clock.c revision 1.53.12.1 1 /* $NetBSD: clock.c,v 1.53.12.1 2012/11/20 03:00:57 tls Exp $ */
2
3 /*
4 * Copyright (c) 1988 University of Utah.
5 * Copyright (c) 1982, 1990 The Regents of the University of California.
6 * All rights reserved.
7 *
8 * This code is derived from software contributed to Berkeley by
9 * the Systems Programming Group of the University of Utah Computer
10 * Science Department.
11 *
12 * Redistribution and use in source and binary forms, with or without
13 * modification, are permitted provided that the following conditions
14 * are met:
15 * 1. Redistributions of source code must retain the above copyright
16 * notice, this list of conditions and the following disclaimer.
17 * 2. Redistributions in binary form must reproduce the above copyright
18 * notice, this list of conditions and the following disclaimer in the
19 * documentation and/or other materials provided with the distribution.
20 * 3. Neither the name of the University nor the names of its contributors
21 * may be used to endorse or promote products derived from this software
22 * without specific prior written permission.
23 *
24 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
25 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
26 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
27 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
28 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
29 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
30 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
31 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
32 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
33 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
34 * SUCH DAMAGE.
35 *
36 * from: Utah $Hdr: clock.c 1.18 91/01/21$
37 *
38 * @(#)clock.c 7.6 (Berkeley) 5/7/91
39 */
40
41 #include <sys/cdefs.h>
42 __KERNEL_RCSID(0, "$NetBSD: clock.c,v 1.53.12.1 2012/11/20 03:00:57 tls Exp $");
43
44 #include <sys/param.h>
45 #include <sys/kernel.h>
46 #include <sys/device.h>
47 #include <sys/systm.h>
48 #include <sys/timetc.h>
49 #include <machine/psl.h>
50 #include <machine/cpu.h>
51 #include <amiga/amiga/device.h>
52 #include <amiga/amiga/custom.h>
53 #include <amiga/amiga/cia.h>
54 #ifdef DRACO
55 #include <amiga/amiga/drcustom.h>
56 #include <m68k/include/asm_single.h>
57 #endif
58 #include <amiga/dev/rtc.h>
59 #include <amiga/dev/zbusvar.h>
60
61 #if defined(PROF) && defined(PROFTIMER)
62 #include <sys/PROF.h>
63 #endif
64
65 /*
66 * Machine-dependent clock routines.
67 *
68 * Startrtclock restarts the real-time clock, which provides
69 * hardclock interrupts to kern_clock.c.
70 *
71 * Inittodr initializes the time of day hardware which provides
72 * date functions.
73 *
74 * Resettodr restores the time of day hardware after a time change.
75 *
76 * A note on the real-time clock:
77 * We actually load the clock with amiga_clk_interval-1 instead of amiga_clk_interval.
78 * This is because the counter decrements to zero after N+1 enabled clock
79 * periods where N is the value loaded into the counter.
80 */
81
82 int clockmatch(device_t, cfdata_t, void *);
83 void clockattach(device_t, device_t, void *);
84 void cpu_initclocks(void);
85 static void calibrate_delay(device_t);
86
87 /* the clocks run at NTSC: 715.909kHz or PAL: 709.379kHz.
88 We're using a 100 Hz clock. */
89 int amiga_clk_interval;
90 int eclockfreq;
91 struct CIA *clockcia;
92
93 static u_int clk_getcounter(struct timecounter *);
94
95 static struct timecounter clk_timecounter = {
96 clk_getcounter, /* get_timecount */
97 0, /* no poll_pps */
98 ~0u, /* counter_mask */
99 0, /* frequency */
100 "clock", /* name, overriden later */
101 100, /* quality */
102 NULL, /* prev */
103 NULL, /* next */
104 };
105
106 CFATTACH_DECL_NEW(clock, 0,
107 clockmatch, clockattach, NULL, NULL);
108
109 int
110 clockmatch(device_t parent, cfdata_t cf, void *aux)
111 {
112 if (matchname("clock", aux))
113 return(1);
114 return(0);
115 }
116
117 /*
118 * Start the real-time clock.
119 */
120 void
121 clockattach(device_t parent, device_t self, void *aux)
122 {
123 const char *clockchip;
124 unsigned short interval;
125 int chipfreq;
126 #ifdef DRACO
127 u_char dracorev;
128 #endif
129
130 if (eclockfreq == 0)
131 eclockfreq = 715909; /* guess NTSC */
132
133 chipfreq = eclockfreq;
134
135 #ifdef DRACO
136 dracorev = is_draco();
137 if (dracorev >= 4) {
138 chipfreq = eclockfreq / 7;
139 clockchip = "QuickLogic";
140 } else if (dracorev) {
141 clockcia = (struct CIA *)CIAAbase;
142 clockchip = "CIA A";
143 } else
144 #endif
145 {
146 clockcia = (struct CIA *)CIABbase;
147 clockchip = "CIA B";
148 }
149
150 amiga_clk_interval = chipfreq / hz;
151
152 if (self != NULL) { /* real autoconfig? */
153 printf(": %s system hz %d hardware hz %d\n", clockchip, hz,
154 chipfreq);
155
156 clk_timecounter.tc_name = clockchip;
157 clk_timecounter.tc_frequency = chipfreq;
158 tc_init(&clk_timecounter);
159 }
160
161 #ifdef DRACO
162 if (dracorev >= 4) {
163 /*
164 * can't preload anything beforehand, timer is free_running;
165 * but need this for delay calibration.
166 */
167
168 draco_ioct->io_timerlo = amiga_clk_interval & 0xff;
169 draco_ioct->io_timerhi = amiga_clk_interval >> 8;
170
171 calibrate_delay(self);
172
173 return;
174 }
175 #endif
176 /*
177 * stop timer A
178 */
179 clockcia->cra = clockcia->cra & 0xc0;
180 clockcia->icr = 1 << 0; /* disable timer A interrupt */
181 interval = clockcia->icr; /* and make sure it's clear */
182
183 /*
184 * load interval into registers.
185 * the clocks run at NTSC: 715.909kHz or PAL: 709.379kHz
186 */
187 interval = amiga_clk_interval - 1;
188
189 /*
190 * order of setting is important !
191 */
192 clockcia->talo = interval & 0xff;
193 clockcia->tahi = interval >> 8;
194 /*
195 * start timer A in continuous mode
196 */
197 clockcia->cra = (clockcia->cra & 0xc0) | 1;
198
199 calibrate_delay(self);
200 }
201
202 void
203 cpu_initclocks(void)
204 {
205 #ifdef DRACO
206 unsigned char dracorev;
207 dracorev = is_draco();
208 if (dracorev >= 4) {
209 draco_ioct->io_timerlo = amiga_clk_interval & 0xFF;
210 draco_ioct->io_timerhi = amiga_clk_interval >> 8;
211 draco_ioct->io_timerrst = 0; /* any value resets */
212 single_inst_bset_b(draco_ioct->io_status2, DRSTAT2_TMRINTENA);
213
214 return;
215 }
216 #endif
217 /*
218 * enable interrupts for timer A
219 */
220 clockcia->icr = (1<<7) | (1<<0);
221
222 /*
223 * start timer A in continuous shot mode
224 */
225 clockcia->cra = (clockcia->cra & 0xc0) | 1;
226
227 /*
228 * and globally enable interrupts for ciab
229 */
230 #ifdef DRACO
231 if (dracorev) /* we use cia a on DraCo */
232 single_inst_bset_b(*draco_intena, DRIRQ_INT2);
233 else
234 #endif
235 custom.intena = INTF_SETCLR | INTF_EXTER;
236
237 }
238
239 void
240 setstatclockrate(int hertz)
241 {
242 }
243
244 /*
245 * Returns ticks since last recorded clock "tick"
246 * (i.e. clock interrupt).
247 */
248 static u_int
249 clk_gettick(void)
250 {
251 u_int interval;
252 u_char hi, hi2, lo;
253
254 #ifdef DRACO
255 if (is_draco() >= 4) {
256 hi2 = draco_ioct->io_chiprev; /* latch timer */
257 hi = draco_ioct->io_timerhi;
258 lo = draco_ioct->io_timerlo;
259 interval = ((hi<<8) | lo);
260 if (interval > amiga_clk_interval) /* timer underflow */
261 interval = 65536 + amiga_clk_interval - interval;
262 else
263 interval = amiga_clk_interval - interval;
264
265 } else
266 #endif
267 {
268 hi = clockcia->tahi;
269 lo = clockcia->talo;
270 hi2 = clockcia->tahi;
271 if (hi != hi2) {
272 lo = clockcia->talo;
273 hi = hi2;
274 }
275
276 interval = (amiga_clk_interval - 1) - ((hi<<8) | lo);
277
278 /*
279 * should read ICR and if there's an int pending, adjust
280 * interval. However, since reading ICR clears the interrupt,
281 * we'd lose a hardclock int, and this is not tolerable.
282 */
283 }
284
285 return interval;
286 }
287
288 static u_int
289 clk_getcounter(struct timecounter *tc)
290 {
291 static int prev_hardclock;
292 static u_int prev_counter;
293 int cur_hardclock;
294 u_int counter;
295
296 do {
297 cur_hardclock = hardclock_ticks;
298 counter = clk_gettick();
299 } while (cur_hardclock != hardclock_ticks);
300
301 /*
302 * Handle the situation of a wrapped interval counter, while
303 * the hardclock() interrupt was not yet executed to update
304 * hardclock_ticks.
305 */
306 if (cur_hardclock < prev_hardclock)
307 cur_hardclock = prev_hardclock;
308 if (counter < prev_counter && cur_hardclock == prev_hardclock)
309 cur_hardclock++;
310
311 prev_hardclock = cur_hardclock;
312 prev_counter = counter;
313
314 return cur_hardclock * amiga_clk_interval + counter;
315 }
316
317 /*
318 * Calibrate delay loop.
319 * We use two iterations because we don't have enough bits to do a factor of
320 * 8 with better than 1%.
321 *
322 * XXX Note that we MUST stay below 1 tick if using clk_gettick(), even for
323 * underestimated values of delaydivisor.
324 *
325 * XXX the "ns" below is only correct for a shift of 10 bits, and even then
326 * off by 2.4%
327 */
328 static void
329 calibrate_delay(device_t self)
330 {
331 unsigned long t1, t2;
332 extern u_int32_t delaydivisor;
333 /* XXX this should be defined elsewhere */
334
335 if (self)
336 printf("Calibrating delay loop... ");
337
338 do {
339 t1 = clk_gettick();
340 delay(1024);
341 t2 = clk_gettick();
342 } while (t2 <= t1);
343 t2 = ((t2 - t1) * 1000000) / (amiga_clk_interval * hz);
344 delaydivisor = (delaydivisor * t2 + 1023) >> 10;
345 #ifdef DEBUG
346 if (self)
347 printf("\ndiff %ld us, new divisor %u/1024 us\n", t2,
348 delaydivisor);
349 do {
350 t1 = clk_gettick();
351 delay(1024);
352 t2 = clk_gettick();
353 } while (t2 <= t1);
354 t2 = ((t2 - t1) * 1000000) / (amiga_clk_interval * hz);
355 delaydivisor = (delaydivisor * t2 + 1023) >> 10;
356 if (self)
357 printf("diff %ld us, new divisor %u/1024 us\n", t2,
358 delaydivisor);
359 #endif
360 do {
361 t1 = clk_gettick();
362 delay(1024);
363 t2 = clk_gettick();
364 } while (t2 <= t1);
365 t2 = ((t2 - t1) * 1000000) / (amiga_clk_interval * hz);
366 delaydivisor = (delaydivisor * t2 + 1023) >> 10;
367 #ifdef DEBUG
368 if (self)
369 printf("diff %ld us, new divisor ", t2);
370 #endif
371 if (self)
372 printf("%u/1024 us\n", delaydivisor);
373 }
374
375 #if notyet
376
377 /* implement this later. I'd suggest using both timers in CIA-A, they're
378 not yet used. */
379
380 #include "clock.h"
381 #if NCLOCK > 0
382 /*
383 * /dev/clock: mappable high resolution timer.
384 *
385 * This code implements a 32-bit recycling counter (with a 4 usec period)
386 * using timers 2 & 3 on the 6840 clock chip. The counter can be mapped
387 * RO into a user's address space to achieve low overhead (no system calls),
388 * high-precision timing.
389 *
390 * Note that timer 3 is also used for the high precision profiling timer
391 * (PROFTIMER code above). Care should be taken when both uses are
392 * configured as only a token effort is made to avoid conflicting use.
393 */
394 #include <sys/proc.h>
395 #include <sys/resourcevar.h>
396 #include <sys/ioctl.h>
397 #include <sys/malloc.h>
398 #include <uvm/uvm_extern.h>
399 #include <amiga/amiga/clockioctl.h>
400 #include <sys/specdev.h>
401 #include <sys/vnode.h>
402 #include <sys/mman.h>
403
404 int clockon = 0; /* non-zero if high-res timer enabled */
405 #ifdef PROFTIMER
406 int profprocs = 0; /* # of procs using profiling timer */
407 #endif
408 #ifdef DEBUG
409 int clockdebug = 0;
410 #endif
411
412 /*ARGSUSED*/
413 int
414 clockopen(dev_t dev, int flags)
415 {
416 #ifdef PROFTIMER
417 #ifdef PROF
418 /*
419 * Kernel profiling enabled, give up.
420 */
421 if (profiling)
422 return(EBUSY);
423 #endif
424 /*
425 * If any user processes are profiling, give up.
426 */
427 if (profprocs)
428 return(EBUSY);
429 #endif
430 if (!clockon) {
431 startclock();
432 clockon++;
433 }
434 return(0);
435 }
436
437 /*ARGSUSED*/
438 int
439 clockclose(dev_t dev, int flags)
440 {
441 (void) clockunmmap(dev, (void *)0, curproc); /* XXX */
442 stopclock();
443 clockon = 0;
444 return(0);
445 }
446
447 /*ARGSUSED*/
448 int
449 clockioctl(dev_t dev, u_long cmd, void *data, int flag, struct proc *p)
450 {
451 int error = 0;
452
453 switch (cmd) {
454
455 case CLOCKMAP:
456 error = clockmmap(dev, (void **)data, p);
457 break;
458
459 case CLOCKUNMAP:
460 error = clockunmmap(dev, *(void **)data, p);
461 break;
462
463 case CLOCKGETRES:
464 *(int *)data = CLK_RESOLUTION;
465 break;
466
467 default:
468 error = EINVAL;
469 break;
470 }
471 return(error);
472 }
473
474 /*ARGSUSED*/
475 void
476 clockmap(dev_t dev, int off, int prot)
477 {
478 return((off + (INTIOBASE+CLKBASE+CLKSR-1)) >> PGSHIFT);
479 }
480
481 int
482 clockmmap(dev_t dev, void **addrp, struct proc *p)
483 {
484 int error;
485 struct vnode vn;
486 struct specinfo si;
487 int flags;
488
489 flags = MAP_FILE|MAP_SHARED;
490 if (*addrp)
491 flags |= MAP_FIXED;
492 else
493 *addrp = (void *)0x1000000; /* XXX */
494 vn.v_type = VCHR; /* XXX */
495 vn.v_specinfo = &si; /* XXX */
496 vn.v_rdev = dev; /* XXX */
497 error = vm_mmap(&p->p_vmspace->vm_map, (vm_offset_t *)addrp,
498 PAGE_SIZE, VM_PROT_ALL, flags, (void *)&vn, 0);
499 return(error);
500 }
501
502 int
503 clockunmmap(dev_t dev, void *addr, struct proc *p)
504 {
505 int rv;
506
507 if (addr == 0)
508 return(EINVAL); /* XXX: how do we deal with this? */
509 uvm_deallocate(p->p_vmspace->vm_map, (vm_offset_t)addr, PAGE_SIZE);
510 return 0;
511 }
512
513 void
514 startclock(void)
515 {
516 register struct clkreg *clk = (struct clkreg *)clkstd[0];
517
518 clk->clk_msb2 = -1; clk->clk_lsb2 = -1;
519 clk->clk_msb3 = -1; clk->clk_lsb3 = -1;
520
521 clk->clk_cr2 = CLK_CR3;
522 clk->clk_cr3 = CLK_OENAB|CLK_8BIT;
523 clk->clk_cr2 = CLK_CR1;
524 clk->clk_cr1 = CLK_IENAB;
525 }
526
527 void
528 stopclock(void)
529 {
530 register struct clkreg *clk = (struct clkreg *)clkstd[0];
531
532 clk->clk_cr2 = CLK_CR3;
533 clk->clk_cr3 = 0;
534 clk->clk_cr2 = CLK_CR1;
535 clk->clk_cr1 = CLK_IENAB;
536 }
537 #endif
538
539 #endif
540
541
542 #ifdef PROFTIMER
543 /*
544 * This code allows the amiga kernel to use one of the extra timers on
545 * the clock chip for profiling, instead of the regular system timer.
546 * The advantage of this is that the profiling timer can be turned up to
547 * a higher interrupt rate, giving finer resolution timing. The profclock
548 * routine is called from the lev6intr in locore, and is a specialized
549 * routine that calls addupc. The overhead then is far less than if
550 * hardclock/softclock was called. Further, the context switch code in
551 * locore has been changed to turn the profile clock on/off when switching
552 * into/out of a process that is profiling (startprofclock/stopprofclock).
553 * This reduces the impact of the profiling clock on other users, and might
554 * possibly increase the accuracy of the profiling.
555 */
556 int profint = PRF_INTERVAL; /* Clock ticks between interrupts */
557 int profscale = 0; /* Scale factor from sys clock to prof clock */
558 char profon = 0; /* Is profiling clock on? */
559
560 /* profon values - do not change, locore.s assumes these values */
561 #define PRF_NONE 0x00
562 #define PRF_USER 0x01
563 #define PRF_KERNEL 0x80
564
565 void
566 initprofclock(void)
567 {
568 #if NCLOCK > 0
569 struct proc *p = curproc; /* XXX */
570
571 /*
572 * If the high-res timer is running, force profiling off.
573 * Unfortunately, this gets reflected back to the user not as
574 * an error but as a lack of results.
575 */
576 if (clockon) {
577 p->p_stats->p_prof.pr_scale = 0;
578 return;
579 }
580 /*
581 * Keep track of the number of user processes that are profiling
582 * by checking the scale value.
583 *
584 * XXX: this all assumes that the profiling code is well behaved;
585 * i.e. profil() is called once per process with pcscale non-zero
586 * to turn it on, and once with pcscale zero to turn it off.
587 * Also assumes you don't do any forks or execs. Oh well, there
588 * is always adb...
589 */
590 if (p->p_stats->p_prof.pr_scale)
591 profprocs++;
592 else
593 profprocs--;
594 #endif
595 /*
596 * The profile interrupt interval must be an even divisor
597 * of the amiga_clk_interval so that scaling from a system clock
598 * tick to a profile clock tick is possible using integer math.
599 */
600 if (profint > amiga_clk_interval || (amiga_clk_interval % profint) != 0)
601 profint = amiga_clk_interval;
602 profscale = amiga_clk_interval / profint;
603 }
604
605 void
606 startprofclock(void)
607 {
608 unsigned short interval;
609
610 /* stop timer B */
611 clockcia->crb = clockcia->crb & 0xc0;
612
613 /* load interval into registers.
614 the clocks run at NTSC: 715.909kHz or PAL: 709.379kHz */
615
616 interval = profint - 1;
617
618 /* order of setting is important ! */
619 clockcia->tblo = interval & 0xff;
620 clockcia->tbhi = interval >> 8;
621
622 /* enable interrupts for timer B */
623 clockcia->icr = (1<<7) | (1<<1);
624
625 /* start timer B in continuous shot mode */
626 clockcia->crb = (clockcia->crb & 0xc0) | 1;
627 }
628
629 void
630 stopprofclock(void)
631 {
632 /* stop timer B */
633 clockcia->crb = clockcia->crb & 0xc0;
634 }
635
636 #ifdef PROF
637 /*
638 * profclock() is expanded in line in lev6intr() unless profiling kernel.
639 * Assumes it is called with clock interrupts blocked.
640 */
641 void
642 profclock(void *pc, int ps)
643 {
644 /*
645 * Came from user mode.
646 * If this process is being profiled record the tick.
647 */
648 if (USERMODE(ps)) {
649 if (p->p_stats.p_prof.pr_scale)
650 addupc(pc, &curproc->p_stats.p_prof, 1);
651 }
652 /*
653 * Came from kernel (supervisor) mode.
654 * If we are profiling the kernel, record the tick.
655 */
656 else if (profiling < 2) {
657 register int s = pc - s_lowpc;
658
659 if (s < s_textsize)
660 kcount[s / (HISTFRACTION * sizeof (*kcount))]++;
661 }
662 /*
663 * Kernel profiling was on but has been disabled.
664 * Mark as no longer profiling kernel and if all profiling done,
665 * disable the clock.
666 */
667 if (profiling && (profon & PRF_KERNEL)) {
668 profon &= ~PRF_KERNEL;
669 if (profon == PRF_NONE)
670 stopprofclock();
671 }
672 }
673 #endif
674 #endif
675