!?! XXX
    120 	 */
    121 	interval = CLK_INTERVAL - 1;
    122 
    123 	/*
    124 	 * order of setting is important !
    125 	 */
    126 	ciab.talo = interval & 0xff;
    127 	ciab.tahi = interval >> 8;
    128 }
    129 
    130 void
    131 cpu_initclocks()
    132 {
    133 	/*
    134 	 * enable interrupts for timer A
    135 	 */
    136 	ciab.icr = (1<<7) | (1<<0);
    137 
    138 	/*
    139 	 * start timer A in continuous shot mode
    140 	 */
    141 	ciab.cra = (ciab.cra & 0xc0) | 1;
    142 
    143 	/*
    144 	 * and globally enable interrupts for ciab
    145 	 */
    146 	custom.intena = INTF_SETCLR | INTF_EXTER;
    147 }
    148 
    149 setstatclockrate(hz)
    150 	int hz;
    151 {
    152 }
    153 
    154 /*
    155  * Returns number of usec since last recorded clock "tick"
    156  * (i.e. clock interrupt).
    157  */
    158 clkread()
    159 {
    160 	u_char hi, hi2, lo;
    161 	u_int interval;
    162 
    163 	hi  = ciab.tahi;
    164 	lo  = ciab.talo;
    165 	hi2 = ciab.tahi;
    166 	if (hi != hi2) {
    167 		lo = ciab.talo;
    168 		hi = hi2;
    169 	}
    170 
    171 	interval = (CLK_INTERVAL - 1) - ((hi<<8) | lo);
    172 
    173 	/*
    174 	 * should read ICR and if there's an int pending, adjust interval.
    175 	 * However, * since reading ICR clears the interrupt, we'd lose a
    176 	 * hardclock int, and * this is not tolerable.
    177 	 */
    178 
    179 	return((interval * tick) / CLK_INTERVAL);
    180 }
    181 
    182 u_int micspertick;
    183 
    184 /*
    185  * we set up as much of the CIAa as possible
    186  * as all access to chip memory are very slow.
    187  */
    188 void
    189 setmicspertick()
    190 {
    191 	micspertick = (1000000ULL << 20) / 715909;
    192 
    193 	/*
    194 	 * disable interrupts (just in case.)
    195 	 */
    196 	ciaa.icr = 0x3;
    197 
    198 	/*
    199 	 * stop both timers if not already
    200 	 */
    201 	ciaa.cra &= ~1;
    202 	ciaa.crb &= ~1;
    203 
    204 	/*
    205 	 * set timer B in "count timer A underflows" mode
    206 	 * set tiemr A in one-shot mode
    207 	 */
    208 	ciaa.crb = (ciaa.crb & 0x80) | 0x48;
    209 	ciaa.cra = (ciaa.cra & 0xc0) | 0x08;
    210 }
    211 
    212 /*
    213  * this function assumes that on any entry beyond the first
    214  * the following condintions exist:
    215  * Interrupts for Timers A and B are disabled.
    216  * Timers A and B are stoped.
    217  * Timers A and B are in one-shot mode with B counting timer A underflows
    218  *
    219  */
    220 void
    221 delay(mic)
    222 	int mic;
    223 {
    224 	u_int temp;
    225 	int s;
    226 
    227 	if (micspertick == 0)
    228 		setmicspertick();
    229 
    230 	if (mic <= 1)
    231 		return;
    232 
    233 	/*
    234 	 * basically this is going to do an integer
    235 	 * usec / (1000000 / 715909) with no loss of
    236 	 * precision
    237 	 */
    238 	temp = mic >> 12;
    239 	asm("divul %3,%1:%0" : "=d" (temp) : "d" (mic >> 12), "0" (mic << 20),
    240 	    "d" (micspertick));
    241 
    242 	if ((temp & 0xffff0000) > 0x10000) {
    243 		mic = (temp >> 16) - 1;
    244 		temp &= 0xffff;
    245 
    246 		/*
    247 		 * set timer A in continous mode
    248 		 */
    249 		ciaa.cra = (ciaa.cra & 0xc0) | 0x00;
    250 
    251 		/*
    252 		 * latch/load/start "counts of timer A underflows" in B
    253 		 */
    254 		ciaa.tblo = mic & 0xff;
    255 		ciaa.tbhi = mic >> 8;
    256 
    257 		/*
    258 		 * timer A latches 0xffff
    259 		 * and start it.
    260 		 */
    261 		ciaa.talo = 0xff;
    262 		ciaa.tahi = 0xff;
    263 		ciaa.cra |= 1;
    264 
    265 		while (ciaa.crb & 1)
    266 			;
    267 
    268 		/*
    269 		 * stop timer A
    270 		 */
    271 		ciaa.cra &= ~1;
    272 
    273 		/*
    274 		 * set timer A in one shot mode
    275 		 */
    276 		ciaa.cra = (ciaa.cra & 0xc0) | 0x08;
    277 	} else if ((temp & 0xffff0000) == 0x10000) {
    278 		temp &= 0xffff;
    279 
    280 		/*
    281 		 * timer A is in one shot latch/load/start 1 full turn
    282 		 */
    283 		ciaa.talo = 0xff;
    284 		ciaa.tahi = 0xff;
    285 		while (ciaa.cra & 1)
    286 			;
    287 	}
    288 	if (temp < 1)
    289 		return;
    290 
    291 	/*
    292 	 * temp is now residual ammount, latch/load/start it.
    293 	 */
    294 	ciaa.talo = temp & 0xff;
    295 	ciaa.tahi = temp >> 8;
    296 	while (ciaa.cra & 1)
    297 		;
    298 }
    299 
    300 /*
    301  * Needs to be calibrated for use, its way off most of the time
    302  */
    303 void
    304 DELAY(mic)
    305 	int mic;
    306 {
    307 	u_long n;
    308 	short hpos;
    309 
    310 	/*
    311 	 * this function uses HSync pulses as base units. The custom chips
    312 	 * display only deals with 31.6kHz/2 refresh, this gives us a
    313 	 * resolution of 1/15800 s, which is ~63us (add some fuzz so we really
    314 	 * wait awhile, even if using small timeouts)
    315 	 */
    316 	n = mic/63 + 2;
    317 	do {
    318 		hpos = custom.vhposr & 0xff00;
    319 		while (hpos == (custom.vhposr & 0xff00))
    320 			;
    321 	} while (n--);
    322 }
    323 
    324 #if notyet
    325 
    326 /* implement this later. I'd suggest using both timers in CIA-A, they're
    327    not yet used. */
    328 
    329 #include "clock.h"
    330 #if NCLOCK > 0
    331 /*
    332  * /dev/clock: mappable high resolution timer.
    333  *
    334  * This code implements a 32-bit recycling counter (with a 4 usec period)
    335  * using timers 2 & 3 on the 6840 clock chip.  The counter can be mapped
    336  * RO into a user's address space to achieve low overhead (no system calls),
    337  * high-precision timing.
    338  *
    339  * Note that timer 3 is also used for the high precision profiling timer
    340  * (PROFTIMER code above).  Care should be taken when both uses are
    341  * configured as only a token effort is made to avoid conflicting use.
    342  */
    343 #include <sys/proc.h>
    344 #include <sys/resourcevar.h>
    345 #include <sys/ioctl.h>
    346 #include <sys/malloc.h>
    347 #include <vm/vm.h>
    348 #include <amiga/amiga/clockioctl.h>
    349 #include <sys/specdev.h>
    350 #include <sys/vnode.h>
    351 #include <sys/mman.h>
    352 
    353 int clockon = 0;		/* non-zero if high-res timer enabled */
    354 #ifdef PROFTIMER
    355 int  profprocs = 0;		/* # of procs using profiling timer */
    356 #endif
    357 #ifdef DEBUG
    358 int clockdebug = 0;
    359 #endif
    360 
    361 /*ARGSUSED*/
    362 clockopen(dev, flags)
    363 	dev_t dev;
    364 {
    365 #ifdef PROFTIMER
    366 #ifdef PROF
    367 	/*
    368 	 * Kernel profiling enabled, give up.
    369 	 */
    370 	if (profiling)
    371 		return(EBUSY);
    372 #endif
    373 	/*
    374 	 * If any user processes are profiling, give up.
    375 	 */
    376 	if (profprocs)
    377 		return(EBUSY);
    378 #endif
    379 	if (!clockon) {
    380 		startclock();
    381 		clockon++;
    382 	}
    383 	return(0);
    384 }
    385 
    386 /*ARGSUSED*/
    387 clockclose(dev, flags)
    388 	dev_t dev;
    389 {
    390 	(void) clockunmmap(dev, (caddr_t)0, curproc);	/* XXX */
    391 	stopclock();
    392 	clockon = 0;
    393 	return(0);
    394 }
    395 
    396 /*ARGSUSED*/
    397 clockioctl(dev, cmd, data, flag, p)
    398 	dev_t dev;
    399 	caddr_t data;
    400 	struct proc *p;
    401 {
    402 	int error = 0;
    403 
    404 	switch (cmd) {
    405 
    406 	case CLOCKMAP:
    407 		error = clockmmap(dev, (caddr_t *)data, p);
    408 		break;
    409 
    410 	case CLOCKUNMAP:
    411 		error = clockunmmap(dev, *(caddr_t *)data, p);
    412 		break;
    413 
    414 	case CLOCKGETRES:
    415 		*(int *)data = CLK_RESOLUTION;
    416 		break;
    417 
    418 	default:
    419 		error = EINVAL;
    420 		break;
    421 	}
    422 	return(error);
    423 }
    424 
    425 /*ARGSUSED*/
    426 clockmap(dev, off, prot)
    427 	dev_t dev;
    428 {
    429 	return((off + (INTIOBASE+CLKBASE+CLKSR-1)) >> PGSHIFT);
    430 }
    431 
    432 clockmmap(dev, addrp, p)
    433 	dev_t dev;
    434 	caddr_t *addrp;
    435 	struct proc *p;
    436 {
    437 	int error;
    438 	struct vnode vn;
    439 	struct specinfo si;
    440 	int flags;
    441 
    442 	flags = MAP_FILE|MAP_SHARED;
    443 	if (*addrp)
    444 		flags |= MAP_FIXED;
    445 	else
    446 		*addrp = (caddr_t)0x1000000;	/* XXX */
    447 	vn.v_type = VCHR;			/* XXX */
    448 	vn.v_specinfo = &si;			/* XXX */
    449 	vn.v_rdev = dev;			/* XXX */
    450 	error = vm_mmap(&p->p_vmspace->vm_map, (vm_offset_t *)addrp,
    451 			PAGE_SIZE, VM_PROT_ALL, flags, (caddr_t)&vn, 0);
    452 	return(error);
    453 }
    454 
    455 clockunmmap(dev, addr, p)
    456 	dev_t dev;
    457 	caddr_t addr;
    458 	struct proc *p;
    459 {
    460 	int rv;
    461 
    462 	if (addr == 0)
    463 		return(EINVAL);		/* XXX: how do we deal with this? */
    464 	rv = vm_deallocate(p->p_vmspace->vm_map, (vm_offset_t)addr, PAGE_SIZE);
    465 	return(rv == KERN_SUCCESS ? 0 : EINVAL);
    466 }
    467 
    468 startclock()
    469 {
    470 	register struct clkreg *clk = (struct clkreg *)clkstd[0];
    471 
    472 	clk->clk_msb2 = -1; clk->clk_lsb2 = -1;
    473 	clk->clk_msb3 = -1; clk->clk_lsb3 = -1;
    474 
    475 	clk->clk_cr2 = CLK_CR3;
    476 	clk->clk_cr3 = CLK_OENAB|CLK_8BIT;
    477 	clk->clk_cr2 = CLK_CR1;
    478 	clk->clk_cr1 = CLK_IENAB;
    479 }
    480 
    481 stopclock()
    482 {
    483 	register struct clkreg *clk = (struct clkreg *)clkstd[0];
    484 
    485 	clk->clk_cr2 = CLK_CR3;
    486 	clk->clk_cr3 = 0;
    487 	clk->clk_cr2 = CLK_CR1;
    488 	clk->clk_cr1 = CLK_IENAB;
    489 }
    490 #endif
    491 
    492 #endif
    493 
    494 
    495 #ifdef PROFTIMER
    496 /*
    497  * This code allows the amiga kernel to use one of the extra timers on
    498  * the clock chip for profiling, instead of the regular system timer.
    499  * The advantage of this is that the profiling timer can be turned up to
    500  * a higher interrupt rate, giving finer resolution timing. The profclock
    501  * routine is called from the lev6intr in locore, and is a specialized
    502  * routine that calls addupc. The overhead then is far less than if
    503  * hardclock/softclock was called. Further, the context switch code in
    504  * locore has been changed to turn the profile clock on/off when switching
    505  * into/out of a process that is profiling (startprofclock/stopprofclock).
    506  * This reduces the impact of the profiling clock on other users, and might
    507  * possibly increase the accuracy of the profiling.
    508  */
    509 int  profint   = PRF_INTERVAL;	/* Clock ticks between interrupts */
    510 int  profscale = 0;		/* Scale factor from sys clock to prof clock */
    511 char profon    = 0;		/* Is profiling clock on? */
    512 
    513 /* profon values - do not change, locore.s assumes these values */
    514 #define PRF_NONE	0x00
    515 #define	PRF_USER	0x01
    516 #define	PRF_KERNEL	0x80
    517 
    518 initprofclock()
    519 {
    520 #if NCLOCK > 0
    521 	struct proc *p = curproc;		/* XXX */
    522 
    523 	/*
    524 	 * If the high-res timer is running, force profiling off.
    525 	 * Unfortunately, this gets reflected back to the user not as
    526 	 * an error but as a lack of results.
    527 	 */
    528 	if (clockon) {
    529 		p->p_stats->p_prof.pr_scale = 0;
    530 		return;
    531 	}
    532 	/*
    533 	 * Keep track of the number of user processes that are profiling
    534 	 * by checking the scale value.
    535 	 *
    536 	 * XXX: this all assumes that the profiling code is well behaved;
    537 	 * i.e. profil() is called once per process with pcscale non-zero
    538 	 * to turn it on, and once with pcscale zero to turn it off.
    539 	 * Also assumes you don't do any forks or execs.  Oh well, there
    540 	 * is always adb...
    541 	 */
    542 	if (p->p_stats->p_prof.pr_scale)
    543 		profprocs++;
    544 	else
    545 		profprocs--;
    546 #endif
    547 	/*
    548 	 * The profile interrupt interval must be an even divisor
    549 	 * of the CLK_INTERVAL so that scaling from a system clock
    550 	 * tick to a profile clock tick is possible using integer math.
    551 	 */
    552 	if (profint > CLK_INTERVAL || (CLK_INTERVAL % profint) != 0)
    553 		profint = CLK_INTERVAL;
    554 	profscale = CLK_INTERVAL / profint;
    555 }
    556 
    557 startprofclock()
    558 {
    559   unsigned short interval;
    560 
    561   /* stop timer B */
    562   ciab.crb = ciab.crb & 0xc0;
    563 
    564   /* load interval into registers.
    565      the clocks run at NTSC: 715.909kHz or PAL: 709.379kHz */
    566 
    567   interval = profint - 1;
    568 
    569   /* order of setting is important ! */
    570   ciab.tblo = interval & 0xff;
    571   ciab.tbhi = interval >> 8;
    572 
    573   /* enable interrupts for timer B */
    574   ciab.icr = (1<<7) | (1<<1);
    575 
    576   /* start timer B in continuous shot mode */
    577   ciab.crb = (ciab.crb & 0xc0) | 1;
    578 }
    579 
    580 stopprofclock()
    581 {
    582   /* stop timer B */
    583   ciab.crb = ciab.crb & 0xc0;
    584 }
    585 
    586 #ifdef PROF
    587 /*
    588  * profclock() is expanded in line in lev6intr() unless profiling kernel.
    589  * Assumes it is called with clock interrupts blocked.
    590  */
    591 profclock(pc, ps)
    592 	caddr_t pc;
    593 	int ps;
    594 {
    595 	/*
    596 	 * Came from user mode.
    597 	 * If this process is being profiled record the tick.
    598 	 */
    599 	if (USERMODE(ps)) {
    600 		if (p->p_stats.p_prof.pr_scale)
    601 			addupc(pc, &curproc->p_stats.p_prof, 1);
    602 	}
    603 	/*
    604 	 * Came from kernel (supervisor) mode.
    605 	 * If we are profiling the kernel, record the tick.
    606 	 */
    607 	else if (profiling < 2) {
    608 		register int s = pc - s_lowpc;
    609 
    610 		if (s < s_textsize)
    611 			kcount[s / (HISTFRACTION * sizeof (*kcount))]++;
    612 	}
    613 	/*
    614 	 * Kernel profiling was on but has been disabled.
    615 	 * Mark as no longer profiling kernel and if all profiling done,
    616 	 * disable the clock.
    617 	 */
    618 	if (profiling && (profon & PRF_KERNEL)) {
    619 		profon &= ~PRF_KERNEL;
    620 		if (profon == PRF_NONE)
    621 			stopprofclock();
    622 	}
    623 }
    624 #endif
    625 #endif
    626 
    627 /* this is a hook set by a clock driver for the configured realtime clock,
    628    returning plain current unix-time */
    629 long (*gettod) __P((void));
    630 int (*settod) __P((long));
    631 void *clockaddr;
    632 
    633 long a3gettod __P((void));
    634 long a2gettod __P((void));
    635 int a3settod __P((long));
    636 int a2settod __P((long));
    637 int rtcinit __P((void));
    638 
    639 /*
    640  * Initialize the time of day register, based on the time base which is, e.g.
    641  * from a filesystem.
    642  */
    643 inittodr(base)
    644 	time_t base;
    645 {
    646 	u_long timbuf = base;	/* assume no battery clock exists */
    647 
    648 	if (gettod == NULL && rtcinit() == 0)
    649 		printf("WARNING: no battery clock\n");
    650 	else
    651 		timbuf = gettod();
    652 
    653 	if (timbuf < base) {
    654 		printf("WARNING: bad date in battery clock\n");
    655 		timbuf = base;
    656 	}
    657 
    658 	/* Battery clock does not store usec's, so forget about it. */
    659 	time.tv_sec = timbuf;
    660 }
    661 
    662 resettodr()
    663 {
    664 	if (settod && settod(time.tv_sec) == 1)
    665 		return;
    666 	printf("Cannot set battery backed clock\n");
    667 }
    668 
    669 int
    670 rtcinit()
    671 {
    672 	clockaddr = (void *)ztwomap(0xdc0000);
    673 	if (is_a3000() || is_a4000()) {
    674 		if (a3gettod() == 0)
    675 			return(0);
    676 		gettod = a3gettod;
    677 		settod = a3settod;
    678 	} else {
    679 		if (a2gettod() == 0)
    680 			return(0);
    681 		gettod = a2gettod;
    682 		settod = a2settod;
    683 	}
    684 	return(1);
    685 }
    686 
    687 static int month_days[12] = {
    688 	31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31
    689 };
    690 
    691 long
    692 a3gettod()
    693 {
    694 	struct rtclock3000 *rt;
    695 	int i, year, month, day, hour, min, sec;
    696 	u_long tmp;
    697 
    698 	rt = clockaddr;
    699 
    700 	/* hold clock */
    701 	rt->control1 = A3CONTROL1_HOLD_CLOCK;
    702 
    703 	/* read it */
    704 	sec   = rt->second1 * 10 + rt->second2;
    705 	min   = rt->minute1 * 10 + rt->minute2;
    706 	hour  = rt->hour1   * 10 + rt->hour2;
    707 	day   = rt->day1    * 10 + rt->day2;
    708 	month = rt->month1  * 10 + rt->month2;
    709 	year  = rt->year1   * 10 + rt->year2   + 1900;
    710 
    711 	/* let it run again.. */
    712 	rt->control1 = A3CONTROL1_FREE_CLOCK;
    713 
    714 	if (range_test(hour, 0, 23))
    715 		return(0);
    716 	if (range_test(day, 1, 31))
    717 		return(0);
    718 	if (range_test(month, 1, 12))
    719 		return(0);
    720 	if (range_test(year, STARTOFTIME, 2000))
    721 		return(0);
    722 
    723 	tmp = 0;
    724 
    725 	for (i = STARTOFTIME; i < year; i++)
    726 		tmp += days_in_year(i);
    727 	if (leapyear(year) && month > FEBRUARY)
    728 		tmp++;
    729 
    730 	for (i = 1; i < month; i++)
    731 		tmp += days_in_month(i);
    732 
    733 	tmp += (day - 1);
    734 	tmp = ((tmp * 24 + hour) * 60 + min) * 60 + sec;
    735 
    736 	return(tmp);
    737 }
    738 
    739 int
    740 a3settod(tim)
    741 	long tim;
    742 {
    743 	register int i;
    744 	register long hms, day;
    745 	u_char sec1, sec2;
    746 	u_char min1, min2;
    747 	u_char hour1, hour2;
    748 	u_char day1, day2;
    749 	u_char mon1, mon2;
    750 	u_char year1, year2;
    751 	struct rtclock3000 *rt;
    752 
    753 	rt = clockaddr;
    754 	/*
    755 	 * there seem to be problems with the bitfield addressing
    756 	 * currently used..
    757 	 */
    758 return(0);
    759 #if not_yet
    760 	if (rt)
    761 		return 0;
    762 
    763 	/* prepare values to be written to clock */
    764 	day = tim / SECDAY;
    765 	hms = tim % SECDAY;
    766 
    767 	hour2 = hms / 3600;
    768 	hour1 = hour2 / 10;
    769 	hour2 %= 10;
    770 
    771 	min2 = (hms % 3600) / 60;
    772 	min1 = min2 / 10;
    773 	min2 %= 10;
    774 
    775 
    776 	sec2 = (hms % 3600) % 60;
    777 	sec1 = sec2 / 10;
    778 	sec2 %= 10;
    779 
    780 	/* Number of years in days */
    781 	for (i = STARTOFTIME - 1900; day >= days_in_year(i); i++)
    782 		day -= days_in_year(i);
    783 	year1 = i / 10;
    784 	year2 = i % 10;
    785 
    786 	/* Number of months in days left */
    787 	if (leapyear(i))
    788 		days_in_month(FEBRUARY) = 29;
    789 	for (i = 1; day >= days_in_month(i); i++)
    790 		day -= days_in_month(i);
    791 	days_in_month(FEBRUARY) = 28;
    792 
    793 	mon1 = i / 10;
    794 	mon2 = i % 10;
    795 
    796 	/* Days are what is left over (+1) from all that. */
    797 	day ++;
    798 	day1 = day / 10;
    799 	day2 = day % 10;
    800 
    801 	rt->control1 = CONTROL1_HOLD_CLOCK;
    802 	rt->second1 = sec1;
    803 	rt->second2 = sec2;
    804 	rt->minute1 = min1;
    805 	rt->minute2 = min2;
    806 	rt->hour1   = hour1;
    807 	rt->hour2   = hour2;
    808 	rt->day1    = day1;
    809 	rt->day2    = day2;
    810 	rt->month1  = mon1;
    811 	rt->month2  = mon2;
    812 	rt->year1   = year1;
    813 	rt->year2   = year2;
    814 	rt->control2 = CONTROL1_FREE_CLOCK;
    815 
    816 	return 1;
    817 #endif
    818 }
    819 
    820 long
    821 a2gettod()
    822 {
    823 	struct rtclock2000 *rt;
    824 	int i, year, month, day, hour, min, sec;
    825 	u_long tmp;
    826 
    827 	rt = clockaddr;
    828 
    829 	/*
    830 	 * hold clock
    831 	 */
    832 	rt->control1 |= A2CONTROL1_HOLD;
    833 	while (rt->control1 & A2CONTROL1_BUSY)
    834 		;
    835 
    836 	/*
    837 	 * read it
    838 	 */
    839 	sec = rt->second1 * 10 + rt->second2;
    840 	min = rt->minute1 * 10 + rt->minute2;
    841 	hour = (rt->hour1 & 3)  * 10 + rt->hour2;
    842 	day = rt->day1 * 10 + rt->day2;
    843 	month = rt->month1 * 10 + rt->month2;
    844 	year = rt->year1 * 10 + rt->year2   + 1900;
    845 
    846 	if ((rt->control3 & A2CONTROL3_24HMODE) == 0) {
    847 		if ((rt->hour1 & A2HOUR1_PM) == 0 && hour == 12)
    848 			hour = 0;
    849 		else if ((rt->hour1 & A2HOUR1_PM) && hour != 12)
    850 			hour += 12;
    851 	}
    852 
    853 	/*
    854 	 * release the clock
    855 	 */
    856 	rt->control1 &= ~A2CONTROL1_HOLD;
    857 
    858 	if (range_test(hour, 0, 23))
    859 		return(0);
    860 	if (range_test(day, 1, 31))
    861 		return(0);
    862 	if (range_test(month, 1, 12))
    863 		return(0);
    864 	if (range_test(year, STARTOFTIME, 2000))
    865 		return(0);
    866 
    867 	tmp = 0;
    868 
    869 	for (i = STARTOFTIME; i < year; i++)
    870 		tmp += days_in_year(i);
    871 	if (leapyear(year) && month > FEBRUARY)
    872 		tmp++;
    873 
    874 	for (i = 1; i < month; i++)
    875 		tmp += days_in_month(i);
    876 
    877 	tmp += (day - 1);
    878 	tmp = ((tmp * 24 + hour) * 60 + min) * 60 + sec;
    879 
    880 	return(tmp);
    881 }
    882 
    883 /*
    884  * there is some question as to whether this works
    885  * I guess
    886  */
    887 int
    888 a2settod(tim)
    889 	long tim;
    890 {
    891 
    892 	int i;
    893 	long hms, day;
    894 	u_char sec1, sec2;
    895 	u_char min1, min2;
    896 	u_char hour1, hour2;
    897 	u_char day1, day2;
    898 	u_char mon1, mon2;
    899 	u_char year1, year2;
    900 	struct rtclock2000 *rt;
    901 
    902 	rt = clockaddr;
    903 	/*
    904 	 * there seem to be problems with the bitfield addressing
    905 	 * currently used..
    906 	 *
    907 	 * XXX Check out the above where we (hour1 & 3)
    908 	 */
    909 return(0);
    910 #if not_yet
    911 	if (! rt)
    912 		return 0;
    913 
    914 	/* prepare values to be written to clock */
    915 	day = tim / SECDAY;
    916 	hms = tim % SECDAY;
    917 
    918 	hour2 = hms / 3600;
    919 	hour1 = hour2 / 10;
    920 	hour2 %= 10;
    921 
    922 	min2 = (hms % 3600) / 60;
    923 	min1 = min2 / 10;
    924 	min2 %= 10;
    925 
    926 
    927 	sec2 = (hms % 3600) % 60;
    928 	sec1 = sec2 / 10;
    929 	sec2 %= 10;
    930 
    931 	/* Number of years in days */
    932 	for (i = STARTOFTIME - 1900; day >= days_in_year(i); i++)
    933 		day -= days_in_year(i);
    934 	year1 = i / 10;
    935 	year2 = i % 10;
    936 
    937 	/* Number of months in days left */
    938 	if (leapyear(i))
    939 		days_in_month(FEBRUARY) = 29;
    940 	for (i = 1; day >= days_in_month(i); i++)
    941 		day -= days_in_month(i);
    942 	days_in_month(FEBRUARY) = 28;
    943 
    944 	mon1 = i / 10;
    945 	mon2 = i % 10;
    946 
    947 	/* Days are what is left over (+1) from all that. */
    948 	day ++;
    949 	day1 = day / 10;
    950 	day2 = day % 10;
    951 
    952 	/*
    953 	 * XXXX spin wait as with reading???
    954 	 */
    955 	rt->control1 = A2CONTROL1_HOLD_CLOCK;
    956 	rt->second1 = sec1;
    957 	rt->second2 = sec2;
    958 	rt->minute1 = min1;
    959 	rt->minute2 = min2;
    960 	rt->hour1   = hour1;
    961 	rt->hour2   = hour2;
    962 	rt->day1    = day1;
    963 	rt->day2    = day2;
    964 	rt->month1  = mon1;
    965 	rt->month2  = mon2;
    966 	rt->year1   = year1;
    967 	rt->year2   = year2;
    968 	rt->control2 = CONTROL1_FREE_CLOCK;
    969 
    970   return 1;
    971 #endif
    972 }
    973