flsc.c revision 1.23 1 /* $NetBSD: flsc.c,v 1.23 1998/11/19 21:44:36 thorpej Exp $ */
2
3 /*
4 * Copyright (c) 1997 Michael L. Hitch
5 * Copyright (c) 1995 Daniel Widenfalk
6 * Copyright (c) 1994 Christian E. Hopps
7 * Copyright (c) 1982, 1990 The Regents of the University of California.
8 * All rights reserved.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 * 3. All advertising materials mentioning features or use of this software
19 * must display the following acknowledgement:
20 * This product includes software developed by Daniel Widenfalk
21 * and Michael L. Hitch.
22 * 4. Neither the name of the University nor the names of its contributors
23 * may be used to endorse or promote products derived from this software
24 * without specific prior written permission.
25 *
26 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
27 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
28 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
29 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
30 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
31 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
32 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
33 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
34 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
35 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
36 * SUCH DAMAGE.
37 */
38
39 /*
40 * Initial amiga Fastlane driver by Daniel Widenfalk. Conversion to
41 * 53c9x MI driver by Michael L. Hitch (mhitch (at) montana.edu).
42 */
43
44 #include "opt_ddb.h"
45
46 #include <sys/types.h>
47 #include <sys/param.h>
48 #include <sys/systm.h>
49 #include <sys/kernel.h>
50 #include <sys/errno.h>
51 #include <sys/ioctl.h>
52 #include <sys/device.h>
53 #include <sys/buf.h>
54 #include <sys/proc.h>
55 #include <sys/user.h>
56 #include <sys/queue.h>
57
58 #include <dev/scsipi/scsi_all.h>
59 #include <dev/scsipi/scsipi_all.h>
60 #include <dev/scsipi/scsiconf.h>
61 #include <dev/scsipi/scsi_message.h>
62
63 #include <machine/cpu.h>
64 #include <machine/param.h>
65
66 #include <dev/ic/ncr53c9xreg.h>
67 #include <dev/ic/ncr53c9xvar.h>
68
69 #include <amiga/amiga/isr.h>
70 #include <amiga/dev/flscvar.h>
71 #include <amiga/dev/zbusvar.h>
72
73 void flscattach __P((struct device *, struct device *, void *));
74 int flscmatch __P((struct device *, struct cfdata *, void *));
75
76 /* Linkup to the rest of the kernel */
77 struct cfattach flsc_ca = {
78 sizeof(struct flsc_softc), flscmatch, flscattach
79 };
80
81 struct scsipi_device flsc_dev = {
82 NULL, /* Use default error handler */
83 NULL, /* have a queue, served by this */
84 NULL, /* have no async handler */
85 NULL, /* Use default 'done' routine */
86 };
87
88 /*
89 * Functions and the switch for the MI code.
90 */
91 u_char flsc_read_reg __P((struct ncr53c9x_softc *, int));
92 void flsc_write_reg __P((struct ncr53c9x_softc *, int, u_char));
93 int flsc_dma_isintr __P((struct ncr53c9x_softc *));
94 void flsc_dma_reset __P((struct ncr53c9x_softc *));
95 int flsc_dma_intr __P((struct ncr53c9x_softc *));
96 int flsc_dma_setup __P((struct ncr53c9x_softc *, caddr_t *,
97 size_t *, int, size_t *));
98 void flsc_dma_go __P((struct ncr53c9x_softc *));
99 void flsc_dma_stop __P((struct ncr53c9x_softc *));
100 int flsc_dma_isactive __P((struct ncr53c9x_softc *));
101 void flsc_clear_latched_intr __P((struct ncr53c9x_softc *));
102
103 struct ncr53c9x_glue flsc_glue = {
104 flsc_read_reg,
105 flsc_write_reg,
106 flsc_dma_isintr,
107 flsc_dma_reset,
108 flsc_dma_intr,
109 flsc_dma_setup,
110 flsc_dma_go,
111 flsc_dma_stop,
112 flsc_dma_isactive,
113 flsc_clear_latched_intr,
114 };
115
116 /* Maximum DMA transfer length to reduce impact on high-speed serial input */
117 u_long flsc_max_dma = 1024;
118 extern int ser_open_speed;
119
120 extern int ncr53c9x_debug;
121 extern u_long scsi_nosync;
122 extern int shift_nosync;
123
124 /*
125 * if we are an Advanced Systems & Software FastlaneZ3
126 */
127 int
128 flscmatch(parent, cf, aux)
129 struct device *parent;
130 struct cfdata *cf;
131 void *aux;
132 {
133 struct zbus_args *zap;
134
135 if (!is_a4000() && !is_a3000())
136 return(0);
137
138 zap = aux;
139 if (zap->manid == 0x2140 && zap->prodid == 11
140 && iszthreepa(zap->pa))
141 return(1);
142
143 return(0);
144 }
145
146 /*
147 * Attach this instance, and then all the sub-devices
148 */
149 void
150 flscattach(parent, self, aux)
151 struct device *parent, *self;
152 void *aux;
153 {
154 struct flsc_softc *fsc = (void *)self;
155 struct ncr53c9x_softc *sc = &fsc->sc_ncr53c9x;
156 struct zbus_args *zap;
157
158 /*
159 * Set up the glue for MI code early; we use some of it here.
160 */
161 sc->sc_glue = &flsc_glue;
162
163 /*
164 * Save the regs
165 */
166 zap = aux;
167 fsc->sc_dmabase = (volatile u_char *)zap->va;
168 fsc->sc_reg = &((volatile u_char *)zap->va)[0x1000001];
169
170 sc->sc_freq = 40; /* Clocked at 40Mhz */
171
172 printf(": address %p", fsc->sc_reg);
173
174 sc->sc_id = 7;
175
176 /*
177 * It is necessary to try to load the 2nd config register here,
178 * to find out what rev the flsc chip is, else the flsc_reset
179 * will not set up the defaults correctly.
180 */
181 sc->sc_cfg1 = sc->sc_id | NCRCFG1_PARENB;
182 sc->sc_cfg2 = NCRCFG2_SCSI2 | NCRCFG2_FE;
183 sc->sc_cfg3 = 0x08 /*FCLK*/ | NCRESPCFG3_FSCSI | NCRESPCFG3_CDB;
184 sc->sc_rev = NCR_VARIANT_FAS216;
185
186 /*
187 * This is the value used to start sync negotiations
188 * Note that the NCR register "SYNCTP" is programmed
189 * in "clocks per byte", and has a minimum value of 4.
190 * The SCSI period used in negotiation is one-fourth
191 * of the time (in nanoseconds) needed to transfer one byte.
192 * Since the chip's clock is given in MHz, we have the following
193 * formula: 4 * period = (1000 / freq) * 4
194 */
195 sc->sc_minsync = 1000 / sc->sc_freq;
196
197 if (((scsi_nosync >> shift_nosync) & 0xff00) == 0xff00)
198 sc->sc_minsync = 0;
199
200 /* Really no limit, but since we want to fit into the TCR... */
201 sc->sc_maxxfer = 64 * 1024;
202
203 fsc->sc_portbits = 0xa0 | FLSC_PB_EDI | FLSC_PB_ESI;
204 fsc->sc_hardbits = fsc->sc_reg[0x40];
205
206 fsc->sc_alignbuf = (char *)((u_long)fsc->sc_unalignbuf & -4);
207
208 sc->sc_dev.dv_cfdata->cf_flags |= (scsi_nosync >> shift_nosync) & 0xffff;
209 shift_nosync += 16;
210 ncr53c9x_debug |= (scsi_nosync >> shift_nosync) & 0xffff;
211 shift_nosync += 16;
212
213 /*
214 * Configure interrupts.
215 */
216 fsc->sc_isr.isr_intr = (int (*)(void *))ncr53c9x_intr;
217 fsc->sc_isr.isr_arg = sc;
218 fsc->sc_isr.isr_ipl = 2;
219 add_isr(&fsc->sc_isr);
220
221 fsc->sc_reg[0x40] = fsc->sc_portbits;
222
223 /*
224 * Now try to attach all the sub-devices
225 */
226 sc->sc_adapter.scsipi_cmd = ncr53c9x_scsi_cmd;
227 sc->sc_adapter.scsipi_minphys = minphys;
228 ncr53c9x_attach(sc, &flsc_dev);
229 }
230
231 /*
232 * Glue functions.
233 */
234
235 u_char
236 flsc_read_reg(sc, reg)
237 struct ncr53c9x_softc *sc;
238 int reg;
239 {
240 struct flsc_softc *fsc = (struct flsc_softc *)sc;
241
242 return fsc->sc_reg[reg * 4];
243 }
244
245 void
246 flsc_write_reg(sc, reg, val)
247 struct ncr53c9x_softc *sc;
248 int reg;
249 u_char val;
250 {
251 struct flsc_softc *fsc = (struct flsc_softc *)sc;
252 struct ncr53c9x_tinfo *ti;
253 u_char v = val;
254
255 if (fsc->sc_piomode && reg == NCR_CMD &&
256 v == (NCRCMD_TRANS|NCRCMD_DMA)) {
257 v = NCRCMD_TRANS;
258 }
259 /*
260 * Can't do synchronous transfers in SCSI_POLL mode:
261 * If starting SCSI_POLL command, clear defer sync negotiation
262 * by clearing the T_NEGOTIATE flag. If starting SCSI_POLL and
263 * the device is currently running synchronous, force another
264 * T_NEGOTIATE with 0 offset.
265 */
266 if (reg == NCR_SELID) {
267 ti = &sc->sc_tinfo[
268 sc->sc_nexus->xs->sc_link->scsipi_scsi.target];
269 if (sc->sc_nexus->xs->flags & SCSI_POLL) {
270 if (ti->flags & T_SYNCMODE) {
271 ti->flags ^= T_SYNCMODE | T_NEGOTIATE;
272 } else if (ti->flags & T_NEGOTIATE) {
273 ti->flags ^= T_NEGOTIATE | T_SYNCHOFF;
274 /* save T_NEGOTIATE in private flags? */
275 }
276 } else {
277 /*
278 * If we haven't attempted sync negotiation yet,
279 * do it now.
280 */
281 if ((ti->flags & (T_SYNCMODE | T_SYNCHOFF)) ==
282 T_SYNCHOFF &&
283 sc->sc_minsync != 0) /* XXX */
284 ti->flags ^= T_NEGOTIATE | T_SYNCHOFF;
285 }
286 }
287 if (reg == NCR_CMD && v == NCRCMD_SETATN &&
288 sc->sc_flags & NCR_SYNCHNEGO &&
289 sc->sc_nexus->xs->flags & SCSI_POLL) {
290 ti = &sc->sc_tinfo[
291 sc->sc_nexus->xs->sc_link->scsipi_scsi.target];
292 ti->offset = 0;
293 }
294 fsc->sc_reg[reg * 4] = v;
295 }
296
297 int
298 flsc_dma_isintr(sc)
299 struct ncr53c9x_softc *sc;
300 {
301 struct flsc_softc *fsc = (struct flsc_softc *)sc;
302 unsigned hardbits;
303
304 hardbits = fsc->sc_reg[0x40];
305 if (hardbits & FLSC_HB_IACT)
306 return (fsc->sc_csr = 0);
307
308 if (sc->sc_state == NCR_CONNECTED || sc->sc_state == NCR_SELECTING)
309 fsc->sc_portbits |= FLSC_PB_LED;
310 else
311 fsc->sc_portbits &= ~FLSC_PB_LED;
312
313 if ((hardbits & FLSC_HB_CREQ) && !(hardbits & FLSC_HB_MINT) &&
314 fsc->sc_reg[NCR_STAT * 4] & NCRSTAT_INT) {
315 return 1;
316 }
317 /* Do I still need this? */
318 if (fsc->sc_piomode && fsc->sc_reg[NCR_STAT * 4] & NCRSTAT_INT &&
319 !(hardbits & FLSC_HB_MINT))
320 return 1;
321
322 fsc->sc_reg[0x40] = fsc->sc_portbits & ~FLSC_PB_INT_BITS;
323 fsc->sc_reg[0x40] = fsc->sc_portbits;
324 return 0;
325 }
326
327 void
328 flsc_clear_latched_intr(sc)
329 struct ncr53c9x_softc *sc;
330 {
331 struct flsc_softc *fsc = (struct flsc_softc *)sc;
332
333 fsc->sc_reg[0x40] = fsc->sc_portbits & ~FLSC_PB_INT_BITS;
334 fsc->sc_reg[0x40] = fsc->sc_portbits;
335 }
336
337 void
338 flsc_dma_reset(sc)
339 struct ncr53c9x_softc *sc;
340 {
341 struct flsc_softc *fsc = (struct flsc_softc *)sc;
342 struct ncr53c9x_tinfo *ti;
343
344 if (sc->sc_nexus)
345 ti = &sc->sc_tinfo[sc->sc_nexus->xs->sc_link->scsipi_scsi.target];
346 else
347 ti = &sc->sc_tinfo[1]; /* XXX */
348 if (fsc->sc_active) {
349 printf("dmaaddr %p dmasize %d stat %x flags %x off %d per %d ff %x",
350 *fsc->sc_dmaaddr, fsc->sc_dmasize, fsc->sc_reg[NCR_STAT * 4],
351 ti->flags, ti->offset, ti->period, fsc->sc_reg[NCR_FFLAG * 4]);
352 printf(" intr %x\n", fsc->sc_reg[NCR_INTR * 4]);
353 #ifdef DDB
354 Debugger();
355 #endif
356 }
357 fsc->sc_portbits &= ~FLSC_PB_DMA_BITS;
358 fsc->sc_reg[0x40] = fsc->sc_portbits;
359 fsc->sc_reg[0x80] = 0;
360 *((u_long *)fsc->sc_dmabase) = 0;
361 fsc->sc_active = 0;
362 fsc->sc_piomode = 0;
363 }
364
365 int
366 flsc_dma_intr(sc)
367 struct ncr53c9x_softc *sc;
368 {
369 register struct flsc_softc *fsc = (struct flsc_softc *)sc;
370 register u_char *p;
371 volatile u_char *cmdreg, *intrreg, *statreg, *fiforeg;
372 register u_int flscphase, flscstat, flscintr;
373 register int cnt;
374
375 NCR_DMA(("flsc_dma_intr: pio %d cnt %d int %x stat %x fifo %d ",
376 fsc->sc_piomode, fsc->sc_dmasize, sc->sc_espintr, sc->sc_espstat,
377 fsc->sc_reg[NCR_FFLAG * 4] & NCRFIFO_FF));
378 if (!(fsc->sc_reg[0x40] & FLSC_HB_CREQ))
379 printf("flsc_dma_intr: csr %x stat %x intr %x\n", fsc->sc_csr,
380 sc->sc_espstat, sc->sc_espintr);
381 if (fsc->sc_active == 0) {
382 printf("flsc_intr--inactive DMA\n");
383 return -1;
384 }
385
386 /* if DMA transfer, update sc_dmaaddr and sc_pdmalen, else PIO xfer */
387 if (fsc->sc_piomode == 0) {
388 fsc->sc_portbits &= ~FLSC_PB_DMA_BITS;
389 fsc->sc_reg[0x40] = fsc->sc_portbits;
390 fsc->sc_reg[0x80] = 0;
391 *((u_long *)fsc->sc_dmabase) = 0;
392 cnt = fsc->sc_reg[NCR_TCL * 4];
393 cnt += fsc->sc_reg[NCR_TCM * 4] << 8;
394 cnt += fsc->sc_reg[NCR_TCH * 4] << 16;
395 if (!fsc->sc_datain) {
396 cnt += fsc->sc_reg[NCR_FFLAG * 4] & NCRFIFO_FF;
397 fsc->sc_reg[NCR_CMD * 4] = NCRCMD_FLUSH;
398 }
399 cnt = fsc->sc_dmasize - cnt; /* number of bytes transferred */
400 NCR_DMA(("DMA xferred %d\n", cnt));
401 if (fsc->sc_xfr_align) {
402 int i;
403 for (i = 0; i < cnt; ++i)
404 (*fsc->sc_dmaaddr)[i] = fsc->sc_alignbuf[i];
405 fsc->sc_xfr_align = 0;
406 }
407 *fsc->sc_dmaaddr += cnt;
408 *fsc->sc_pdmalen -= cnt;
409 fsc->sc_active = 0;
410 return 0;
411 }
412
413 if ((sc->sc_espintr & NCRINTR_BS) == 0) {
414 fsc->sc_active = 0;
415 fsc->sc_piomode = 0;
416 NCR_DMA(("no NCRINTR_BS\n"));
417 return 0;
418 }
419
420 cnt = fsc->sc_dmasize;
421 #if 0
422 if (cnt == 0) {
423 printf("data interrupt, but no count left.");
424 }
425 #endif
426
427 p = *fsc->sc_dmaaddr;
428 flscphase = sc->sc_phase;
429 flscstat = (u_int) sc->sc_espstat;
430 flscintr = (u_int) sc->sc_espintr;
431 cmdreg = fsc->sc_reg + NCR_CMD * 4;
432 fiforeg = fsc->sc_reg + NCR_FIFO * 4;
433 statreg = fsc->sc_reg + NCR_STAT * 4;
434 intrreg = fsc->sc_reg + NCR_INTR * 4;
435 NCR_DMA(("PIO %d datain %d phase %d stat %x intr %x\n",
436 cnt, fsc->sc_datain, flscphase, flscstat, flscintr));
437 do {
438 if (fsc->sc_datain) {
439 *p++ = *fiforeg;
440 cnt--;
441 if (flscphase == DATA_IN_PHASE) {
442 *cmdreg = NCRCMD_TRANS;
443 } else {
444 fsc->sc_active = 0;
445 }
446 } else {
447 NCR_DMA(("flsc_dma_intr: PIO out- phase %d cnt %d active %d\n", flscphase, cnt,
448 fsc->sc_active));
449 if ( (flscphase == DATA_OUT_PHASE)
450 || (flscphase == MESSAGE_OUT_PHASE)) {
451 int n;
452 n = 16 - (fsc->sc_reg[NCR_FFLAG * 4] & NCRFIFO_FF);
453 if (n > cnt)
454 n = cnt;
455 cnt -= n;
456 while (n-- > 0)
457 *fiforeg = *p++;
458 *cmdreg = NCRCMD_TRANS;
459 } else {
460 fsc->sc_active = 0;
461 }
462 }
463
464 if (fsc->sc_active && cnt) {
465 while (!(*statreg & 0x80));
466 flscstat = *statreg;
467 flscintr = *intrreg;
468 flscphase = (flscintr & NCRINTR_DIS)
469 ? /* Disconnected */ BUSFREE_PHASE
470 : flscstat & PHASE_MASK;
471 }
472 } while (cnt && fsc->sc_active && (flscintr & NCRINTR_BS));
473 #if 1
474 if (fsc->sc_dmasize < 8 && cnt)
475 printf("flsc_dma_intr: short transfer: dmasize %d cnt %d\n",
476 fsc->sc_dmasize, cnt);
477 #endif
478 NCR_DMA(("flsc_dma_intr: PIO transfer [%d], %d->%d phase %d stat %x intr %x\n",
479 *fsc->sc_pdmalen, fsc->sc_dmasize, cnt, flscphase, flscstat, flscintr));
480 sc->sc_phase = flscphase;
481 sc->sc_espstat = (u_char) flscstat;
482 sc->sc_espintr = (u_char) flscintr;
483 *fsc->sc_dmaaddr = p;
484 *fsc->sc_pdmalen -= fsc->sc_dmasize - cnt;
485 fsc->sc_dmasize = cnt;
486
487 if (*fsc->sc_pdmalen == 0) {
488 sc->sc_espstat |= NCRSTAT_TC;
489 fsc->sc_piomode = 0;
490 }
491 return 0;
492 }
493
494 int
495 flsc_dma_setup(sc, addr, len, datain, dmasize)
496 struct ncr53c9x_softc *sc;
497 caddr_t *addr;
498 size_t *len;
499 int datain;
500 size_t *dmasize;
501 {
502 struct flsc_softc *fsc = (struct flsc_softc *)sc;
503 vm_offset_t pa;
504 u_char *ptr;
505 size_t xfer;
506
507 fsc->sc_dmaaddr = addr;
508 fsc->sc_pdmalen = len;
509 fsc->sc_datain = datain;
510 fsc->sc_dmasize = *dmasize;
511 if (sc->sc_nexus->xs->flags & SCSI_POLL) {
512 /* polling mode, use PIO */
513 *dmasize = fsc->sc_dmasize;
514 NCR_DMA(("pfsc_dma_setup: PIO %p/%d [%d]\n", *addr,
515 fsc->sc_dmasize, *len));
516 fsc->sc_piomode = 1;
517 if (datain == 0) {
518 int n;
519 n = fsc->sc_dmasize;
520 if (n > 16)
521 n = 16;
522 while (n-- > 0) {
523 fsc->sc_reg[NCR_FIFO * 4] = **fsc->sc_dmaaddr;
524 (*fsc->sc_pdmalen)--;
525 (*fsc->sc_dmaaddr)++;
526 --fsc->sc_dmasize;
527 }
528 }
529 return 0;
530 }
531 /*
532 * DMA can be nasty for high-speed serial input, so limit the
533 * size of this DMA operation if the serial port is running at
534 * a high speed (higher than 19200 for now - should be adjusted
535 * based on cpu type and speed?).
536 * XXX - add serial speed check XXX
537 */
538 if (ser_open_speed > 19200 && flsc_max_dma != 0 &&
539 fsc->sc_dmasize > flsc_max_dma)
540 fsc->sc_dmasize = flsc_max_dma;
541 ptr = *addr; /* Kernel virtual address */
542 pa = kvtop(ptr); /* Physical address of DMA */
543 xfer = min(fsc->sc_dmasize, NBPG - (pa & (NBPG - 1)));
544 fsc->sc_xfr_align = 0;
545 fsc->sc_piomode = 0;
546 fsc->sc_portbits &= ~FLSC_PB_DMA_BITS;
547 fsc->sc_reg[0x40] = fsc->sc_portbits;
548 fsc->sc_reg[0x80] = 0;
549 *((u_long *)fsc->sc_dmabase) = 0;
550
551 /*
552 * If output and length < 16, copy to fifo
553 */
554 if (datain == 0 && fsc->sc_dmasize < 16) {
555 int n;
556 for (n = 0; n < fsc->sc_dmasize; ++n)
557 fsc->sc_reg[NCR_FIFO * 4] = *ptr++;
558 NCR_DMA(("flsc_dma_setup: %d bytes written to fifo\n", n));
559 fsc->sc_piomode = 1;
560 fsc->sc_active = 1;
561 *fsc->sc_pdmalen -= fsc->sc_dmasize;
562 *fsc->sc_dmaaddr += fsc->sc_dmasize;
563 *dmasize = fsc->sc_dmasize;
564 fsc->sc_dmasize = 0;
565 return 0; /* All done */
566 }
567 /*
568 * If output and unaligned, copy unaligned data to fifo
569 */
570 else if (datain == 0 && (int)ptr & 3) {
571 int n = 4 - ((int)ptr & 3);
572 NCR_DMA(("flsc_dma_setup: align %d bytes written to fifo\n", n));
573 pa += n;
574 xfer -= n;
575 while (n--)
576 fsc->sc_reg[NCR_FIFO * 4] = *ptr++;
577 }
578 /*
579 * If unaligned address, read unaligned bytes into alignment buffer
580 */
581 else if ((int)ptr & 3 || xfer & 3) {
582 pa = kvtop((caddr_t)fsc->sc_alignbuf);
583 xfer = fsc->sc_dmasize = min(xfer, sizeof (fsc->sc_unalignbuf));
584 NCR_DMA(("flsc_dma_setup: align read by %d bytes\n", xfer));
585 fsc->sc_xfr_align = 1;
586 }
587 /*
588 * If length smaller than longword, read into alignment buffer
589 * XXX doesn't work for 1 or 2 bytes !!!!
590 */
591 else if (fsc->sc_dmasize < 4) {
592 NCR_DMA(("flsc_dma_setup: read remaining %d bytes\n",
593 fsc->sc_dmasize));
594 pa = kvtop((caddr_t)fsc->sc_alignbuf);
595 fsc->sc_xfr_align = 1;
596 }
597 /*
598 * Finally, limit transfer length to multiple of 4 bytes.
599 */
600 else {
601 fsc->sc_dmasize &= -4;
602 xfer &= -4;
603 }
604
605 while (xfer < fsc->sc_dmasize) {
606 if ((pa + xfer) != kvtop(*addr + xfer))
607 break;
608 if ((fsc->sc_dmasize - xfer) < NBPG)
609 xfer = fsc->sc_dmasize;
610 else
611 xfer += NBPG;
612 }
613
614 fsc->sc_dmasize = xfer;
615 *dmasize = fsc->sc_dmasize;
616 fsc->sc_pa = pa;
617 #if defined(M68040) || defined(M68060)
618 if (mmutype == MMU_68040) {
619 if (fsc->sc_xfr_align) {
620 int n;
621 for (n = 0; n < sizeof (fsc->sc_unalignbuf); ++n)
622 fsc->sc_alignbuf[n] = n | 0x80;
623 dma_cachectl(fsc->sc_alignbuf,
624 sizeof(fsc->sc_unalignbuf));
625 }
626 else
627 dma_cachectl(*fsc->sc_dmaaddr, fsc->sc_dmasize);
628 }
629 #endif
630 fsc->sc_reg[0x80] = 0;
631 *((u_long *)(fsc->sc_dmabase + (pa & 0x00fffffc))) = pa;
632 fsc->sc_portbits &= ~FLSC_PB_DMA_BITS;
633 fsc->sc_portbits |= FLSC_PB_ENABLE_DMA |
634 (fsc->sc_datain ? FLSC_PB_DMA_READ : FLSC_PB_DMA_WRITE);
635 fsc->sc_reg[0x40] = fsc->sc_portbits;
636 NCR_DMA(("flsc_dma_setup: DMA %p->%lx/%d [%d]\n",
637 ptr, pa, fsc->sc_dmasize, *len));
638 fsc->sc_active = 1;
639 return 0;
640 }
641
642 void
643 flsc_dma_go(sc)
644 struct ncr53c9x_softc *sc;
645 {
646 struct flsc_softc *fsc = (struct flsc_softc *)sc;
647
648 NCR_DMA(("flsc_dma_go: datain %d size %d\n", fsc->sc_datain,
649 fsc->sc_dmasize));
650 if (sc->sc_nexus->xs->flags & SCSI_POLL) {
651 fsc->sc_active = 1;
652 return;
653 } else if (fsc->sc_piomode == 0) {
654 fsc->sc_portbits &= ~FLSC_PB_DMA_BITS;
655 fsc->sc_portbits |= FLSC_PB_ENABLE_DMA |
656 (fsc->sc_datain ? FLSC_PB_DMA_READ : FLSC_PB_DMA_WRITE);
657 fsc->sc_reg[0x40] = fsc->sc_portbits;
658 }
659 }
660
661 void
662 flsc_dma_stop(sc)
663 struct ncr53c9x_softc *sc;
664 {
665 struct flsc_softc *fsc = (struct flsc_softc *)sc;
666
667 fsc->sc_portbits &= ~FLSC_PB_DMA_BITS;
668 fsc->sc_reg[0x40] = fsc->sc_portbits;
669
670 fsc->sc_reg[0x80] = 0;
671 *((u_long *)fsc->sc_dmabase) = 0;
672 fsc->sc_piomode = 0;
673 }
674
675 int
676 flsc_dma_isactive(sc)
677 struct ncr53c9x_softc *sc;
678 {
679 struct flsc_softc *fsc = (struct flsc_softc *)sc;
680
681 return fsc->sc_active;
682 }
683