clock.c revision 1.47.10.3 1 /* $NetBSD: clock.c,v 1.47.10.3 2010/03/11 15:02:00 yamt Exp $ */
2
3 /*
4 * Copyright (c) 1982, 1990 The Regents of the University of California.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to Berkeley by
8 * the Systems Programming Group of the University of Utah Computer
9 * Science Department.
10 *
11 * Redistribution and use in source and binary forms, with or without
12 * modification, are permitted provided that the following conditions
13 * are met:
14 * 1. Redistributions of source code must retain the above copyright
15 * notice, this list of conditions and the following disclaimer.
16 * 2. Redistributions in binary form must reproduce the above copyright
17 * notice, this list of conditions and the following disclaimer in the
18 * documentation and/or other materials provided with the distribution.
19 * 3. Neither the name of the University nor the names of its contributors
20 * may be used to endorse or promote products derived from this software
21 * without specific prior written permission.
22 *
23 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
24 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
25 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
26 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
27 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
28 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
29 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
30 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
31 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
32 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
33 * SUCH DAMAGE.
34 *
35 * from: Utah $Hdr: clock.c 1.18 91/01/21$
36 *
37 * @(#)clock.c 7.6 (Berkeley) 5/7/91
38 */
39 /*
40 * Copyright (c) 1988 University of Utah.
41 *
42 * This code is derived from software contributed to Berkeley by
43 * the Systems Programming Group of the University of Utah Computer
44 * Science Department.
45 *
46 * Redistribution and use in source and binary forms, with or without
47 * modification, are permitted provided that the following conditions
48 * are met:
49 * 1. Redistributions of source code must retain the above copyright
50 * notice, this list of conditions and the following disclaimer.
51 * 2. Redistributions in binary form must reproduce the above copyright
52 * notice, this list of conditions and the following disclaimer in the
53 * documentation and/or other materials provided with the distribution.
54 * 3. All advertising materials mentioning features or use of this software
55 * must display the following acknowledgement:
56 * This product includes software developed by the University of
57 * California, Berkeley and its contributors.
58 * 4. Neither the name of the University nor the names of its contributors
59 * may be used to endorse or promote products derived from this software
60 * without specific prior written permission.
61 *
62 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
63 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
64 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
65 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
66 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
67 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
68 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
69 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
70 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
71 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
72 * SUCH DAMAGE.
73 *
74 * from: Utah $Hdr: clock.c 1.18 91/01/21$
75 *
76 * @(#)clock.c 7.6 (Berkeley) 5/7/91
77 */
78
79 #include <sys/cdefs.h>
80 __KERNEL_RCSID(0, "$NetBSD: clock.c,v 1.47.10.3 2010/03/11 15:02:00 yamt Exp $");
81
82 #include <sys/param.h>
83 #include <sys/kernel.h>
84 #include <sys/device.h>
85 #include <sys/systm.h>
86 #include <sys/timetc.h>
87 #include <machine/psl.h>
88 #include <machine/cpu.h>
89 #include <amiga/amiga/device.h>
90 #include <amiga/amiga/custom.h>
91 #include <amiga/amiga/cia.h>
92 #ifdef DRACO
93 #include <amiga/amiga/drcustom.h>
94 #include <m68k/include/asm_single.h>
95 #endif
96 #include <amiga/dev/rtc.h>
97 #include <amiga/dev/zbusvar.h>
98
99 #if defined(PROF) && defined(PROFTIMER)
100 #include <sys/PROF.h>
101 #endif
102
103 /*
104 * Machine-dependent clock routines.
105 *
106 * Startrtclock restarts the real-time clock, which provides
107 * hardclock interrupts to kern_clock.c.
108 *
109 * Inittodr initializes the time of day hardware which provides
110 * date functions.
111 *
112 * Resettodr restores the time of day hardware after a time change.
113 *
114 * A note on the real-time clock:
115 * We actually load the clock with amiga_clk_interval-1 instead of amiga_clk_interval.
116 * This is because the counter decrements to zero after N+1 enabled clock
117 * periods where N is the value loaded into the counter.
118 */
119
120 int clockmatch(struct device *, struct cfdata *, void *);
121 void clockattach(struct device *, struct device *, void *);
122 void cpu_initclocks(void);
123 static void calibrate_delay(struct device *);
124
125 /* the clocks run at NTSC: 715.909kHz or PAL: 709.379kHz.
126 We're using a 100 Hz clock. */
127 int amiga_clk_interval;
128 int eclockfreq;
129 struct CIA *clockcia;
130
131 static u_int clk_getcounter(struct timecounter *);
132
133 static struct timecounter clk_timecounter = {
134 clk_getcounter, /* get_timecount */
135 0, /* no poll_pps */
136 ~0u, /* counter_mask */
137 0, /* frequency */
138 "clock", /* name, overriden later */
139 100, /* quality */
140 NULL, /* prev */
141 NULL, /* next */
142 };
143
144 CFATTACH_DECL(clock, sizeof(struct device),
145 clockmatch, clockattach, NULL, NULL);
146
147 int
148 clockmatch(struct device *pdp, struct cfdata *cfp, void *auxp)
149 {
150 if (matchname("clock", auxp))
151 return(1);
152 return(0);
153 }
154
155 /*
156 * Start the real-time clock.
157 */
158 void
159 clockattach(struct device *pdp, struct device *dp, void *auxp)
160 {
161 const char *clockchip;
162 unsigned short interval;
163 int chipfreq;
164 #ifdef DRACO
165 u_char dracorev;
166 #endif
167
168 if (eclockfreq == 0)
169 eclockfreq = 715909; /* guess NTSC */
170
171 chipfreq = eclockfreq;
172
173 #ifdef DRACO
174 dracorev = is_draco();
175 if (dracorev >= 4) {
176 chipfreq = eclockfreq / 7;
177 clockchip = "QuickLogic";
178 } else if (dracorev) {
179 clockcia = (struct CIA *)CIAAbase;
180 clockchip = "CIA A";
181 } else
182 #endif
183 {
184 clockcia = (struct CIA *)CIABbase;
185 clockchip = "CIA B";
186 }
187
188 amiga_clk_interval = chipfreq / hz;
189
190 if (dp != NULL) { /* real autoconfig? */
191 printf(": %s system hz %d hardware hz %d\n", clockchip, hz,
192 chipfreq);
193
194 clk_timecounter.tc_name = clockchip;
195 clk_timecounter.tc_frequency = chipfreq;
196 tc_init(&clk_timecounter);
197 }
198
199 #ifdef DRACO
200 if (dracorev >= 4) {
201 /*
202 * can't preload anything beforehand, timer is free_running;
203 * but need this for delay calibration.
204 */
205
206 draco_ioct->io_timerlo = amiga_clk_interval & 0xff;
207 draco_ioct->io_timerhi = amiga_clk_interval >> 8;
208
209 calibrate_delay(dp);
210
211 return;
212 }
213 #endif
214 /*
215 * stop timer A
216 */
217 clockcia->cra = clockcia->cra & 0xc0;
218 clockcia->icr = 1 << 0; /* disable timer A interrupt */
219 interval = clockcia->icr; /* and make sure it's clear */
220
221 /*
222 * load interval into registers.
223 * the clocks run at NTSC: 715.909kHz or PAL: 709.379kHz
224 */
225 interval = amiga_clk_interval - 1;
226
227 /*
228 * order of setting is important !
229 */
230 clockcia->talo = interval & 0xff;
231 clockcia->tahi = interval >> 8;
232 /*
233 * start timer A in continuous mode
234 */
235 clockcia->cra = (clockcia->cra & 0xc0) | 1;
236
237 calibrate_delay(dp);
238 }
239
240 void
241 cpu_initclocks(void)
242 {
243 #ifdef DRACO
244 unsigned char dracorev;
245 dracorev = is_draco();
246 if (dracorev >= 4) {
247 draco_ioct->io_timerlo = amiga_clk_interval & 0xFF;
248 draco_ioct->io_timerhi = amiga_clk_interval >> 8;
249 draco_ioct->io_timerrst = 0; /* any value resets */
250 single_inst_bset_b(draco_ioct->io_status2, DRSTAT2_TMRINTENA);
251
252 return;
253 }
254 #endif
255 /*
256 * enable interrupts for timer A
257 */
258 clockcia->icr = (1<<7) | (1<<0);
259
260 /*
261 * start timer A in continuous shot mode
262 */
263 clockcia->cra = (clockcia->cra & 0xc0) | 1;
264
265 /*
266 * and globally enable interrupts for ciab
267 */
268 #ifdef DRACO
269 if (dracorev) /* we use cia a on DraCo */
270 single_inst_bset_b(*draco_intena, DRIRQ_INT2);
271 else
272 #endif
273 custom.intena = INTF_SETCLR | INTF_EXTER;
274
275 }
276
277 void
278 setstatclockrate(int hertz)
279 {
280 }
281
282 /*
283 * Returns ticks since last recorded clock "tick"
284 * (i.e. clock interrupt).
285 */
286 static u_int
287 clk_gettick(void)
288 {
289 u_int interval;
290 u_char hi, hi2, lo;
291
292 #ifdef DRACO
293 if (is_draco() >= 4) {
294 hi2 = draco_ioct->io_chiprev; /* latch timer */
295 hi = draco_ioct->io_timerhi;
296 lo = draco_ioct->io_timerlo;
297 interval = ((hi<<8) | lo);
298 if (interval > amiga_clk_interval) /* timer underflow */
299 interval = 65536 + amiga_clk_interval - interval;
300 else
301 interval = amiga_clk_interval - interval;
302
303 } else
304 #endif
305 {
306 hi = clockcia->tahi;
307 lo = clockcia->talo;
308 hi2 = clockcia->tahi;
309 if (hi != hi2) {
310 lo = clockcia->talo;
311 hi = hi2;
312 }
313
314 interval = (amiga_clk_interval - 1) - ((hi<<8) | lo);
315
316 /*
317 * should read ICR and if there's an int pending, adjust
318 * interval. However, since reading ICR clears the interrupt,
319 * we'd lose a hardclock int, and this is not tolerable.
320 */
321 }
322
323 return interval;
324 }
325
326 static u_int
327 clk_getcounter(struct timecounter *tc)
328 {
329 static int prev_hardclock;
330 static u_int prev_counter;
331 int cur_hardclock;
332 u_int counter;
333
334 do {
335 cur_hardclock = hardclock_ticks;
336 counter = clk_gettick();
337 } while (cur_hardclock != hardclock_ticks);
338
339 /*
340 * Handle the situation of a wrapped interval counter, while
341 * the hardclock() interrupt was not yet executed to update
342 * hardclock_ticks.
343 */
344 if (cur_hardclock < prev_hardclock)
345 cur_hardclock = prev_hardclock;
346 if (counter < prev_counter && cur_hardclock == prev_hardclock)
347 cur_hardclock++;
348
349 prev_hardclock = cur_hardclock;
350 prev_counter = counter;
351
352 return cur_hardclock * amiga_clk_interval + counter;
353 }
354
355 /*
356 * Calibrate delay loop.
357 * We use two iterations because we don't have enough bits to do a factor of
358 * 8 with better than 1%.
359 *
360 * XXX Note that we MUST stay below 1 tick if using clk_gettick(), even for
361 * underestimated values of delaydivisor.
362 *
363 * XXX the "ns" below is only correct for a shift of 10 bits, and even then
364 * off by 2.4%
365 */
366 static void
367 calibrate_delay(struct device *dp)
368 {
369 unsigned long t1, t2;
370 extern u_int32_t delaydivisor;
371 /* XXX this should be defined elsewhere */
372
373 if (dp)
374 printf("Calibrating delay loop... ");
375
376 do {
377 t1 = clk_gettick();
378 delay(1024);
379 t2 = clk_gettick();
380 } while (t2 <= t1);
381 t2 = ((t2 - t1) * 1000000) / (amiga_clk_interval * hz);
382 delaydivisor = (delaydivisor * t2 + 1023) >> 10;
383 #ifdef DEBUG
384 if (dp)
385 printf("\ndiff %ld us, new divisor %u/1024 us\n", t2,
386 delaydivisor);
387 do {
388 t1 = clk_gettick();
389 delay(1024);
390 t2 = clk_gettick();
391 } while (t2 <= t1);
392 t2 = ((t2 - t1) * 1000000) / (amiga_clk_interval * hz);
393 delaydivisor = (delaydivisor * t2 + 1023) >> 10;
394 if (dp)
395 printf("diff %ld us, new divisor %u/1024 us\n", t2,
396 delaydivisor);
397 #endif
398 do {
399 t1 = clk_gettick();
400 delay(1024);
401 t2 = clk_gettick();
402 } while (t2 <= t1);
403 t2 = ((t2 - t1) * 1000000) / (amiga_clk_interval * hz);
404 delaydivisor = (delaydivisor * t2 + 1023) >> 10;
405 #ifdef DEBUG
406 if (dp)
407 printf("diff %ld us, new divisor ", t2);
408 #endif
409 if (dp)
410 printf("%u/1024 us\n", delaydivisor);
411 }
412
413 #if notyet
414
415 /* implement this later. I'd suggest using both timers in CIA-A, they're
416 not yet used. */
417
418 #include "clock.h"
419 #if NCLOCK > 0
420 /*
421 * /dev/clock: mappable high resolution timer.
422 *
423 * This code implements a 32-bit recycling counter (with a 4 usec period)
424 * using timers 2 & 3 on the 6840 clock chip. The counter can be mapped
425 * RO into a user's address space to achieve low overhead (no system calls),
426 * high-precision timing.
427 *
428 * Note that timer 3 is also used for the high precision profiling timer
429 * (PROFTIMER code above). Care should be taken when both uses are
430 * configured as only a token effort is made to avoid conflicting use.
431 */
432 #include <sys/proc.h>
433 #include <sys/resourcevar.h>
434 #include <sys/ioctl.h>
435 #include <sys/malloc.h>
436 #include <uvm/uvm_extern.h>
437 #include <amiga/amiga/clockioctl.h>
438 #include <sys/specdev.h>
439 #include <sys/vnode.h>
440 #include <sys/mman.h>
441
442 int clockon = 0; /* non-zero if high-res timer enabled */
443 #ifdef PROFTIMER
444 int profprocs = 0; /* # of procs using profiling timer */
445 #endif
446 #ifdef DEBUG
447 int clockdebug = 0;
448 #endif
449
450 /*ARGSUSED*/
451 int
452 clockopen(dev_t dev, int flags)
453 {
454 #ifdef PROFTIMER
455 #ifdef PROF
456 /*
457 * Kernel profiling enabled, give up.
458 */
459 if (profiling)
460 return(EBUSY);
461 #endif
462 /*
463 * If any user processes are profiling, give up.
464 */
465 if (profprocs)
466 return(EBUSY);
467 #endif
468 if (!clockon) {
469 startclock();
470 clockon++;
471 }
472 return(0);
473 }
474
475 /*ARGSUSED*/
476 int
477 clockclose(dev_t dev, int flags)
478 {
479 (void) clockunmmap(dev, (void *)0, curproc); /* XXX */
480 stopclock();
481 clockon = 0;
482 return(0);
483 }
484
485 /*ARGSUSED*/
486 int
487 clockioctl(dev_t dev, u_long cmd, void *data, int flag, struct proc *p)
488 {
489 int error = 0;
490
491 switch (cmd) {
492
493 case CLOCKMAP:
494 error = clockmmap(dev, (void **)data, p);
495 break;
496
497 case CLOCKUNMAP:
498 error = clockunmmap(dev, *(void **)data, p);
499 break;
500
501 case CLOCKGETRES:
502 *(int *)data = CLK_RESOLUTION;
503 break;
504
505 default:
506 error = EINVAL;
507 break;
508 }
509 return(error);
510 }
511
512 /*ARGSUSED*/
513 void
514 clockmap(dev_t dev, int off, int prot)
515 {
516 return((off + (INTIOBASE+CLKBASE+CLKSR-1)) >> PGSHIFT);
517 }
518
519 int
520 clockmmap(dev_t dev, void **addrp, struct proc *p)
521 {
522 int error;
523 struct vnode vn;
524 struct specinfo si;
525 int flags;
526
527 flags = MAP_FILE|MAP_SHARED;
528 if (*addrp)
529 flags |= MAP_FIXED;
530 else
531 *addrp = (void *)0x1000000; /* XXX */
532 vn.v_type = VCHR; /* XXX */
533 vn.v_specinfo = &si; /* XXX */
534 vn.v_rdev = dev; /* XXX */
535 error = vm_mmap(&p->p_vmspace->vm_map, (vm_offset_t *)addrp,
536 PAGE_SIZE, VM_PROT_ALL, flags, (void *)&vn, 0);
537 return(error);
538 }
539
540 int
541 clockunmmap(dev_t dev, void *addr, struct proc *p)
542 {
543 int rv;
544
545 if (addr == 0)
546 return(EINVAL); /* XXX: how do we deal with this? */
547 uvm_deallocate(p->p_vmspace->vm_map, (vm_offset_t)addr, PAGE_SIZE);
548 return 0;
549 }
550
551 void
552 startclock(void)
553 {
554 register struct clkreg *clk = (struct clkreg *)clkstd[0];
555
556 clk->clk_msb2 = -1; clk->clk_lsb2 = -1;
557 clk->clk_msb3 = -1; clk->clk_lsb3 = -1;
558
559 clk->clk_cr2 = CLK_CR3;
560 clk->clk_cr3 = CLK_OENAB|CLK_8BIT;
561 clk->clk_cr2 = CLK_CR1;
562 clk->clk_cr1 = CLK_IENAB;
563 }
564
565 void
566 stopclock(void)
567 {
568 register struct clkreg *clk = (struct clkreg *)clkstd[0];
569
570 clk->clk_cr2 = CLK_CR3;
571 clk->clk_cr3 = 0;
572 clk->clk_cr2 = CLK_CR1;
573 clk->clk_cr1 = CLK_IENAB;
574 }
575 #endif
576
577 #endif
578
579
580 #ifdef PROFTIMER
581 /*
582 * This code allows the amiga kernel to use one of the extra timers on
583 * the clock chip for profiling, instead of the regular system timer.
584 * The advantage of this is that the profiling timer can be turned up to
585 * a higher interrupt rate, giving finer resolution timing. The profclock
586 * routine is called from the lev6intr in locore, and is a specialized
587 * routine that calls addupc. The overhead then is far less than if
588 * hardclock/softclock was called. Further, the context switch code in
589 * locore has been changed to turn the profile clock on/off when switching
590 * into/out of a process that is profiling (startprofclock/stopprofclock).
591 * This reduces the impact of the profiling clock on other users, and might
592 * possibly increase the accuracy of the profiling.
593 */
594 int profint = PRF_INTERVAL; /* Clock ticks between interrupts */
595 int profscale = 0; /* Scale factor from sys clock to prof clock */
596 char profon = 0; /* Is profiling clock on? */
597
598 /* profon values - do not change, locore.s assumes these values */
599 #define PRF_NONE 0x00
600 #define PRF_USER 0x01
601 #define PRF_KERNEL 0x80
602
603 void
604 initprofclock(void)
605 {
606 #if NCLOCK > 0
607 struct proc *p = curproc; /* XXX */
608
609 /*
610 * If the high-res timer is running, force profiling off.
611 * Unfortunately, this gets reflected back to the user not as
612 * an error but as a lack of results.
613 */
614 if (clockon) {
615 p->p_stats->p_prof.pr_scale = 0;
616 return;
617 }
618 /*
619 * Keep track of the number of user processes that are profiling
620 * by checking the scale value.
621 *
622 * XXX: this all assumes that the profiling code is well behaved;
623 * i.e. profil() is called once per process with pcscale non-zero
624 * to turn it on, and once with pcscale zero to turn it off.
625 * Also assumes you don't do any forks or execs. Oh well, there
626 * is always adb...
627 */
628 if (p->p_stats->p_prof.pr_scale)
629 profprocs++;
630 else
631 profprocs--;
632 #endif
633 /*
634 * The profile interrupt interval must be an even divisor
635 * of the amiga_clk_interval so that scaling from a system clock
636 * tick to a profile clock tick is possible using integer math.
637 */
638 if (profint > amiga_clk_interval || (amiga_clk_interval % profint) != 0)
639 profint = amiga_clk_interval;
640 profscale = amiga_clk_interval / profint;
641 }
642
643 void
644 startprofclock(void)
645 {
646 unsigned short interval;
647
648 /* stop timer B */
649 clockcia->crb = clockcia->crb & 0xc0;
650
651 /* load interval into registers.
652 the clocks run at NTSC: 715.909kHz or PAL: 709.379kHz */
653
654 interval = profint - 1;
655
656 /* order of setting is important ! */
657 clockcia->tblo = interval & 0xff;
658 clockcia->tbhi = interval >> 8;
659
660 /* enable interrupts for timer B */
661 clockcia->icr = (1<<7) | (1<<1);
662
663 /* start timer B in continuous shot mode */
664 clockcia->crb = (clockcia->crb & 0xc0) | 1;
665 }
666
667 void
668 stopprofclock(void)
669 {
670 /* stop timer B */
671 clockcia->crb = clockcia->crb & 0xc0;
672 }
673
674 #ifdef PROF
675 /*
676 * profclock() is expanded in line in lev6intr() unless profiling kernel.
677 * Assumes it is called with clock interrupts blocked.
678 */
679 void
680 profclock(void *pc, int ps)
681 {
682 /*
683 * Came from user mode.
684 * If this process is being profiled record the tick.
685 */
686 if (USERMODE(ps)) {
687 if (p->p_stats.p_prof.pr_scale)
688 addupc(pc, &curproc->p_stats.p_prof, 1);
689 }
690 /*
691 * Came from kernel (supervisor) mode.
692 * If we are profiling the kernel, record the tick.
693 */
694 else if (profiling < 2) {
695 register int s = pc - s_lowpc;
696
697 if (s < s_textsize)
698 kcount[s / (HISTFRACTION * sizeof (*kcount))]++;
699 }
700 /*
701 * Kernel profiling was on but has been disabled.
702 * Mark as no longer profiling kernel and if all profiling done,
703 * disable the clock.
704 */
705 if (profiling && (profon & PRF_KERNEL)) {
706 profon &= ~PRF_KERNEL;
707 if (profon == PRF_NONE)
708 stopprofclock();
709 }
710 }
711 #endif
712 #endif
713