flsc.c revision 1.17 1 /* $NetBSD: flsc.c,v 1.17 1997/10/24 01:50:03 mhitch Exp $ */
2
3 /*
4 * Copyright (c) 1997 Michael L. Hitch
5 * Copyright (c) 1995 Daniel Widenfalk
6 * Copyright (c) 1994 Christian E. Hopps
7 * Copyright (c) 1982, 1990 The Regents of the University of California.
8 * All rights reserved.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 * 3. All advertising materials mentioning features or use of this software
19 * must display the following acknowledgement:
20 * This product includes software developed by Daniel Widenfalk
21 * and Michael L. Hitch.
22 * 4. Neither the name of the University nor the names of its contributors
23 * may be used to endorse or promote products derived from this software
24 * without specific prior written permission.
25 *
26 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
27 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
28 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
29 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
30 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
31 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
32 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
33 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
34 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
35 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
36 * SUCH DAMAGE.
37 */
38
39 /*
40 * Initial amiga Fastlane driver by Daniel Widenfalk. Conversion to
41 * 53c9x MI driver by Michael L. Hitch (mhitch (at) montana.edu).
42 */
43
44 #include <sys/types.h>
45 #include <sys/param.h>
46 #include <sys/systm.h>
47 #include <sys/kernel.h>
48 #include <sys/errno.h>
49 #include <sys/ioctl.h>
50 #include <sys/device.h>
51 #include <sys/buf.h>
52 #include <sys/proc.h>
53 #include <sys/user.h>
54 #include <sys/queue.h>
55
56 #include <dev/scsipi/scsi_all.h>
57 #include <dev/scsipi/scsipi_all.h>
58 #include <dev/scsipi/scsiconf.h>
59 #include <dev/scsipi/scsi_message.h>
60
61 #include <machine/cpu.h>
62 #include <machine/param.h>
63
64 #include <dev/ic/ncr53c9xreg.h>
65 #include <dev/ic/ncr53c9xvar.h>
66
67 #include <amiga/amiga/isr.h>
68 #include <amiga/dev/flscvar.h>
69 #include <amiga/dev/zbusvar.h>
70
71 void flscattach __P((struct device *, struct device *, void *));
72 int flscmatch __P((struct device *, struct cfdata *, void *));
73
74 /* Linkup to the rest of the kernel */
75 struct cfattach flsc_ca = {
76 sizeof(struct flsc_softc), flscmatch, flscattach
77 };
78
79 struct cfdriver flsc_cd = {
80 NULL, "flsc", DV_DULL
81 };
82
83 struct scsipi_adapter flsc_switch = {
84 ncr53c9x_scsi_cmd,
85 minphys, /* no max at this level; handled by DMA code */
86 NULL,
87 NULL,
88 };
89
90 struct scsipi_device flsc_dev = {
91 NULL, /* Use default error handler */
92 NULL, /* have a queue, served by this */
93 NULL, /* have no async handler */
94 NULL, /* Use default 'done' routine */
95 };
96
97 /*
98 * Functions and the switch for the MI code.
99 */
100 u_char flsc_read_reg __P((struct ncr53c9x_softc *, int));
101 void flsc_write_reg __P((struct ncr53c9x_softc *, int, u_char));
102 int flsc_dma_isintr __P((struct ncr53c9x_softc *));
103 void flsc_dma_reset __P((struct ncr53c9x_softc *));
104 int flsc_dma_intr __P((struct ncr53c9x_softc *));
105 int flsc_dma_setup __P((struct ncr53c9x_softc *, caddr_t *,
106 size_t *, int, size_t *));
107 void flsc_dma_go __P((struct ncr53c9x_softc *));
108 void flsc_dma_stop __P((struct ncr53c9x_softc *));
109 int flsc_dma_isactive __P((struct ncr53c9x_softc *));
110 void flsc_clear_latched_intr __P((struct ncr53c9x_softc *));
111
112 struct ncr53c9x_glue flsc_glue = {
113 flsc_read_reg,
114 flsc_write_reg,
115 flsc_dma_isintr,
116 flsc_dma_reset,
117 flsc_dma_intr,
118 flsc_dma_setup,
119 flsc_dma_go,
120 flsc_dma_stop,
121 flsc_dma_isactive,
122 flsc_clear_latched_intr,
123 };
124
125 /* Maximum DMA transfer length to reduce impact on high-speed serial input */
126 u_long flsc_max_dma = 1024;
127 extern int ser_open_speed;
128
129 extern int ncr53c9x_debug;
130 extern u_long scsi_nosync;
131 extern int shift_nosync;
132
133 /*
134 * if we are an Advanced Systems & Software FastlaneZ3
135 */
136 int
137 flscmatch(parent, cf, aux)
138 struct device *parent;
139 struct cfdata *cf;
140 void *aux;
141 {
142 struct zbus_args *zap;
143
144 if (!is_a4000() && !is_a3000())
145 return(0);
146
147 zap = aux;
148 if (zap->manid == 0x2140 && zap->prodid == 11
149 && iszthreepa(zap->pa))
150 return(1);
151
152 return(0);
153 }
154
155 /*
156 * Attach this instance, and then all the sub-devices
157 */
158 void
159 flscattach(parent, self, aux)
160 struct device *parent, *self;
161 void *aux;
162 {
163 struct flsc_softc *fsc = (void *)self;
164 struct ncr53c9x_softc *sc = &fsc->sc_ncr53c9x;
165 struct zbus_args *zap;
166
167 /*
168 * Set up the glue for MI code early; we use some of it here.
169 */
170 sc->sc_glue = &flsc_glue;
171
172 /*
173 * Save the regs
174 */
175 zap = aux;
176 fsc->sc_dmabase = (volatile u_char *)zap->va;
177 fsc->sc_reg = &((volatile u_char *)zap->va)[0x1000001];
178
179 sc->sc_freq = 40; /* Clocked at 40Mhz */
180
181 printf(": address %p", fsc->sc_reg);
182
183 sc->sc_id = 7;
184
185 /*
186 * It is necessary to try to load the 2nd config register here,
187 * to find out what rev the flsc chip is, else the flsc_reset
188 * will not set up the defaults correctly.
189 */
190 sc->sc_cfg1 = sc->sc_id | NCRCFG1_PARENB;
191 sc->sc_cfg2 = NCRCFG2_SCSI2 | NCRCFG2_FE;
192 sc->sc_cfg3 = 0x08 /*FCLK*/ | NCRESPCFG3_FSCSI | NCRESPCFG3_CDB;
193 sc->sc_rev = NCR_VARIANT_FAS216;
194
195 /*
196 * This is the value used to start sync negotiations
197 * Note that the NCR register "SYNCTP" is programmed
198 * in "clocks per byte", and has a minimum value of 4.
199 * The SCSI period used in negotiation is one-fourth
200 * of the time (in nanoseconds) needed to transfer one byte.
201 * Since the chip's clock is given in MHz, we have the following
202 * formula: 4 * period = (1000 / freq) * 4
203 */
204 sc->sc_minsync = 1000 / sc->sc_freq;
205
206 if (((scsi_nosync >> shift_nosync) & 0xff00) == 0xff00)
207 sc->sc_minsync = 0;
208
209 /* Really no limit, but since we want to fit into the TCR... */
210 sc->sc_maxxfer = 64 * 1024;
211
212 fsc->sc_portbits = 0xa0 | FLSC_PB_EDI | FLSC_PB_ESI;
213 fsc->sc_hardbits = fsc->sc_reg[0x40];
214
215 fsc->sc_alignbuf = (char *)((u_long)fsc->sc_unalignbuf & -4);
216
217 sc->sc_dev.dv_cfdata->cf_flags |= (scsi_nosync >> shift_nosync) & 0xffff;
218 shift_nosync += 16;
219 ncr53c9x_debug |= (scsi_nosync >> shift_nosync) & 0xffff;
220 shift_nosync += 16;
221
222 /*
223 * Configure interrupts.
224 */
225 fsc->sc_isr.isr_intr = (int (*)(void *))ncr53c9x_intr;
226 fsc->sc_isr.isr_arg = sc;
227 fsc->sc_isr.isr_ipl = 2;
228 add_isr(&fsc->sc_isr);
229
230 fsc->sc_reg[0x40] = fsc->sc_portbits;
231
232 /*
233 * Now try to attach all the sub-devices
234 */
235 ncr53c9x_attach(sc, &flsc_switch, &flsc_dev);
236 }
237
238 /*
239 * Glue functions.
240 */
241
242 u_char
243 flsc_read_reg(sc, reg)
244 struct ncr53c9x_softc *sc;
245 int reg;
246 {
247 struct flsc_softc *fsc = (struct flsc_softc *)sc;
248
249 return fsc->sc_reg[reg * 4];
250 }
251
252 void
253 flsc_write_reg(sc, reg, val)
254 struct ncr53c9x_softc *sc;
255 int reg;
256 u_char val;
257 {
258 struct flsc_softc *fsc = (struct flsc_softc *)sc;
259 struct ncr53c9x_tinfo *ti;
260 u_char v = val;
261
262 if (fsc->sc_piomode && reg == NCR_CMD &&
263 v == (NCRCMD_TRANS|NCRCMD_DMA)) {
264 v = NCRCMD_TRANS;
265 }
266 /*
267 * Can't do synchronous transfers in SCSI_POLL mode:
268 * If starting SCSI_POLL command, clear defer sync negotiation
269 * by clearing the T_NEGOTIATE flag. If starting SCSI_POLL and
270 * the device is currently running synchronous, force another
271 * T_NEGOTIATE with 0 offset.
272 */
273 if (reg == NCR_SELID) {
274 ti = &sc->sc_tinfo[
275 sc->sc_nexus->xs->sc_link->scsipi_scsi.target];
276 if (sc->sc_nexus->xs->flags & SCSI_POLL) {
277 if (ti->flags & T_SYNCMODE) {
278 ti->flags ^= T_SYNCMODE | T_NEGOTIATE;
279 } else if (ti->flags & T_NEGOTIATE) {
280 ti->flags ^= T_NEGOTIATE | T_SYNCHOFF;
281 /* save T_NEGOTIATE in private flags? */
282 }
283 } else {
284 /*
285 * If we haven't attempted sync negotiation yet,
286 * do it now.
287 */
288 if ((ti->flags & (T_SYNCMODE | T_SYNCHOFF)) ==
289 T_SYNCHOFF &&
290 sc->sc_minsync != 0) /* XXX */
291 ti->flags ^= T_NEGOTIATE | T_SYNCHOFF;
292 }
293 }
294 if (reg == NCR_CMD && v == NCRCMD_SETATN &&
295 sc->sc_flags & NCR_SYNCHNEGO &&
296 sc->sc_nexus->xs->flags & SCSI_POLL) {
297 ti = &sc->sc_tinfo[
298 sc->sc_nexus->xs->sc_link->scsipi_scsi.target];
299 ti->offset = 0;
300 }
301 fsc->sc_reg[reg * 4] = v;
302 }
303
304 int
305 flsc_dma_isintr(sc)
306 struct ncr53c9x_softc *sc;
307 {
308 struct flsc_softc *fsc = (struct flsc_softc *)sc;
309 unsigned hardbits;
310
311 hardbits = fsc->sc_reg[0x40];
312 if (hardbits & FLSC_HB_IACT)
313 return (fsc->sc_csr = 0);
314
315 if (sc->sc_state == NCR_CONNECTED || sc->sc_state == NCR_SELECTING)
316 fsc->sc_portbits |= FLSC_PB_LED;
317 else
318 fsc->sc_portbits &= ~FLSC_PB_LED;
319
320 if ((hardbits & FLSC_HB_CREQ) && !(hardbits & FLSC_HB_MINT) &&
321 fsc->sc_reg[NCR_STAT * 4] & NCRSTAT_INT) {
322 return 1;
323 }
324 /* Do I still need this? */
325 if (fsc->sc_piomode && fsc->sc_reg[NCR_STAT * 4] & NCRSTAT_INT &&
326 !(hardbits & FLSC_HB_MINT))
327 return 1;
328
329 fsc->sc_reg[0x40] = fsc->sc_portbits & ~FLSC_PB_INT_BITS;
330 fsc->sc_reg[0x40] = fsc->sc_portbits;
331 return 0;
332 }
333
334 void
335 flsc_clear_latched_intr(sc)
336 struct ncr53c9x_softc *sc;
337 {
338 struct flsc_softc *fsc = (struct flsc_softc *)sc;
339
340 fsc->sc_reg[0x40] = fsc->sc_portbits & ~FLSC_PB_INT_BITS;
341 fsc->sc_reg[0x40] = fsc->sc_portbits;
342 }
343
344 void
345 flsc_dma_reset(sc)
346 struct ncr53c9x_softc *sc;
347 {
348 struct flsc_softc *fsc = (struct flsc_softc *)sc;
349 struct ncr53c9x_tinfo *ti;
350
351 if (sc->sc_nexus)
352 ti = &sc->sc_tinfo[sc->sc_nexus->xs->sc_link->scsipi_scsi.target];
353 else
354 ti = &sc->sc_tinfo[1]; /* XXX */
355 if (fsc->sc_active) {
356 printf("dmaaddr %p dmasize %d stat %x flags %x off %d per %d ff %x",
357 *fsc->sc_dmaaddr, fsc->sc_dmasize, fsc->sc_reg[NCR_STAT * 4],
358 ti->flags, ti->offset, ti->period, fsc->sc_reg[NCR_FFLAG * 4]);
359 printf(" intr %x\n", fsc->sc_reg[NCR_INTR * 4]);
360 #ifdef DDB
361 Debugger();
362 #endif
363 }
364 fsc->sc_portbits &= ~FLSC_PB_DMA_BITS;
365 fsc->sc_reg[0x40] = fsc->sc_portbits;
366 fsc->sc_reg[0x80] = 0;
367 *((u_long *)fsc->sc_dmabase) = 0;
368 fsc->sc_active = 0;
369 fsc->sc_piomode = 0;
370 }
371
372 int
373 flsc_dma_intr(sc)
374 struct ncr53c9x_softc *sc;
375 {
376 register struct flsc_softc *fsc = (struct flsc_softc *)sc;
377 register u_char *p;
378 volatile u_char *cmdreg, *intrreg, *statreg, *fiforeg;
379 register u_int flscphase, flscstat, flscintr;
380 register int cnt;
381
382 NCR_DMA(("flsc_dma_intr: pio %d cnt %d int %x stat %x fifo %d ",
383 fsc->sc_piomode, fsc->sc_dmasize, sc->sc_espintr, sc->sc_espstat,
384 fsc->sc_reg[NCR_FFLAG * 4] & NCRFIFO_FF));
385 if (!(fsc->sc_reg[0x40] & FLSC_HB_CREQ))
386 printf("flsc_dma_intr: csr %x stat %x intr %x\n", fsc->sc_csr,
387 sc->sc_espstat, sc->sc_espintr);
388 if (fsc->sc_active == 0) {
389 printf("flsc_intr--inactive DMA\n");
390 return -1;
391 }
392
393 /* if DMA transfer, update sc_dmaaddr and sc_pdmalen, else PIO xfer */
394 if (fsc->sc_piomode == 0) {
395 fsc->sc_portbits &= ~FLSC_PB_DMA_BITS;
396 fsc->sc_reg[0x40] = fsc->sc_portbits;
397 fsc->sc_reg[0x80] = 0;
398 *((u_long *)fsc->sc_dmabase) = 0;
399 cnt = fsc->sc_reg[NCR_TCL * 4];
400 cnt += fsc->sc_reg[NCR_TCM * 4] << 8;
401 cnt += fsc->sc_reg[NCR_TCH * 4] << 16;
402 if (!fsc->sc_datain) {
403 cnt += fsc->sc_reg[NCR_FFLAG * 4] & NCRFIFO_FF;
404 fsc->sc_reg[NCR_CMD * 4] = NCRCMD_FLUSH;
405 }
406 cnt = fsc->sc_dmasize - cnt; /* number of bytes transferred */
407 NCR_DMA(("DMA xferred %d\n", cnt));
408 if (fsc->sc_xfr_align) {
409 int i;
410 for (i = 0; i < cnt; ++i)
411 (*fsc->sc_dmaaddr)[i] = fsc->sc_alignbuf[i];
412 fsc->sc_xfr_align = 0;
413 }
414 *fsc->sc_dmaaddr += cnt;
415 *fsc->sc_pdmalen -= cnt;
416 fsc->sc_active = 0;
417 return 0;
418 }
419
420 if ((sc->sc_espintr & NCRINTR_BS) == 0) {
421 fsc->sc_active = 0;
422 fsc->sc_piomode = 0;
423 NCR_DMA(("no NCRINTR_BS\n"));
424 return 0;
425 }
426
427 cnt = fsc->sc_dmasize;
428 #if 0
429 if (cnt == 0) {
430 printf("data interrupt, but no count left.");
431 }
432 #endif
433
434 p = *fsc->sc_dmaaddr;
435 flscphase = sc->sc_phase;
436 flscstat = (u_int) sc->sc_espstat;
437 flscintr = (u_int) sc->sc_espintr;
438 cmdreg = fsc->sc_reg + NCR_CMD * 4;
439 fiforeg = fsc->sc_reg + NCR_FIFO * 4;
440 statreg = fsc->sc_reg + NCR_STAT * 4;
441 intrreg = fsc->sc_reg + NCR_INTR * 4;
442 NCR_DMA(("PIO %d datain %d phase %d stat %x intr %x\n",
443 cnt, fsc->sc_datain, flscphase, flscstat, flscintr));
444 do {
445 if (fsc->sc_datain) {
446 *p++ = *fiforeg;
447 cnt--;
448 if (flscphase == DATA_IN_PHASE) {
449 *cmdreg = NCRCMD_TRANS;
450 } else {
451 fsc->sc_active = 0;
452 }
453 } else {
454 NCR_DMA(("flsc_dma_intr: PIO out- phase %d cnt %d active %d\n", flscphase, cnt,
455 fsc->sc_active));
456 if ( (flscphase == DATA_OUT_PHASE)
457 || (flscphase == MESSAGE_OUT_PHASE)) {
458 int n;
459 n = 16 - (fsc->sc_reg[NCR_FFLAG * 4] & NCRFIFO_FF);
460 if (n > cnt)
461 n = cnt;
462 cnt -= n;
463 while (n-- > 0)
464 *fiforeg = *p++;
465 *cmdreg = NCRCMD_TRANS;
466 } else {
467 fsc->sc_active = 0;
468 }
469 }
470
471 if (fsc->sc_active && cnt) {
472 while (!(*statreg & 0x80));
473 flscstat = *statreg;
474 flscintr = *intrreg;
475 flscphase = (flscintr & NCRINTR_DIS)
476 ? /* Disconnected */ BUSFREE_PHASE
477 : flscstat & PHASE_MASK;
478 }
479 } while (cnt && fsc->sc_active && (flscintr & NCRINTR_BS));
480 #if 1
481 if (fsc->sc_dmasize < 8 && cnt)
482 printf("flsc_dma_intr: short transfer: dmasize %d cnt %d\n",
483 fsc->sc_dmasize, cnt);
484 #endif
485 NCR_DMA(("flsc_dma_intr: PIO transfer [%d], %d->%d phase %d stat %x intr %x\n",
486 *fsc->sc_pdmalen, fsc->sc_dmasize, cnt, flscphase, flscstat, flscintr));
487 sc->sc_phase = flscphase;
488 sc->sc_espstat = (u_char) flscstat;
489 sc->sc_espintr = (u_char) flscintr;
490 *fsc->sc_dmaaddr = p;
491 *fsc->sc_pdmalen -= fsc->sc_dmasize - cnt;
492 fsc->sc_dmasize = cnt;
493
494 if (*fsc->sc_pdmalen == 0) {
495 sc->sc_espstat |= NCRSTAT_TC;
496 fsc->sc_piomode = 0;
497 }
498 return 0;
499 }
500
501 int
502 flsc_dma_setup(sc, addr, len, datain, dmasize)
503 struct ncr53c9x_softc *sc;
504 caddr_t *addr;
505 size_t *len;
506 int datain;
507 size_t *dmasize;
508 {
509 struct flsc_softc *fsc = (struct flsc_softc *)sc;
510 vm_offset_t pa;
511 u_char *ptr;
512 size_t xfer;
513
514 fsc->sc_dmaaddr = addr;
515 fsc->sc_pdmalen = len;
516 fsc->sc_datain = datain;
517 fsc->sc_dmasize = *dmasize;
518 if (sc->sc_nexus->xs->flags & SCSI_POLL) {
519 /* polling mode, use PIO */
520 *dmasize = fsc->sc_dmasize;
521 NCR_DMA(("pfsc_dma_setup: PIO %p/%d [%d]\n", *addr,
522 fsc->sc_dmasize, *len));
523 fsc->sc_piomode = 1;
524 if (datain == 0) {
525 int n;
526 n = fsc->sc_dmasize;
527 if (n > 16)
528 n = 16;
529 while (n-- > 0) {
530 fsc->sc_reg[NCR_FIFO * 4] = **fsc->sc_dmaaddr;
531 (*fsc->sc_pdmalen)--;
532 (*fsc->sc_dmaaddr)++;
533 --fsc->sc_dmasize;
534 }
535 }
536 return 0;
537 }
538 /*
539 * DMA can be nasty for high-speed serial input, so limit the
540 * size of this DMA operation if the serial port is running at
541 * a high speed (higher than 19200 for now - should be adjusted
542 * based on cpu type and speed?).
543 * XXX - add serial speed check XXX
544 */
545 if (ser_open_speed > 19200 && flsc_max_dma != 0 &&
546 fsc->sc_dmasize > flsc_max_dma)
547 fsc->sc_dmasize = flsc_max_dma;
548 ptr = *addr; /* Kernel virtual address */
549 pa = kvtop(ptr); /* Physical address of DMA */
550 xfer = min(fsc->sc_dmasize, NBPG - (pa & (NBPG - 1)));
551 fsc->sc_xfr_align = 0;
552 fsc->sc_piomode = 0;
553 fsc->sc_portbits &= ~FLSC_PB_DMA_BITS;
554 fsc->sc_reg[0x40] = fsc->sc_portbits;
555 fsc->sc_reg[0x80] = 0;
556 *((u_long *)fsc->sc_dmabase) = 0;
557
558 /*
559 * If output and length < 16, copy to fifo
560 */
561 if (datain == 0 && fsc->sc_dmasize < 16) {
562 int n;
563 for (n = 0; n < fsc->sc_dmasize; ++n)
564 fsc->sc_reg[NCR_FIFO * 4] = *ptr++;
565 NCR_DMA(("flsc_dma_setup: %d bytes written to fifo\n", n));
566 fsc->sc_piomode = 1;
567 fsc->sc_active = 1;
568 *fsc->sc_pdmalen -= fsc->sc_dmasize;
569 *fsc->sc_dmaaddr += fsc->sc_dmasize;
570 *dmasize = fsc->sc_dmasize;
571 fsc->sc_dmasize = 0;
572 return 0; /* All done */
573 }
574 /*
575 * If output and unaligned, copy unaligned data to fifo
576 */
577 else if (datain == 0 && (int)ptr & 3) {
578 int n = 4 - ((int)ptr & 3);
579 NCR_DMA(("flsc_dma_setup: align %d bytes written to fifo\n", n));
580 pa += n;
581 xfer -= n;
582 while (n--)
583 fsc->sc_reg[NCR_FIFO * 4] = *ptr++;
584 }
585 /*
586 * If unaligned address, read unaligned bytes into alignment buffer
587 */
588 else if ((int)ptr & 3 || xfer & 3) {
589 pa = kvtop((caddr_t)fsc->sc_alignbuf);
590 xfer = fsc->sc_dmasize = min(xfer, sizeof (fsc->sc_unalignbuf));
591 NCR_DMA(("flsc_dma_setup: align read by %d bytes\n", xfer));
592 fsc->sc_xfr_align = 1;
593 }
594 /*
595 * If length smaller than longword, read into alignment buffer
596 * XXX doesn't work for 1 or 2 bytes !!!!
597 */
598 else if (fsc->sc_dmasize < 4) {
599 NCR_DMA(("flsc_dma_setup: read remaining %d bytes\n",
600 fsc->sc_dmasize));
601 pa = kvtop((caddr_t)fsc->sc_alignbuf);
602 fsc->sc_xfr_align = 1;
603 }
604 /*
605 * Finally, limit transfer length to multiple of 4 bytes.
606 */
607 else {
608 fsc->sc_dmasize &= -4;
609 xfer &= -4;
610 }
611
612 while (xfer < fsc->sc_dmasize) {
613 if ((pa + xfer) != kvtop(*addr + xfer))
614 break;
615 if ((fsc->sc_dmasize - xfer) < NBPG)
616 xfer = fsc->sc_dmasize;
617 else
618 xfer += NBPG;
619 }
620
621 fsc->sc_dmasize = xfer;
622 *dmasize = fsc->sc_dmasize;
623 fsc->sc_pa = pa;
624 #if defined(M68040) || defined(M68060)
625 if (mmutype == MMU_68040) {
626 if (fsc->sc_xfr_align) {
627 int n;
628 for (n = 0; n < sizeof (fsc->sc_unalignbuf); ++n)
629 fsc->sc_alignbuf[n] = n | 0x80;
630 dma_cachectl(fsc->sc_alignbuf,
631 sizeof(fsc->sc_unalignbuf));
632 }
633 else
634 dma_cachectl(*fsc->sc_dmaaddr, fsc->sc_dmasize);
635 }
636 #endif
637 fsc->sc_reg[0x80] = 0;
638 *((u_long *)(fsc->sc_dmabase + (pa & 0x00fffffc))) = pa;
639 fsc->sc_portbits &= ~FLSC_PB_DMA_BITS;
640 fsc->sc_portbits |= FLSC_PB_ENABLE_DMA |
641 (fsc->sc_datain ? FLSC_PB_DMA_READ : FLSC_PB_DMA_WRITE);
642 fsc->sc_reg[0x40] = fsc->sc_portbits;
643 NCR_DMA(("flsc_dma_setup: DMA %p->%lx/%d [%d]\n",
644 ptr, pa, fsc->sc_dmasize, *len));
645 fsc->sc_active = 1;
646 return 0;
647 }
648
649 void
650 flsc_dma_go(sc)
651 struct ncr53c9x_softc *sc;
652 {
653 struct flsc_softc *fsc = (struct flsc_softc *)sc;
654
655 NCR_DMA(("flsc_dma_go: datain %d size %d\n", fsc->sc_datain,
656 fsc->sc_dmasize));
657 if (sc->sc_nexus->xs->flags & SCSI_POLL) {
658 fsc->sc_active = 1;
659 return;
660 } else if (fsc->sc_piomode == 0) {
661 fsc->sc_portbits &= ~FLSC_PB_DMA_BITS;
662 fsc->sc_portbits |= FLSC_PB_ENABLE_DMA |
663 (fsc->sc_datain ? FLSC_PB_DMA_READ : FLSC_PB_DMA_WRITE);
664 fsc->sc_reg[0x40] = fsc->sc_portbits;
665 }
666 }
667
668 void
669 flsc_dma_stop(sc)
670 struct ncr53c9x_softc *sc;
671 {
672 struct flsc_softc *fsc = (struct flsc_softc *)sc;
673
674 fsc->sc_portbits &= ~FLSC_PB_DMA_BITS;
675 fsc->sc_reg[0x40] = fsc->sc_portbits;
676
677 fsc->sc_reg[0x80] = 0;
678 *((u_long *)fsc->sc_dmabase) = 0;
679 fsc->sc_piomode = 0;
680 }
681
682 int
683 flsc_dma_isactive(sc)
684 struct ncr53c9x_softc *sc;
685 {
686 struct flsc_softc *fsc = (struct flsc_softc *)sc;
687
688 return fsc->sc_active;
689 }
690