flsc.c revision 1.14.10.2 1 /* $NetBSD: flsc.c,v 1.14.10.2 1997/10/14 08:26:35 thorpej Exp $ */
2
3 /*
4 * Copyright (c) 1997 Michael L. Hitch
5 * Copyright (c) 1995 Daniel Widenfalk
6 * Copyright (c) 1994 Christian E. Hopps
7 * Copyright (c) 1982, 1990 The Regents of the University of California.
8 * All rights reserved.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 * 3. All advertising materials mentioning features or use of this software
19 * must display the following acknowledgement:
20 * This product includes software developed by Daniel Widenfalk
21 * and Michael L. Hitch.
22 * 4. Neither the name of the University nor the names of its contributors
23 * may be used to endorse or promote products derived from this software
24 * without specific prior written permission.
25 *
26 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
27 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
28 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
29 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
30 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
31 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
32 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
33 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
34 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
35 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
36 * SUCH DAMAGE.
37 */
38
39 /*
40 * Initial amiga Fastlane driver by Daniel Widenfalk. Conversion to
41 * 53c9x MI driver by Michael L. Hitch (mhitch (at) montana.edu).
42 */
43
44 #include <sys/types.h>
45 #include <sys/param.h>
46 #include <sys/systm.h>
47 #include <sys/kernel.h>
48 #include <sys/errno.h>
49 #include <sys/ioctl.h>
50 #include <sys/device.h>
51 #include <sys/buf.h>
52 #include <sys/proc.h>
53 #include <sys/user.h>
54 #include <sys/queue.h>
55
56 #include <dev/scsipi/scsi_all.h>
57 #include <dev/scsipi/scsipi_all.h>
58 #include <dev/scsipi/scsiconf.h>
59 #include <dev/scsipi/scsi_message.h>
60
61 #include <machine/cpu.h>
62 #include <machine/param.h>
63
64 #include <dev/ic/ncr53c9xreg.h>
65 #include <dev/ic/ncr53c9xvar.h>
66
67 #include <amiga/amiga/isr.h>
68 #include <amiga/dev/flscvar.h>
69 #include <amiga/dev/zbusvar.h>
70
71 void flscattach __P((struct device *, struct device *, void *));
72 int flscmatch __P((struct device *, struct cfdata *, void *));
73
74 /* Linkup to the rest of the kernel */
75 struct cfattach flsc_ca = {
76 sizeof(struct flsc_softc), flscmatch, flscattach
77 };
78
79 struct cfdriver flsc_cd = {
80 NULL, "flsc", DV_DULL
81 };
82
83 struct scsipi_adapter flsc_switch = {
84 ncr53c9x_scsi_cmd,
85 minphys, /* no max at this level; handled by DMA code */
86 NULL,
87 NULL,
88 };
89
90 struct scsipi_device flsc_dev = {
91 NULL, /* Use default error handler */
92 NULL, /* have a queue, served by this */
93 NULL, /* have no async handler */
94 NULL, /* Use default 'done' routine */
95 };
96
97 /*
98 * Functions and the switch for the MI code.
99 */
100 u_char flsc_read_reg __P((struct ncr53c9x_softc *, int));
101 void flsc_write_reg __P((struct ncr53c9x_softc *, int, u_char));
102 int flsc_dma_isintr __P((struct ncr53c9x_softc *));
103 void flsc_dma_reset __P((struct ncr53c9x_softc *));
104 int flsc_dma_intr __P((struct ncr53c9x_softc *));
105 int flsc_dma_setup __P((struct ncr53c9x_softc *, caddr_t *,
106 size_t *, int, size_t *));
107 void flsc_dma_go __P((struct ncr53c9x_softc *));
108 void flsc_dma_stop __P((struct ncr53c9x_softc *));
109 int flsc_dma_isactive __P((struct ncr53c9x_softc *));
110 void flsc_clear_latched_intr __P((struct ncr53c9x_softc *));
111
112 struct ncr53c9x_glue flsc_glue = {
113 flsc_read_reg,
114 flsc_write_reg,
115 flsc_dma_isintr,
116 flsc_dma_reset,
117 flsc_dma_intr,
118 flsc_dma_setup,
119 flsc_dma_go,
120 flsc_dma_stop,
121 flsc_dma_isactive,
122 flsc_clear_latched_intr,
123 };
124
125 /* Maximum DMA transfer length to reduce impact on high-speed serial input */
126 u_long flsc_max_dma = 1024;
127 extern int ser_open_speed;
128
129 extern int ncr53c9x_debug;
130 extern u_long scsi_nosync;
131 extern int shift_nosync;
132
133 /*
134 * if we are an Advanced Systems & Software FastlaneZ3
135 */
136 int
137 flscmatch(parent, cf, aux)
138 struct device *parent;
139 struct cfdata *cf;
140 void *aux;
141 {
142 struct zbus_args *zap;
143
144 if (!is_a4000() && !is_a3000())
145 return(0);
146
147 zap = aux;
148 if (zap->manid == 0x2140 && zap->prodid == 11
149 && iszthreepa(zap->pa))
150 return(1);
151
152 return(0);
153 }
154
155 /*
156 * Attach this instance, and then all the sub-devices
157 */
158 void
159 flscattach(parent, self, aux)
160 struct device *parent, *self;
161 void *aux;
162 {
163 struct flsc_softc *fsc = (void *)self;
164 struct ncr53c9x_softc *sc = &fsc->sc_ncr53c9x;
165 struct zbus_args *zap;
166
167 /*
168 * Set up the glue for MI code early; we use some of it here.
169 */
170 sc->sc_glue = &flsc_glue;
171
172 /*
173 * Save the regs
174 */
175 zap = aux;
176 fsc->sc_dmabase = (volatile u_char *)zap->va;
177 fsc->sc_reg = &((volatile u_char *)zap->va)[0x1000001];
178
179 sc->sc_freq = 40; /* Clocked at 40Mhz */
180
181 printf(": address %p", fsc->sc_reg);
182
183 sc->sc_id = 7;
184
185 /*
186 * It is necessary to try to load the 2nd config register here,
187 * to find out what rev the flsc chip is, else the flsc_reset
188 * will not set up the defaults correctly.
189 */
190 sc->sc_cfg1 = sc->sc_id | NCRCFG1_PARENB;
191 sc->sc_cfg2 = NCRCFG2_SCSI2 | NCRCFG2_FE;
192 sc->sc_cfg3 = 0x08 /*FCLK*/ | NCRESPCFG3_FSCSI | NCRESPCFG3_CDB;
193 sc->sc_rev = NCR_VARIANT_FAS216;
194
195 /*
196 * This is the value used to start sync negotiations
197 * Note that the NCR register "SYNCTP" is programmed
198 * in "clocks per byte", and has a minimum value of 4.
199 * The SCSI period used in negotiation is one-fourth
200 * of the time (in nanoseconds) needed to transfer one byte.
201 * Since the chip's clock is given in MHz, we have the following
202 * formula: 4 * period = (1000 / freq) * 4
203 */
204 sc->sc_minsync = 1000 / sc->sc_freq;
205
206 if (((scsi_nosync >> shift_nosync) & 0xff00) == 0xff00)
207 sc->sc_minsync = 0;
208
209 /* Really no limit, but since we want to fit into the TCR... */
210 sc->sc_maxxfer = 64 * 1024;
211
212 fsc->sc_portbits = 0xa0 | FLSC_PB_EDI | FLSC_PB_ESI;
213 fsc->sc_hardbits = fsc->sc_reg[0x40];
214
215 sc->sc_dev.dv_cfdata->cf_flags |= (scsi_nosync >> shift_nosync) & 0xffff;
216 shift_nosync += 16;
217 ncr53c9x_debug |= (scsi_nosync >> shift_nosync) & 0xffff;
218 shift_nosync += 16;
219
220 /*
221 * Configure interrupts.
222 */
223 fsc->sc_isr.isr_intr = (int (*)(void *))ncr53c9x_intr;
224 fsc->sc_isr.isr_arg = sc;
225 fsc->sc_isr.isr_ipl = 2;
226 add_isr(&fsc->sc_isr);
227
228 fsc->sc_reg[0x40] = fsc->sc_portbits;
229
230 /*
231 * Now try to attach all the sub-devices
232 */
233 ncr53c9x_attach(sc, &flsc_switch, &flsc_dev);
234 }
235
236 /*
237 * Glue functions.
238 */
239
240 u_char
241 flsc_read_reg(sc, reg)
242 struct ncr53c9x_softc *sc;
243 int reg;
244 {
245 struct flsc_softc *fsc = (struct flsc_softc *)sc;
246
247 return fsc->sc_reg[reg * 4];
248 }
249
250 void
251 flsc_write_reg(sc, reg, val)
252 struct ncr53c9x_softc *sc;
253 int reg;
254 u_char val;
255 {
256 struct flsc_softc *fsc = (struct flsc_softc *)sc;
257 struct ncr53c9x_tinfo *ti;
258 u_char v = val;
259
260 if (fsc->sc_piomode && reg == NCR_CMD &&
261 v == (NCRCMD_TRANS|NCRCMD_DMA)) {
262 v = NCRCMD_TRANS;
263 }
264 /*
265 * Can't do synchronous transfers in SCSI_POLL mode:
266 * If starting SCSI_POLL command, clear defer sync negotiation
267 * by clearing the T_NEGOTIATE flag. If starting SCSI_POLL and
268 * the device is currently running synchronous, force another
269 * T_NEGOTIATE with 0 offset.
270 */
271 if (reg == NCR_SELID) {
272 ti = &sc->sc_tinfo[
273 sc->sc_nexus->xs->sc_link->scsipi_scsi.target];
274 if (sc->sc_nexus->xs->flags & SCSI_POLL) {
275 if (ti->flags & T_SYNCMODE) {
276 ti->flags ^= T_SYNCMODE | T_NEGOTIATE;
277 } else if (ti->flags & T_NEGOTIATE) {
278 ti->flags ^= T_NEGOTIATE | T_SYNCHOFF;
279 /* save T_NEGOTIATE in private flags? */
280 }
281 } else {
282 /*
283 * If we haven't attempted sync negotiation yet,
284 * do it now.
285 */
286 if ((ti->flags & (T_SYNCMODE | T_SYNCHOFF)) ==
287 T_SYNCHOFF &&
288 sc->sc_minsync != 0) /* XXX */
289 ti->flags ^= T_NEGOTIATE | T_SYNCHOFF;
290 }
291 }
292 if (reg == NCR_CMD && v == NCRCMD_SETATN &&
293 sc->sc_flags & NCR_SYNCHNEGO &&
294 sc->sc_nexus->xs->flags & SCSI_POLL) {
295 ti = &sc->sc_tinfo[
296 sc->sc_nexus->xs->sc_link->scsipi_scsi.target];
297 ti->offset = 0;
298 }
299 fsc->sc_reg[reg * 4] = v;
300 }
301
302 int
303 flsc_dma_isintr(sc)
304 struct ncr53c9x_softc *sc;
305 {
306 struct flsc_softc *fsc = (struct flsc_softc *)sc;
307 unsigned hardbits;
308
309 hardbits = fsc->sc_reg[0x40];
310 if (hardbits & FLSC_HB_IACT)
311 return (fsc->sc_csr = 0);
312
313 if (sc->sc_state == NCR_CONNECTED || sc->sc_state == NCR_SELECTING)
314 fsc->sc_portbits |= FLSC_PB_LED;
315 else
316 fsc->sc_portbits &= ~FLSC_PB_LED;
317
318 if ((hardbits & FLSC_HB_CREQ) && !(hardbits & FLSC_HB_MINT) &&
319 fsc->sc_reg[NCR_STAT * 4] & NCRSTAT_INT) {
320 return 1;
321 }
322 /* Do I still need this? */
323 if (fsc->sc_piomode && fsc->sc_reg[NCR_STAT * 4] & NCRSTAT_INT &&
324 !(hardbits & FLSC_HB_MINT))
325 return 1;
326
327 fsc->sc_reg[0x40] = fsc->sc_portbits & ~FLSC_PB_INT_BITS;
328 fsc->sc_reg[0x40] = fsc->sc_portbits;
329 return 0;
330 }
331
332 void
333 flsc_clear_latched_intr(sc)
334 struct ncr53c9x_softc *sc;
335 {
336 struct flsc_softc *fsc = (struct flsc_softc *)sc;
337
338 fsc->sc_reg[0x40] = fsc->sc_portbits & ~FLSC_PB_INT_BITS;
339 fsc->sc_reg[0x40] = fsc->sc_portbits;
340 }
341
342 void
343 flsc_dma_reset(sc)
344 struct ncr53c9x_softc *sc;
345 {
346 struct flsc_softc *fsc = (struct flsc_softc *)sc;
347 struct ncr53c9x_tinfo *ti;
348
349 if (sc->sc_nexus)
350 ti = &sc->sc_tinfo[sc->sc_nexus->xs->sc_link->scsipi_scsi.target];
351 else
352 ti = &sc->sc_tinfo[1]; /* XXX */
353 if (fsc->sc_active) {
354 printf("dmaaddr %p dmasize %d stat %x flags %x off %d per %d ff %x",
355 *fsc->sc_dmaaddr, fsc->sc_dmasize, fsc->sc_reg[NCR_STAT * 4],
356 ti->flags, ti->offset, ti->period, fsc->sc_reg[NCR_FFLAG * 4]);
357 printf(" intr %x\n", fsc->sc_reg[NCR_INTR * 4]);
358 #ifdef DDB
359 Debugger();
360 #endif
361 }
362 fsc->sc_portbits &= ~FLSC_PB_DMA_BITS;
363 fsc->sc_reg[0x40] = fsc->sc_portbits;
364 fsc->sc_reg[0x80] = 0;
365 *((u_long *)fsc->sc_dmabase) = 0;
366 fsc->sc_active = 0;
367 fsc->sc_piomode = 0;
368 }
369
370 int
371 flsc_dma_intr(sc)
372 struct ncr53c9x_softc *sc;
373 {
374 register struct flsc_softc *fsc = (struct flsc_softc *)sc;
375 register u_char *p;
376 volatile u_char *cmdreg, *intrreg, *statreg, *fiforeg;
377 register u_int flscphase, flscstat, flscintr;
378 register int cnt;
379
380 NCR_DMA(("flsc_dma_intr: pio %d cnt %d int %x stat %x fifo %d ",
381 fsc->sc_piomode, fsc->sc_dmasize, sc->sc_espintr, sc->sc_espstat,
382 fsc->sc_reg[NCR_FFLAG * 4] & NCRFIFO_FF));
383 if (!(fsc->sc_reg[0x40] & FLSC_HB_CREQ))
384 printf("flsc_dma_intr: csr %x stat %x intr %x\n", fsc->sc_csr,
385 sc->sc_espstat, sc->sc_espintr);
386 if (fsc->sc_active == 0) {
387 printf("flsc_intr--inactive DMA\n");
388 return -1;
389 }
390
391 /* if DMA transfer, update sc_dmaaddr and sc_pdmalen, else PIO xfer */
392 if (fsc->sc_piomode == 0) {
393 fsc->sc_portbits &= ~FLSC_PB_DMA_BITS;
394 fsc->sc_reg[0x40] = fsc->sc_portbits;
395 fsc->sc_reg[0x80] = 0;
396 *((u_long *)fsc->sc_dmabase) = 0;
397 cnt = fsc->sc_reg[NCR_TCL * 4];
398 cnt += fsc->sc_reg[NCR_TCM * 4] << 8;
399 cnt += fsc->sc_reg[NCR_TCH * 4] << 16;
400 if (!fsc->sc_datain) {
401 cnt += fsc->sc_reg[NCR_FFLAG * 4] & NCRFIFO_FF;
402 fsc->sc_reg[NCR_CMD * 4] = NCRCMD_FLUSH;
403 }
404 cnt = fsc->sc_dmasize - cnt; /* number of bytes transferred */
405 NCR_DMA(("DMA xferred %d\n", cnt));
406 if (fsc->sc_xfr_align) {
407 int i;
408 for (i = 0; i < cnt; ++i)
409 (*fsc->sc_dmaaddr)[i] = fsc->sc_alignbuf[i];
410 fsc->sc_xfr_align = 0;
411 }
412 *fsc->sc_dmaaddr += cnt;
413 *fsc->sc_pdmalen -= cnt;
414 fsc->sc_active = 0;
415 return 0;
416 }
417
418 if ((sc->sc_espintr & NCRINTR_BS) == 0) {
419 fsc->sc_active = 0;
420 fsc->sc_piomode = 0;
421 NCR_DMA(("no NCRINTR_BS\n"));
422 return 0;
423 }
424
425 cnt = fsc->sc_dmasize;
426 #if 0
427 if (cnt == 0) {
428 printf("data interrupt, but no count left.");
429 }
430 #endif
431
432 p = *fsc->sc_dmaaddr;
433 flscphase = sc->sc_phase;
434 flscstat = (u_int) sc->sc_espstat;
435 flscintr = (u_int) sc->sc_espintr;
436 cmdreg = fsc->sc_reg + NCR_CMD * 4;
437 fiforeg = fsc->sc_reg + NCR_FIFO * 4;
438 statreg = fsc->sc_reg + NCR_STAT * 4;
439 intrreg = fsc->sc_reg + NCR_INTR * 4;
440 NCR_DMA(("PIO %d datain %d phase %d stat %x intr %x\n",
441 cnt, fsc->sc_datain, flscphase, flscstat, flscintr));
442 do {
443 if (fsc->sc_datain) {
444 *p++ = *fiforeg;
445 cnt--;
446 if (flscphase == DATA_IN_PHASE) {
447 *cmdreg = NCRCMD_TRANS;
448 } else {
449 fsc->sc_active = 0;
450 }
451 } else {
452 NCR_DMA(("flsc_dma_intr: PIO out- phase %d cnt %d active %d\n", flscphase, cnt,
453 fsc->sc_active));
454 if ( (flscphase == DATA_OUT_PHASE)
455 || (flscphase == MESSAGE_OUT_PHASE)) {
456 int n;
457 n = 16 - (fsc->sc_reg[NCR_FFLAG * 4] & NCRFIFO_FF);
458 if (n > cnt)
459 n = cnt;
460 cnt -= n;
461 while (n-- > 0)
462 *fiforeg = *p++;
463 *cmdreg = NCRCMD_TRANS;
464 } else {
465 fsc->sc_active = 0;
466 }
467 }
468
469 if (fsc->sc_active && cnt) {
470 while (!(*statreg & 0x80));
471 flscstat = *statreg;
472 flscintr = *intrreg;
473 flscphase = (flscintr & NCRINTR_DIS)
474 ? /* Disconnected */ BUSFREE_PHASE
475 : flscstat & PHASE_MASK;
476 }
477 } while (cnt && fsc->sc_active && (flscintr & NCRINTR_BS));
478 #if 1
479 if (fsc->sc_dmasize < 8 && cnt)
480 printf("flsc_dma_intr: short transfer: dmasize %d cnt %d\n",
481 fsc->sc_dmasize, cnt);
482 #endif
483 NCR_DMA(("flsc_dma_intr: PIO transfer [%d], %d->%d phase %d stat %x intr %x\n",
484 *fsc->sc_pdmalen, fsc->sc_dmasize, cnt, flscphase, flscstat, flscintr));
485 sc->sc_phase = flscphase;
486 sc->sc_espstat = (u_char) flscstat;
487 sc->sc_espintr = (u_char) flscintr;
488 *fsc->sc_dmaaddr = p;
489 *fsc->sc_pdmalen -= fsc->sc_dmasize - cnt;
490 fsc->sc_dmasize = cnt;
491
492 if (*fsc->sc_pdmalen == 0) {
493 sc->sc_espstat |= NCRSTAT_TC;
494 fsc->sc_piomode = 0;
495 }
496 return 0;
497 }
498
499 int
500 flsc_dma_setup(sc, addr, len, datain, dmasize)
501 struct ncr53c9x_softc *sc;
502 caddr_t *addr;
503 size_t *len;
504 int datain;
505 size_t *dmasize;
506 {
507 struct flsc_softc *fsc = (struct flsc_softc *)sc;
508 vm_offset_t pa;
509 u_char *ptr;
510 size_t xfer;
511
512 fsc->sc_dmaaddr = addr;
513 fsc->sc_pdmalen = len;
514 fsc->sc_datain = datain;
515 fsc->sc_dmasize = *dmasize;
516 if (sc->sc_nexus->xs->flags & SCSI_POLL) {
517 /* polling mode, use PIO */
518 *dmasize = fsc->sc_dmasize;
519 NCR_DMA(("pfsc_dma_setup: PIO %p/%d [%d]\n", *addr,
520 fsc->sc_dmasize, *len));
521 fsc->sc_piomode = 1;
522 if (datain == 0) {
523 int n;
524 n = fsc->sc_dmasize;
525 if (n > 16)
526 n = 16;
527 while (n-- > 0) {
528 fsc->sc_reg[NCR_FIFO * 4] = **fsc->sc_dmaaddr;
529 (*fsc->sc_pdmalen)--;
530 (*fsc->sc_dmaaddr)++;
531 --fsc->sc_dmasize;
532 }
533 }
534 return 0;
535 }
536 /*
537 * DMA can be nasty for high-speed serial input, so limit the
538 * size of this DMA operation if the serial port is running at
539 * a high speed (higher than 19200 for now - should be adjusted
540 * based on cpu type and speed?).
541 * XXX - add serial speed check XXX
542 */
543 if (ser_open_speed > 19200 && flsc_max_dma != 0 &&
544 fsc->sc_dmasize > flsc_max_dma)
545 fsc->sc_dmasize = flsc_max_dma;
546 ptr = *addr; /* Kernel virtual address */
547 pa = kvtop(ptr); /* Physical address of DMA */
548 xfer = min(fsc->sc_dmasize, NBPG - (pa & (NBPG - 1)));
549 fsc->sc_xfr_align = 0;
550 fsc->sc_piomode = 0;
551 fsc->sc_portbits &= ~FLSC_PB_DMA_BITS;
552 fsc->sc_reg[0x40] = fsc->sc_portbits;
553 fsc->sc_reg[0x80] = 0;
554 *((u_long *)fsc->sc_dmabase) = 0;
555
556 /*
557 * If output and length < 16, copy to fifo
558 */
559 if (datain == 0 && fsc->sc_dmasize < 16) {
560 int n;
561 for (n = 0; n < fsc->sc_dmasize; ++n)
562 fsc->sc_reg[NCR_FIFO * 4] = *ptr++;
563 NCR_DMA(("flsc_dma_setup: %d bytes written to fifo\n", n));
564 fsc->sc_piomode = 1;
565 fsc->sc_active = 1;
566 *fsc->sc_pdmalen -= fsc->sc_dmasize;
567 *fsc->sc_dmaaddr += fsc->sc_dmasize;
568 *dmasize = fsc->sc_dmasize;
569 fsc->sc_dmasize = 0;
570 return 0; /* All done */
571 }
572 /*
573 * If output and unaligned, copy unaligned data to fifo
574 */
575 else if (datain == 0 && (int)ptr & 3) {
576 int n = 4 - ((int)ptr & 3);
577 NCR_DMA(("flsc_dma_setup: align %d bytes written to fifo\n", n));
578 pa += n;
579 xfer -= n;
580 while (n--)
581 fsc->sc_reg[NCR_FIFO * 4] = *ptr++;
582 }
583 /*
584 * If unaligned address, read unaligned bytes into alignment buffer
585 */
586 else if ((int)ptr & 3 || xfer & 3) {
587 pa = kvtop((caddr_t)&fsc->sc_alignbuf);
588 xfer = fsc->sc_dmasize = min(xfer, sizeof (fsc->sc_alignbuf));
589 NCR_DMA(("flsc_dma_setup: align read by %d bytes\n", xfer));
590 fsc->sc_xfr_align = 1;
591 }
592 /*
593 * If length smaller than longword, read into alignment buffer
594 * XXX doesn't work for 1 or 2 bytes !!!!
595 */
596 else if (fsc->sc_dmasize < 4) {
597 NCR_DMA(("flsc_dma_setup: read remaining %d bytes\n",
598 fsc->sc_dmasize));
599 pa = kvtop((caddr_t)&fsc->sc_alignbuf);
600 fsc->sc_xfr_align = 1;
601 }
602 /*
603 * Finally, limit transfer length to multiple of 4 bytes.
604 */
605 else {
606 fsc->sc_dmasize &= -4;
607 xfer &= -4;
608 }
609
610 while (xfer < fsc->sc_dmasize) {
611 if ((pa + xfer) != kvtop(*addr + xfer))
612 break;
613 if ((fsc->sc_dmasize - xfer) < NBPG)
614 xfer = fsc->sc_dmasize;
615 else
616 xfer += NBPG;
617 }
618
619 fsc->sc_dmasize = xfer;
620 *dmasize = fsc->sc_dmasize;
621 fsc->sc_pa = pa;
622 #if defined(M68040) || defined(M68060)
623 if (mmutype == MMU_68040) {
624 if (fsc->sc_xfr_align) {
625 int n;
626 for (n = 0; n < sizeof (fsc->sc_alignbuf); ++n)
627 fsc->sc_alignbuf[n] = n | 0x80;
628 dma_cachectl(fsc->sc_alignbuf,
629 sizeof(fsc->sc_alignbuf));
630 }
631 else
632 dma_cachectl(*fsc->sc_dmaaddr, fsc->sc_dmasize);
633 }
634 #endif
635 fsc->sc_reg[0x80] = 0;
636 *((u_long *)(fsc->sc_dmabase + (pa & 0x00fffffc))) = pa;
637 fsc->sc_portbits &= ~FLSC_PB_DMA_BITS;
638 fsc->sc_portbits |= FLSC_PB_ENABLE_DMA |
639 (fsc->sc_datain ? FLSC_PB_DMA_READ : FLSC_PB_DMA_WRITE);
640 fsc->sc_reg[0x40] = fsc->sc_portbits;
641 NCR_DMA(("flsc_dma_setup: DMA %p->%lx/%d [%d]\n",
642 ptr, pa, fsc->sc_dmasize, *len));
643 fsc->sc_active = 1;
644 return 0;
645 }
646
647 void
648 flsc_dma_go(sc)
649 struct ncr53c9x_softc *sc;
650 {
651 struct flsc_softc *fsc = (struct flsc_softc *)sc;
652
653 NCR_DMA(("flsc_dma_go: datain %d size %d\n", fsc->sc_datain,
654 fsc->sc_dmasize));
655 if (sc->sc_nexus->xs->flags & SCSI_POLL) {
656 fsc->sc_active = 1;
657 return;
658 } else if (fsc->sc_piomode == 0) {
659 fsc->sc_portbits &= ~FLSC_PB_DMA_BITS;
660 fsc->sc_portbits |= FLSC_PB_ENABLE_DMA |
661 (fsc->sc_datain ? FLSC_PB_DMA_READ : FLSC_PB_DMA_WRITE);
662 fsc->sc_reg[0x40] = fsc->sc_portbits;
663 }
664 }
665
666 void
667 flsc_dma_stop(sc)
668 struct ncr53c9x_softc *sc;
669 {
670 struct flsc_softc *fsc = (struct flsc_softc *)sc;
671
672 fsc->sc_portbits &= ~FLSC_PB_DMA_BITS;
673 fsc->sc_reg[0x40] = fsc->sc_portbits;
674
675 fsc->sc_reg[0x80] = 0;
676 *((u_long *)fsc->sc_dmabase) = 0;
677 fsc->sc_piomode = 0;
678 }
679
680 int
681 flsc_dma_isactive(sc)
682 struct ncr53c9x_softc *sc;
683 {
684 struct flsc_softc *fsc = (struct flsc_softc *)sc;
685
686 return fsc->sc_active;
687 }
688