flsc.c revision 1.22 1 /* $NetBSD: flsc.c,v 1.22 1998/10/10 00:28:36 thorpej Exp $ */
2
3 /*
4 * Copyright (c) 1997 Michael L. Hitch
5 * Copyright (c) 1995 Daniel Widenfalk
6 * Copyright (c) 1994 Christian E. Hopps
7 * Copyright (c) 1982, 1990 The Regents of the University of California.
8 * All rights reserved.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 * 3. All advertising materials mentioning features or use of this software
19 * must display the following acknowledgement:
20 * This product includes software developed by Daniel Widenfalk
21 * and Michael L. Hitch.
22 * 4. Neither the name of the University nor the names of its contributors
23 * may be used to endorse or promote products derived from this software
24 * without specific prior written permission.
25 *
26 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
27 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
28 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
29 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
30 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
31 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
32 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
33 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
34 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
35 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
36 * SUCH DAMAGE.
37 */
38
39 /*
40 * Initial amiga Fastlane driver by Daniel Widenfalk. Conversion to
41 * 53c9x MI driver by Michael L. Hitch (mhitch (at) montana.edu).
42 */
43
44 #include "opt_ddb.h"
45
46 #include <sys/types.h>
47 #include <sys/param.h>
48 #include <sys/systm.h>
49 #include <sys/kernel.h>
50 #include <sys/errno.h>
51 #include <sys/ioctl.h>
52 #include <sys/device.h>
53 #include <sys/buf.h>
54 #include <sys/proc.h>
55 #include <sys/user.h>
56 #include <sys/queue.h>
57
58 #include <dev/scsipi/scsi_all.h>
59 #include <dev/scsipi/scsipi_all.h>
60 #include <dev/scsipi/scsiconf.h>
61 #include <dev/scsipi/scsi_message.h>
62
63 #include <machine/cpu.h>
64 #include <machine/param.h>
65
66 #include <dev/ic/ncr53c9xreg.h>
67 #include <dev/ic/ncr53c9xvar.h>
68
69 #include <amiga/amiga/isr.h>
70 #include <amiga/dev/flscvar.h>
71 #include <amiga/dev/zbusvar.h>
72
73 void flscattach __P((struct device *, struct device *, void *));
74 int flscmatch __P((struct device *, struct cfdata *, void *));
75
76 /* Linkup to the rest of the kernel */
77 struct cfattach flsc_ca = {
78 sizeof(struct flsc_softc), flscmatch, flscattach
79 };
80
81 struct scsipi_adapter flsc_switch = {
82 ncr53c9x_scsi_cmd,
83 minphys, /* no max at this level; handled by DMA code */
84 NULL, /* scsipi_ioctl */
85 };
86
87 struct scsipi_device flsc_dev = {
88 NULL, /* Use default error handler */
89 NULL, /* have a queue, served by this */
90 NULL, /* have no async handler */
91 NULL, /* Use default 'done' routine */
92 };
93
94 /*
95 * Functions and the switch for the MI code.
96 */
97 u_char flsc_read_reg __P((struct ncr53c9x_softc *, int));
98 void flsc_write_reg __P((struct ncr53c9x_softc *, int, u_char));
99 int flsc_dma_isintr __P((struct ncr53c9x_softc *));
100 void flsc_dma_reset __P((struct ncr53c9x_softc *));
101 int flsc_dma_intr __P((struct ncr53c9x_softc *));
102 int flsc_dma_setup __P((struct ncr53c9x_softc *, caddr_t *,
103 size_t *, int, size_t *));
104 void flsc_dma_go __P((struct ncr53c9x_softc *));
105 void flsc_dma_stop __P((struct ncr53c9x_softc *));
106 int flsc_dma_isactive __P((struct ncr53c9x_softc *));
107 void flsc_clear_latched_intr __P((struct ncr53c9x_softc *));
108
109 struct ncr53c9x_glue flsc_glue = {
110 flsc_read_reg,
111 flsc_write_reg,
112 flsc_dma_isintr,
113 flsc_dma_reset,
114 flsc_dma_intr,
115 flsc_dma_setup,
116 flsc_dma_go,
117 flsc_dma_stop,
118 flsc_dma_isactive,
119 flsc_clear_latched_intr,
120 };
121
122 /* Maximum DMA transfer length to reduce impact on high-speed serial input */
123 u_long flsc_max_dma = 1024;
124 extern int ser_open_speed;
125
126 extern int ncr53c9x_debug;
127 extern u_long scsi_nosync;
128 extern int shift_nosync;
129
130 /*
131 * if we are an Advanced Systems & Software FastlaneZ3
132 */
133 int
134 flscmatch(parent, cf, aux)
135 struct device *parent;
136 struct cfdata *cf;
137 void *aux;
138 {
139 struct zbus_args *zap;
140
141 if (!is_a4000() && !is_a3000())
142 return(0);
143
144 zap = aux;
145 if (zap->manid == 0x2140 && zap->prodid == 11
146 && iszthreepa(zap->pa))
147 return(1);
148
149 return(0);
150 }
151
152 /*
153 * Attach this instance, and then all the sub-devices
154 */
155 void
156 flscattach(parent, self, aux)
157 struct device *parent, *self;
158 void *aux;
159 {
160 struct flsc_softc *fsc = (void *)self;
161 struct ncr53c9x_softc *sc = &fsc->sc_ncr53c9x;
162 struct zbus_args *zap;
163
164 /*
165 * Set up the glue for MI code early; we use some of it here.
166 */
167 sc->sc_glue = &flsc_glue;
168
169 /*
170 * Save the regs
171 */
172 zap = aux;
173 fsc->sc_dmabase = (volatile u_char *)zap->va;
174 fsc->sc_reg = &((volatile u_char *)zap->va)[0x1000001];
175
176 sc->sc_freq = 40; /* Clocked at 40Mhz */
177
178 printf(": address %p", fsc->sc_reg);
179
180 sc->sc_id = 7;
181
182 /*
183 * It is necessary to try to load the 2nd config register here,
184 * to find out what rev the flsc chip is, else the flsc_reset
185 * will not set up the defaults correctly.
186 */
187 sc->sc_cfg1 = sc->sc_id | NCRCFG1_PARENB;
188 sc->sc_cfg2 = NCRCFG2_SCSI2 | NCRCFG2_FE;
189 sc->sc_cfg3 = 0x08 /*FCLK*/ | NCRESPCFG3_FSCSI | NCRESPCFG3_CDB;
190 sc->sc_rev = NCR_VARIANT_FAS216;
191
192 /*
193 * This is the value used to start sync negotiations
194 * Note that the NCR register "SYNCTP" is programmed
195 * in "clocks per byte", and has a minimum value of 4.
196 * The SCSI period used in negotiation is one-fourth
197 * of the time (in nanoseconds) needed to transfer one byte.
198 * Since the chip's clock is given in MHz, we have the following
199 * formula: 4 * period = (1000 / freq) * 4
200 */
201 sc->sc_minsync = 1000 / sc->sc_freq;
202
203 if (((scsi_nosync >> shift_nosync) & 0xff00) == 0xff00)
204 sc->sc_minsync = 0;
205
206 /* Really no limit, but since we want to fit into the TCR... */
207 sc->sc_maxxfer = 64 * 1024;
208
209 fsc->sc_portbits = 0xa0 | FLSC_PB_EDI | FLSC_PB_ESI;
210 fsc->sc_hardbits = fsc->sc_reg[0x40];
211
212 fsc->sc_alignbuf = (char *)((u_long)fsc->sc_unalignbuf & -4);
213
214 sc->sc_dev.dv_cfdata->cf_flags |= (scsi_nosync >> shift_nosync) & 0xffff;
215 shift_nosync += 16;
216 ncr53c9x_debug |= (scsi_nosync >> shift_nosync) & 0xffff;
217 shift_nosync += 16;
218
219 /*
220 * Configure interrupts.
221 */
222 fsc->sc_isr.isr_intr = (int (*)(void *))ncr53c9x_intr;
223 fsc->sc_isr.isr_arg = sc;
224 fsc->sc_isr.isr_ipl = 2;
225 add_isr(&fsc->sc_isr);
226
227 fsc->sc_reg[0x40] = fsc->sc_portbits;
228
229 /*
230 * Now try to attach all the sub-devices
231 */
232 ncr53c9x_attach(sc, &flsc_switch, &flsc_dev);
233 }
234
235 /*
236 * Glue functions.
237 */
238
239 u_char
240 flsc_read_reg(sc, reg)
241 struct ncr53c9x_softc *sc;
242 int reg;
243 {
244 struct flsc_softc *fsc = (struct flsc_softc *)sc;
245
246 return fsc->sc_reg[reg * 4];
247 }
248
249 void
250 flsc_write_reg(sc, reg, val)
251 struct ncr53c9x_softc *sc;
252 int reg;
253 u_char val;
254 {
255 struct flsc_softc *fsc = (struct flsc_softc *)sc;
256 struct ncr53c9x_tinfo *ti;
257 u_char v = val;
258
259 if (fsc->sc_piomode && reg == NCR_CMD &&
260 v == (NCRCMD_TRANS|NCRCMD_DMA)) {
261 v = NCRCMD_TRANS;
262 }
263 /*
264 * Can't do synchronous transfers in SCSI_POLL mode:
265 * If starting SCSI_POLL command, clear defer sync negotiation
266 * by clearing the T_NEGOTIATE flag. If starting SCSI_POLL and
267 * the device is currently running synchronous, force another
268 * T_NEGOTIATE with 0 offset.
269 */
270 if (reg == NCR_SELID) {
271 ti = &sc->sc_tinfo[
272 sc->sc_nexus->xs->sc_link->scsipi_scsi.target];
273 if (sc->sc_nexus->xs->flags & SCSI_POLL) {
274 if (ti->flags & T_SYNCMODE) {
275 ti->flags ^= T_SYNCMODE | T_NEGOTIATE;
276 } else if (ti->flags & T_NEGOTIATE) {
277 ti->flags ^= T_NEGOTIATE | T_SYNCHOFF;
278 /* save T_NEGOTIATE in private flags? */
279 }
280 } else {
281 /*
282 * If we haven't attempted sync negotiation yet,
283 * do it now.
284 */
285 if ((ti->flags & (T_SYNCMODE | T_SYNCHOFF)) ==
286 T_SYNCHOFF &&
287 sc->sc_minsync != 0) /* XXX */
288 ti->flags ^= T_NEGOTIATE | T_SYNCHOFF;
289 }
290 }
291 if (reg == NCR_CMD && v == NCRCMD_SETATN &&
292 sc->sc_flags & NCR_SYNCHNEGO &&
293 sc->sc_nexus->xs->flags & SCSI_POLL) {
294 ti = &sc->sc_tinfo[
295 sc->sc_nexus->xs->sc_link->scsipi_scsi.target];
296 ti->offset = 0;
297 }
298 fsc->sc_reg[reg * 4] = v;
299 }
300
301 int
302 flsc_dma_isintr(sc)
303 struct ncr53c9x_softc *sc;
304 {
305 struct flsc_softc *fsc = (struct flsc_softc *)sc;
306 unsigned hardbits;
307
308 hardbits = fsc->sc_reg[0x40];
309 if (hardbits & FLSC_HB_IACT)
310 return (fsc->sc_csr = 0);
311
312 if (sc->sc_state == NCR_CONNECTED || sc->sc_state == NCR_SELECTING)
313 fsc->sc_portbits |= FLSC_PB_LED;
314 else
315 fsc->sc_portbits &= ~FLSC_PB_LED;
316
317 if ((hardbits & FLSC_HB_CREQ) && !(hardbits & FLSC_HB_MINT) &&
318 fsc->sc_reg[NCR_STAT * 4] & NCRSTAT_INT) {
319 return 1;
320 }
321 /* Do I still need this? */
322 if (fsc->sc_piomode && fsc->sc_reg[NCR_STAT * 4] & NCRSTAT_INT &&
323 !(hardbits & FLSC_HB_MINT))
324 return 1;
325
326 fsc->sc_reg[0x40] = fsc->sc_portbits & ~FLSC_PB_INT_BITS;
327 fsc->sc_reg[0x40] = fsc->sc_portbits;
328 return 0;
329 }
330
331 void
332 flsc_clear_latched_intr(sc)
333 struct ncr53c9x_softc *sc;
334 {
335 struct flsc_softc *fsc = (struct flsc_softc *)sc;
336
337 fsc->sc_reg[0x40] = fsc->sc_portbits & ~FLSC_PB_INT_BITS;
338 fsc->sc_reg[0x40] = fsc->sc_portbits;
339 }
340
341 void
342 flsc_dma_reset(sc)
343 struct ncr53c9x_softc *sc;
344 {
345 struct flsc_softc *fsc = (struct flsc_softc *)sc;
346 struct ncr53c9x_tinfo *ti;
347
348 if (sc->sc_nexus)
349 ti = &sc->sc_tinfo[sc->sc_nexus->xs->sc_link->scsipi_scsi.target];
350 else
351 ti = &sc->sc_tinfo[1]; /* XXX */
352 if (fsc->sc_active) {
353 printf("dmaaddr %p dmasize %d stat %x flags %x off %d per %d ff %x",
354 *fsc->sc_dmaaddr, fsc->sc_dmasize, fsc->sc_reg[NCR_STAT * 4],
355 ti->flags, ti->offset, ti->period, fsc->sc_reg[NCR_FFLAG * 4]);
356 printf(" intr %x\n", fsc->sc_reg[NCR_INTR * 4]);
357 #ifdef DDB
358 Debugger();
359 #endif
360 }
361 fsc->sc_portbits &= ~FLSC_PB_DMA_BITS;
362 fsc->sc_reg[0x40] = fsc->sc_portbits;
363 fsc->sc_reg[0x80] = 0;
364 *((u_long *)fsc->sc_dmabase) = 0;
365 fsc->sc_active = 0;
366 fsc->sc_piomode = 0;
367 }
368
369 int
370 flsc_dma_intr(sc)
371 struct ncr53c9x_softc *sc;
372 {
373 register struct flsc_softc *fsc = (struct flsc_softc *)sc;
374 register u_char *p;
375 volatile u_char *cmdreg, *intrreg, *statreg, *fiforeg;
376 register u_int flscphase, flscstat, flscintr;
377 register int cnt;
378
379 NCR_DMA(("flsc_dma_intr: pio %d cnt %d int %x stat %x fifo %d ",
380 fsc->sc_piomode, fsc->sc_dmasize, sc->sc_espintr, sc->sc_espstat,
381 fsc->sc_reg[NCR_FFLAG * 4] & NCRFIFO_FF));
382 if (!(fsc->sc_reg[0x40] & FLSC_HB_CREQ))
383 printf("flsc_dma_intr: csr %x stat %x intr %x\n", fsc->sc_csr,
384 sc->sc_espstat, sc->sc_espintr);
385 if (fsc->sc_active == 0) {
386 printf("flsc_intr--inactive DMA\n");
387 return -1;
388 }
389
390 /* if DMA transfer, update sc_dmaaddr and sc_pdmalen, else PIO xfer */
391 if (fsc->sc_piomode == 0) {
392 fsc->sc_portbits &= ~FLSC_PB_DMA_BITS;
393 fsc->sc_reg[0x40] = fsc->sc_portbits;
394 fsc->sc_reg[0x80] = 0;
395 *((u_long *)fsc->sc_dmabase) = 0;
396 cnt = fsc->sc_reg[NCR_TCL * 4];
397 cnt += fsc->sc_reg[NCR_TCM * 4] << 8;
398 cnt += fsc->sc_reg[NCR_TCH * 4] << 16;
399 if (!fsc->sc_datain) {
400 cnt += fsc->sc_reg[NCR_FFLAG * 4] & NCRFIFO_FF;
401 fsc->sc_reg[NCR_CMD * 4] = NCRCMD_FLUSH;
402 }
403 cnt = fsc->sc_dmasize - cnt; /* number of bytes transferred */
404 NCR_DMA(("DMA xferred %d\n", cnt));
405 if (fsc->sc_xfr_align) {
406 int i;
407 for (i = 0; i < cnt; ++i)
408 (*fsc->sc_dmaaddr)[i] = fsc->sc_alignbuf[i];
409 fsc->sc_xfr_align = 0;
410 }
411 *fsc->sc_dmaaddr += cnt;
412 *fsc->sc_pdmalen -= cnt;
413 fsc->sc_active = 0;
414 return 0;
415 }
416
417 if ((sc->sc_espintr & NCRINTR_BS) == 0) {
418 fsc->sc_active = 0;
419 fsc->sc_piomode = 0;
420 NCR_DMA(("no NCRINTR_BS\n"));
421 return 0;
422 }
423
424 cnt = fsc->sc_dmasize;
425 #if 0
426 if (cnt == 0) {
427 printf("data interrupt, but no count left.");
428 }
429 #endif
430
431 p = *fsc->sc_dmaaddr;
432 flscphase = sc->sc_phase;
433 flscstat = (u_int) sc->sc_espstat;
434 flscintr = (u_int) sc->sc_espintr;
435 cmdreg = fsc->sc_reg + NCR_CMD * 4;
436 fiforeg = fsc->sc_reg + NCR_FIFO * 4;
437 statreg = fsc->sc_reg + NCR_STAT * 4;
438 intrreg = fsc->sc_reg + NCR_INTR * 4;
439 NCR_DMA(("PIO %d datain %d phase %d stat %x intr %x\n",
440 cnt, fsc->sc_datain, flscphase, flscstat, flscintr));
441 do {
442 if (fsc->sc_datain) {
443 *p++ = *fiforeg;
444 cnt--;
445 if (flscphase == DATA_IN_PHASE) {
446 *cmdreg = NCRCMD_TRANS;
447 } else {
448 fsc->sc_active = 0;
449 }
450 } else {
451 NCR_DMA(("flsc_dma_intr: PIO out- phase %d cnt %d active %d\n", flscphase, cnt,
452 fsc->sc_active));
453 if ( (flscphase == DATA_OUT_PHASE)
454 || (flscphase == MESSAGE_OUT_PHASE)) {
455 int n;
456 n = 16 - (fsc->sc_reg[NCR_FFLAG * 4] & NCRFIFO_FF);
457 if (n > cnt)
458 n = cnt;
459 cnt -= n;
460 while (n-- > 0)
461 *fiforeg = *p++;
462 *cmdreg = NCRCMD_TRANS;
463 } else {
464 fsc->sc_active = 0;
465 }
466 }
467
468 if (fsc->sc_active && cnt) {
469 while (!(*statreg & 0x80));
470 flscstat = *statreg;
471 flscintr = *intrreg;
472 flscphase = (flscintr & NCRINTR_DIS)
473 ? /* Disconnected */ BUSFREE_PHASE
474 : flscstat & PHASE_MASK;
475 }
476 } while (cnt && fsc->sc_active && (flscintr & NCRINTR_BS));
477 #if 1
478 if (fsc->sc_dmasize < 8 && cnt)
479 printf("flsc_dma_intr: short transfer: dmasize %d cnt %d\n",
480 fsc->sc_dmasize, cnt);
481 #endif
482 NCR_DMA(("flsc_dma_intr: PIO transfer [%d], %d->%d phase %d stat %x intr %x\n",
483 *fsc->sc_pdmalen, fsc->sc_dmasize, cnt, flscphase, flscstat, flscintr));
484 sc->sc_phase = flscphase;
485 sc->sc_espstat = (u_char) flscstat;
486 sc->sc_espintr = (u_char) flscintr;
487 *fsc->sc_dmaaddr = p;
488 *fsc->sc_pdmalen -= fsc->sc_dmasize - cnt;
489 fsc->sc_dmasize = cnt;
490
491 if (*fsc->sc_pdmalen == 0) {
492 sc->sc_espstat |= NCRSTAT_TC;
493 fsc->sc_piomode = 0;
494 }
495 return 0;
496 }
497
498 int
499 flsc_dma_setup(sc, addr, len, datain, dmasize)
500 struct ncr53c9x_softc *sc;
501 caddr_t *addr;
502 size_t *len;
503 int datain;
504 size_t *dmasize;
505 {
506 struct flsc_softc *fsc = (struct flsc_softc *)sc;
507 vm_offset_t pa;
508 u_char *ptr;
509 size_t xfer;
510
511 fsc->sc_dmaaddr = addr;
512 fsc->sc_pdmalen = len;
513 fsc->sc_datain = datain;
514 fsc->sc_dmasize = *dmasize;
515 if (sc->sc_nexus->xs->flags & SCSI_POLL) {
516 /* polling mode, use PIO */
517 *dmasize = fsc->sc_dmasize;
518 NCR_DMA(("pfsc_dma_setup: PIO %p/%d [%d]\n", *addr,
519 fsc->sc_dmasize, *len));
520 fsc->sc_piomode = 1;
521 if (datain == 0) {
522 int n;
523 n = fsc->sc_dmasize;
524 if (n > 16)
525 n = 16;
526 while (n-- > 0) {
527 fsc->sc_reg[NCR_FIFO * 4] = **fsc->sc_dmaaddr;
528 (*fsc->sc_pdmalen)--;
529 (*fsc->sc_dmaaddr)++;
530 --fsc->sc_dmasize;
531 }
532 }
533 return 0;
534 }
535 /*
536 * DMA can be nasty for high-speed serial input, so limit the
537 * size of this DMA operation if the serial port is running at
538 * a high speed (higher than 19200 for now - should be adjusted
539 * based on cpu type and speed?).
540 * XXX - add serial speed check XXX
541 */
542 if (ser_open_speed > 19200 && flsc_max_dma != 0 &&
543 fsc->sc_dmasize > flsc_max_dma)
544 fsc->sc_dmasize = flsc_max_dma;
545 ptr = *addr; /* Kernel virtual address */
546 pa = kvtop(ptr); /* Physical address of DMA */
547 xfer = min(fsc->sc_dmasize, NBPG - (pa & (NBPG - 1)));
548 fsc->sc_xfr_align = 0;
549 fsc->sc_piomode = 0;
550 fsc->sc_portbits &= ~FLSC_PB_DMA_BITS;
551 fsc->sc_reg[0x40] = fsc->sc_portbits;
552 fsc->sc_reg[0x80] = 0;
553 *((u_long *)fsc->sc_dmabase) = 0;
554
555 /*
556 * If output and length < 16, copy to fifo
557 */
558 if (datain == 0 && fsc->sc_dmasize < 16) {
559 int n;
560 for (n = 0; n < fsc->sc_dmasize; ++n)
561 fsc->sc_reg[NCR_FIFO * 4] = *ptr++;
562 NCR_DMA(("flsc_dma_setup: %d bytes written to fifo\n", n));
563 fsc->sc_piomode = 1;
564 fsc->sc_active = 1;
565 *fsc->sc_pdmalen -= fsc->sc_dmasize;
566 *fsc->sc_dmaaddr += fsc->sc_dmasize;
567 *dmasize = fsc->sc_dmasize;
568 fsc->sc_dmasize = 0;
569 return 0; /* All done */
570 }
571 /*
572 * If output and unaligned, copy unaligned data to fifo
573 */
574 else if (datain == 0 && (int)ptr & 3) {
575 int n = 4 - ((int)ptr & 3);
576 NCR_DMA(("flsc_dma_setup: align %d bytes written to fifo\n", n));
577 pa += n;
578 xfer -= n;
579 while (n--)
580 fsc->sc_reg[NCR_FIFO * 4] = *ptr++;
581 }
582 /*
583 * If unaligned address, read unaligned bytes into alignment buffer
584 */
585 else if ((int)ptr & 3 || xfer & 3) {
586 pa = kvtop((caddr_t)fsc->sc_alignbuf);
587 xfer = fsc->sc_dmasize = min(xfer, sizeof (fsc->sc_unalignbuf));
588 NCR_DMA(("flsc_dma_setup: align read by %d bytes\n", xfer));
589 fsc->sc_xfr_align = 1;
590 }
591 /*
592 * If length smaller than longword, read into alignment buffer
593 * XXX doesn't work for 1 or 2 bytes !!!!
594 */
595 else if (fsc->sc_dmasize < 4) {
596 NCR_DMA(("flsc_dma_setup: read remaining %d bytes\n",
597 fsc->sc_dmasize));
598 pa = kvtop((caddr_t)fsc->sc_alignbuf);
599 fsc->sc_xfr_align = 1;
600 }
601 /*
602 * Finally, limit transfer length to multiple of 4 bytes.
603 */
604 else {
605 fsc->sc_dmasize &= -4;
606 xfer &= -4;
607 }
608
609 while (xfer < fsc->sc_dmasize) {
610 if ((pa + xfer) != kvtop(*addr + xfer))
611 break;
612 if ((fsc->sc_dmasize - xfer) < NBPG)
613 xfer = fsc->sc_dmasize;
614 else
615 xfer += NBPG;
616 }
617
618 fsc->sc_dmasize = xfer;
619 *dmasize = fsc->sc_dmasize;
620 fsc->sc_pa = pa;
621 #if defined(M68040) || defined(M68060)
622 if (mmutype == MMU_68040) {
623 if (fsc->sc_xfr_align) {
624 int n;
625 for (n = 0; n < sizeof (fsc->sc_unalignbuf); ++n)
626 fsc->sc_alignbuf[n] = n | 0x80;
627 dma_cachectl(fsc->sc_alignbuf,
628 sizeof(fsc->sc_unalignbuf));
629 }
630 else
631 dma_cachectl(*fsc->sc_dmaaddr, fsc->sc_dmasize);
632 }
633 #endif
634 fsc->sc_reg[0x80] = 0;
635 *((u_long *)(fsc->sc_dmabase + (pa & 0x00fffffc))) = pa;
636 fsc->sc_portbits &= ~FLSC_PB_DMA_BITS;
637 fsc->sc_portbits |= FLSC_PB_ENABLE_DMA |
638 (fsc->sc_datain ? FLSC_PB_DMA_READ : FLSC_PB_DMA_WRITE);
639 fsc->sc_reg[0x40] = fsc->sc_portbits;
640 NCR_DMA(("flsc_dma_setup: DMA %p->%lx/%d [%d]\n",
641 ptr, pa, fsc->sc_dmasize, *len));
642 fsc->sc_active = 1;
643 return 0;
644 }
645
646 void
647 flsc_dma_go(sc)
648 struct ncr53c9x_softc *sc;
649 {
650 struct flsc_softc *fsc = (struct flsc_softc *)sc;
651
652 NCR_DMA(("flsc_dma_go: datain %d size %d\n", fsc->sc_datain,
653 fsc->sc_dmasize));
654 if (sc->sc_nexus->xs->flags & SCSI_POLL) {
655 fsc->sc_active = 1;
656 return;
657 } else if (fsc->sc_piomode == 0) {
658 fsc->sc_portbits &= ~FLSC_PB_DMA_BITS;
659 fsc->sc_portbits |= FLSC_PB_ENABLE_DMA |
660 (fsc->sc_datain ? FLSC_PB_DMA_READ : FLSC_PB_DMA_WRITE);
661 fsc->sc_reg[0x40] = fsc->sc_portbits;
662 }
663 }
664
665 void
666 flsc_dma_stop(sc)
667 struct ncr53c9x_softc *sc;
668 {
669 struct flsc_softc *fsc = (struct flsc_softc *)sc;
670
671 fsc->sc_portbits &= ~FLSC_PB_DMA_BITS;
672 fsc->sc_reg[0x40] = fsc->sc_portbits;
673
674 fsc->sc_reg[0x80] = 0;
675 *((u_long *)fsc->sc_dmabase) = 0;
676 fsc->sc_piomode = 0;
677 }
678
679 int
680 flsc_dma_isactive(sc)
681 struct ncr53c9x_softc *sc;
682 {
683 struct flsc_softc *fsc = (struct flsc_softc *)sc;
684
685 return fsc->sc_active;
686 }
687