Home | History | Annotate | Line # | Download | only in dev
clock.c revision 1.27
      1 /*	$NetBSD: clock.c,v 1.27 1997/07/06 22:27:19 is Exp $	*/
      2 
      3 /*
      4  * Copyright (c) 1988 University of Utah.
      5  * Copyright (c) 1982, 1990 The Regents of the University of California.
      6  * All rights reserved.
      7  *
      8  * This code is derived from software contributed to Berkeley by
      9  * the Systems Programming Group of the University of Utah Computer
     10  * Science Department.
     11  *
     12  * Redistribution and use in source and binary forms, with or without
     13  * modification, are permitted provided that the following conditions
     14  * are met:
     15  * 1. Redistributions of source code must retain the above copyright
     16  *    notice, this list of conditions and the following disclaimer.
     17  * 2. Redistributions in binary form must reproduce the above copyright
     18  *    notice, this list of conditions and the following disclaimer in the
     19  *    documentation and/or other materials provided with the distribution.
     20  * 3. All advertising materials mentioning features or use of this software
     21  *    must display the following acknowledgement:
     22  *	This product includes software developed by the University of
     23  *	California, Berkeley and its contributors.
     24  * 4. Neither the name of the University nor the names of its contributors
     25  *    may be used to endorse or promote products derived from this software
     26  *    without specific prior written permission.
     27  *
     28  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     29  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     30  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     31  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     32  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     33  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     34  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     35  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     36  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     37  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     38  * SUCH DAMAGE.
     39  *
     40  * from: Utah $Hdr: clock.c 1.18 91/01/21$
     41  *
     42  *	@(#)clock.c	7.6 (Berkeley) 5/7/91
     43  */
     44 
     45 #include <sys/param.h>
     46 #include <sys/kernel.h>
     47 #include <sys/device.h>
     48 #include <sys/systm.h>
     49 #include <machine/psl.h>
     50 #include <machine/cpu.h>
     51 #include <amiga/amiga/device.h>
     52 #include <amiga/amiga/custom.h>
     53 #include <amiga/amiga/cia.h>
     54 #ifdef DRACO
     55 #include <dev/ic/ds.h>
     56 #include <amiga/amiga/drcustom.h>
     57 #endif
     58 #include <amiga/dev/rtc.h>
     59 #include <amiga/dev/zbusvar.h>
     60 
     61 #include <dev/clock_subr.h>
     62 
     63 #if defined(PROF) && defined(PROFTIMER)
     64 #include <sys/PROF.h>
     65 #endif
     66 
     67 /* the clocks run at NTSC: 715.909kHz or PAL: 709.379kHz.
     68    We're using a 100 Hz clock. */
     69 
     70 #define CLK_INTERVAL amiga_clk_interval
     71 int amiga_clk_interval;
     72 int eclockfreq;
     73 struct CIA *clockcia;
     74 
     75 /*
     76  * Machine-dependent clock routines.
     77  *
     78  * Startrtclock restarts the real-time clock, which provides
     79  * hardclock interrupts to kern_clock.c.
     80  *
     81  * Inittodr initializes the time of day hardware which provides
     82  * date functions.
     83  *
     84  * Resettodr restores the time of day hardware after a time change.
     85  *
     86  * A note on the real-time clock:
     87  * We actually load the clock with CLK_INTERVAL-1 instead of CLK_INTERVAL.
     88  * This is because the counter decrements to zero after N+1 enabled clock
     89  * periods where N is the value loaded into the counter.
     90  */
     91 
     92 int clockmatch __P((struct device *, struct cfdata *, void *));
     93 void clockattach __P((struct device *, struct device *, void *));
     94 void cpu_initclocks __P((void));
     95 void calibrate_delay __P((struct device *));
     96 
     97 struct cfattach clock_ca = {
     98 	sizeof(struct device), clockmatch, clockattach
     99 };
    100 
    101 struct cfdriver clock_cd = {
    102 	NULL, "clock", DV_DULL, NULL, 0 };
    103 
    104 int
    105 clockmatch(pdp, cfp, auxp)
    106 	struct device *pdp;
    107 	struct cfdata *cfp;
    108 	void *auxp;
    109 {
    110 	if (matchname("clock", auxp))
    111 		return(1);
    112 	return(0);
    113 }
    114 
    115 /*
    116  * Start the real-time clock.
    117  */
    118 void
    119 clockattach(pdp, dp, auxp)
    120 	struct device *pdp, *dp;
    121 	void *auxp;
    122 {
    123 	char *clockchip;
    124 	unsigned short interval;
    125 #ifdef DRACO
    126 	u_char dracorev;
    127 #endif
    128 
    129 	if (eclockfreq == 0)
    130 		eclockfreq = 715909;	/* guess NTSC */
    131 
    132 	CLK_INTERVAL = (eclockfreq / 100);
    133 
    134 #ifdef DRACO
    135 	dracorev = is_draco();
    136 	if (dracorev >= 4) {
    137 		CLK_INTERVAL = (eclockfreq / 700);
    138 		clockchip = "QuickLogic";
    139 	} else if (dracorev) {
    140 		clockcia = (struct CIA *)CIAAbase;
    141 		clockchip = "CIA A";
    142 	} else
    143 #endif
    144 	{
    145 		clockcia = (struct CIA *)CIABbase;
    146 		clockchip = "CIA B";
    147 	}
    148 
    149 	if (dp)
    150 		printf(": %s system hz %d hardware hz %d\n", clockchip, hz,
    151 #ifdef DRACO
    152 		dracorev >= 4 ? eclockfreq / 7 : eclockfreq);
    153 #else
    154 		eclockfreq);
    155 #endif
    156 
    157 #ifdef DRACO
    158 	if (dracorev >= 4) {
    159 		/*
    160 		 * can't preload anything beforehand, timer is free_running;
    161 		 * but need this for delay calibration.
    162 		 */
    163 
    164 		draco_ioct->io_timerlo = CLK_INTERVAL & 0xff;
    165 		draco_ioct->io_timerhi = CLK_INTERVAL >> 8;
    166 
    167 		calibrate_delay(dp);
    168 
    169 		return;
    170 	}
    171 #endif
    172 	/*
    173 	 * stop timer A
    174 	 */
    175 	clockcia->cra = clockcia->cra & 0xc0;
    176 	clockcia->icr = 1 << 0;		/* disable timer A interrupt */
    177 	interval = clockcia->icr;		/* and make sure it's clear */
    178 
    179 	/*
    180 	 * load interval into registers.
    181          * the clocks run at NTSC: 715.909kHz or PAL: 709.379kHz
    182 	 * supprort for PAL WHEN?!?! XXX
    183 	 */
    184 	interval = CLK_INTERVAL - 1;
    185 
    186 	/*
    187 	 * order of setting is important !
    188 	 */
    189 	clockcia->talo = interval & 0xff;
    190 	clockcia->tahi = interval >> 8;
    191 	/*
    192 	 * start timer A in continuous mode
    193 	 */
    194 	clockcia->cra = (clockcia->cra & 0xc0) | 1;
    195 
    196 	calibrate_delay(dp);
    197 }
    198 
    199 /*
    200  * Calibrate delay loop.
    201  * We use two iterations because we don't have enough bits to do a factor of
    202  * 8 with better than 1%.
    203  *
    204  * XXX Note that we MUST stay below 1 tick if using clkread(), even for
    205  * underestimated values of delaydivisor.
    206  *
    207  * XXX the "ns" below is only correct for a shift of 10 bits, and even then
    208  * off by 2.4%
    209  */
    210 
    211 void calibrate_delay(dp)
    212 	struct device *dp;
    213 {
    214 	unsigned long t1, t2;
    215 	extern u_int32_t delaydivisor;
    216 		/* XXX this should be defined elsewhere */
    217 
    218 	if (dp)
    219 		printf("Calibrating delay loop... ");
    220 
    221 	do {
    222 		t1 = clkread();
    223 		delay(1024);
    224 		t2 = clkread();
    225 	} while (t2 <= t1);
    226 	t2 -= t1;
    227 	delaydivisor = (delaydivisor * t2 + 1023) >> 10;
    228 #ifdef DIAGNOSTIC
    229 	if (dp)
    230 		printf("\ndiff %ld us, new divisor %u/1024 us\n", t2,
    231 		    delaydivisor);
    232 	do {
    233 		t1 = clkread();
    234 		delay(1024);
    235 		t2 = clkread();
    236 	} while (t2 <= t1);
    237 	t2 -= t1;
    238 	delaydivisor = (delaydivisor * t2 + 1023) >> 10;
    239 	if (dp)
    240 		printf("diff %ld us, new divisor %u/1024 us\n", t2,
    241 		    delaydivisor);
    242 #endif
    243 	do {
    244 		t1 = clkread();
    245 		delay(1024);
    246 		t2 = clkread();
    247 	} while (t2 <= t1);
    248 	t2 -= t1;
    249 	delaydivisor = (delaydivisor * t2 + 1023) >> 10;
    250 #ifdef DIAGNOSTIC
    251 	if (dp)
    252 		printf("diff %ld us, new divisor ", t2);
    253 #endif
    254 	if (dp)
    255 		printf("%u/1024 us\n", delaydivisor);
    256 }
    257 
    258 void
    259 cpu_initclocks()
    260 {
    261 #ifdef DRACO
    262 	unsigned char dracorev;
    263 	dracorev = is_draco();
    264 	if (dracorev >= 4) {
    265 		draco_ioct->io_timerlo = CLK_INTERVAL & 0xFF;
    266 		draco_ioct->io_timerhi = CLK_INTERVAL >> 8;
    267 		draco_ioct->io_timerrst = 0;	/* any value resets */
    268 		draco_ioct->io_status2 |= DRSTAT2_TMRINTENA;
    269 
    270 		return;
    271 	}
    272 #endif
    273 	/*
    274 	 * enable interrupts for timer A
    275 	 */
    276 	clockcia->icr = (1<<7) | (1<<0);
    277 
    278 	/*
    279 	 * start timer A in continuous shot mode
    280 	 */
    281 	clockcia->cra = (clockcia->cra & 0xc0) | 1;
    282 
    283 	/*
    284 	 * and globally enable interrupts for ciab
    285 	 */
    286 #ifdef DRACO
    287 	if (dracorev)		/* we use cia a on DraCo */
    288 		*draco_intena |= DRIRQ_INT2;
    289 	else
    290 #endif
    291 		custom.intena = INTF_SETCLR | INTF_EXTER;
    292 
    293 }
    294 
    295 void
    296 setstatclockrate(hz)
    297 	int hz;
    298 {
    299 }
    300 
    301 /*
    302  * Returns number of usec since last recorded clock "tick"
    303  * (i.e. clock interrupt).
    304  */
    305 u_long
    306 clkread()
    307 {
    308 	u_int interval;
    309 	u_char hi, hi2, lo;
    310 
    311 #ifdef DRACO
    312 	if (is_draco() >= 4) {
    313 		hi2 = draco_ioct->io_chiprev;	/* latch timer */
    314 		hi = draco_ioct->io_timerhi;
    315 		lo = draco_ioct->io_timerlo;
    316 		interval = ((hi<<8) | lo);
    317 		if (interval > CLK_INTERVAL)	/* timer underflow */
    318 			interval = 65536 + CLK_INTERVAL - interval;
    319 		else
    320 			interval = CLK_INTERVAL - interval;
    321 
    322 	} else
    323 #endif
    324 	{
    325 		hi  = clockcia->tahi;
    326 		lo  = clockcia->talo;
    327 		hi2 = clockcia->tahi;
    328 		if (hi != hi2) {
    329 			lo = clockcia->talo;
    330 			hi = hi2;
    331 		}
    332 
    333 		interval = (CLK_INTERVAL - 1) - ((hi<<8) | lo);
    334 
    335 		/*
    336 		 * should read ICR and if there's an int pending, adjust
    337 		 * interval. However, since reading ICR clears the interrupt,
    338 		 * we'd lose a hardclock int, and this is not tolerable.
    339 		 */
    340 	}
    341 
    342 	return((interval * tick) / CLK_INTERVAL);
    343 }
    344 
    345 #if notyet
    346 
    347 /* implement this later. I'd suggest using both timers in CIA-A, they're
    348    not yet used. */
    349 
    350 #include "clock.h"
    351 #if NCLOCK > 0
    352 /*
    353  * /dev/clock: mappable high resolution timer.
    354  *
    355  * This code implements a 32-bit recycling counter (with a 4 usec period)
    356  * using timers 2 & 3 on the 6840 clock chip.  The counter can be mapped
    357  * RO into a user's address space to achieve low overhead (no system calls),
    358  * high-precision timing.
    359  *
    360  * Note that timer 3 is also used for the high precision profiling timer
    361  * (PROFTIMER code above).  Care should be taken when both uses are
    362  * configured as only a token effort is made to avoid conflicting use.
    363  */
    364 #include <sys/proc.h>
    365 #include <sys/resourcevar.h>
    366 #include <sys/ioctl.h>
    367 #include <sys/malloc.h>
    368 #include <vm/vm.h>
    369 #include <amiga/amiga/clockioctl.h>
    370 #include <sys/specdev.h>
    371 #include <sys/vnode.h>
    372 #include <sys/mman.h>
    373 
    374 int clockon = 0;		/* non-zero if high-res timer enabled */
    375 #ifdef PROFTIMER
    376 int  profprocs = 0;		/* # of procs using profiling timer */
    377 #endif
    378 #ifdef DEBUG
    379 int clockdebug = 0;
    380 #endif
    381 
    382 /*ARGSUSED*/
    383 clockopen(dev, flags)
    384 	dev_t dev;
    385 {
    386 #ifdef PROFTIMER
    387 #ifdef PROF
    388 	/*
    389 	 * Kernel profiling enabled, give up.
    390 	 */
    391 	if (profiling)
    392 		return(EBUSY);
    393 #endif
    394 	/*
    395 	 * If any user processes are profiling, give up.
    396 	 */
    397 	if (profprocs)
    398 		return(EBUSY);
    399 #endif
    400 	if (!clockon) {
    401 		startclock();
    402 		clockon++;
    403 	}
    404 	return(0);
    405 }
    406 
    407 /*ARGSUSED*/
    408 clockclose(dev, flags)
    409 	dev_t dev;
    410 {
    411 	(void) clockunmmap(dev, (caddr_t)0, curproc);	/* XXX */
    412 	stopclock();
    413 	clockon = 0;
    414 	return(0);
    415 }
    416 
    417 /*ARGSUSED*/
    418 clockioctl(dev, cmd, data, flag, p)
    419 	dev_t dev;
    420 	u_long cmd;
    421 	caddr_t data;
    422 	struct proc *p;
    423 {
    424 	int error = 0;
    425 
    426 	switch (cmd) {
    427 
    428 	case CLOCKMAP:
    429 		error = clockmmap(dev, (caddr_t *)data, p);
    430 		break;
    431 
    432 	case CLOCKUNMAP:
    433 		error = clockunmmap(dev, *(caddr_t *)data, p);
    434 		break;
    435 
    436 	case CLOCKGETRES:
    437 		*(int *)data = CLK_RESOLUTION;
    438 		break;
    439 
    440 	default:
    441 		error = EINVAL;
    442 		break;
    443 	}
    444 	return(error);
    445 }
    446 
    447 /*ARGSUSED*/
    448 clockmap(dev, off, prot)
    449 	dev_t dev;
    450 {
    451 	return((off + (INTIOBASE+CLKBASE+CLKSR-1)) >> PGSHIFT);
    452 }
    453 
    454 clockmmap(dev, addrp, p)
    455 	dev_t dev;
    456 	caddr_t *addrp;
    457 	struct proc *p;
    458 {
    459 	int error;
    460 	struct vnode vn;
    461 	struct specinfo si;
    462 	int flags;
    463 
    464 	flags = MAP_FILE|MAP_SHARED;
    465 	if (*addrp)
    466 		flags |= MAP_FIXED;
    467 	else
    468 		*addrp = (caddr_t)0x1000000;	/* XXX */
    469 	vn.v_type = VCHR;			/* XXX */
    470 	vn.v_specinfo = &si;			/* XXX */
    471 	vn.v_rdev = dev;			/* XXX */
    472 	error = vm_mmap(&p->p_vmspace->vm_map, (vm_offset_t *)addrp,
    473 			PAGE_SIZE, VM_PROT_ALL, flags, (caddr_t)&vn, 0);
    474 	return(error);
    475 }
    476 
    477 clockunmmap(dev, addr, p)
    478 	dev_t dev;
    479 	caddr_t addr;
    480 	struct proc *p;
    481 {
    482 	int rv;
    483 
    484 	if (addr == 0)
    485 		return(EINVAL);		/* XXX: how do we deal with this? */
    486 	rv = vm_deallocate(p->p_vmspace->vm_map, (vm_offset_t)addr, PAGE_SIZE);
    487 	return(rv == KERN_SUCCESS ? 0 : EINVAL);
    488 }
    489 
    490 startclock()
    491 {
    492 	register struct clkreg *clk = (struct clkreg *)clkstd[0];
    493 
    494 	clk->clk_msb2 = -1; clk->clk_lsb2 = -1;
    495 	clk->clk_msb3 = -1; clk->clk_lsb3 = -1;
    496 
    497 	clk->clk_cr2 = CLK_CR3;
    498 	clk->clk_cr3 = CLK_OENAB|CLK_8BIT;
    499 	clk->clk_cr2 = CLK_CR1;
    500 	clk->clk_cr1 = CLK_IENAB;
    501 }
    502 
    503 stopclock()
    504 {
    505 	register struct clkreg *clk = (struct clkreg *)clkstd[0];
    506 
    507 	clk->clk_cr2 = CLK_CR3;
    508 	clk->clk_cr3 = 0;
    509 	clk->clk_cr2 = CLK_CR1;
    510 	clk->clk_cr1 = CLK_IENAB;
    511 }
    512 #endif
    513 
    514 #endif
    515 
    516 
    517 #ifdef PROFTIMER
    518 /*
    519  * This code allows the amiga kernel to use one of the extra timers on
    520  * the clock chip for profiling, instead of the regular system timer.
    521  * The advantage of this is that the profiling timer can be turned up to
    522  * a higher interrupt rate, giving finer resolution timing. The profclock
    523  * routine is called from the lev6intr in locore, and is a specialized
    524  * routine that calls addupc. The overhead then is far less than if
    525  * hardclock/softclock was called. Further, the context switch code in
    526  * locore has been changed to turn the profile clock on/off when switching
    527  * into/out of a process that is profiling (startprofclock/stopprofclock).
    528  * This reduces the impact of the profiling clock on other users, and might
    529  * possibly increase the accuracy of the profiling.
    530  */
    531 int  profint   = PRF_INTERVAL;	/* Clock ticks between interrupts */
    532 int  profscale = 0;		/* Scale factor from sys clock to prof clock */
    533 char profon    = 0;		/* Is profiling clock on? */
    534 
    535 /* profon values - do not change, locore.s assumes these values */
    536 #define PRF_NONE	0x00
    537 #define	PRF_USER	0x01
    538 #define	PRF_KERNEL	0x80
    539 
    540 initprofclock()
    541 {
    542 #if NCLOCK > 0
    543 	struct proc *p = curproc;		/* XXX */
    544 
    545 	/*
    546 	 * If the high-res timer is running, force profiling off.
    547 	 * Unfortunately, this gets reflected back to the user not as
    548 	 * an error but as a lack of results.
    549 	 */
    550 	if (clockon) {
    551 		p->p_stats->p_prof.pr_scale = 0;
    552 		return;
    553 	}
    554 	/*
    555 	 * Keep track of the number of user processes that are profiling
    556 	 * by checking the scale value.
    557 	 *
    558 	 * XXX: this all assumes that the profiling code is well behaved;
    559 	 * i.e. profil() is called once per process with pcscale non-zero
    560 	 * to turn it on, and once with pcscale zero to turn it off.
    561 	 * Also assumes you don't do any forks or execs.  Oh well, there
    562 	 * is always adb...
    563 	 */
    564 	if (p->p_stats->p_prof.pr_scale)
    565 		profprocs++;
    566 	else
    567 		profprocs--;
    568 #endif
    569 	/*
    570 	 * The profile interrupt interval must be an even divisor
    571 	 * of the CLK_INTERVAL so that scaling from a system clock
    572 	 * tick to a profile clock tick is possible using integer math.
    573 	 */
    574 	if (profint > CLK_INTERVAL || (CLK_INTERVAL % profint) != 0)
    575 		profint = CLK_INTERVAL;
    576 	profscale = CLK_INTERVAL / profint;
    577 }
    578 
    579 startprofclock()
    580 {
    581   unsigned short interval;
    582 
    583   /* stop timer B */
    584   clockcia->crb = clockcia->crb & 0xc0;
    585 
    586   /* load interval into registers.
    587      the clocks run at NTSC: 715.909kHz or PAL: 709.379kHz */
    588 
    589   interval = profint - 1;
    590 
    591   /* order of setting is important ! */
    592   clockcia->tblo = interval & 0xff;
    593   clockcia->tbhi = interval >> 8;
    594 
    595   /* enable interrupts for timer B */
    596   clockcia->icr = (1<<7) | (1<<1);
    597 
    598   /* start timer B in continuous shot mode */
    599   clockcia->crb = (clockcia->crb & 0xc0) | 1;
    600 }
    601 
    602 stopprofclock()
    603 {
    604   /* stop timer B */
    605   clockcia->crb = clockcia->crb & 0xc0;
    606 }
    607 
    608 #ifdef PROF
    609 /*
    610  * profclock() is expanded in line in lev6intr() unless profiling kernel.
    611  * Assumes it is called with clock interrupts blocked.
    612  */
    613 profclock(pc, ps)
    614 	caddr_t pc;
    615 	int ps;
    616 {
    617 	/*
    618 	 * Came from user mode.
    619 	 * If this process is being profiled record the tick.
    620 	 */
    621 	if (USERMODE(ps)) {
    622 		if (p->p_stats.p_prof.pr_scale)
    623 			addupc(pc, &curproc->p_stats.p_prof, 1);
    624 	}
    625 	/*
    626 	 * Came from kernel (supervisor) mode.
    627 	 * If we are profiling the kernel, record the tick.
    628 	 */
    629 	else if (profiling < 2) {
    630 		register int s = pc - s_lowpc;
    631 
    632 		if (s < s_textsize)
    633 			kcount[s / (HISTFRACTION * sizeof (*kcount))]++;
    634 	}
    635 	/*
    636 	 * Kernel profiling was on but has been disabled.
    637 	 * Mark as no longer profiling kernel and if all profiling done,
    638 	 * disable the clock.
    639 	 */
    640 	if (profiling && (profon & PRF_KERNEL)) {
    641 		profon &= ~PRF_KERNEL;
    642 		if (profon == PRF_NONE)
    643 			stopprofclock();
    644 	}
    645 }
    646 #endif
    647 #endif
    648 
    649 /* this is a hook set by a clock driver for the configured realtime clock,
    650    returning plain current unix-time */
    651 time_t (*gettod) __P((void));
    652 int (*settod) __P((time_t));
    653 void *clockaddr;
    654 
    655 time_t a3gettod __P((void));
    656 time_t a2gettod __P((void));
    657 int a3settod __P((time_t));
    658 int a2settod __P((time_t));
    659 
    660 #ifdef DRACO
    661 int draco_ds_read_bit __P((void *));
    662 void draco_ds_write_bit __P((void *, int));
    663 void draco_ds_reset __P((void *));
    664 
    665 time_t dracogettod __P((void));
    666 
    667 #ifdef __NOTYET__
    668 int dracosettod __P((time_t));
    669 #endif
    670 #endif
    671 
    672 int rtcinit __P((void));
    673 
    674 /*
    675  * Initialize the time of day register, based on the time base which is, e.g.
    676  * from a filesystem.
    677  */
    678 void
    679 inittodr(base)
    680 	time_t base;
    681 {
    682 	time_t timbuf = base;	/* assume no battery clock exists */
    683 
    684 	if (gettod == NULL && rtcinit() == 0)
    685 		printf("WARNING: no battery clock\n");
    686 	else
    687 		timbuf = gettod();
    688 
    689 	if (timbuf < base) {
    690 		printf("WARNING: bad date in battery clock\n");
    691 		timbuf = base;
    692 	}
    693 
    694 	/* Battery clock does not store usec's, so forget about it. */
    695 	time.tv_sec = timbuf;
    696 }
    697 
    698 void
    699 resettodr()
    700 {
    701 	if (settod && settod(time.tv_sec) == 0)
    702 		printf("Cannot set battery backed clock\n");
    703 }
    704 
    705 int
    706 rtcinit()
    707 {
    708 	clockaddr = (void *)ztwomap(0xdc0000);
    709 #ifdef DRACO
    710 	if (is_draco()) {
    711 		/* XXX to be done */
    712 		gettod = dracogettod;
    713 		settod = (void *)0;
    714 	} else
    715 #endif
    716 	if (is_a3000() || is_a4000()) {
    717 		if (a3gettod() == 0)
    718 			return(0);
    719 		gettod = a3gettod;
    720 		settod = a3settod;
    721 	} else {
    722 		if (a2gettod() == 0)
    723 			return(0);
    724 		gettod = a2gettod;
    725 		settod = a2settod;
    726 	}
    727 	return(1);
    728 }
    729 
    730 time_t
    731 a3gettod()
    732 {
    733 	struct rtclock3000 *rt;
    734 	struct clock_ymdhms dt;
    735 	time_t secs;
    736 
    737 	rt = clockaddr;
    738 
    739 	/* hold clock */
    740 	rt->control1 = A3CONTROL1_HOLD_CLOCK;
    741 
    742 	/* Copy the info.  Careful about the order! */
    743 	dt.dt_sec   = rt->second1 * 10 + rt->second2;
    744 	dt.dt_min   = rt->minute1 * 10 + rt->minute2;
    745 	dt.dt_hour  = rt->hour1   * 10 + rt->hour2;
    746 	dt.dt_wday  = rt->weekday;
    747 	dt.dt_day   = rt->day1    * 10 + rt->day2;
    748 	dt.dt_mon   = rt->month1  * 10 + rt->month2;
    749 	dt.dt_year  = rt->year1   * 10 + rt->year2;
    750 
    751 	dt.dt_year += CLOCK_BASE_YEAR;
    752 
    753 	/* let it run again.. */
    754 	rt->control1 = A3CONTROL1_FREE_CLOCK;
    755 
    756 	if ((dt.dt_hour > 23) ||
    757 	    (dt.dt_wday > 6) ||
    758 	    (dt.dt_day  > 31) ||
    759 	    (dt.dt_mon  > 12) ||
    760 	    (dt.dt_year < STARTOFTIME) || (dt.dt_year > 2036))
    761 		return (0);
    762 
    763 	secs = clock_ymdhms_to_secs(&dt);
    764 	return (secs);
    765 }
    766 
    767 int
    768 a3settod(secs)
    769 	time_t secs;
    770 {
    771 	struct rtclock3000 *rt;
    772 	struct clock_ymdhms dt;
    773 
    774 	rt = clockaddr;
    775 	/*
    776 	 * there seem to be problems with the bitfield addressing
    777 	 * currently used..
    778 	 */
    779 
    780 	if (! rt)
    781 		return (0);
    782 
    783 	clock_secs_to_ymdhms(secs, &dt);
    784 	dt.dt_year -= CLOCK_BASE_YEAR;
    785 
    786 	rt->control1 = A3CONTROL1_HOLD_CLOCK;
    787 	rt->second1 = dt.dt_sec / 10;
    788 	rt->second2 = dt.dt_sec % 10;
    789 	rt->minute1 = dt.dt_min / 10;
    790 	rt->minute2 = dt.dt_min % 10;
    791 	rt->hour1   = dt.dt_hour / 10;
    792 	rt->hour2   = dt.dt_hour % 10;
    793 	rt->weekday = dt.dt_wday;
    794 	rt->day1    = dt.dt_day / 10;
    795 	rt->day2    = dt.dt_day % 10;
    796 	rt->month1  = dt.dt_mon / 10;
    797 	rt->month2  = dt.dt_mon % 10;
    798 	rt->year1   = dt.dt_year / 10;
    799 	rt->year2   = dt.dt_year % 10;
    800 	rt->control1 = A3CONTROL1_FREE_CLOCK;
    801 
    802 	return (1);
    803 }
    804 
    805 time_t
    806 a2gettod()
    807 {
    808 	struct rtclock2000 *rt;
    809 	struct clock_ymdhms dt;
    810 	time_t secs;
    811 	int i;
    812 
    813 	rt = clockaddr;
    814 
    815 	/*
    816 	 * hold clock
    817 	 */
    818 	rt->control1 |= A2CONTROL1_HOLD;
    819 	i = 0x1000;
    820 	while (rt->control1 & A2CONTROL1_BUSY && i--)
    821 		;
    822 	if (rt->control1 & A2CONTROL1_BUSY)
    823 		return (0);	/* Give up and say it's not there */
    824 
    825 	/* Copy the info.  Careful about the order! */
    826 	dt.dt_sec   = rt->second1 * 10 + rt->second2;
    827 	dt.dt_min   = rt->minute1 * 10 + rt->minute2;
    828 	dt.dt_hour  = (rt->hour1 & 3) * 10 + rt->hour2;
    829 	dt.dt_day   = rt->day1    * 10 + rt->day2;
    830 	dt.dt_mon   = rt->month1  * 10 + rt->month2;
    831 	dt.dt_year  = rt->year1   * 10 + rt->year2;
    832 	dt.dt_wday  = rt->weekday;
    833 
    834 	/*
    835 	 * The oki clock chip has a register to put the clock into
    836 	 * 12/24h mode.
    837 	 *
    838 	 *  clockmode   |    A2HOUR1_PM
    839 	 *  24h   12h   |  am = 0, pm = 1
    840 	 * ---------------------------------
    841 	 *   0    12    |       0
    842 	 *   1     1    |       0
    843 	 *  ..    ..    |       0
    844 	 *  11    11    |       0
    845 	 *  12    12    |       1
    846 	 *  13     1    |       1
    847 	 *  ..    ..    |       1
    848 	 *  23    11    |       1
    849 	 *
    850 	 */
    851 
    852 	if ((rt->control3 & A2CONTROL3_24HMODE) == 0) {
    853 		if ((rt->hour1 & A2HOUR1_PM) == 0 && dt.dt_hour == 12)
    854 			dt.dt_hour = 0;
    855 		else if ((rt->hour1 & A2HOUR1_PM) && dt.dt_hour != 12)
    856 			dt.dt_hour += 12;
    857 	}
    858 
    859 	/*
    860 	 * release the clock
    861 	 */
    862 	rt->control1 &= ~A2CONTROL1_HOLD;
    863 
    864 	dt.dt_year += CLOCK_BASE_YEAR;
    865 
    866 	if ((dt.dt_hour > 23) ||
    867 	    (dt.dt_day  > 31) ||
    868 	    (dt.dt_mon  > 12) ||
    869 	    (dt.dt_year < STARTOFTIME) || (dt.dt_year > 2036))
    870 		return (0);
    871 
    872 	secs = clock_ymdhms_to_secs(&dt);
    873 	return (secs);
    874 }
    875 
    876 int
    877 a2settod(secs)
    878 	time_t secs;
    879 {
    880 	struct rtclock2000 *rt;
    881 	struct clock_ymdhms dt;
    882 	int ampm, i;
    883 
    884 	rt = clockaddr;
    885 	/*
    886 	 * there seem to be problems with the bitfield addressing
    887 	 * currently used..
    888 	 */
    889 	if (! rt)
    890 		return (0);
    891 
    892 	clock_secs_to_ymdhms(secs, &dt);
    893 	dt.dt_year -= CLOCK_BASE_YEAR;
    894 
    895 	/*
    896 	 * hold clock
    897 	 */
    898 	rt->control1 |= A2CONTROL1_HOLD;
    899 	i = 0x1000;
    900 	while (rt->control1 & A2CONTROL1_BUSY && i--)
    901 		;
    902 	if (rt->control1 & A2CONTROL1_BUSY)
    903 		return (0);	/* Give up and say it's not there */
    904 
    905 	ampm = 0;
    906 	if ((rt->control3 & A2CONTROL3_24HMODE) == 0) {
    907 		if (dt.dt_hour >= 12) {
    908 			ampm = A2HOUR1_PM;
    909 			if (dt.dt_hour != 12)
    910 				dt.dt_hour -= 12;
    911 		} else if (dt.dt_hour == 0) {
    912 			dt.dt_hour = 12;
    913 		}
    914 	}
    915 	rt->hour1   = (dt.dt_hour / 10) | ampm;
    916 	rt->hour2   = dt.dt_hour % 10;
    917 	rt->second1 = dt.dt_sec / 10;
    918 	rt->second2 = dt.dt_sec % 10;
    919 	rt->minute1 = dt.dt_min / 10;
    920 	rt->minute2 = dt.dt_min % 10;
    921 	rt->day1    = dt.dt_day / 10;
    922 	rt->day2    = dt.dt_day % 10;
    923 	rt->month1  = dt.dt_mon / 10;
    924 	rt->month2  = dt.dt_mon % 10;
    925 	rt->year1   = dt.dt_year / 10;
    926 	rt->year2   = dt.dt_year % 10;
    927 	rt->weekday = dt.dt_wday;
    928 
    929 	/*
    930 	 * release the clock
    931 	 */
    932 	rt->control2 &= ~A2CONTROL1_HOLD;
    933 
    934 	return (1);
    935 }
    936 
    937 #ifdef DRACO
    938 
    939 
    940 int
    941 draco_ds_read_bit(p)
    942 	void *p;
    943 {
    944 	struct drioct *draco_ioct;
    945 
    946 	draco_ioct = p;
    947 
    948 	while (draco_ioct->io_status & DRSTAT_CLKBUSY);
    949 
    950 	draco_ioct->io_clockw1 = 0;
    951 
    952 	while (draco_ioct->io_status & DRSTAT_CLKBUSY);
    953 
    954 	return (draco_ioct->io_status & DRSTAT_CLKDAT);
    955 }
    956 
    957 void
    958 draco_ds_write_bit(p, b)
    959 	void *p;
    960 	int b;
    961 {
    962 	struct drioct *draco_ioct;
    963 
    964 	draco_ioct = p;
    965 
    966 	while (draco_ioct->io_status & DRSTAT_CLKBUSY);
    967 
    968 	if (b)
    969 		draco_ioct->io_clockw1 = 0;
    970 	else
    971 		draco_ioct->io_clockw0 = 0;
    972 }
    973 
    974 void
    975 draco_ds_reset(p)
    976 	void *p;
    977 {
    978 	struct drioct *draco_ioct;
    979 
    980 	draco_ioct = p;
    981 
    982 	draco_ioct->io_clockrst = 0;
    983 }
    984 
    985 /*
    986  * We could return 1/256 of a seconds, but would need to change the interface
    987  */
    988 
    989 time_t
    990 dracogettod()
    991 {
    992 	u_int32_t clkbuf;
    993 	u_int8_t rombuf[8];
    994 	int i;
    995 	struct ds_handle draco_dsh;
    996 
    997 	draco_dsh.ds_read_bit = draco_ds_read_bit;
    998 	draco_dsh.ds_write_bit = draco_ds_write_bit;
    999 	draco_dsh.ds_reset = draco_ds_reset;
   1000 	draco_dsh.ds_hw_handle = (void *)(DRCCADDR + DRIOCTLPG*NBPG);
   1001 
   1002 	draco_dsh.ds_reset(draco_dsh.ds_hw_handle);
   1003 
   1004 	ds_write_byte(&draco_dsh, DS_ROM_READ);
   1005 	for (i=0; i<8; ++i)
   1006 		rombuf[i] = ds_read_byte(&draco_dsh);
   1007 
   1008 	printf("DraCo RTC: sernum %d (ROM %02x%02x%02x%02x%02x%02x%02x%02x)\n",
   1009 		(rombuf[3] << 24) + (rombuf[2] << 16) +
   1010 		(rombuf[1] << 8) + rombuf[7],
   1011 		rombuf[7], rombuf[6], rombuf[5], rombuf[4],
   1012 		rombuf[3], rombuf[2], rombuf[1], rombuf[0]);
   1013 
   1014 
   1015 	ds_write_byte(&draco_dsh, DS_MEM_READ_MEMORY);
   1016 	ds_write_byte(&draco_dsh, 0x03); /* low ads byte of realtime second */
   1017 	ds_write_byte(&draco_dsh, 0x02); /* high ads byte of realtime second */
   1018 
   1019 	clkbuf = ds_read_byte(&draco_dsh)
   1020 	    + (ds_read_byte(&draco_dsh)<<8)
   1021 	    + (ds_read_byte(&draco_dsh)<<16)
   1022 	    + (ds_read_byte(&draco_dsh)<<24);
   1023 
   1024 	/* BSD time is wr. 1.1.1970; AmigaOS time wrt. 1.1.1978 */
   1025 
   1026 	clkbuf += (8*365 + 2) * 86400;
   1027 
   1028 	return ((time_t)clkbuf);
   1029 }
   1030 
   1031 #endif
   1032