Home | History | Annotate | Line # | Download | only in dev
clock.c revision 1.53.12.1
      1 /*	$NetBSD: clock.c,v 1.53.12.1 2012/11/20 03:00:57 tls Exp $ */
      2 
      3 /*
      4  * Copyright (c) 1988 University of Utah.
      5  * Copyright (c) 1982, 1990 The Regents of the University of California.
      6  * All rights reserved.
      7  *
      8  * This code is derived from software contributed to Berkeley by
      9  * the Systems Programming Group of the University of Utah Computer
     10  * Science Department.
     11  *
     12  * Redistribution and use in source and binary forms, with or without
     13  * modification, are permitted provided that the following conditions
     14  * are met:
     15  * 1. Redistributions of source code must retain the above copyright
     16  *    notice, this list of conditions and the following disclaimer.
     17  * 2. Redistributions in binary form must reproduce the above copyright
     18  *    notice, this list of conditions and the following disclaimer in the
     19  *    documentation and/or other materials provided with the distribution.
     20  * 3. Neither the name of the University nor the names of its contributors
     21  *    may be used to endorse or promote products derived from this software
     22  *    without specific prior written permission.
     23  *
     24  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     25  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     26  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     27  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     28  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     29  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     30  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     31  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     32  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     33  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     34  * SUCH DAMAGE.
     35  *
     36  * from: Utah $Hdr: clock.c 1.18 91/01/21$
     37  *
     38  *	@(#)clock.c	7.6 (Berkeley) 5/7/91
     39  */
     40 
     41 #include <sys/cdefs.h>
     42 __KERNEL_RCSID(0, "$NetBSD: clock.c,v 1.53.12.1 2012/11/20 03:00:57 tls Exp $");
     43 
     44 #include <sys/param.h>
     45 #include <sys/kernel.h>
     46 #include <sys/device.h>
     47 #include <sys/systm.h>
     48 #include <sys/timetc.h>
     49 #include <machine/psl.h>
     50 #include <machine/cpu.h>
     51 #include <amiga/amiga/device.h>
     52 #include <amiga/amiga/custom.h>
     53 #include <amiga/amiga/cia.h>
     54 #ifdef DRACO
     55 #include <amiga/amiga/drcustom.h>
     56 #include <m68k/include/asm_single.h>
     57 #endif
     58 #include <amiga/dev/rtc.h>
     59 #include <amiga/dev/zbusvar.h>
     60 
     61 #if defined(PROF) && defined(PROFTIMER)
     62 #include <sys/PROF.h>
     63 #endif
     64 
     65 /*
     66  * Machine-dependent clock routines.
     67  *
     68  * Startrtclock restarts the real-time clock, which provides
     69  * hardclock interrupts to kern_clock.c.
     70  *
     71  * Inittodr initializes the time of day hardware which provides
     72  * date functions.
     73  *
     74  * Resettodr restores the time of day hardware after a time change.
     75  *
     76  * A note on the real-time clock:
     77  * We actually load the clock with amiga_clk_interval-1 instead of amiga_clk_interval.
     78  * This is because the counter decrements to zero after N+1 enabled clock
     79  * periods where N is the value loaded into the counter.
     80  */
     81 
     82 int clockmatch(device_t, cfdata_t, void *);
     83 void clockattach(device_t, device_t, void *);
     84 void cpu_initclocks(void);
     85 static void calibrate_delay(device_t);
     86 
     87 /* the clocks run at NTSC: 715.909kHz or PAL: 709.379kHz.
     88    We're using a 100 Hz clock. */
     89 int amiga_clk_interval;
     90 int eclockfreq;
     91 struct CIA *clockcia;
     92 
     93 static u_int clk_getcounter(struct timecounter *);
     94 
     95 static struct timecounter clk_timecounter = {
     96 	clk_getcounter,	/* get_timecount */
     97 	0,		/* no poll_pps */
     98 	~0u,		/* counter_mask */
     99 	0,		/* frequency */
    100 	"clock",	/* name, overriden later */
    101 	100,		/* quality */
    102 	NULL,		/* prev */
    103 	NULL,		/* next */
    104 };
    105 
    106 CFATTACH_DECL_NEW(clock, 0,
    107     clockmatch, clockattach, NULL, NULL);
    108 
    109 int
    110 clockmatch(device_t parent, cfdata_t cf, void *aux)
    111 {
    112 	if (matchname("clock", aux))
    113 		return(1);
    114 	return(0);
    115 }
    116 
    117 /*
    118  * Start the real-time clock.
    119  */
    120 void
    121 clockattach(device_t parent, device_t self, void *aux)
    122 {
    123 	const char *clockchip;
    124 	unsigned short interval;
    125 	int chipfreq;
    126 #ifdef DRACO
    127 	u_char dracorev;
    128 #endif
    129 
    130 	if (eclockfreq == 0)
    131 		eclockfreq = 715909;	/* guess NTSC */
    132 
    133 	chipfreq = eclockfreq;
    134 
    135 #ifdef DRACO
    136 	dracorev = is_draco();
    137 	if (dracorev >= 4) {
    138 		chipfreq = eclockfreq / 7;
    139 		clockchip = "QuickLogic";
    140 	} else if (dracorev) {
    141 		clockcia = (struct CIA *)CIAAbase;
    142 		clockchip = "CIA A";
    143 	} else
    144 #endif
    145 	{
    146 		clockcia = (struct CIA *)CIABbase;
    147 		clockchip = "CIA B";
    148 	}
    149 
    150 	amiga_clk_interval = chipfreq / hz;
    151 
    152 	if (self != NULL) {	/* real autoconfig? */
    153 		printf(": %s system hz %d hardware hz %d\n", clockchip, hz,
    154 		    chipfreq);
    155 
    156 		clk_timecounter.tc_name = clockchip;
    157 		clk_timecounter.tc_frequency = chipfreq;
    158 		tc_init(&clk_timecounter);
    159 	}
    160 
    161 #ifdef DRACO
    162 	if (dracorev >= 4) {
    163 		/*
    164 		 * can't preload anything beforehand, timer is free_running;
    165 		 * but need this for delay calibration.
    166 		 */
    167 
    168 		draco_ioct->io_timerlo = amiga_clk_interval & 0xff;
    169 		draco_ioct->io_timerhi = amiga_clk_interval >> 8;
    170 
    171 		calibrate_delay(self);
    172 
    173 		return;
    174 	}
    175 #endif
    176 	/*
    177 	 * stop timer A
    178 	 */
    179 	clockcia->cra = clockcia->cra & 0xc0;
    180 	clockcia->icr = 1 << 0;		/* disable timer A interrupt */
    181 	interval = clockcia->icr;		/* and make sure it's clear */
    182 
    183 	/*
    184 	 * load interval into registers.
    185          * the clocks run at NTSC: 715.909kHz or PAL: 709.379kHz
    186 	 */
    187 	interval = amiga_clk_interval - 1;
    188 
    189 	/*
    190 	 * order of setting is important !
    191 	 */
    192 	clockcia->talo = interval & 0xff;
    193 	clockcia->tahi = interval >> 8;
    194 	/*
    195 	 * start timer A in continuous mode
    196 	 */
    197 	clockcia->cra = (clockcia->cra & 0xc0) | 1;
    198 
    199 	calibrate_delay(self);
    200 }
    201 
    202 void
    203 cpu_initclocks(void)
    204 {
    205 #ifdef DRACO
    206 	unsigned char dracorev;
    207 	dracorev = is_draco();
    208 	if (dracorev >= 4) {
    209 		draco_ioct->io_timerlo = amiga_clk_interval & 0xFF;
    210 		draco_ioct->io_timerhi = amiga_clk_interval >> 8;
    211 		draco_ioct->io_timerrst = 0;	/* any value resets */
    212 		single_inst_bset_b(draco_ioct->io_status2, DRSTAT2_TMRINTENA);
    213 
    214 		return;
    215 	}
    216 #endif
    217 	/*
    218 	 * enable interrupts for timer A
    219 	 */
    220 	clockcia->icr = (1<<7) | (1<<0);
    221 
    222 	/*
    223 	 * start timer A in continuous shot mode
    224 	 */
    225 	clockcia->cra = (clockcia->cra & 0xc0) | 1;
    226 
    227 	/*
    228 	 * and globally enable interrupts for ciab
    229 	 */
    230 #ifdef DRACO
    231 	if (dracorev)		/* we use cia a on DraCo */
    232 		single_inst_bset_b(*draco_intena, DRIRQ_INT2);
    233 	else
    234 #endif
    235 		custom.intena = INTF_SETCLR | INTF_EXTER;
    236 
    237 }
    238 
    239 void
    240 setstatclockrate(int hertz)
    241 {
    242 }
    243 
    244 /*
    245  * Returns ticks since last recorded clock "tick"
    246  * (i.e. clock interrupt).
    247  */
    248 static u_int
    249 clk_gettick(void)
    250 {
    251 	u_int interval;
    252 	u_char hi, hi2, lo;
    253 
    254 #ifdef DRACO
    255 	if (is_draco() >= 4) {
    256 		hi2 = draco_ioct->io_chiprev;	/* latch timer */
    257 		hi = draco_ioct->io_timerhi;
    258 		lo = draco_ioct->io_timerlo;
    259 		interval = ((hi<<8) | lo);
    260 		if (interval > amiga_clk_interval)	/* timer underflow */
    261 			interval = 65536 + amiga_clk_interval - interval;
    262 		else
    263 			interval = amiga_clk_interval - interval;
    264 
    265 	} else
    266 #endif
    267 	{
    268 		hi  = clockcia->tahi;
    269 		lo  = clockcia->talo;
    270 		hi2 = clockcia->tahi;
    271 		if (hi != hi2) {
    272 			lo = clockcia->talo;
    273 			hi = hi2;
    274 		}
    275 
    276 		interval = (amiga_clk_interval - 1) - ((hi<<8) | lo);
    277 
    278 		/*
    279 		 * should read ICR and if there's an int pending, adjust
    280 		 * interval. However, since reading ICR clears the interrupt,
    281 		 * we'd lose a hardclock int, and this is not tolerable.
    282 		 */
    283 	}
    284 
    285 	return interval;
    286 }
    287 
    288 static u_int
    289 clk_getcounter(struct timecounter *tc)
    290 {
    291 	static int prev_hardclock;
    292 	static u_int prev_counter;
    293 	int cur_hardclock;
    294 	u_int counter;
    295 
    296 	do {
    297 		cur_hardclock = hardclock_ticks;
    298 		counter = clk_gettick();
    299 	} while (cur_hardclock != hardclock_ticks);
    300 
    301 	/*
    302 	 * Handle the situation of a wrapped interval counter, while
    303 	 * the hardclock() interrupt was not yet executed to update
    304 	 * hardclock_ticks.
    305 	 */
    306 	if (cur_hardclock < prev_hardclock)
    307 		cur_hardclock = prev_hardclock;
    308 	if (counter < prev_counter && cur_hardclock == prev_hardclock)
    309 		cur_hardclock++;
    310 
    311 	prev_hardclock = cur_hardclock;
    312 	prev_counter = counter;
    313 
    314 	return cur_hardclock * amiga_clk_interval + counter;
    315 }
    316 
    317 /*
    318  * Calibrate delay loop.
    319  * We use two iterations because we don't have enough bits to do a factor of
    320  * 8 with better than 1%.
    321  *
    322  * XXX Note that we MUST stay below 1 tick if using clk_gettick(), even for
    323  * underestimated values of delaydivisor.
    324  *
    325  * XXX the "ns" below is only correct for a shift of 10 bits, and even then
    326  * off by 2.4%
    327  */
    328 static void
    329 calibrate_delay(device_t self)
    330 {
    331 	unsigned long t1, t2;
    332 	extern u_int32_t delaydivisor;
    333 		/* XXX this should be defined elsewhere */
    334 
    335 	if (self)
    336 		printf("Calibrating delay loop... ");
    337 
    338 	do {
    339 		t1 = clk_gettick();
    340 		delay(1024);
    341 		t2 = clk_gettick();
    342 	} while (t2 <= t1);
    343 	t2 = ((t2 - t1) * 1000000) / (amiga_clk_interval * hz);
    344 	delaydivisor = (delaydivisor * t2 + 1023) >> 10;
    345 #ifdef DEBUG
    346 	if (self)
    347 		printf("\ndiff %ld us, new divisor %u/1024 us\n", t2,
    348 		    delaydivisor);
    349 	do {
    350 		t1 = clk_gettick();
    351 		delay(1024);
    352 		t2 = clk_gettick();
    353 	} while (t2 <= t1);
    354 	t2 = ((t2 - t1) * 1000000) / (amiga_clk_interval * hz);
    355 	delaydivisor = (delaydivisor * t2 + 1023) >> 10;
    356 	if (self)
    357 		printf("diff %ld us, new divisor %u/1024 us\n", t2,
    358 		    delaydivisor);
    359 #endif
    360 	do {
    361 		t1 = clk_gettick();
    362 		delay(1024);
    363 		t2 = clk_gettick();
    364 	} while (t2 <= t1);
    365 	t2 = ((t2 - t1) * 1000000) / (amiga_clk_interval * hz);
    366 	delaydivisor = (delaydivisor * t2 + 1023) >> 10;
    367 #ifdef DEBUG
    368 	if (self)
    369 		printf("diff %ld us, new divisor ", t2);
    370 #endif
    371 	if (self)
    372 		printf("%u/1024 us\n", delaydivisor);
    373 }
    374 
    375 #if notyet
    376 
    377 /* implement this later. I'd suggest using both timers in CIA-A, they're
    378    not yet used. */
    379 
    380 #include "clock.h"
    381 #if NCLOCK > 0
    382 /*
    383  * /dev/clock: mappable high resolution timer.
    384  *
    385  * This code implements a 32-bit recycling counter (with a 4 usec period)
    386  * using timers 2 & 3 on the 6840 clock chip.  The counter can be mapped
    387  * RO into a user's address space to achieve low overhead (no system calls),
    388  * high-precision timing.
    389  *
    390  * Note that timer 3 is also used for the high precision profiling timer
    391  * (PROFTIMER code above).  Care should be taken when both uses are
    392  * configured as only a token effort is made to avoid conflicting use.
    393  */
    394 #include <sys/proc.h>
    395 #include <sys/resourcevar.h>
    396 #include <sys/ioctl.h>
    397 #include <sys/malloc.h>
    398 #include <uvm/uvm_extern.h>
    399 #include <amiga/amiga/clockioctl.h>
    400 #include <sys/specdev.h>
    401 #include <sys/vnode.h>
    402 #include <sys/mman.h>
    403 
    404 int clockon = 0;		/* non-zero if high-res timer enabled */
    405 #ifdef PROFTIMER
    406 int  profprocs = 0;		/* # of procs using profiling timer */
    407 #endif
    408 #ifdef DEBUG
    409 int clockdebug = 0;
    410 #endif
    411 
    412 /*ARGSUSED*/
    413 int
    414 clockopen(dev_t dev, int flags)
    415 {
    416 #ifdef PROFTIMER
    417 #ifdef PROF
    418 	/*
    419 	 * Kernel profiling enabled, give up.
    420 	 */
    421 	if (profiling)
    422 		return(EBUSY);
    423 #endif
    424 	/*
    425 	 * If any user processes are profiling, give up.
    426 	 */
    427 	if (profprocs)
    428 		return(EBUSY);
    429 #endif
    430 	if (!clockon) {
    431 		startclock();
    432 		clockon++;
    433 	}
    434 	return(0);
    435 }
    436 
    437 /*ARGSUSED*/
    438 int
    439 clockclose(dev_t dev, int flags)
    440 {
    441 	(void) clockunmmap(dev, (void *)0, curproc);	/* XXX */
    442 	stopclock();
    443 	clockon = 0;
    444 	return(0);
    445 }
    446 
    447 /*ARGSUSED*/
    448 int
    449 clockioctl(dev_t dev, u_long cmd, void *data, int flag, struct proc *p)
    450 {
    451 	int error = 0;
    452 
    453 	switch (cmd) {
    454 
    455 	case CLOCKMAP:
    456 		error = clockmmap(dev, (void **)data, p);
    457 		break;
    458 
    459 	case CLOCKUNMAP:
    460 		error = clockunmmap(dev, *(void **)data, p);
    461 		break;
    462 
    463 	case CLOCKGETRES:
    464 		*(int *)data = CLK_RESOLUTION;
    465 		break;
    466 
    467 	default:
    468 		error = EINVAL;
    469 		break;
    470 	}
    471 	return(error);
    472 }
    473 
    474 /*ARGSUSED*/
    475 void
    476 clockmap(dev_t dev, int off, int prot)
    477 {
    478 	return((off + (INTIOBASE+CLKBASE+CLKSR-1)) >> PGSHIFT);
    479 }
    480 
    481 int
    482 clockmmap(dev_t dev, void **addrp, struct proc *p)
    483 {
    484 	int error;
    485 	struct vnode vn;
    486 	struct specinfo si;
    487 	int flags;
    488 
    489 	flags = MAP_FILE|MAP_SHARED;
    490 	if (*addrp)
    491 		flags |= MAP_FIXED;
    492 	else
    493 		*addrp = (void *)0x1000000;	/* XXX */
    494 	vn.v_type = VCHR;			/* XXX */
    495 	vn.v_specinfo = &si;			/* XXX */
    496 	vn.v_rdev = dev;			/* XXX */
    497 	error = vm_mmap(&p->p_vmspace->vm_map, (vm_offset_t *)addrp,
    498 			PAGE_SIZE, VM_PROT_ALL, flags, (void *)&vn, 0);
    499 	return(error);
    500 }
    501 
    502 int
    503 clockunmmap(dev_t dev, void *addr, struct proc *p)
    504 {
    505 	int rv;
    506 
    507 	if (addr == 0)
    508 		return(EINVAL);		/* XXX: how do we deal with this? */
    509 	uvm_deallocate(p->p_vmspace->vm_map, (vm_offset_t)addr, PAGE_SIZE);
    510 	return 0;
    511 }
    512 
    513 void
    514 startclock(void)
    515 {
    516 	register struct clkreg *clk = (struct clkreg *)clkstd[0];
    517 
    518 	clk->clk_msb2 = -1; clk->clk_lsb2 = -1;
    519 	clk->clk_msb3 = -1; clk->clk_lsb3 = -1;
    520 
    521 	clk->clk_cr2 = CLK_CR3;
    522 	clk->clk_cr3 = CLK_OENAB|CLK_8BIT;
    523 	clk->clk_cr2 = CLK_CR1;
    524 	clk->clk_cr1 = CLK_IENAB;
    525 }
    526 
    527 void
    528 stopclock(void)
    529 {
    530 	register struct clkreg *clk = (struct clkreg *)clkstd[0];
    531 
    532 	clk->clk_cr2 = CLK_CR3;
    533 	clk->clk_cr3 = 0;
    534 	clk->clk_cr2 = CLK_CR1;
    535 	clk->clk_cr1 = CLK_IENAB;
    536 }
    537 #endif
    538 
    539 #endif
    540 
    541 
    542 #ifdef PROFTIMER
    543 /*
    544  * This code allows the amiga kernel to use one of the extra timers on
    545  * the clock chip for profiling, instead of the regular system timer.
    546  * The advantage of this is that the profiling timer can be turned up to
    547  * a higher interrupt rate, giving finer resolution timing. The profclock
    548  * routine is called from the lev6intr in locore, and is a specialized
    549  * routine that calls addupc. The overhead then is far less than if
    550  * hardclock/softclock was called. Further, the context switch code in
    551  * locore has been changed to turn the profile clock on/off when switching
    552  * into/out of a process that is profiling (startprofclock/stopprofclock).
    553  * This reduces the impact of the profiling clock on other users, and might
    554  * possibly increase the accuracy of the profiling.
    555  */
    556 int  profint   = PRF_INTERVAL;	/* Clock ticks between interrupts */
    557 int  profscale = 0;		/* Scale factor from sys clock to prof clock */
    558 char profon    = 0;		/* Is profiling clock on? */
    559 
    560 /* profon values - do not change, locore.s assumes these values */
    561 #define PRF_NONE	0x00
    562 #define	PRF_USER	0x01
    563 #define	PRF_KERNEL	0x80
    564 
    565 void
    566 initprofclock(void)
    567 {
    568 #if NCLOCK > 0
    569 	struct proc *p = curproc;		/* XXX */
    570 
    571 	/*
    572 	 * If the high-res timer is running, force profiling off.
    573 	 * Unfortunately, this gets reflected back to the user not as
    574 	 * an error but as a lack of results.
    575 	 */
    576 	if (clockon) {
    577 		p->p_stats->p_prof.pr_scale = 0;
    578 		return;
    579 	}
    580 	/*
    581 	 * Keep track of the number of user processes that are profiling
    582 	 * by checking the scale value.
    583 	 *
    584 	 * XXX: this all assumes that the profiling code is well behaved;
    585 	 * i.e. profil() is called once per process with pcscale non-zero
    586 	 * to turn it on, and once with pcscale zero to turn it off.
    587 	 * Also assumes you don't do any forks or execs.  Oh well, there
    588 	 * is always adb...
    589 	 */
    590 	if (p->p_stats->p_prof.pr_scale)
    591 		profprocs++;
    592 	else
    593 		profprocs--;
    594 #endif
    595 	/*
    596 	 * The profile interrupt interval must be an even divisor
    597 	 * of the amiga_clk_interval so that scaling from a system clock
    598 	 * tick to a profile clock tick is possible using integer math.
    599 	 */
    600 	if (profint > amiga_clk_interval || (amiga_clk_interval % profint) != 0)
    601 		profint = amiga_clk_interval;
    602 	profscale = amiga_clk_interval / profint;
    603 }
    604 
    605 void
    606 startprofclock(void)
    607 {
    608   unsigned short interval;
    609 
    610   /* stop timer B */
    611   clockcia->crb = clockcia->crb & 0xc0;
    612 
    613   /* load interval into registers.
    614      the clocks run at NTSC: 715.909kHz or PAL: 709.379kHz */
    615 
    616   interval = profint - 1;
    617 
    618   /* order of setting is important ! */
    619   clockcia->tblo = interval & 0xff;
    620   clockcia->tbhi = interval >> 8;
    621 
    622   /* enable interrupts for timer B */
    623   clockcia->icr = (1<<7) | (1<<1);
    624 
    625   /* start timer B in continuous shot mode */
    626   clockcia->crb = (clockcia->crb & 0xc0) | 1;
    627 }
    628 
    629 void
    630 stopprofclock(void)
    631 {
    632   /* stop timer B */
    633   clockcia->crb = clockcia->crb & 0xc0;
    634 }
    635 
    636 #ifdef PROF
    637 /*
    638  * profclock() is expanded in line in lev6intr() unless profiling kernel.
    639  * Assumes it is called with clock interrupts blocked.
    640  */
    641 void
    642 profclock(void *pc, int ps)
    643 {
    644 	/*
    645 	 * Came from user mode.
    646 	 * If this process is being profiled record the tick.
    647 	 */
    648 	if (USERMODE(ps)) {
    649 		if (p->p_stats.p_prof.pr_scale)
    650 			addupc(pc, &curproc->p_stats.p_prof, 1);
    651 	}
    652 	/*
    653 	 * Came from kernel (supervisor) mode.
    654 	 * If we are profiling the kernel, record the tick.
    655 	 */
    656 	else if (profiling < 2) {
    657 		register int s = pc - s_lowpc;
    658 
    659 		if (s < s_textsize)
    660 			kcount[s / (HISTFRACTION * sizeof (*kcount))]++;
    661 	}
    662 	/*
    663 	 * Kernel profiling was on but has been disabled.
    664 	 * Mark as no longer profiling kernel and if all profiling done,
    665 	 * disable the clock.
    666 	 */
    667 	if (profiling && (profon & PRF_KERNEL)) {
    668 		profon &= ~PRF_KERNEL;
    669 		if (profon == PRF_NONE)
    670 			stopprofclock();
    671 	}
    672 }
    673 #endif
    674 #endif
    675