Home | History | Annotate | Line # | Download | only in dev
fd.c revision 1.3
      1 /*-
      2  * Copyright (c) 1993, 1994 Charles Hannum.
      3  * Copyright (c) 1990 The Regents of the University of California.
      4  * All rights reserved.
      5  *
      6  * This code is derived from software contributed to Berkeley by
      7  * Don Ahn.
      8  *
      9  * Redistribution and use in source and binary forms, with or without
     10  * modification, are permitted provided that the following conditions
     11  * are met:
     12  * 1. Redistributions of source code must retain the above copyright
     13  *    notice, this list of conditions and the following disclaimer.
     14  * 2. Redistributions in binary form must reproduce the above copyright
     15  *    notice, this list of conditions and the following disclaimer in the
     16  *    documentation and/or other materials provided with the distribution.
     17  * 3. All advertising materials mentioning features or use of this software
     18  *    must display the following acknowledgement:
     19  *	This product includes software developed by the University of
     20  *	California, Berkeley and its contributors.
     21  * 4. Neither the name of the University nor the names of its contributors
     22  *    may be used to endorse or promote products derived from this software
     23  *    without specific prior written permission.
     24  *
     25  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     26  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     27  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     28  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     29  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     30  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     31  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     32  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     33  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     34  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     35  * SUCH DAMAGE.
     36  *
     37  *	from: @(#)fd.c	7.4 (Berkeley) 5/25/91
     38  */
     39 /*
     40  * Copyright (c) 1994 Brad Pepers
     41  * All rights reserved.
     42  *
     43  * Redistribution and use in source and binary forms, with or without
     44  * modification, are permitted provided that the following conditions
     45  * are met:
     46  * 1. Redistributions of source code must retain the above copyright
     47  *    notice, this list of conditions and the following disclaimer.
     48  * 2. Redistributions in binary form must reproduce the above copyright
     49  *    notice, this list of conditions and the following disclaimer in the
     50  *    documentation and/or other materials provided with the distribution.
     51  * 3. All advertising materials mentioning features or use of this software
     52  *    must display the following acknowledgement:
     53  *      This product includes software developed by Brad Pepers
     54  * 4. The name of the author may not be used to endorse or promote products
     55  *    derived from this software without specific prior written permission
     56  *
     57  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
     58  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
     59  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
     60  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
     61  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
     62  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
     63  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
     64  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
     65  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
     66  * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
     67  *
     68  *	$Id: fd.c,v 1.3 1994/04/07 17:43:29 chopps Exp $
     69  *
     70  *
     71  */
     72 
     73 /*
     74  * floppy interface
     75  */
     76 
     77 #include "fd.h"
     78 #if NFD > 0
     79 
     80 #include <sys/param.h>
     81 #include <sys/systm.h>
     82 #include <sys/buf.h>
     83 #include <sys/dkstat.h>
     84 #include <sys/disklabel.h>
     85 #include <sys/malloc.h>
     86 #include <sys/proc.h>
     87 #include <sys/reboot.h>
     88 #include <sys/file.h>
     89 #include <sys/ioctl.h>
     90 
     91 #include <amiga/dev/device.h>
     92 #include <amiga/amiga/cia.h>
     93 #include <amiga/amiga/custom.h>
     94 
     95 #define UNIT(x)		(minor(x) & 3)
     96 #define	b_cylin		b_resid
     97 #define FDBLK 512
     98 #define MAX_SECTS 22
     99 #define IMMED_WRITE 0
    100 
    101 int fdattach();
    102 struct	driver fddriver = {
    103 	fdattach, "fd",
    104 };
    105 
    106 /* defines */
    107 #define MFM_SYNC	0x4489
    108 #define DSKLEN_DMAEN    (1<<15)
    109 #define DSKLEN_WRITE    (1<<14)
    110 
    111 /* drive type values */
    112 #define FD_NONE		0x00000000
    113 #define FD_DD_3		0xffffffff	/* double-density 3.5" (880K) */
    114 #define FD_HD_3		0x55555555	/* high-density 3.5" (1760K) */
    115 
    116 struct fd_type {
    117 	int id;
    118 	char *name;
    119 	int tracks;
    120 	int heads;
    121 	int read_size;
    122 	int write_size;
    123 	int sect_mult;
    124 	int precomp1;
    125 	int precomp2;
    126 	int step_delay;
    127 	int side_time;
    128 	int settle_time;
    129 };
    130 
    131 struct fd_type drive_types[] = {
    132 /*	    id       name      tr he  rdsz   wrsz  sm pc1  pc2 sd  st st  */
    133 	{ FD_DD_3, "DD 3.5", 80, 2, 14716, 13630, 1, 80, 161, 3, 18, 1 },
    134 	{ FD_HD_3, "HD 3.5", 80, 2, 29432, 27260, 2, 80, 161, 3, 18, 1 },
    135 	{ FD_NONE, "No Drive", 0, }
    136 };
    137 int num_dr_types = sizeof(drive_types) / sizeof(drive_types[0]);
    138 
    139 /*
    140  * Per drive structure.
    141  * N per controller (presently 4) (DRVS_PER_CTLR)
    142  */
    143 #define DRVS_PER_CTLR 4
    144 struct fd_data {
    145 	int fdu;		/* This unit number */
    146 	struct buf head;	/* Head of buf chain      */
    147 	struct buf rhead;	/* Raw head of buf chain  */
    148 	int type;		/* Drive type */
    149 	struct fd_type *ft;	/* Pointer to type descriptor */
    150 	int flags;
    151 #define	FDF_OPEN	0x01	/* it's open		*/
    152 	int skip;
    153 	int sects;		/* number of sectors in a track */
    154 	int size;		/* size of disk in sectors */
    155 	int side;		/* current side disk is on */
    156 	int dir;		/* current direction of stepping */
    157 	int cyl;		/* current cylinder disk is on */
    158 	int buf_track;
    159 	int buf_dirty;
    160 	char *buf_data;
    161 	char *buf_labels;
    162 	int write_cnt;
    163 };
    164 
    165 /*
    166  * Per controller structure.
    167  */
    168 struct fdc_data
    169 {
    170 	int fdcu;		/* our unit number */
    171 	struct fd_data *fd;	/* drive we are currently doing work for */
    172 	int motor_fdu;	/* drive that has its motor on */
    173 	int state;
    174 	int saved;
    175 	int retry;
    176 	struct fd_data fd_data[DRVS_PER_CTLR];
    177 };
    178 struct fdc_data fdc_data[NFD];
    179 
    180 /*
    181  * Throughout this file the following conventions will be used:
    182  *
    183  * fd is a pointer to the fd_data struct for the drive in question
    184  * fdc is a pointer to the fdc_data struct for the controller
    185  * fdu is the floppy drive unit number
    186  * fdcu is the floppy controller unit number
    187  * fdsu is the floppy drive unit number on that controller. (sub-unit)
    188  */
    189 typedef int	fdu_t;
    190 typedef int	fdcu_t;
    191 typedef int	fdsu_t;
    192 typedef	struct fd_data *fd_p;
    193 typedef struct fdc_data *fdc_p;
    194 
    195 /*
    196  * protos.
    197  */
    198 static int delay __P((int));
    199 void encode __P((u_long, u_long *, u_long *));
    200 void fd_step __P((void));
    201 void fd_seek __P((fd_p, int));
    202 void correct __P((u_long *));
    203 void fd_probe __P((fd_p));
    204 void fd_turnon __P((fdc_p, fdu_t));
    205 void fd_turnoff __P((fdc_p));
    206 void track_read __P((fdc_p, fd_p, int));
    207 void fd_timeout __P((fdc_p));
    208 void fd_motor_to __P((fdcu_t));
    209 void fd_motor_on __P((fdc_p, fdu_t));
    210 void track_write __P((fdc_p, fd_p));
    211 void amiga_write __P((fd_p));
    212 void fd_calibrate __P((fd_p));
    213 void encode_block __P((u_long *, u_char *, int, u_long *));
    214 void fd_select_dir __P((fd_p, int));
    215 void fd_pseudointr __P((fdc_p));
    216 void fd_select_side __P((fd_p, int));
    217 
    218 u_long scan_sync __P((u_long, u_long, int));
    219 u_long encode_long __P((u_long, u_long *));
    220 u_long loop_read_id __P((int));
    221 u_long get_drive_id __P((int));
    222 
    223 int fdstate __P((fdc_p));
    224 int retrier __P((fdc_p));
    225 int amiga_read __P((fd_p));
    226 int get_drive_type __P((u_long));
    227 
    228 /* device routines */
    229 int Fdopen __P((dev_t, int));
    230 int fdsize __P((dev_t));
    231 int fdioctl __P((dev_t, int, caddr_t, int, struct proc *));
    232 int fdclose __P((dev_t, int));
    233 int fdattach __P((struct amiga_device *));
    234 
    235 void fdintr __P((fdcu_t));
    236 void fdstart __P((fdc_p));
    237 void fdstrategy __P((struct buf *bp));
    238 
    239 #define DEVIDLE		0
    240 #define FINDWORK	1
    241 #define	DOSEEK		2
    242 #define DO_IO	 	3
    243 #define	DONE_IO		4
    244 #define	WAIT_READ	5
    245 #define	WAIT_WRITE	6
    246 #define DELAY_WRITE	7
    247 #define RECALCOMPLETE	8
    248 #define	STARTRECAL	9
    249 #define	RESETCTLR	10
    250 #define	SEEKWAIT	11
    251 #define	RECALWAIT	12
    252 #define	MOTORWAIT	13
    253 
    254 #undef DEBUG
    255 
    256 #ifdef DEBUG
    257 
    258 char *fdstates[] =
    259 {
    260 "DEVIDLE",
    261 "FINDWORK",
    262 "DOSEEK",
    263 "DO_IO",
    264 "DONE_IO",
    265 "WAIT_READ",
    266 "WAIT_WRITE",
    267 "DELAY_WRITE",
    268 "RECALCOMPLETE",
    269 "STARTRECAL",
    270 "RESETCTLR",
    271 "SEEKWAIT",
    272 "RECALWAIT",
    273 "MOTORWAIT",
    274 };
    275 
    276 #define TRACE0(arg) if (fd_debug == 1) printf(arg)
    277 #define TRACE1(arg1,arg2) if (fd_debug == 1) printf(arg1,arg2)
    278 
    279 #else	/* !DEBUG */
    280 
    281 #define TRACE0(arg)
    282 #define TRACE1(arg1,arg2)
    283 
    284 #endif	/* !DEBUG */
    285 
    286 extern int hz;
    287 
    288 unsigned char *raw_buf = NULL;
    289 #ifdef DEBUG
    290 int fd_debug = 1;
    291 #else
    292 int fd_debug = 0;
    293 #endif
    294 
    295 /*
    296  * Floppy Support Routines
    297  */
    298 #define MOTOR_ON		(ciab.prb &= ~CIAB_PRB_MTR)
    299 #define MOTOR_OFF		(ciab.prb |= CIAB_PRB_MTR)
    300 #define SELECT(mask)		(ciab.prb &= ~mask)
    301 #define DESELECT(mask)		(ciab.prb |= mask)
    302 #define SELMASK(drive)		(1 << (3 + (drive & 3)))
    303 
    304 /*
    305  * Delay for a number of milliseconds
    306  *	- tried ciab.tod but seems to miss values and screw up
    307  *	- stupid busy loop for now
    308  */
    309 static int
    310 delay(delay_ms)
    311 	int delay_ms;
    312 {
    313 	long cnt, inner;
    314 	int val;
    315 
    316 	for (cnt = 0; cnt < delay_ms; cnt++)
    317 		for (inner = 0; inner < 500; inner++)
    318 			val += inner * cnt;
    319 	return(val);
    320 }
    321 
    322 /*
    323  * motor control stuff
    324  */
    325 void
    326 fd_motor_to(fdcu)
    327 	fdcu_t fdcu;
    328 {
    329 	printf("timeout starting motor\n");	/* XXXX */
    330 	fdc_data[fdcu].motor_fdu = -2;
    331 }
    332 
    333 void
    334 fd_motor_on(fdc, fdu)
    335 	fdc_p fdc;
    336 	fdu_t fdu;
    337 {
    338 	int i;
    339 	int cnt;		/* XXXX not used? */
    340 
    341 	cnt = 0;		/* XXXX not used? */
    342 
    343 	/* deselect all drives */
    344 	for (i = 0; i < DRVS_PER_CTLR; i++)
    345 		DESELECT(SELMASK(i));
    346 
    347 	/* turn on the unit's motor */
    348 	MOTOR_ON;
    349 	SELECT(SELMASK(fdu));
    350 
    351 	timeout((timeout_t)fd_motor_to, (caddr_t)fdc->fdcu, hz);
    352 	while (ciaa.pra & CIAA_PRA_RDY)
    353 		;
    354 	untimeout((timeout_t)fd_motor_to, (caddr_t)fdc->fdcu);
    355 	fdc->motor_fdu = fdu;
    356 }
    357 
    358 void
    359 fd_turnoff(fdc)
    360 	fdc_p fdc;
    361 {
    362 	int i;
    363 
    364 	if (fdc->motor_fdu != -1) {
    365 		/* deselect all drives */
    366 		for (i = 0; i < DRVS_PER_CTLR; i++)
    367 			DESELECT(SELMASK(i));
    368 
    369 		/* turn off the unit's motor */
    370 		MOTOR_OFF;
    371 		SELECT(SELMASK(fdc->motor_fdu));
    372 		MOTOR_ON;
    373 		DESELECT(SELMASK(fdc->motor_fdu));
    374 	}
    375 
    376 	fdc->motor_fdu = -1;
    377 }
    378 
    379 void
    380 fd_turnon(fdc, fdu)
    381 	fdc_p fdc;
    382 	fdu_t fdu;
    383 {
    384 	if (fdc->motor_fdu == fdu)
    385 		return;
    386 
    387 	fd_turnoff(fdc);
    388 	fd_motor_on(fdc, fdu);
    389 }
    390 
    391 /*
    392  * Step the drive once in its current direction
    393  */
    394 void
    395 fd_step()
    396 {
    397 	ciab.prb &= ~CIAB_PRB_STEP;
    398 	ciab.prb |= CIAB_PRB_STEP;
    399 }
    400 
    401 /*
    402  * Select the side to use for a particular drive.
    403  * The drive must have been calibrated at some point before this.
    404  * The drive must also be active and the motor must be running.
    405  */
    406 void
    407 fd_select_side(fd, side)
    408 	fd_p fd;
    409 	int side;
    410 {
    411 	if (fd->side == side)
    412 		return;
    413 
    414 	/* select the requested side */
    415 	if (side == 0)
    416 		ciab.prb &= ~CIAB_PRB_SIDE;
    417 	else
    418 		ciab.prb |= CIAB_PRB_SIDE;
    419 	delay(fd->ft->side_time);
    420 	fd->side = side;
    421 }
    422 
    423 /*
    424  * Select the direction to use for the current particular drive.
    425  */
    426 void
    427 fd_select_dir(fd, dir)
    428 	fd_p fd;
    429 	int dir;
    430 {
    431 	if (fd->dir == dir)
    432 		return;
    433 
    434 	/* select the requested direction */
    435 	if (dir == 0)
    436 		ciab.prb &= ~CIAB_PRB_DIR;
    437 	else
    438 		ciab.prb |= CIAB_PRB_DIR;
    439 	delay(fd->ft->settle_time);
    440 	fd->dir = dir;
    441 }
    442 
    443 /*
    444  * Seek the drive to track 0.
    445  * The drive must be active and the motor must be running.
    446  * Returns standard floppy error code. /* XXXX doesn't return anything
    447  */
    448 void
    449 fd_calibrate(fd)
    450 	fd_p fd;
    451 {
    452 	fd_select_dir(fd, 1);
    453 
    454 	/* loop until we hit track 0 */
    455 	while (ciaa.pra & CIAA_PRA_TK0) {
    456 		fd_step();
    457 		delay(4);
    458 	}
    459 
    460 	/* set known values */
    461 	fd->cyl = 0;
    462 }
    463 
    464 /*
    465  * Seek the drive to the requested track.
    466  * The drive must be active and the motor must be running.
    467  */
    468 void
    469 fd_seek(fd, track)
    470 	fd_p fd;
    471 	int track;
    472 {
    473 	int cyl, side;
    474 	int dir, cnt;
    475 	int delay_time;
    476 
    477 	cyl = track >> 1;
    478 	side = (track % 2) ^ 1;
    479 
    480 	if (fd->cyl == -1)
    481 		fd_calibrate(fd);
    482 
    483 	fd_select_side(fd, side);
    484 
    485 	if (cyl < fd->cyl) {
    486 		dir = 1;
    487 		cnt = fd->cyl - cyl;
    488 	} else {
    489 		dir = 0;
    490 		cnt = cyl - fd->cyl;
    491 	}
    492 
    493 	fd_select_dir(fd, dir);
    494 
    495 	if (cnt) {
    496 		while (cnt) {
    497 			delay_time = fd->ft->step_delay;
    498 			if (dir != fd->dir)
    499 				delay_time += fd->ft->settle_time;
    500 			fd_step();
    501 			delay(delay_time);
    502 			--cnt;
    503 		}
    504 		delay(fd->ft->settle_time);
    505 	}
    506 
    507 	fd->cyl = cyl;
    508 }
    509 
    510 void
    511 encode(data, dest, csum)
    512 	u_long data;
    513 	u_long *dest, *csum;
    514 {
    515 	u_long data2;
    516 
    517 	data &= 0x55555555;
    518 	data2 = data ^ 0x55555555;
    519 	data |= ((data2 >> 1) | 0x80000000) & (data2 << 1);
    520 
    521 	if (*(dest - 1) & 0x00000001)
    522 		data &= 0x7FFFFFFF;
    523 
    524 	*csum ^= data;
    525 	*dest = data;
    526 }
    527 
    528 u_long
    529 encode_long(data, dest)
    530 	u_long data;
    531 	u_long *dest;
    532 {
    533 	u_long csum;
    534 
    535 	csum = 0;
    536 
    537 	encode(data >> 1, dest, &csum);
    538 	encode(data, dest + 1, &csum);
    539 
    540 	return(csum & 0x55555555);
    541 }
    542 
    543 void
    544 encode_block(dest, from, len, csum)
    545 	u_long *dest, *csum;
    546 	u_char *from;
    547 	int len;
    548 {
    549 	int cnt, to_cnt = 0;
    550 	u_long data, *src;
    551 
    552 	to_cnt = 0;
    553 	src = (u_long *)from;
    554 
    555 	/* odd bits */
    556 	for (cnt = 0; cnt < len / 4; cnt++) {
    557 		data = src[cnt] >> 1;
    558 		encode(data, dest + to_cnt++, csum);
    559 	}
    560 
    561 	/* even bits */
    562 	for (cnt = 0; cnt < len / 4; cnt++) {
    563 		data = src[cnt];
    564 		encode(data, dest + to_cnt++, csum);
    565 	}
    566 
    567 	*csum &= 0x55555555;
    568 }
    569 
    570 void
    571 correct(raw)
    572 	u_long *raw;
    573 {
    574 	u_char data, *ptr;
    575 
    576 	ptr = (u_char *)raw;
    577 
    578 	data = *ptr;
    579 	if (*(ptr - 1) & 0x01) {	/* XXXX will choke on old GVP's */
    580 		*ptr = data & 0x7f;
    581 		return;
    582 	}
    583 
    584 	if (data & 0x40)
    585 		return;
    586 
    587 	*ptr |= 0x80;
    588 }
    589 
    590 /*
    591  * amiga_write converts track/labels data to raw track data
    592  */
    593 void
    594 amiga_write(fd)
    595 	fd_p fd;
    596 {
    597 	u_long *raw, csum, format;
    598 	u_char *data, *labels;
    599 	int cnt, track;
    600 
    601 	raw = (u_long *)raw_buf;	/* XXXX never used while intr? */
    602 					/* XXXX never waits after here? */
    603 	data = fd->buf_data;
    604 	labels = fd->buf_labels;
    605 	track = fd->buf_track;
    606 
    607 	/* gap space */
    608 	for (cnt = 0; cnt < 414; cnt++)
    609 		*raw++ = 0xaaaaaaaa;
    610 
    611 	/* sectors */
    612 	for (cnt = 0; cnt < 11; cnt++) {
    613 		*raw = 0xaaaaaaaa;
    614 		correct(raw);
    615 		++raw;
    616 
    617 		*raw++ = 0x44894489;
    618 
    619 		format = 0xff000000 | (track << 16) | (cnt << 8) | (11 - cnt);
    620 		csum = encode_long(format,raw);
    621 		raw += 2;
    622 
    623 		encode_block(raw, labels + cnt * 16, 16, &csum);
    624 		raw += 8;
    625 		csum = encode_long(csum, raw);
    626 		raw += 2;
    627 
    628 		csum = 0;
    629 		encode_block(raw+2, data + cnt * 512, 512, &csum);
    630 		csum = encode_long(csum, raw);
    631 		raw += 256 + 2;
    632 	}
    633 }
    634 
    635 #define get_word(raw) (*(u_short *)(raw))
    636 #define get_long(raw) (*(u_long *)(raw))
    637 
    638 #define decode_long(raw) \
    639     (((get_long(raw) & 0x55555555) << 1) | \
    640     (get_long((raw)+4) & 0x55555555))
    641 
    642 #define MFM_NOSYNC	1
    643 #define MFM_HEADER	2
    644 #define MFM_DATA	3
    645 #define MFM_TRACK	4
    646 
    647 /*
    648  * scan_sync - looks for the next start of sector marked by a sync. When
    649  *	sector = 10, can't be certain of a starting sync.
    650  */
    651 u_long
    652 scan_sync(raw, end, sect)
    653 	u_long raw, end;
    654 	int sect;
    655 {
    656 	u_short data;
    657 
    658 	if (sect != 10) {
    659 		while (raw < end) {
    660 			data = get_word(raw);
    661 			if (data == 0x4489)
    662 				break;
    663 			raw += 2;
    664 		}
    665 		if (raw > end)
    666 			return(0);
    667 	}
    668 
    669 	while (raw < end) {
    670 		data = get_word(raw);
    671 		if (data != 0x4489)
    672 			break;
    673 		raw += 2;
    674 	}
    675 	if (raw > end)
    676 		return(0);
    677 	return(raw);
    678 }
    679 
    680 /*
    681  * amiga_read reads a raw track of data into a track buffer
    682  */
    683 int
    684 amiga_read(fd)
    685 	fd_p fd;
    686 {
    687 	u_char *track_data, *label_data;
    688 	u_long raw, end, val1, val2, csum, data_csum;
    689 	u_long *data, *labels;
    690 	int scnt, cnt, format, tnum, sect, snext;
    691 
    692 	track_data = fd->buf_data;
    693 	label_data = fd->buf_labels;
    694 	raw = (u_long)raw_buf;		/* XXXX see above about glb */
    695 
    696 	end = raw + fd->ft->read_size;
    697 
    698 	for (scnt = fd->sects-1; scnt >= 0; scnt--) {
    699 		if ((raw = scan_sync(raw, end, scnt)) == 0) {
    700 			/* XXXX */
    701 			printf("can't find sync for sector %d\n", scnt);
    702 			return(1);
    703 		}
    704 
    705 		val1 = decode_long(raw);
    706 
    707 		format = (val1 >> 24) & 0xFF;
    708 		tnum   = (val1 >> 16) & 0xFF;
    709 		sect   = (val1 >>  8) & 0xFF;
    710 		snext  = (val1)       & 0xFF;
    711 
    712 		labels = (u_long *)(label_data + (sect << 4));
    713 
    714 		csum = 0;
    715 		val1 = get_long(raw);
    716 		raw += 4;
    717 		csum ^= val1;
    718 		val1 = get_long(raw);
    719 		raw += 4;
    720 		csum ^= val1;
    721 
    722 		for (cnt = 0; cnt < 4; cnt++) {
    723 			val1 = get_long(raw+16);
    724 			csum ^= val1;
    725 			val1 &= 0x55555555;
    726 			val2 = get_long(raw);
    727 			raw += 4;
    728 			csum ^= val2;
    729 			val2 &= 0x55555555;
    730 			val2 = val2 << 1;
    731 			val1 |= val2;
    732 			*labels++ = val1;
    733 		}
    734 
    735 		csum &= 0x55555555;
    736 		raw += 16;
    737 		val1 = decode_long(raw);
    738 		raw += 8;
    739 		if (val1 != csum) {
    740 			/* XXXX */
    741 			printf("MFM_HEADER %d: %08x,%08x\n", scnt,
    742 			    val1, csum);
    743 			return(MFM_HEADER);
    744 		}
    745 
    746 		/* verify track */
    747 		if (tnum != fd->buf_track) {
    748 			/* XXXX */
    749 			printf("MFM_TRACK %d: %d, %d\n", scnt, tnum,
    750 			    fd->buf_track);
    751 			return(MFM_TRACK);
    752 		}
    753 
    754 		data_csum = decode_long(raw);
    755 		raw += 8;
    756 		data = (u_long *)(track_data + (sect << 9));
    757 
    758 		csum = 0;
    759 		for (cnt = 0; cnt < 128; cnt++) {
    760 			val1 = get_long(raw + 512);
    761 			csum ^= val1;
    762 			val1 &= 0x55555555;
    763 			val2 = get_long(raw);
    764 			raw += 4;
    765 			csum ^= val2;
    766 			val2 &= 0x55555555;
    767 			val2 = val2 << 1;
    768 			val1 |= val2;
    769 			*data++ = val1;
    770 		}
    771 
    772 		csum &= 0x55555555;
    773 		raw += 512;
    774 
    775 		if (data_csum != csum) {
    776 			printf(
    777 			    "MFM_DATA: f=%d t=%d s=%d sn=%d sc=%d %ld, %ld\n",
    778 			    format, tnum, sect, snext, scnt, data_csum, csum);
    779 			return(MFM_DATA);
    780 		}
    781 	}
    782 	return(0);
    783 }
    784 
    785 /*
    786  * Return unit ID number of given disk
    787  * XXXX This function doesn't return anything.
    788  */
    789 u_long
    790 loop_read_id(unit)
    791 	int unit;
    792 {
    793 	u_long id;
    794 	int i;
    795 
    796 	id = 0;
    797 
    798 	/* loop and read disk ID */
    799 	for (i = 0; i < 32; i++) {
    800 		SELECT(SELMASK(unit));
    801 
    802 		/* read and store value of DSKRDY */
    803 		id <<= 1;		/* XXXX 0 << 1? */
    804 		id |= (ciaa.pra & CIAA_PRA_RDY) ? 0 : 1;
    805 
    806 		DESELECT(SELMASK(unit));
    807 	}
    808 }
    809 
    810 u_long
    811 get_drive_id(unit)
    812 	int unit;
    813 {
    814 	int i, t;
    815 	u_long id;
    816 	u_char mask1, mask2;
    817 	volatile u_char *a_ptr;
    818 	volatile u_char *b_ptr;
    819 
    820 	id = 0;
    821 	a_ptr = &ciaa.pra;
    822 	b_ptr = &ciab.prb;
    823 	mask1 = ~(1 << (3 + unit));
    824 	mask2 = 1 << (3 + unit);
    825 
    826 	*b_ptr &= ~CIAB_PRB_MTR;
    827 	*b_ptr &= mask1;
    828 	*b_ptr |= mask2;
    829 	*b_ptr |= CIAB_PRB_MTR;
    830 	*b_ptr &= mask1;
    831 	*b_ptr |= mask2;
    832 
    833 	for (i = 0; i < 32; i++) {
    834 		*b_ptr &= mask1;
    835 		t = (*a_ptr) & CIAA_PRA_RDY;
    836 		id = (id << 1) | (t ? 0 : 1);
    837 		*b_ptr |= mask2;
    838 	}
    839 
    840 	/* all amigas have internal drives at 0. */
    841 	if (unit == 0 && id == FD_NONE)
    842 		return(FD_DD_3);
    843 	return(id);
    844 #if 0
    845   /* set up for ID */
    846   MOTOR_ON;
    847   SELECT(SELMASK(unit));
    848   DESELECT(SELMASK(unit));
    849   MOTOR_OFF;
    850   SELECT(SELMASK(unit));
    851   DESELECT(SELMASK(unit));
    852 
    853   return loop_read_id(unit); /* XXXX gotta fix loop_read_id() if use */
    854 #endif
    855 }
    856 
    857 int
    858 get_drive_type(u_long id)
    859 {
    860 	int type;
    861 
    862 	for (type = 0; type < num_dr_types; type++)
    863 		if (drive_types[type].id == id)
    864 			return(type);
    865 	return(-1);
    866 }
    867 
    868 void
    869 fd_probe(fd)
    870 	fd_p fd;
    871 {
    872 	u_long id;
    873 	int type, data;
    874 
    875 	fd->ft = NULL;
    876 
    877 	id = get_drive_id(fd->fdu);
    878 	type = get_drive_type(id);
    879 
    880 	if (type == -1) {
    881 		/* XXXX */
    882 		printf("fd_probe: unsupported drive type %08x found\n", id);
    883 		return;
    884 	}
    885 
    886 	fd->type = type;
    887 	fd->ft = &drive_types[type];
    888 	if (fd->ft->tracks == 0) {
    889 		/* XXXX */
    890 		printf("no drive type %d\n", type);
    891 	}
    892 	fd->side = -1;
    893 	fd->dir = -1;
    894 	fd->cyl = -1;
    895 
    896 	fd->sects = 11 * drive_types[type].sect_mult;
    897 	fd->size = fd->sects *
    898 	    drive_types[type].tracks *
    899 	    drive_types[type].heads;
    900 	fd->flags = 0;
    901 }
    902 
    903 void
    904 track_read(fdc, fd, track)
    905 	fdc_p fdc;
    906 	fd_p fd;
    907 	int track;
    908 {
    909 	u_long len;
    910 
    911 	fd->buf_track = track;
    912 	fdc->state = WAIT_READ;
    913 	timeout((timeout_t)fd_timeout, (caddr_t)fdc, 2 * hz);
    914 
    915 	fd_seek(fd, track);
    916 
    917 	len = fd->ft->read_size >> 1;
    918 
    919 	/* setup adkcon bits correctly */
    920 	custom.adkcon = ADKF_MSBSYNC;
    921 	custom.adkcon = ADKF_SETCLR | ADKF_WORDSYNC | ADKF_FAST;
    922 
    923 	custom.dsksync = MFM_SYNC;
    924 
    925 	custom.dsklen = 0;
    926 	delay(fd->ft->side_time);
    927 
    928 	custom.dskpt = (u_char *)kvtop(raw_buf);
    929 	custom.dsklen = len | DSKLEN_DMAEN;
    930 	custom.dsklen = len | DSKLEN_DMAEN;
    931 }
    932 
    933 void
    934 track_write(fdc, fd)
    935 	fdc_p fdc;
    936 	fd_p fd;
    937 {
    938 	int track;
    939 	u_long len;
    940 	u_short adk;
    941 
    942 	amiga_write(fd);
    943 
    944 	track = fd->buf_track;
    945 	fd->write_cnt += 1;
    946 
    947 	fdc->saved = fdc->state;
    948 	fdc->state = WAIT_WRITE;
    949 	timeout((timeout_t)fd_timeout, (caddr_t)fdc, 2 * hz);
    950 
    951 	fd_seek(fd, track);
    952 
    953 	len = fd->ft->write_size >> 1;
    954 
    955 	if ((ciaa.pra & CIAA_PRA_WPRO) == 0)
    956 		return;
    957 
    958 	/* clear adkcon bits */
    959 	custom.adkcon = ADKF_PRECOMP1 | ADKF_PRECOMP0 | ADKF_WORDSYNC |
    960 	    ADKF_MSBSYNC;
    961 
    962 	/* set appropriate adkcon bits */
    963 	adk = ADKF_SETCLR | ADKF_FAST;
    964 	if (track >= fd->ft->precomp2)
    965 		adk |= ADKF_PRECOMP1;
    966 	else if (track >= fd->ft->precomp1)
    967 		adk |= ADKF_PRECOMP0;
    968 	custom.adkcon = adk;
    969 
    970 	custom.dsklen = DSKLEN_WRITE;
    971 	delay(fd->ft->side_time);
    972 
    973 	custom.dskpt = (u_char *)kvtop(raw_buf);	/* XXXX again raw */
    974 	custom.dsklen = len | DSKLEN_DMAEN | DSKLEN_WRITE;
    975 	custom.dsklen = len | DSKLEN_DMAEN | DSKLEN_WRITE;
    976 }
    977 
    978 /*
    979  * Floppy Device Code
    980  */
    981 int
    982 fdattach(ad)
    983 	struct amiga_device *ad;
    984 {
    985 	int fdcu = 0;
    986 	fdc_p fdc = fdc_data + fdcu;
    987 	int i;
    988 	unsigned long id;
    989 	int type;
    990 
    991 	fdc->fdcu = fdcu;
    992 	fdc->state = FINDWORK;
    993 	fdc->fd = NULL;
    994 	fdc->motor_fdu = -1;
    995 
    996 	for (i = 0; i < DRVS_PER_CTLR; i++) {
    997 		fdc->fd_data[i].fdu = i;
    998 		fdc->fd_data[i].flags = 0;
    999 
   1000 		fdc->fd_data[i].buf_track = -1;
   1001 		fdc->fd_data[i].buf_dirty = 0;
   1002 		fdc->fd_data[i].buf_data =
   1003 		    malloc(MAX_SECTS * 512, M_DEVBUF, 0);
   1004 		fdc->fd_data[i].buf_labels =
   1005 		    malloc(MAX_SECTS * 16, M_DEVBUF, 0);
   1006 
   1007 		if (fdc->fd_data[i].buf_data == NULL ||
   1008 		    fdc->fd_data[i].buf_labels == NULL) {
   1009 			printf("Cannot alloc buffer memory for fd device\n");
   1010 			return(0);
   1011 		}
   1012 
   1013 		id = get_drive_id(i);
   1014 		type = get_drive_type(id);
   1015 
   1016 		if (type != -1 && drive_types[type].tracks != 0) {
   1017 			printf("floppy drive %d: %s\n", i,
   1018 			    drive_types[type].name);
   1019 		}
   1020 	}
   1021 
   1022 	raw_buf = (char *)alloc_chipmem(30000);
   1023 	if (raw_buf == NULL) {
   1024 		printf("Cannot alloc chipmem for fd device\n");
   1025 		return 0;
   1026 	}
   1027 
   1028 	/* enable disk DMA */
   1029 	custom.dmacon = DMAF_SETCLR | DMAF_DISK;
   1030 
   1031 	/* enable interrupts for IRQ_DSKBLK */
   1032 	ciaa.icr = CIA_ICR_IR_SC | CIA_ICR_FLG;
   1033 	custom.intena = INTF_SETCLR | INTF_SOFTINT;
   1034 
   1035 	/* enable disk block interrupts */
   1036 	custom.intena = INTF_SETCLR | INTF_DSKBLK;
   1037 
   1038 	return(1);
   1039 }
   1040 
   1041 int
   1042 Fdopen(dev, flags)
   1043 	dev_t dev;
   1044 	int flags;
   1045 {
   1046 	fdcu_t fdcu;
   1047 	fdc_p fdc;
   1048 	fdu_t fdu;
   1049 	fd_p fd;
   1050 
   1051 	fdcu = 0;
   1052 	fdc = fdc_data + fdcu;
   1053 	fdu = UNIT(dev);
   1054 	fd = fdc->fd_data + fdu;
   1055 
   1056 	/* check bounds */
   1057 	if (fdu >= DRVS_PER_CTLR)
   1058 		return(ENXIO);
   1059 
   1060 	fd_probe(fd);
   1061 	if (fd->ft == NULL || fd->ft->tracks == 0)
   1062 		return(ENXIO);
   1063 
   1064 	fd->flags |= FDF_OPEN;
   1065 	fd->write_cnt = 0;
   1066 
   1067 	return(0);
   1068 }
   1069 
   1070 int
   1071 fdclose(dev, flags)
   1072 	dev_t dev;
   1073 	int flags;
   1074 {
   1075 	struct buf *dp,*bp;
   1076 	fdcu_t fdcu;
   1077 	fdc_p fdc;
   1078 	fdu_t fdu;
   1079 	fd_p fd;
   1080 
   1081 	fdcu = 0;
   1082 	fdc = fdc_data + fdcu;
   1083 	fdu = UNIT(dev);
   1084 	fd = fdc->fd_data + fdu;
   1085 
   1086 
   1087 	/* wait until activity is done for this drive */
   1088 	/* XXXX ACK! sleep.. */
   1089 	do {
   1090 		dp = &(fd->head);
   1091 		bp = dp->b_actf;
   1092 	} while (bp);
   1093 
   1094 	/* XXXX */
   1095 	printf("wrote %d tracks (%d)\n", fd->write_cnt, fd->buf_dirty);
   1096 
   1097 	fd->buf_track = -1;
   1098 	fd->buf_dirty = 0;
   1099 	fd->flags &= ~FDF_OPEN;
   1100 
   1101 	return(0);
   1102 }
   1103 
   1104 int
   1105 fdioctl(dev, cmd, data, flag, p)
   1106 	dev_t dev;
   1107 	int cmd, flag;
   1108 	caddr_t data;
   1109 	struct proc *p;
   1110 {
   1111 	struct disklabel *fd_label;
   1112 	fdcu_t fdcu;
   1113 	fdc_p fdc;
   1114 	fdu_t fdu;
   1115 	fd_p fd;
   1116 	int error;
   1117 
   1118 	fdcu = 0;
   1119 	fdc = fdc_data + fdcu;
   1120 	fdu = UNIT(dev);
   1121 	fd = fdc->fd_data + fdu;
   1122 	error = 0;
   1123 
   1124 	if (cmd != DIOCGDINFO)
   1125 		return (EINVAL);
   1126 
   1127 	fd_label = (struct disklabel *)data;
   1128 
   1129 	bzero(fd_label, sizeof(fd_label));
   1130 	fd_label->d_magic = DISKMAGIC;
   1131 	fd_label->d_type = DTYPE_FLOPPY;
   1132 	strncpy(fd_label->d_typename, "fd", sizeof(fd_label->d_typename) - 1);
   1133 	strcpy(fd_label->d_packname, "some pack");
   1134 
   1135 	fd_label->d_secsize = 512;
   1136 	fd_label->d_nsectors = 11;
   1137 	fd_label->d_ntracks = 2;
   1138 	fd_label->d_ncylinders = 80;
   1139 	fd_label->d_secpercyl = fd_label->d_nsectors * fd_label->d_ntracks;
   1140 	fd_label->d_secperunit= fd_label->d_ncylinders * fd_label->d_secpercyl;
   1141 
   1142 	fd_label->d_magic2 = DISKMAGIC;
   1143 	fd_label->d_partitions[0].p_offset = 0;
   1144 	fd_label->d_partitions[0].p_size = fd_label->d_secperunit;
   1145 	fd_label->d_partitions[0].p_fstype = FS_UNUSED;
   1146 	fd_label->d_npartitions = 1;
   1147 
   1148 	fd_label->d_checksum = 0;
   1149 	fd_label->d_checksum = dkcksum(fd_label);
   1150 
   1151 	return(0);
   1152 }
   1153 
   1154 int
   1155 fdsize(dev)
   1156 	dev_t dev;
   1157 {
   1158 	/* check UNIT? */
   1159 	return((fdc_data + 0)->fd_data[UNIT(dev)].size);
   1160 }
   1161 
   1162 void
   1163 fdstrategy(bp)
   1164 	struct buf *bp;
   1165 {
   1166 	fdcu_t fdcu;
   1167 	fdc_p fdc;
   1168 	fdu_t fdu;
   1169 	fd_p fd;
   1170 	long nblocks, blknum;
   1171 	struct buf *dp;
   1172 	int s;
   1173 
   1174 	fdcu = 0;
   1175 	fdc = fdc_data + fdcu;
   1176 	fdu = UNIT(bp->b_dev);
   1177 	fd = fdc->fd_data + fdu;
   1178 
   1179 	if (bp->b_blkno < 0) {
   1180 		/* XXXX */
   1181 		printf("fdstrat error: fdu = %d, blkno = %d, bcount = %d\n",
   1182 		    fdu, bp->b_blkno, bp->b_bcount);
   1183 		bp->b_error = EINVAL;
   1184 		bp->b_flags |= B_ERROR;
   1185 		biodone(bp);
   1186 		return;
   1187 	}
   1188 
   1189 	/*
   1190 	 * Set up block calculations.
   1191 	 */
   1192 	blknum = (unsigned long) bp->b_blkno * DEV_BSIZE / FDBLK;
   1193 	nblocks = fd->sects * fd->ft->tracks * fd->ft->heads;
   1194 	if (blknum + (bp->b_bcount / FDBLK) > nblocks) {
   1195 		/* XXXX */
   1196 		printf("at end of disk\n");
   1197 		bp->b_error = ENOSPC;
   1198 		bp->b_flags |= B_ERROR;
   1199 		biodone(bp);
   1200 		return;
   1201 	}
   1202 
   1203 	bp->b_cylin = blknum;	/* set here for disksort */
   1204 	dp = &(fd->head);
   1205 
   1206 	s = splbio();
   1207 	disksort(dp, bp);
   1208 	untimeout((timeout_t)fd_turnoff, (caddr_t)fdc); /* a good idea */
   1209 	fdstart(fdc);
   1210 	splx(s);
   1211 }
   1212 
   1213 /*
   1214  * We have just queued something.. if the controller is not busy
   1215  * then simulate the case where it has just finished a command
   1216  * So that it (the interrupt routine) looks on the queue for more
   1217  * work to do and picks up what we just added.
   1218  * If the controller is already busy, we need do nothing, as it
   1219  * will pick up our work when the present work completes
   1220  */
   1221 void
   1222 fdstart(fdc)
   1223 	fdc_p fdc;
   1224 {
   1225 	int s;
   1226 
   1227 	s = splbio();
   1228 	if (fdc->state == FINDWORK)
   1229 		fdintr(fdc->fdcu);
   1230 	splx(s);
   1231 }
   1232 
   1233 /*
   1234  * just ensure it has the right spl
   1235  */
   1236 void
   1237 fd_pseudointr(fdc)
   1238 	fdc_p fdc;
   1239 {
   1240 	int s;
   1241 
   1242 	s = splbio();
   1243 	fdintr(fdc->fdcu);
   1244 	splx(s);
   1245 }
   1246 
   1247 void
   1248 fd_timeout(fdc)
   1249 	fdc_p fdc;
   1250 {
   1251 	struct buf *dp,*bp;
   1252 	fd_p fd;
   1253 
   1254 	fd = fdc->fd;
   1255 	dp = &fd->head;
   1256 	bp = dp->b_actf;
   1257 
   1258 	/* XXXX */
   1259 	printf("fd%d: Operation timeout\n", fd->fdu);
   1260 	if (bp) {
   1261 		retrier(fdc);
   1262 		fdc->state = DONE_IO;
   1263 		if (fdc->retry < 6)
   1264 			fdc->retry = 6;
   1265 	} else {
   1266 		fdc->fd = NULL;
   1267 		fdc->state = FINDWORK;
   1268 	}
   1269 
   1270 	fd_pseudointr(fdc);
   1271 }
   1272 
   1273 /*
   1274  * keep calling the state machine until it returns a 0
   1275  * ALWAYS called at SPLBIO
   1276  */
   1277 void
   1278 fdintr(fdcu)
   1279 	fdcu_t fdcu;
   1280 {
   1281 	fdc_p fdc;
   1282 
   1283 	fdc = fdc_data + fdcu;
   1284 	while (fdstate(fdc))
   1285 		;
   1286 }
   1287 
   1288 /*
   1289  * The controller state machine.
   1290  * if it returns a non zero value, it should be called again immediatly
   1291  */
   1292 int
   1293 fdstate(fdc)
   1294 	fdc_p fdc;
   1295 {
   1296 	struct buf *dp,*bp;
   1297 	int track, read, sec, i;
   1298 	u_long blknum;
   1299 	fd_p fd;
   1300 
   1301 	fd = fdc->fd;
   1302 
   1303 	if (fd == NULL) {
   1304 		/* search for a unit do work with */
   1305 		for (i = 0; i < DRVS_PER_CTLR; i++) {
   1306 			fd = fdc->fd_data + i;
   1307 			dp = &(fd->head);
   1308 			bp = dp->b_actf;
   1309 			if (bp) {
   1310 				fdc->fd = fd;
   1311 				break;
   1312 			}
   1313 		}
   1314 
   1315 		if (fdc->fd)
   1316 			return(1);
   1317 
   1318 		fdc->state = FINDWORK;
   1319 		TRACE1("[fdc%d IDLE]\n", fdc->fdcu);
   1320 		return(0);
   1321 	}
   1322 
   1323 	dp = &(fd->head);
   1324 	bp = dp->b_actf;
   1325 
   1326 	blknum = (u_long)bp->b_blkno * DEV_BSIZE / FDBLK + fd->skip / FDBLK;
   1327 	track = blknum / fd->sects;
   1328 	sec = blknum % fd->sects;
   1329 
   1330 	read = bp->b_flags & B_READ;
   1331 	TRACE1("fd%d", fd->fdu);
   1332 	TRACE1("[%s]", fdstates[fdc->state]);
   1333 	TRACE1("(0x%x) ", fd->flags);
   1334 	TRACE1("%d\n", fd->buf_track);
   1335 
   1336 	untimeout((timeout_t)fd_turnoff, (caddr_t)fdc);
   1337 	timeout((timeout_t)fd_turnoff, (caddr_t)fdc, 4 * hz);
   1338 
   1339 	switch (fdc->state) {
   1340 	case FINDWORK:
   1341 		if (!bp) {
   1342 			if (fd->buf_dirty) {
   1343 				track_write(fdc, fd);
   1344 				return(0);
   1345 			}
   1346 			fdc->fd = NULL;
   1347 			return(1);
   1348 		}
   1349 
   1350 		fdc->state = DOSEEK;
   1351 		fdc->retry = 0;
   1352 		fd->skip = 0;
   1353 		return(1);
   1354 	case DOSEEK:
   1355 		fd_turnon(fdc, fd->fdu);
   1356 
   1357 		/*
   1358 		 * If not started, error starting it
   1359 		 */
   1360 		if (fdc->motor_fdu != fd->fdu) {
   1361 			/* XXXX */
   1362 			printf("motor not on!\n");
   1363 		}
   1364 
   1365 		/*
   1366 		 * If track not in buffer, read it in
   1367 		 */
   1368 		if (fd->buf_track != track) {
   1369 			TRACE1("do track %d\n", track);
   1370 
   1371 			if (fd->buf_dirty)
   1372 				track_write(fdc, fd);
   1373 			else
   1374 				track_read(fdc, fd, track);
   1375 			return(0);
   1376 		}
   1377 
   1378 		fdc->state = DO_IO;
   1379 		return(1);
   1380 	case DO_IO:
   1381 		if (read)
   1382 			bcopy(&fd->buf_data[sec * FDBLK],
   1383 			    bp->b_un.b_addr + fd->skip, FDBLK);
   1384 		else {
   1385 			bcopy(bp->b_un.b_addr + fd->skip,
   1386 			    &fd->buf_data[sec * FDBLK], FDBLK);
   1387 			fd->buf_dirty = 1;
   1388 			if (IMMED_WRITE) {
   1389 				fdc->state = DONE_IO;
   1390 				track_write(fdc, fd);
   1391 				return(0);
   1392 			}
   1393 		}
   1394 	case DONE_IO:
   1395 		fd->skip += FDBLK;
   1396 		if (fd->skip < bp->b_bcount)
   1397 			fdc->state = DOSEEK;
   1398 		else {
   1399 			fd->skip = 0;
   1400 			bp->b_resid = 0;
   1401 			dp->b_actf = bp->b_actf;
   1402 			biodone(bp);
   1403 			fdc->state = FINDWORK;
   1404 		}
   1405 		return(1);
   1406 	case WAIT_READ:
   1407 		untimeout((timeout_t)fd_timeout, (caddr_t)fdc);
   1408 		custom.dsklen = 0;
   1409 		amiga_read(fd);
   1410 		fdc->state = DO_IO;
   1411 		return(1);
   1412 	case WAIT_WRITE:
   1413 		untimeout((timeout_t)fd_timeout, (caddr_t)fdc);
   1414 		custom.dsklen = 0;
   1415 		fdc->state = fdc->saved;
   1416 		fd->buf_dirty = 0;
   1417 		return(1);
   1418 	default:
   1419 		/* XXXX */
   1420 		printf("Unexpected FD int->%d\n", fdc->state);
   1421 		return 0;
   1422 	}
   1423 
   1424 	/* Come back immediatly to new state */
   1425 	return(1);
   1426 }
   1427 
   1428 int
   1429 retrier(fdc)
   1430 	fdc_p fdc;
   1431 {
   1432 	struct buf *dp,*bp;
   1433 	fd_p fd;
   1434 
   1435 	fd = fdc->fd;
   1436 	dp = &(fd->head);
   1437 	bp = dp->b_actf;
   1438 
   1439 #if 0
   1440 	switch(fdc->retry) {
   1441 	case 0:
   1442 	case 1:
   1443 	case 2:
   1444 		fdc->state = SEEKCOMPLETE;
   1445 		break;
   1446 	case 3:
   1447 	case 4:
   1448 	case 5:
   1449 		fdc->state = STARTRECAL;
   1450 		break;
   1451 	case 6:
   1452 		fdc->state = RESETCTLR;
   1453 		break;
   1454 	case 7:
   1455 		break;
   1456 	default:
   1457 #endif
   1458 	/* XXXX */
   1459 	printf("fd%d: hard error\n", fd->fdu);
   1460 
   1461 	bp->b_flags |= B_ERROR;
   1462 	bp->b_error = EIO;
   1463 	bp->b_resid = bp->b_bcount - fd->skip;
   1464 	dp->b_actf = bp->b_actf;
   1465 	fd->skip = 0;
   1466 	biodone(bp);
   1467 	fdc->state = FINDWORK;
   1468 	return(1);
   1469 #if 0
   1470 	fdc->retry++;
   1471 	return(1);
   1472 #endif
   1473 }
   1474 
   1475 #endif
   1476