flsc.c revision 1.20 1 /* $NetBSD: flsc.c,v 1.20 1998/05/24 19:32:34 is Exp $ */
2
3 /*
4 * Copyright (c) 1997 Michael L. Hitch
5 * Copyright (c) 1995 Daniel Widenfalk
6 * Copyright (c) 1994 Christian E. Hopps
7 * Copyright (c) 1982, 1990 The Regents of the University of California.
8 * All rights reserved.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 * 3. All advertising materials mentioning features or use of this software
19 * must display the following acknowledgement:
20 * This product includes software developed by Daniel Widenfalk
21 * and Michael L. Hitch.
22 * 4. Neither the name of the University nor the names of its contributors
23 * may be used to endorse or promote products derived from this software
24 * without specific prior written permission.
25 *
26 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
27 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
28 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
29 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
30 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
31 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
32 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
33 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
34 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
35 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
36 * SUCH DAMAGE.
37 */
38
39 /*
40 * Initial amiga Fastlane driver by Daniel Widenfalk. Conversion to
41 * 53c9x MI driver by Michael L. Hitch (mhitch (at) montana.edu).
42 */
43
44 #include <sys/types.h>
45 #include <sys/param.h>
46 #include <sys/systm.h>
47 #include <sys/kernel.h>
48 #include <sys/errno.h>
49 #include <sys/ioctl.h>
50 #include <sys/device.h>
51 #include <sys/buf.h>
52 #include <sys/proc.h>
53 #include <sys/user.h>
54 #include <sys/queue.h>
55
56 #include <dev/scsipi/scsi_all.h>
57 #include <dev/scsipi/scsipi_all.h>
58 #include <dev/scsipi/scsiconf.h>
59 #include <dev/scsipi/scsi_message.h>
60
61 #include <machine/cpu.h>
62 #include <machine/param.h>
63
64 #include <dev/ic/ncr53c9xreg.h>
65 #include <dev/ic/ncr53c9xvar.h>
66
67 #include <amiga/amiga/isr.h>
68 #include <amiga/dev/flscvar.h>
69 #include <amiga/dev/zbusvar.h>
70
71 void flscattach __P((struct device *, struct device *, void *));
72 int flscmatch __P((struct device *, struct cfdata *, void *));
73
74 /* Linkup to the rest of the kernel */
75 struct cfattach flsc_ca = {
76 sizeof(struct flsc_softc), flscmatch, flscattach
77 };
78
79 struct scsipi_adapter flsc_switch = {
80 ncr53c9x_scsi_cmd,
81 minphys, /* no max at this level; handled by DMA code */
82 NULL,
83 NULL,
84 };
85
86 struct scsipi_device flsc_dev = {
87 NULL, /* Use default error handler */
88 NULL, /* have a queue, served by this */
89 NULL, /* have no async handler */
90 NULL, /* Use default 'done' routine */
91 };
92
93 /*
94 * Functions and the switch for the MI code.
95 */
96 u_char flsc_read_reg __P((struct ncr53c9x_softc *, int));
97 void flsc_write_reg __P((struct ncr53c9x_softc *, int, u_char));
98 int flsc_dma_isintr __P((struct ncr53c9x_softc *));
99 void flsc_dma_reset __P((struct ncr53c9x_softc *));
100 int flsc_dma_intr __P((struct ncr53c9x_softc *));
101 int flsc_dma_setup __P((struct ncr53c9x_softc *, caddr_t *,
102 size_t *, int, size_t *));
103 void flsc_dma_go __P((struct ncr53c9x_softc *));
104 void flsc_dma_stop __P((struct ncr53c9x_softc *));
105 int flsc_dma_isactive __P((struct ncr53c9x_softc *));
106 void flsc_clear_latched_intr __P((struct ncr53c9x_softc *));
107
108 struct ncr53c9x_glue flsc_glue = {
109 flsc_read_reg,
110 flsc_write_reg,
111 flsc_dma_isintr,
112 flsc_dma_reset,
113 flsc_dma_intr,
114 flsc_dma_setup,
115 flsc_dma_go,
116 flsc_dma_stop,
117 flsc_dma_isactive,
118 flsc_clear_latched_intr,
119 };
120
121 /* Maximum DMA transfer length to reduce impact on high-speed serial input */
122 u_long flsc_max_dma = 1024;
123 extern int ser_open_speed;
124
125 extern int ncr53c9x_debug;
126 extern u_long scsi_nosync;
127 extern int shift_nosync;
128
129 /*
130 * if we are an Advanced Systems & Software FastlaneZ3
131 */
132 int
133 flscmatch(parent, cf, aux)
134 struct device *parent;
135 struct cfdata *cf;
136 void *aux;
137 {
138 struct zbus_args *zap;
139
140 if (!is_a4000() && !is_a3000())
141 return(0);
142
143 zap = aux;
144 if (zap->manid == 0x2140 && zap->prodid == 11
145 && iszthreepa(zap->pa))
146 return(1);
147
148 return(0);
149 }
150
151 /*
152 * Attach this instance, and then all the sub-devices
153 */
154 void
155 flscattach(parent, self, aux)
156 struct device *parent, *self;
157 void *aux;
158 {
159 struct flsc_softc *fsc = (void *)self;
160 struct ncr53c9x_softc *sc = &fsc->sc_ncr53c9x;
161 struct zbus_args *zap;
162
163 /*
164 * Set up the glue for MI code early; we use some of it here.
165 */
166 sc->sc_glue = &flsc_glue;
167
168 /*
169 * Save the regs
170 */
171 zap = aux;
172 fsc->sc_dmabase = (volatile u_char *)zap->va;
173 fsc->sc_reg = &((volatile u_char *)zap->va)[0x1000001];
174
175 sc->sc_freq = 40; /* Clocked at 40Mhz */
176
177 printf(": address %p", fsc->sc_reg);
178
179 sc->sc_id = 7;
180
181 /*
182 * It is necessary to try to load the 2nd config register here,
183 * to find out what rev the flsc chip is, else the flsc_reset
184 * will not set up the defaults correctly.
185 */
186 sc->sc_cfg1 = sc->sc_id | NCRCFG1_PARENB;
187 sc->sc_cfg2 = NCRCFG2_SCSI2 | NCRCFG2_FE;
188 sc->sc_cfg3 = 0x08 /*FCLK*/ | NCRESPCFG3_FSCSI | NCRESPCFG3_CDB;
189 sc->sc_rev = NCR_VARIANT_FAS216;
190
191 /*
192 * This is the value used to start sync negotiations
193 * Note that the NCR register "SYNCTP" is programmed
194 * in "clocks per byte", and has a minimum value of 4.
195 * The SCSI period used in negotiation is one-fourth
196 * of the time (in nanoseconds) needed to transfer one byte.
197 * Since the chip's clock is given in MHz, we have the following
198 * formula: 4 * period = (1000 / freq) * 4
199 */
200 sc->sc_minsync = 1000 / sc->sc_freq;
201
202 if (((scsi_nosync >> shift_nosync) & 0xff00) == 0xff00)
203 sc->sc_minsync = 0;
204
205 /* Really no limit, but since we want to fit into the TCR... */
206 sc->sc_maxxfer = 64 * 1024;
207
208 fsc->sc_portbits = 0xa0 | FLSC_PB_EDI | FLSC_PB_ESI;
209 fsc->sc_hardbits = fsc->sc_reg[0x40];
210
211 fsc->sc_alignbuf = (char *)((u_long)fsc->sc_unalignbuf & -4);
212
213 sc->sc_dev.dv_cfdata->cf_flags |= (scsi_nosync >> shift_nosync) & 0xffff;
214 shift_nosync += 16;
215 ncr53c9x_debug |= (scsi_nosync >> shift_nosync) & 0xffff;
216 shift_nosync += 16;
217
218 /*
219 * Configure interrupts.
220 */
221 fsc->sc_isr.isr_intr = (int (*)(void *))ncr53c9x_intr;
222 fsc->sc_isr.isr_arg = sc;
223 fsc->sc_isr.isr_ipl = 2;
224 add_isr(&fsc->sc_isr);
225
226 fsc->sc_reg[0x40] = fsc->sc_portbits;
227
228 /*
229 * Now try to attach all the sub-devices
230 */
231 ncr53c9x_attach(sc, &flsc_switch, &flsc_dev);
232 }
233
234 /*
235 * Glue functions.
236 */
237
238 u_char
239 flsc_read_reg(sc, reg)
240 struct ncr53c9x_softc *sc;
241 int reg;
242 {
243 struct flsc_softc *fsc = (struct flsc_softc *)sc;
244
245 return fsc->sc_reg[reg * 4];
246 }
247
248 void
249 flsc_write_reg(sc, reg, val)
250 struct ncr53c9x_softc *sc;
251 int reg;
252 u_char val;
253 {
254 struct flsc_softc *fsc = (struct flsc_softc *)sc;
255 struct ncr53c9x_tinfo *ti;
256 u_char v = val;
257
258 if (fsc->sc_piomode && reg == NCR_CMD &&
259 v == (NCRCMD_TRANS|NCRCMD_DMA)) {
260 v = NCRCMD_TRANS;
261 }
262 /*
263 * Can't do synchronous transfers in SCSI_POLL mode:
264 * If starting SCSI_POLL command, clear defer sync negotiation
265 * by clearing the T_NEGOTIATE flag. If starting SCSI_POLL and
266 * the device is currently running synchronous, force another
267 * T_NEGOTIATE with 0 offset.
268 */
269 if (reg == NCR_SELID) {
270 ti = &sc->sc_tinfo[
271 sc->sc_nexus->xs->sc_link->scsipi_scsi.target];
272 if (sc->sc_nexus->xs->flags & SCSI_POLL) {
273 if (ti->flags & T_SYNCMODE) {
274 ti->flags ^= T_SYNCMODE | T_NEGOTIATE;
275 } else if (ti->flags & T_NEGOTIATE) {
276 ti->flags ^= T_NEGOTIATE | T_SYNCHOFF;
277 /* save T_NEGOTIATE in private flags? */
278 }
279 } else {
280 /*
281 * If we haven't attempted sync negotiation yet,
282 * do it now.
283 */
284 if ((ti->flags & (T_SYNCMODE | T_SYNCHOFF)) ==
285 T_SYNCHOFF &&
286 sc->sc_minsync != 0) /* XXX */
287 ti->flags ^= T_NEGOTIATE | T_SYNCHOFF;
288 }
289 }
290 if (reg == NCR_CMD && v == NCRCMD_SETATN &&
291 sc->sc_flags & NCR_SYNCHNEGO &&
292 sc->sc_nexus->xs->flags & SCSI_POLL) {
293 ti = &sc->sc_tinfo[
294 sc->sc_nexus->xs->sc_link->scsipi_scsi.target];
295 ti->offset = 0;
296 }
297 fsc->sc_reg[reg * 4] = v;
298 }
299
300 int
301 flsc_dma_isintr(sc)
302 struct ncr53c9x_softc *sc;
303 {
304 struct flsc_softc *fsc = (struct flsc_softc *)sc;
305 unsigned hardbits;
306
307 hardbits = fsc->sc_reg[0x40];
308 if (hardbits & FLSC_HB_IACT)
309 return (fsc->sc_csr = 0);
310
311 if (sc->sc_state == NCR_CONNECTED || sc->sc_state == NCR_SELECTING)
312 fsc->sc_portbits |= FLSC_PB_LED;
313 else
314 fsc->sc_portbits &= ~FLSC_PB_LED;
315
316 if ((hardbits & FLSC_HB_CREQ) && !(hardbits & FLSC_HB_MINT) &&
317 fsc->sc_reg[NCR_STAT * 4] & NCRSTAT_INT) {
318 return 1;
319 }
320 /* Do I still need this? */
321 if (fsc->sc_piomode && fsc->sc_reg[NCR_STAT * 4] & NCRSTAT_INT &&
322 !(hardbits & FLSC_HB_MINT))
323 return 1;
324
325 fsc->sc_reg[0x40] = fsc->sc_portbits & ~FLSC_PB_INT_BITS;
326 fsc->sc_reg[0x40] = fsc->sc_portbits;
327 return 0;
328 }
329
330 void
331 flsc_clear_latched_intr(sc)
332 struct ncr53c9x_softc *sc;
333 {
334 struct flsc_softc *fsc = (struct flsc_softc *)sc;
335
336 fsc->sc_reg[0x40] = fsc->sc_portbits & ~FLSC_PB_INT_BITS;
337 fsc->sc_reg[0x40] = fsc->sc_portbits;
338 }
339
340 void
341 flsc_dma_reset(sc)
342 struct ncr53c9x_softc *sc;
343 {
344 struct flsc_softc *fsc = (struct flsc_softc *)sc;
345 struct ncr53c9x_tinfo *ti;
346
347 if (sc->sc_nexus)
348 ti = &sc->sc_tinfo[sc->sc_nexus->xs->sc_link->scsipi_scsi.target];
349 else
350 ti = &sc->sc_tinfo[1]; /* XXX */
351 if (fsc->sc_active) {
352 printf("dmaaddr %p dmasize %d stat %x flags %x off %d per %d ff %x",
353 *fsc->sc_dmaaddr, fsc->sc_dmasize, fsc->sc_reg[NCR_STAT * 4],
354 ti->flags, ti->offset, ti->period, fsc->sc_reg[NCR_FFLAG * 4]);
355 printf(" intr %x\n", fsc->sc_reg[NCR_INTR * 4]);
356 #ifdef DDB
357 Debugger();
358 #endif
359 }
360 fsc->sc_portbits &= ~FLSC_PB_DMA_BITS;
361 fsc->sc_reg[0x40] = fsc->sc_portbits;
362 fsc->sc_reg[0x80] = 0;
363 *((u_long *)fsc->sc_dmabase) = 0;
364 fsc->sc_active = 0;
365 fsc->sc_piomode = 0;
366 }
367
368 int
369 flsc_dma_intr(sc)
370 struct ncr53c9x_softc *sc;
371 {
372 register struct flsc_softc *fsc = (struct flsc_softc *)sc;
373 register u_char *p;
374 volatile u_char *cmdreg, *intrreg, *statreg, *fiforeg;
375 register u_int flscphase, flscstat, flscintr;
376 register int cnt;
377
378 NCR_DMA(("flsc_dma_intr: pio %d cnt %d int %x stat %x fifo %d ",
379 fsc->sc_piomode, fsc->sc_dmasize, sc->sc_espintr, sc->sc_espstat,
380 fsc->sc_reg[NCR_FFLAG * 4] & NCRFIFO_FF));
381 if (!(fsc->sc_reg[0x40] & FLSC_HB_CREQ))
382 printf("flsc_dma_intr: csr %x stat %x intr %x\n", fsc->sc_csr,
383 sc->sc_espstat, sc->sc_espintr);
384 if (fsc->sc_active == 0) {
385 printf("flsc_intr--inactive DMA\n");
386 return -1;
387 }
388
389 /* if DMA transfer, update sc_dmaaddr and sc_pdmalen, else PIO xfer */
390 if (fsc->sc_piomode == 0) {
391 fsc->sc_portbits &= ~FLSC_PB_DMA_BITS;
392 fsc->sc_reg[0x40] = fsc->sc_portbits;
393 fsc->sc_reg[0x80] = 0;
394 *((u_long *)fsc->sc_dmabase) = 0;
395 cnt = fsc->sc_reg[NCR_TCL * 4];
396 cnt += fsc->sc_reg[NCR_TCM * 4] << 8;
397 cnt += fsc->sc_reg[NCR_TCH * 4] << 16;
398 if (!fsc->sc_datain) {
399 cnt += fsc->sc_reg[NCR_FFLAG * 4] & NCRFIFO_FF;
400 fsc->sc_reg[NCR_CMD * 4] = NCRCMD_FLUSH;
401 }
402 cnt = fsc->sc_dmasize - cnt; /* number of bytes transferred */
403 NCR_DMA(("DMA xferred %d\n", cnt));
404 if (fsc->sc_xfr_align) {
405 int i;
406 for (i = 0; i < cnt; ++i)
407 (*fsc->sc_dmaaddr)[i] = fsc->sc_alignbuf[i];
408 fsc->sc_xfr_align = 0;
409 }
410 *fsc->sc_dmaaddr += cnt;
411 *fsc->sc_pdmalen -= cnt;
412 fsc->sc_active = 0;
413 return 0;
414 }
415
416 if ((sc->sc_espintr & NCRINTR_BS) == 0) {
417 fsc->sc_active = 0;
418 fsc->sc_piomode = 0;
419 NCR_DMA(("no NCRINTR_BS\n"));
420 return 0;
421 }
422
423 cnt = fsc->sc_dmasize;
424 #if 0
425 if (cnt == 0) {
426 printf("data interrupt, but no count left.");
427 }
428 #endif
429
430 p = *fsc->sc_dmaaddr;
431 flscphase = sc->sc_phase;
432 flscstat = (u_int) sc->sc_espstat;
433 flscintr = (u_int) sc->sc_espintr;
434 cmdreg = fsc->sc_reg + NCR_CMD * 4;
435 fiforeg = fsc->sc_reg + NCR_FIFO * 4;
436 statreg = fsc->sc_reg + NCR_STAT * 4;
437 intrreg = fsc->sc_reg + NCR_INTR * 4;
438 NCR_DMA(("PIO %d datain %d phase %d stat %x intr %x\n",
439 cnt, fsc->sc_datain, flscphase, flscstat, flscintr));
440 do {
441 if (fsc->sc_datain) {
442 *p++ = *fiforeg;
443 cnt--;
444 if (flscphase == DATA_IN_PHASE) {
445 *cmdreg = NCRCMD_TRANS;
446 } else {
447 fsc->sc_active = 0;
448 }
449 } else {
450 NCR_DMA(("flsc_dma_intr: PIO out- phase %d cnt %d active %d\n", flscphase, cnt,
451 fsc->sc_active));
452 if ( (flscphase == DATA_OUT_PHASE)
453 || (flscphase == MESSAGE_OUT_PHASE)) {
454 int n;
455 n = 16 - (fsc->sc_reg[NCR_FFLAG * 4] & NCRFIFO_FF);
456 if (n > cnt)
457 n = cnt;
458 cnt -= n;
459 while (n-- > 0)
460 *fiforeg = *p++;
461 *cmdreg = NCRCMD_TRANS;
462 } else {
463 fsc->sc_active = 0;
464 }
465 }
466
467 if (fsc->sc_active && cnt) {
468 while (!(*statreg & 0x80));
469 flscstat = *statreg;
470 flscintr = *intrreg;
471 flscphase = (flscintr & NCRINTR_DIS)
472 ? /* Disconnected */ BUSFREE_PHASE
473 : flscstat & PHASE_MASK;
474 }
475 } while (cnt && fsc->sc_active && (flscintr & NCRINTR_BS));
476 #if 1
477 if (fsc->sc_dmasize < 8 && cnt)
478 printf("flsc_dma_intr: short transfer: dmasize %d cnt %d\n",
479 fsc->sc_dmasize, cnt);
480 #endif
481 NCR_DMA(("flsc_dma_intr: PIO transfer [%d], %d->%d phase %d stat %x intr %x\n",
482 *fsc->sc_pdmalen, fsc->sc_dmasize, cnt, flscphase, flscstat, flscintr));
483 sc->sc_phase = flscphase;
484 sc->sc_espstat = (u_char) flscstat;
485 sc->sc_espintr = (u_char) flscintr;
486 *fsc->sc_dmaaddr = p;
487 *fsc->sc_pdmalen -= fsc->sc_dmasize - cnt;
488 fsc->sc_dmasize = cnt;
489
490 if (*fsc->sc_pdmalen == 0) {
491 sc->sc_espstat |= NCRSTAT_TC;
492 fsc->sc_piomode = 0;
493 }
494 return 0;
495 }
496
497 int
498 flsc_dma_setup(sc, addr, len, datain, dmasize)
499 struct ncr53c9x_softc *sc;
500 caddr_t *addr;
501 size_t *len;
502 int datain;
503 size_t *dmasize;
504 {
505 struct flsc_softc *fsc = (struct flsc_softc *)sc;
506 vm_offset_t pa;
507 u_char *ptr;
508 size_t xfer;
509
510 fsc->sc_dmaaddr = addr;
511 fsc->sc_pdmalen = len;
512 fsc->sc_datain = datain;
513 fsc->sc_dmasize = *dmasize;
514 if (sc->sc_nexus->xs->flags & SCSI_POLL) {
515 /* polling mode, use PIO */
516 *dmasize = fsc->sc_dmasize;
517 NCR_DMA(("pfsc_dma_setup: PIO %p/%d [%d]\n", *addr,
518 fsc->sc_dmasize, *len));
519 fsc->sc_piomode = 1;
520 if (datain == 0) {
521 int n;
522 n = fsc->sc_dmasize;
523 if (n > 16)
524 n = 16;
525 while (n-- > 0) {
526 fsc->sc_reg[NCR_FIFO * 4] = **fsc->sc_dmaaddr;
527 (*fsc->sc_pdmalen)--;
528 (*fsc->sc_dmaaddr)++;
529 --fsc->sc_dmasize;
530 }
531 }
532 return 0;
533 }
534 /*
535 * DMA can be nasty for high-speed serial input, so limit the
536 * size of this DMA operation if the serial port is running at
537 * a high speed (higher than 19200 for now - should be adjusted
538 * based on cpu type and speed?).
539 * XXX - add serial speed check XXX
540 */
541 if (ser_open_speed > 19200 && flsc_max_dma != 0 &&
542 fsc->sc_dmasize > flsc_max_dma)
543 fsc->sc_dmasize = flsc_max_dma;
544 ptr = *addr; /* Kernel virtual address */
545 pa = kvtop(ptr); /* Physical address of DMA */
546 xfer = min(fsc->sc_dmasize, NBPG - (pa & (NBPG - 1)));
547 fsc->sc_xfr_align = 0;
548 fsc->sc_piomode = 0;
549 fsc->sc_portbits &= ~FLSC_PB_DMA_BITS;
550 fsc->sc_reg[0x40] = fsc->sc_portbits;
551 fsc->sc_reg[0x80] = 0;
552 *((u_long *)fsc->sc_dmabase) = 0;
553
554 /*
555 * If output and length < 16, copy to fifo
556 */
557 if (datain == 0 && fsc->sc_dmasize < 16) {
558 int n;
559 for (n = 0; n < fsc->sc_dmasize; ++n)
560 fsc->sc_reg[NCR_FIFO * 4] = *ptr++;
561 NCR_DMA(("flsc_dma_setup: %d bytes written to fifo\n", n));
562 fsc->sc_piomode = 1;
563 fsc->sc_active = 1;
564 *fsc->sc_pdmalen -= fsc->sc_dmasize;
565 *fsc->sc_dmaaddr += fsc->sc_dmasize;
566 *dmasize = fsc->sc_dmasize;
567 fsc->sc_dmasize = 0;
568 return 0; /* All done */
569 }
570 /*
571 * If output and unaligned, copy unaligned data to fifo
572 */
573 else if (datain == 0 && (int)ptr & 3) {
574 int n = 4 - ((int)ptr & 3);
575 NCR_DMA(("flsc_dma_setup: align %d bytes written to fifo\n", n));
576 pa += n;
577 xfer -= n;
578 while (n--)
579 fsc->sc_reg[NCR_FIFO * 4] = *ptr++;
580 }
581 /*
582 * If unaligned address, read unaligned bytes into alignment buffer
583 */
584 else if ((int)ptr & 3 || xfer & 3) {
585 pa = kvtop((caddr_t)fsc->sc_alignbuf);
586 xfer = fsc->sc_dmasize = min(xfer, sizeof (fsc->sc_unalignbuf));
587 NCR_DMA(("flsc_dma_setup: align read by %d bytes\n", xfer));
588 fsc->sc_xfr_align = 1;
589 }
590 /*
591 * If length smaller than longword, read into alignment buffer
592 * XXX doesn't work for 1 or 2 bytes !!!!
593 */
594 else if (fsc->sc_dmasize < 4) {
595 NCR_DMA(("flsc_dma_setup: read remaining %d bytes\n",
596 fsc->sc_dmasize));
597 pa = kvtop((caddr_t)fsc->sc_alignbuf);
598 fsc->sc_xfr_align = 1;
599 }
600 /*
601 * Finally, limit transfer length to multiple of 4 bytes.
602 */
603 else {
604 fsc->sc_dmasize &= -4;
605 xfer &= -4;
606 }
607
608 while (xfer < fsc->sc_dmasize) {
609 if ((pa + xfer) != kvtop(*addr + xfer))
610 break;
611 if ((fsc->sc_dmasize - xfer) < NBPG)
612 xfer = fsc->sc_dmasize;
613 else
614 xfer += NBPG;
615 }
616
617 fsc->sc_dmasize = xfer;
618 *dmasize = fsc->sc_dmasize;
619 fsc->sc_pa = pa;
620 #if defined(M68040) || defined(M68060)
621 if (mmutype == MMU_68040) {
622 if (fsc->sc_xfr_align) {
623 int n;
624 for (n = 0; n < sizeof (fsc->sc_unalignbuf); ++n)
625 fsc->sc_alignbuf[n] = n | 0x80;
626 dma_cachectl(fsc->sc_alignbuf,
627 sizeof(fsc->sc_unalignbuf));
628 }
629 else
630 dma_cachectl(*fsc->sc_dmaaddr, fsc->sc_dmasize);
631 }
632 #endif
633 fsc->sc_reg[0x80] = 0;
634 *((u_long *)(fsc->sc_dmabase + (pa & 0x00fffffc))) = pa;
635 fsc->sc_portbits &= ~FLSC_PB_DMA_BITS;
636 fsc->sc_portbits |= FLSC_PB_ENABLE_DMA |
637 (fsc->sc_datain ? FLSC_PB_DMA_READ : FLSC_PB_DMA_WRITE);
638 fsc->sc_reg[0x40] = fsc->sc_portbits;
639 NCR_DMA(("flsc_dma_setup: DMA %p->%lx/%d [%d]\n",
640 ptr, pa, fsc->sc_dmasize, *len));
641 fsc->sc_active = 1;
642 return 0;
643 }
644
645 void
646 flsc_dma_go(sc)
647 struct ncr53c9x_softc *sc;
648 {
649 struct flsc_softc *fsc = (struct flsc_softc *)sc;
650
651 NCR_DMA(("flsc_dma_go: datain %d size %d\n", fsc->sc_datain,
652 fsc->sc_dmasize));
653 if (sc->sc_nexus->xs->flags & SCSI_POLL) {
654 fsc->sc_active = 1;
655 return;
656 } else if (fsc->sc_piomode == 0) {
657 fsc->sc_portbits &= ~FLSC_PB_DMA_BITS;
658 fsc->sc_portbits |= FLSC_PB_ENABLE_DMA |
659 (fsc->sc_datain ? FLSC_PB_DMA_READ : FLSC_PB_DMA_WRITE);
660 fsc->sc_reg[0x40] = fsc->sc_portbits;
661 }
662 }
663
664 void
665 flsc_dma_stop(sc)
666 struct ncr53c9x_softc *sc;
667 {
668 struct flsc_softc *fsc = (struct flsc_softc *)sc;
669
670 fsc->sc_portbits &= ~FLSC_PB_DMA_BITS;
671 fsc->sc_reg[0x40] = fsc->sc_portbits;
672
673 fsc->sc_reg[0x80] = 0;
674 *((u_long *)fsc->sc_dmabase) = 0;
675 fsc->sc_piomode = 0;
676 }
677
678 int
679 flsc_dma_isactive(sc)
680 struct ncr53c9x_softc *sc;
681 {
682 struct flsc_softc *fsc = (struct flsc_softc *)sc;
683
684 return fsc->sc_active;
685 }
686