Home | History | Annotate | Line # | Download | only in dev
clock.c revision 1.4
      1 /*
      2  * Copyright (c) 1988 University of Utah.
      3  * Copyright (c) 1982, 1990 The Regents of the University of California.
      4  * All rights reserved.
      5  *
      6  * This code is derived from software contributed to Berkeley by
      7  * the Systems Programming Group of the University of Utah Computer
      8  * Science Department.
      9  *
     10  * Redistribution and use in source and binary forms, with or without
     11  * modification, are permitted provided that the following conditions
     12  * are met:
     13  * 1. Redistributions of source code must retain the above copyright
     14  *    notice, this list of conditions and the following disclaimer.
     15  * 2. Redistributions in binary form must reproduce the above copyright
     16  *    notice, this list of conditions and the following disclaimer in the
     17  *    documentation and/or other materials provided with the distribution.
     18  * 3. All advertising materials mentioning features or use of this software
     19  *    must display the following acknowledgement:
     20  *	This product includes software developed by the University of
     21  *	California, Berkeley and its contributors.
     22  * 4. Neither the name of the University nor the names of its contributors
     23  *    may be used to endorse or promote products derived from this software
     24  *    without specific prior written permission.
     25  *
     26  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     27  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     28  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     29  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     30  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     31  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     32  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     33  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     34  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     35  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     36  * SUCH DAMAGE.
     37  *
     38  * from: Utah $Hdr: clock.c 1.18 91/01/21$
     39  *
     40  *	@(#)clock.c	7.6 (Berkeley) 5/7/91
     41  *	$Id: clock.c,v 1.4 1994/06/15 19:05:55 chopps Exp $
     42  */
     43 
     44 #include <sys/param.h>
     45 #include <sys/kernel.h>
     46 #include <sys/device.h>
     47 #include <machine/psl.h>
     48 #include <machine/cpu.h>
     49 #include <amiga/amiga/device.h>
     50 #include <amiga/amiga/custom.h>
     51 #include <amiga/amiga/cia.h>
     52 #include <amiga/dev/rtc.h>
     53 #include <amiga/dev/ztwobusvar.h>
     54 
     55 #if defined(PROF) && defined(PROFTIMER)
     56 #include <sys/PROF.h>
     57 #endif
     58 
     59 /* the clocks run at NTSC: 715.909kHz or PAL: 709.379kHz.
     60    We're using a 100 Hz clock. */
     61 
     62 #define CLK_INTERVAL amiga_clk_interval
     63 int amiga_clk_interval;
     64 int eclockfreq;
     65 
     66 /*
     67  * Machine-dependent clock routines.
     68  *
     69  * Startrtclock restarts the real-time clock, which provides
     70  * hardclock interrupts to kern_clock.c.
     71  *
     72  * Inittodr initializes the time of day hardware which provides
     73  * date functions.
     74  *
     75  * Resettodr restores the time of day hardware after a time change.
     76  *
     77  * A note on the real-time clock:
     78  * We actually load the clock with CLK_INTERVAL-1 instead of CLK_INTERVAL.
     79  * This is because the counter decrements to zero after N+1 enabled clock
     80  * periods where N is the value loaded into the counter.
     81  */
     82 
     83 int clockmatch __P((struct device *, struct cfdata *, void *));
     84 void clockattach __P((struct device *, struct device *, void *));
     85 
     86 struct cfdriver clockcd = {
     87 	NULL, "clock", clockmatch, clockattach,
     88 	DV_DULL, sizeof(struct device), NULL, 0 };
     89 
     90 int
     91 clockmatch(pdp, cfp, auxp)
     92 	struct device *pdp;
     93 	struct cfdata *cfp;
     94 	void *auxp;
     95 {
     96 	if (matchname("clock", auxp))
     97 		return(1);
     98 	return(0);
     99 }
    100 
    101 /*
    102  * Start the real-time clock.
    103  */
    104 void
    105 clockattach(pdp, dp, auxp)
    106 	struct device *pdp, *dp;
    107 	void *auxp;
    108 {
    109 	unsigned short interval;
    110 
    111 	if (eclockfreq == 0)
    112 		eclockfreq = 715909;	/* guess NTSC */
    113 
    114 	CLK_INTERVAL = (eclockfreq / 100);
    115 
    116 	printf(": system hz %d hardware hz %d \n", hz, eclockfreq);
    117 
    118 	/*
    119 	 * stop timer A
    120 	 */
    121 	ciab.cra = ciab.cra & 0xc0;
    122 	ciab.icr = 1 << 0;		/* disable timer A interrupt */
    123 	interval = ciab.icr;		/* and make sure it's clear */
    124 
    125 	/*
    126 	 * load interval into registers.
    127          * the clocks run at NTSC: 715.909kHz or PAL: 709.379kHz
    128 	 * supprort for PAL WHEN?!?! XXX
    129 	 */
    130 	interval = CLK_INTERVAL - 1;
    131 
    132 	/*
    133 	 * order of setting is important !
    134 	 */
    135 	ciab.talo = interval & 0xff;
    136 	ciab.tahi = interval >> 8;
    137 }
    138 
    139 void
    140 cpu_initclocks()
    141 {
    142 	/*
    143 	 * enable interrupts for timer A
    144 	 */
    145 	ciab.icr = (1<<7) | (1<<0);
    146 
    147 	/*
    148 	 * start timer A in continuous shot mode
    149 	 */
    150 	ciab.cra = (ciab.cra & 0xc0) | 1;
    151 
    152 	/*
    153 	 * and globally enable interrupts for ciab
    154 	 */
    155 	custom.intena = INTF_SETCLR | INTF_EXTER;
    156 }
    157 
    158 setstatclockrate(hz)
    159 	int hz;
    160 {
    161 }
    162 
    163 /*
    164  * Returns number of usec since last recorded clock "tick"
    165  * (i.e. clock interrupt).
    166  */
    167 clkread()
    168 {
    169 	u_char hi, hi2, lo;
    170 	u_int interval;
    171 
    172 	hi  = ciab.tahi;
    173 	lo  = ciab.talo;
    174 	hi2 = ciab.tahi;
    175 	if (hi != hi2) {
    176 		lo = ciab.talo;
    177 		hi = hi2;
    178 	}
    179 
    180 	interval = (CLK_INTERVAL - 1) - ((hi<<8) | lo);
    181 
    182 	/*
    183 	 * should read ICR and if there's an int pending, adjust interval.
    184 	 * However, * since reading ICR clears the interrupt, we'd lose a
    185 	 * hardclock int, and * this is not tolerable.
    186 	 */
    187 
    188 	return((interval * tick) / CLK_INTERVAL);
    189 }
    190 
    191 u_int micspertick;
    192 
    193 /*
    194  * we set up as much of the CIAa as possible
    195  * as all access to chip memory are very slow.
    196  */
    197 void
    198 setmicspertick()
    199 {
    200 	micspertick = (1000000ULL << 20) / 715909;
    201 
    202 	/*
    203 	 * disable interrupts (just in case.)
    204 	 */
    205 	ciaa.icr = 0x3;
    206 
    207 	/*
    208 	 * stop both timers if not already
    209 	 */
    210 	ciaa.cra &= ~1;
    211 	ciaa.crb &= ~1;
    212 
    213 	/*
    214 	 * set timer B in "count timer A underflows" mode
    215 	 * set tiemr A in one-shot mode
    216 	 */
    217 	ciaa.crb = (ciaa.crb & 0x80) | 0x48;
    218 	ciaa.cra = (ciaa.cra & 0xc0) | 0x08;
    219 }
    220 
    221 /*
    222  * this function assumes that on any entry beyond the first
    223  * the following condintions exist:
    224  * Interrupts for Timers A and B are disabled.
    225  * Timers A and B are stoped.
    226  * Timers A and B are in one-shot mode with B counting timer A underflows
    227  *
    228  */
    229 void
    230 delay(mic)
    231 	int mic;
    232 {
    233 	u_int temp;
    234 	int s;
    235 
    236 	if (micspertick == 0)
    237 		setmicspertick();
    238 
    239 	if (mic <= 1)
    240 		return;
    241 
    242 	/*
    243 	 * basically this is going to do an integer
    244 	 * usec / (1000000 / 715909) with no loss of
    245 	 * precision
    246 	 */
    247 	temp = mic >> 12;
    248 	asm("divul %3,%1:%0" : "=d" (temp) : "d" (mic >> 12), "0" (mic << 20),
    249 	    "d" (micspertick));
    250 
    251 	if ((temp & 0xffff0000) > 0x10000) {
    252 		mic = (temp >> 16) - 1;
    253 		temp &= 0xffff;
    254 
    255 		/*
    256 		 * set timer A in continous mode
    257 		 */
    258 		ciaa.cra = (ciaa.cra & 0xc0) | 0x00;
    259 
    260 		/*
    261 		 * latch/load/start "counts of timer A underflows" in B
    262 		 */
    263 		ciaa.tblo = mic & 0xff;
    264 		ciaa.tbhi = mic >> 8;
    265 
    266 		/*
    267 		 * timer A latches 0xffff
    268 		 * and start it.
    269 		 */
    270 		ciaa.talo = 0xff;
    271 		ciaa.tahi = 0xff;
    272 		ciaa.cra |= 1;
    273 
    274 		while (ciaa.crb & 1)
    275 			;
    276 
    277 		/*
    278 		 * stop timer A
    279 		 */
    280 		ciaa.cra &= ~1;
    281 
    282 		/*
    283 		 * set timer A in one shot mode
    284 		 */
    285 		ciaa.cra = (ciaa.cra & 0xc0) | 0x08;
    286 	} else if ((temp & 0xffff0000) == 0x10000) {
    287 		temp &= 0xffff;
    288 
    289 		/*
    290 		 * timer A is in one shot latch/load/start 1 full turn
    291 		 */
    292 		ciaa.talo = 0xff;
    293 		ciaa.tahi = 0xff;
    294 		while (ciaa.cra & 1)
    295 			;
    296 	}
    297 	if (temp < 1)
    298 		return;
    299 
    300 	/*
    301 	 * temp is now residual ammount, latch/load/start it.
    302 	 */
    303 	ciaa.talo = temp & 0xff;
    304 	ciaa.tahi = temp >> 8;
    305 	while (ciaa.cra & 1)
    306 		;
    307 }
    308 
    309 /*
    310  * Needs to be calibrated for use, its way off most of the time
    311  */
    312 void
    313 DELAY(mic)
    314 	int mic;
    315 {
    316 	u_long n;
    317 	short hpos;
    318 
    319 	/*
    320 	 * this function uses HSync pulses as base units. The custom chips
    321 	 * display only deals with 31.6kHz/2 refresh, this gives us a
    322 	 * resolution of 1/15800 s, which is ~63us (add some fuzz so we really
    323 	 * wait awhile, even if using small timeouts)
    324 	 */
    325 	n = mic/63 + 2;
    326 	do {
    327 		hpos = custom.vhposr & 0xff00;
    328 		while (hpos == (custom.vhposr & 0xff00))
    329 			;
    330 	} while (n--);
    331 }
    332 
    333 #if notyet
    334 
    335 /* implement this later. I'd suggest using both timers in CIA-A, they're
    336    not yet used. */
    337 
    338 #include "clock.h"
    339 #if NCLOCK > 0
    340 /*
    341  * /dev/clock: mappable high resolution timer.
    342  *
    343  * This code implements a 32-bit recycling counter (with a 4 usec period)
    344  * using timers 2 & 3 on the 6840 clock chip.  The counter can be mapped
    345  * RO into a user's address space to achieve low overhead (no system calls),
    346  * high-precision timing.
    347  *
    348  * Note that timer 3 is also used for the high precision profiling timer
    349  * (PROFTIMER code above).  Care should be taken when both uses are
    350  * configured as only a token effort is made to avoid conflicting use.
    351  */
    352 #include <sys/proc.h>
    353 #include <sys/resourcevar.h>
    354 #include <sys/ioctl.h>
    355 #include <sys/malloc.h>
    356 #include <vm/vm.h>
    357 #include <amiga/amiga/clockioctl.h>
    358 #include <sys/specdev.h>
    359 #include <sys/vnode.h>
    360 #include <sys/mman.h>
    361 
    362 int clockon = 0;		/* non-zero if high-res timer enabled */
    363 #ifdef PROFTIMER
    364 int  profprocs = 0;		/* # of procs using profiling timer */
    365 #endif
    366 #ifdef DEBUG
    367 int clockdebug = 0;
    368 #endif
    369 
    370 /*ARGSUSED*/
    371 clockopen(dev, flags)
    372 	dev_t dev;
    373 {
    374 #ifdef PROFTIMER
    375 #ifdef PROF
    376 	/*
    377 	 * Kernel profiling enabled, give up.
    378 	 */
    379 	if (profiling)
    380 		return(EBUSY);
    381 #endif
    382 	/*
    383 	 * If any user processes are profiling, give up.
    384 	 */
    385 	if (profprocs)
    386 		return(EBUSY);
    387 #endif
    388 	if (!clockon) {
    389 		startclock();
    390 		clockon++;
    391 	}
    392 	return(0);
    393 }
    394 
    395 /*ARGSUSED*/
    396 clockclose(dev, flags)
    397 	dev_t dev;
    398 {
    399 	(void) clockunmmap(dev, (caddr_t)0, curproc);	/* XXX */
    400 	stopclock();
    401 	clockon = 0;
    402 	return(0);
    403 }
    404 
    405 /*ARGSUSED*/
    406 clockioctl(dev, cmd, data, flag, p)
    407 	dev_t dev;
    408 	caddr_t data;
    409 	struct proc *p;
    410 {
    411 	int error = 0;
    412 
    413 	switch (cmd) {
    414 
    415 	case CLOCKMAP:
    416 		error = clockmmap(dev, (caddr_t *)data, p);
    417 		break;
    418 
    419 	case CLOCKUNMAP:
    420 		error = clockunmmap(dev, *(caddr_t *)data, p);
    421 		break;
    422 
    423 	case CLOCKGETRES:
    424 		*(int *)data = CLK_RESOLUTION;
    425 		break;
    426 
    427 	default:
    428 		error = EINVAL;
    429 		break;
    430 	}
    431 	return(error);
    432 }
    433 
    434 /*ARGSUSED*/
    435 clockmap(dev, off, prot)
    436 	dev_t dev;
    437 {
    438 	return((off + (INTIOBASE+CLKBASE+CLKSR-1)) >> PGSHIFT);
    439 }
    440 
    441 clockmmap(dev, addrp, p)
    442 	dev_t dev;
    443 	caddr_t *addrp;
    444 	struct proc *p;
    445 {
    446 	int error;
    447 	struct vnode vn;
    448 	struct specinfo si;
    449 	int flags;
    450 
    451 	flags = MAP_FILE|MAP_SHARED;
    452 	if (*addrp)
    453 		flags |= MAP_FIXED;
    454 	else
    455 		*addrp = (caddr_t)0x1000000;	/* XXX */
    456 	vn.v_type = VCHR;			/* XXX */
    457 	vn.v_specinfo = &si;			/* XXX */
    458 	vn.v_rdev = dev;			/* XXX */
    459 	error = vm_mmap(&p->p_vmspace->vm_map, (vm_offset_t *)addrp,
    460 			PAGE_SIZE, VM_PROT_ALL, flags, (caddr_t)&vn, 0);
    461 	return(error);
    462 }
    463 
    464 clockunmmap(dev, addr, p)
    465 	dev_t dev;
    466 	caddr_t addr;
    467 	struct proc *p;
    468 {
    469 	int rv;
    470 
    471 	if (addr == 0)
    472 		return(EINVAL);		/* XXX: how do we deal with this? */
    473 	rv = vm_deallocate(p->p_vmspace->vm_map, (vm_offset_t)addr, PAGE_SIZE);
    474 	return(rv == KERN_SUCCESS ? 0 : EINVAL);
    475 }
    476 
    477 startclock()
    478 {
    479 	register struct clkreg *clk = (struct clkreg *)clkstd[0];
    480 
    481 	clk->clk_msb2 = -1; clk->clk_lsb2 = -1;
    482 	clk->clk_msb3 = -1; clk->clk_lsb3 = -1;
    483 
    484 	clk->clk_cr2 = CLK_CR3;
    485 	clk->clk_cr3 = CLK_OENAB|CLK_8BIT;
    486 	clk->clk_cr2 = CLK_CR1;
    487 	clk->clk_cr1 = CLK_IENAB;
    488 }
    489 
    490 stopclock()
    491 {
    492 	register struct clkreg *clk = (struct clkreg *)clkstd[0];
    493 
    494 	clk->clk_cr2 = CLK_CR3;
    495 	clk->clk_cr3 = 0;
    496 	clk->clk_cr2 = CLK_CR1;
    497 	clk->clk_cr1 = CLK_IENAB;
    498 }
    499 #endif
    500 
    501 #endif
    502 
    503 
    504 #ifdef PROFTIMER
    505 /*
    506  * This code allows the amiga kernel to use one of the extra timers on
    507  * the clock chip for profiling, instead of the regular system timer.
    508  * The advantage of this is that the profiling timer can be turned up to
    509  * a higher interrupt rate, giving finer resolution timing. The profclock
    510  * routine is called from the lev6intr in locore, and is a specialized
    511  * routine that calls addupc. The overhead then is far less than if
    512  * hardclock/softclock was called. Further, the context switch code in
    513  * locore has been changed to turn the profile clock on/off when switching
    514  * into/out of a process that is profiling (startprofclock/stopprofclock).
    515  * This reduces the impact of the profiling clock on other users, and might
    516  * possibly increase the accuracy of the profiling.
    517  */
    518 int  profint   = PRF_INTERVAL;	/* Clock ticks between interrupts */
    519 int  profscale = 0;		/* Scale factor from sys clock to prof clock */
    520 char profon    = 0;		/* Is profiling clock on? */
    521 
    522 /* profon values - do not change, locore.s assumes these values */
    523 #define PRF_NONE	0x00
    524 #define	PRF_USER	0x01
    525 #define	PRF_KERNEL	0x80
    526 
    527 initprofclock()
    528 {
    529 #if NCLOCK > 0
    530 	struct proc *p = curproc;		/* XXX */
    531 
    532 	/*
    533 	 * If the high-res timer is running, force profiling off.
    534 	 * Unfortunately, this gets reflected back to the user not as
    535 	 * an error but as a lack of results.
    536 	 */
    537 	if (clockon) {
    538 		p->p_stats->p_prof.pr_scale = 0;
    539 		return;
    540 	}
    541 	/*
    542 	 * Keep track of the number of user processes that are profiling
    543 	 * by checking the scale value.
    544 	 *
    545 	 * XXX: this all assumes that the profiling code is well behaved;
    546 	 * i.e. profil() is called once per process with pcscale non-zero
    547 	 * to turn it on, and once with pcscale zero to turn it off.
    548 	 * Also assumes you don't do any forks or execs.  Oh well, there
    549 	 * is always adb...
    550 	 */
    551 	if (p->p_stats->p_prof.pr_scale)
    552 		profprocs++;
    553 	else
    554 		profprocs--;
    555 #endif
    556 	/*
    557 	 * The profile interrupt interval must be an even divisor
    558 	 * of the CLK_INTERVAL so that scaling from a system clock
    559 	 * tick to a profile clock tick is possible using integer math.
    560 	 */
    561 	if (profint > CLK_INTERVAL || (CLK_INTERVAL % profint) != 0)
    562 		profint = CLK_INTERVAL;
    563 	profscale = CLK_INTERVAL / profint;
    564 }
    565 
    566 startprofclock()
    567 {
    568   unsigned short interval;
    569 
    570   /* stop timer B */
    571   ciab.crb = ciab.crb & 0xc0;
    572 
    573   /* load interval into registers.
    574      the clocks run at NTSC: 715.909kHz or PAL: 709.379kHz */
    575 
    576   interval = profint - 1;
    577 
    578   /* order of setting is important ! */
    579   ciab.tblo = interval & 0xff;
    580   ciab.tbhi = interval >> 8;
    581 
    582   /* enable interrupts for timer B */
    583   ciab.icr = (1<<7) | (1<<1);
    584 
    585   /* start timer B in continuous shot mode */
    586   ciab.crb = (ciab.crb & 0xc0) | 1;
    587 }
    588 
    589 stopprofclock()
    590 {
    591   /* stop timer B */
    592   ciab.crb = ciab.crb & 0xc0;
    593 }
    594 
    595 #ifdef PROF
    596 /*
    597  * profclock() is expanded in line in lev6intr() unless profiling kernel.
    598  * Assumes it is called with clock interrupts blocked.
    599  */
    600 profclock(pc, ps)
    601 	caddr_t pc;
    602 	int ps;
    603 {
    604 	/*
    605 	 * Came from user mode.
    606 	 * If this process is being profiled record the tick.
    607 	 */
    608 	if (USERMODE(ps)) {
    609 		if (p->p_stats.p_prof.pr_scale)
    610 			addupc(pc, &curproc->p_stats.p_prof, 1);
    611 	}
    612 	/*
    613 	 * Came from kernel (supervisor) mode.
    614 	 * If we are profiling the kernel, record the tick.
    615 	 */
    616 	else if (profiling < 2) {
    617 		register int s = pc - s_lowpc;
    618 
    619 		if (s < s_textsize)
    620 			kcount[s / (HISTFRACTION * sizeof (*kcount))]++;
    621 	}
    622 	/*
    623 	 * Kernel profiling was on but has been disabled.
    624 	 * Mark as no longer profiling kernel and if all profiling done,
    625 	 * disable the clock.
    626 	 */
    627 	if (profiling && (profon & PRF_KERNEL)) {
    628 		profon &= ~PRF_KERNEL;
    629 		if (profon == PRF_NONE)
    630 			stopprofclock();
    631 	}
    632 }
    633 #endif
    634 #endif
    635 
    636 /* this is a hook set by a clock driver for the configured realtime clock,
    637    returning plain current unix-time */
    638 long (*gettod) __P((void));
    639 int (*settod) __P((long));
    640 void *clockaddr;
    641 
    642 long a3gettod __P((void));
    643 long a2gettod __P((void));
    644 int a3settod __P((long));
    645 int a2settod __P((long));
    646 int rtcinit __P((void));
    647 
    648 /*
    649  * Initialize the time of day register, based on the time base which is, e.g.
    650  * from a filesystem.
    651  */
    652 inittodr(base)
    653 	time_t base;
    654 {
    655 	u_long timbuf = base;	/* assume no battery clock exists */
    656 
    657 	if (gettod == NULL && rtcinit() == 0)
    658 		printf("WARNING: no battery clock\n");
    659 	else
    660 		timbuf = gettod();
    661 
    662 	if (timbuf < base) {
    663 		printf("WARNING: bad date in battery clock\n");
    664 		timbuf = base;
    665 	}
    666 
    667 	/* Battery clock does not store usec's, so forget about it. */
    668 	time.tv_sec = timbuf;
    669 }
    670 
    671 resettodr()
    672 {
    673 	if (settod && settod(time.tv_sec) == 1)
    674 		return;
    675 	printf("Cannot set battery backed clock\n");
    676 }
    677 
    678 int
    679 rtcinit()
    680 {
    681 	clockaddr = (void *)ztwomap(0xdc0000);
    682 	if (is_a3000() || is_a4000()) {
    683 		if (a3gettod() == 0)
    684 			return(0);
    685 		gettod = a3gettod;
    686 		settod = a3settod;
    687 	} else {
    688 		if (a2gettod() == 0)
    689 			return(0);
    690 		gettod = a2gettod;
    691 		settod = a2settod;
    692 	}
    693 	return(1);
    694 }
    695 
    696 static int month_days[12] = {
    697 	31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31
    698 };
    699 
    700 long
    701 a3gettod()
    702 {
    703 	struct rtclock3000 *rt;
    704 	int i, year, month, day, hour, min, sec;
    705 	u_long tmp;
    706 
    707 	rt = clockaddr;
    708 
    709 	/* hold clock */
    710 	rt->control1 = A3CONTROL1_HOLD_CLOCK;
    711 
    712 	/* read it */
    713 	sec   = rt->second1 * 10 + rt->second2;
    714 	min   = rt->minute1 * 10 + rt->minute2;
    715 	hour  = rt->hour1   * 10 + rt->hour2;
    716 	day   = rt->day1    * 10 + rt->day2;
    717 	month = rt->month1  * 10 + rt->month2;
    718 	year  = rt->year1   * 10 + rt->year2   + 1900;
    719 
    720 	/* let it run again.. */
    721 	rt->control1 = A3CONTROL1_FREE_CLOCK;
    722 
    723 	if (range_test(hour, 0, 23))
    724 		return(0);
    725 	if (range_test(day, 1, 31))
    726 		return(0);
    727 	if (range_test(month, 1, 12))
    728 		return(0);
    729 	if (range_test(year, STARTOFTIME, 2000))
    730 		return(0);
    731 
    732 	tmp = 0;
    733 
    734 	for (i = STARTOFTIME; i < year; i++)
    735 		tmp += days_in_year(i);
    736 	if (leapyear(year) && month > FEBRUARY)
    737 		tmp++;
    738 
    739 	for (i = 1; i < month; i++)
    740 		tmp += days_in_month(i);
    741 
    742 	tmp += (day - 1);
    743 	tmp = ((tmp * 24 + hour) * 60 + min) * 60 + sec;
    744 
    745 	return(tmp);
    746 }
    747 
    748 int
    749 a3settod(tim)
    750 	long tim;
    751 {
    752 	register int i;
    753 	register long hms, day;
    754 	u_char sec1, sec2;
    755 	u_char min1, min2;
    756 	u_char hour1, hour2;
    757 	u_char day1, day2;
    758 	u_char mon1, mon2;
    759 	u_char year1, year2;
    760 	struct rtclock3000 *rt;
    761 
    762 	rt = clockaddr;
    763 	/*
    764 	 * there seem to be problems with the bitfield addressing
    765 	 * currently used..
    766 	 */
    767 return(0);
    768 #if not_yet
    769 	if (rt)
    770 		return 0;
    771 
    772 	/* prepare values to be written to clock */
    773 	day = tim / SECDAY;
    774 	hms = tim % SECDAY;
    775 
    776 	hour2 = hms / 3600;
    777 	hour1 = hour2 / 10;
    778 	hour2 %= 10;
    779 
    780 	min2 = (hms % 3600) / 60;
    781 	min1 = min2 / 10;
    782 	min2 %= 10;
    783 
    784 
    785 	sec2 = (hms % 3600) % 60;
    786 	sec1 = sec2 / 10;
    787 	sec2 %= 10;
    788 
    789 	/* Number of years in days */
    790 	for (i = STARTOFTIME - 1900; day >= days_in_year(i); i++)
    791 		day -= days_in_year(i);
    792 	year1 = i / 10;
    793 	year2 = i % 10;
    794 
    795 	/* Number of months in days left */
    796 	if (leapyear(i))
    797 		days_in_month(FEBRUARY) = 29;
    798 	for (i = 1; day >= days_in_month(i); i++)
    799 		day -= days_in_month(i);
    800 	days_in_month(FEBRUARY) = 28;
    801 
    802 	mon1 = i / 10;
    803 	mon2 = i % 10;
    804 
    805 	/* Days are what is left over (+1) from all that. */
    806 	day ++;
    807 	day1 = day / 10;
    808 	day2 = day % 10;
    809 
    810 	rt->control1 = CONTROL1_HOLD_CLOCK;
    811 	rt->second1 = sec1;
    812 	rt->second2 = sec2;
    813 	rt->minute1 = min1;
    814 	rt->minute2 = min2;
    815 	rt->hour1   = hour1;
    816 	rt->hour2   = hour2;
    817 	rt->day1    = day1;
    818 	rt->day2    = day2;
    819 	rt->month1  = mon1;
    820 	rt->month2  = mon2;
    821 	rt->year1   = year1;
    822 	rt->year2   = year2;
    823 	rt->control2 = CONTROL1_FREE_CLOCK;
    824 
    825 	return 1;
    826 #endif
    827 }
    828 
    829 long
    830 a2gettod()
    831 {
    832 	struct rtclock2000 *rt;
    833 	int i, year, month, day, hour, min, sec;
    834 	u_long tmp;
    835 
    836 	rt = clockaddr;
    837 
    838 	/*
    839 	 * hold clock
    840 	 */
    841 	rt->control1 |= A2CONTROL1_HOLD;
    842 	while (rt->control1 & A2CONTROL1_BUSY)
    843 		;
    844 
    845 	/*
    846 	 * read it
    847 	 */
    848 	sec = rt->second1 * 10 + rt->second2;
    849 	min = rt->minute1 * 10 + rt->minute2;
    850 	hour = (rt->hour1 & 3)  * 10 + rt->hour2;
    851 	day = rt->day1 * 10 + rt->day2;
    852 	month = rt->month1 * 10 + rt->month2;
    853 	year = rt->year1 * 10 + rt->year2   + 1900;
    854 
    855 	if ((rt->control3 & A2CONTROL3_24HMODE) == 0) {
    856 		if ((rt->hour1 & A2HOUR1_PM) == 0 && hour == 12)
    857 			hour = 0;
    858 		else if ((rt->hour1 & A2HOUR1_PM) && hour != 12)
    859 			hour += 12;
    860 	}
    861 
    862 	/*
    863 	 * release the clock
    864 	 */
    865 	rt->control1 &= ~A2CONTROL1_HOLD;
    866 
    867 	if (range_test(hour, 0, 23))
    868 		return(0);
    869 	if (range_test(day, 1, 31))
    870 		return(0);
    871 	if (range_test(month, 1, 12))
    872 		return(0);
    873 	if (range_test(year, STARTOFTIME, 2000))
    874 		return(0);
    875 
    876 	tmp = 0;
    877 
    878 	for (i = STARTOFTIME; i < year; i++)
    879 		tmp += days_in_year(i);
    880 	if (leapyear(year) && month > FEBRUARY)
    881 		tmp++;
    882 
    883 	for (i = 1; i < month; i++)
    884 		tmp += days_in_month(i);
    885 
    886 	tmp += (day - 1);
    887 	tmp = ((tmp * 24 + hour) * 60 + min) * 60 + sec;
    888 
    889 	return(tmp);
    890 }
    891 
    892 /*
    893  * there is some question as to whether this works
    894  * I guess
    895  */
    896 int
    897 a2settod(tim)
    898 	long tim;
    899 {
    900 
    901 	int i;
    902 	long hms, day;
    903 	u_char sec1, sec2;
    904 	u_char min1, min2;
    905 	u_char hour1, hour2;
    906 	u_char day1, day2;
    907 	u_char mon1, mon2;
    908 	u_char year1, year2;
    909 	struct rtclock2000 *rt;
    910 
    911 	rt = clockaddr;
    912 	/*
    913 	 * there seem to be problems with the bitfield addressing
    914 	 * currently used..
    915 	 *
    916 	 * XXX Check out the above where we (hour1 & 3)
    917 	 */
    918 return(0);
    919 #if not_yet
    920 	if (! rt)
    921 		return 0;
    922 
    923 	/* prepare values to be written to clock */
    924 	day = tim / SECDAY;
    925 	hms = tim % SECDAY;
    926 
    927 	hour2 = hms / 3600;
    928 	hour1 = hour2 / 10;
    929 	hour2 %= 10;
    930 
    931 	min2 = (hms % 3600) / 60;
    932 	min1 = min2 / 10;
    933 	min2 %= 10;
    934 
    935 
    936 	sec2 = (hms % 3600) % 60;
    937 	sec1 = sec2 / 10;
    938 	sec2 %= 10;
    939 
    940 	/* Number of years in days */
    941 	for (i = STARTOFTIME - 1900; day >= days_in_year(i); i++)
    942 		day -= days_in_year(i);
    943 	year1 = i / 10;
    944 	year2 = i % 10;
    945 
    946 	/* Number of months in days left */
    947 	if (leapyear(i))
    948 		days_in_month(FEBRUARY) = 29;
    949 	for (i = 1; day >= days_in_month(i); i++)
    950 		day -= days_in_month(i);
    951 	days_in_month(FEBRUARY) = 28;
    952 
    953 	mon1 = i / 10;
    954 	mon2 = i % 10;
    955 
    956 	/* Days are what is left over (+1) from all that. */
    957 	day ++;
    958 	day1 = day / 10;
    959 	day2 = day % 10;
    960 
    961 	/*
    962 	 * XXXX spin wait as with reading???
    963 	 */
    964 	rt->control1 = A2CONTROL1_HOLD_CLOCK;
    965 	rt->second1 = sec1;
    966 	rt->second2 = sec2;
    967 	rt->minute1 = min1;
    968 	rt->minute2 = min2;
    969 	rt->hour1   = hour1;
    970 	rt->hour2   = hour2;
    971 	rt->day1    = day1;
    972 	rt->day2    = day2;
    973 	rt->month1  = mon1;
    974 	rt->month2  = mon2;
    975 	rt->year1   = year1;
    976 	rt->year2   = year2;
    977 	rt->control2 = CONTROL1_FREE_CLOCK;
    978 
    979   return 1;
    980 #endif
    981 }
    982