flsc.c revision 1.25.2.2 1 /* $NetBSD: flsc.c,v 1.25.2.2 2001/03/29 09:02:55 bouyer Exp $ */
2
3 /*
4 * Copyright (c) 1997 Michael L. Hitch
5 * Copyright (c) 1995 Daniel Widenfalk
6 * Copyright (c) 1994 Christian E. Hopps
7 * Copyright (c) 1982, 1990 The Regents of the University of California.
8 * All rights reserved.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 * 3. All advertising materials mentioning features or use of this software
19 * must display the following acknowledgement:
20 * This product includes software developed by Daniel Widenfalk
21 * and Michael L. Hitch.
22 * 4. Neither the name of the University nor the names of its contributors
23 * may be used to endorse or promote products derived from this software
24 * without specific prior written permission.
25 *
26 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
27 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
28 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
29 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
30 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
31 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
32 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
33 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
34 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
35 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
36 * SUCH DAMAGE.
37 */
38
39 /*
40 * Initial amiga Fastlane driver by Daniel Widenfalk. Conversion to
41 * 53c9x MI driver by Michael L. Hitch (mhitch (at) montana.edu).
42 */
43
44 #include "opt_ddb.h"
45
46 #include <sys/types.h>
47 #include <sys/param.h>
48 #include <sys/systm.h>
49 #include <sys/kernel.h>
50 #include <sys/errno.h>
51 #include <sys/ioctl.h>
52 #include <sys/device.h>
53 #include <sys/buf.h>
54 #include <sys/proc.h>
55 #include <sys/user.h>
56 #include <sys/queue.h>
57
58 #include <dev/scsipi/scsi_all.h>
59 #include <dev/scsipi/scsipi_all.h>
60 #include <dev/scsipi/scsiconf.h>
61 #include <dev/scsipi/scsi_message.h>
62
63 #include <machine/cpu.h>
64 #include <machine/param.h>
65
66 #include <dev/ic/ncr53c9xreg.h>
67 #include <dev/ic/ncr53c9xvar.h>
68
69 #include <amiga/amiga/isr.h>
70 #include <amiga/dev/flscvar.h>
71 #include <amiga/dev/zbusvar.h>
72
73 void flscattach __P((struct device *, struct device *, void *));
74 int flscmatch __P((struct device *, struct cfdata *, void *));
75
76 /* Linkup to the rest of the kernel */
77 struct cfattach flsc_ca = {
78 sizeof(struct flsc_softc), flscmatch, flscattach
79 };
80
81 /*
82 * Functions and the switch for the MI code.
83 */
84 u_char flsc_read_reg __P((struct ncr53c9x_softc *, int));
85 void flsc_write_reg __P((struct ncr53c9x_softc *, int, u_char));
86 int flsc_dma_isintr __P((struct ncr53c9x_softc *));
87 void flsc_dma_reset __P((struct ncr53c9x_softc *));
88 int flsc_dma_intr __P((struct ncr53c9x_softc *));
89 int flsc_dma_setup __P((struct ncr53c9x_softc *, caddr_t *,
90 size_t *, int, size_t *));
91 void flsc_dma_go __P((struct ncr53c9x_softc *));
92 void flsc_dma_stop __P((struct ncr53c9x_softc *));
93 int flsc_dma_isactive __P((struct ncr53c9x_softc *));
94 void flsc_clear_latched_intr __P((struct ncr53c9x_softc *));
95
96 struct ncr53c9x_glue flsc_glue = {
97 flsc_read_reg,
98 flsc_write_reg,
99 flsc_dma_isintr,
100 flsc_dma_reset,
101 flsc_dma_intr,
102 flsc_dma_setup,
103 flsc_dma_go,
104 flsc_dma_stop,
105 flsc_dma_isactive,
106 flsc_clear_latched_intr,
107 };
108
109 /* Maximum DMA transfer length to reduce impact on high-speed serial input */
110 u_long flsc_max_dma = 1024;
111 extern int ser_open_speed;
112
113 extern int ncr53c9x_debug;
114 extern u_long scsi_nosync;
115 extern int shift_nosync;
116
117 /*
118 * if we are an Advanced Systems & Software FastlaneZ3
119 */
120 int
121 flscmatch(parent, cf, aux)
122 struct device *parent;
123 struct cfdata *cf;
124 void *aux;
125 {
126 struct zbus_args *zap;
127
128 if (!is_a4000() && !is_a3000())
129 return(0);
130
131 zap = aux;
132 if (zap->manid == 0x2140 && zap->prodid == 11
133 && iszthreepa(zap->pa))
134 return(1);
135
136 return(0);
137 }
138
139 /*
140 * Attach this instance, and then all the sub-devices
141 */
142 void
143 flscattach(parent, self, aux)
144 struct device *parent, *self;
145 void *aux;
146 {
147 struct flsc_softc *fsc = (void *)self;
148 struct ncr53c9x_softc *sc = &fsc->sc_ncr53c9x;
149 struct zbus_args *zap;
150
151 /*
152 * Set up the glue for MI code early; we use some of it here.
153 */
154 sc->sc_glue = &flsc_glue;
155
156 /*
157 * Save the regs
158 */
159 zap = aux;
160 fsc->sc_dmabase = (volatile u_char *)zap->va;
161 fsc->sc_reg = &((volatile u_char *)zap->va)[0x1000001];
162
163 sc->sc_freq = 40; /* Clocked at 40Mhz */
164
165 printf(": address %p", fsc->sc_reg);
166
167 sc->sc_id = 7;
168
169 /*
170 * It is necessary to try to load the 2nd config register here,
171 * to find out what rev the flsc chip is, else the flsc_reset
172 * will not set up the defaults correctly.
173 */
174 sc->sc_cfg1 = sc->sc_id | NCRCFG1_PARENB;
175 sc->sc_cfg2 = NCRCFG2_SCSI2 | NCRCFG2_FE;
176 sc->sc_cfg3 = 0x08 /*FCLK*/ | NCRESPCFG3_FSCSI | NCRESPCFG3_CDB;
177 sc->sc_rev = NCR_VARIANT_FAS216;
178
179 /*
180 * This is the value used to start sync negotiations
181 * Note that the NCR register "SYNCTP" is programmed
182 * in "clocks per byte", and has a minimum value of 4.
183 * The SCSI period used in negotiation is one-fourth
184 * of the time (in nanoseconds) needed to transfer one byte.
185 * Since the chip's clock is given in MHz, we have the following
186 * formula: 4 * period = (1000 / freq) * 4
187 */
188 sc->sc_minsync = 1000 / sc->sc_freq;
189
190 if (((scsi_nosync >> shift_nosync) & 0xff00) == 0xff00)
191 sc->sc_minsync = 0;
192
193 /* Really no limit, but since we want to fit into the TCR... */
194 sc->sc_maxxfer = 64 * 1024;
195
196 fsc->sc_portbits = 0xa0 | FLSC_PB_EDI | FLSC_PB_ESI;
197 fsc->sc_hardbits = fsc->sc_reg[0x40];
198
199 fsc->sc_alignbuf = (char *)((u_long)fsc->sc_unalignbuf & -4);
200
201 sc->sc_dev.dv_cfdata->cf_flags |= (scsi_nosync >> shift_nosync) & 0xffff;
202 shift_nosync += 16;
203 ncr53c9x_debug |= (scsi_nosync >> shift_nosync) & 0xffff;
204 shift_nosync += 16;
205
206 /*
207 * Configure interrupts.
208 */
209 fsc->sc_isr.isr_intr = ncr53c9x_intr;
210 fsc->sc_isr.isr_arg = sc;
211 fsc->sc_isr.isr_ipl = 2;
212 add_isr(&fsc->sc_isr);
213
214 fsc->sc_reg[0x40] = fsc->sc_portbits;
215
216 /*
217 * Now try to attach all the sub-devices
218 */
219 sc->sc_adapter.adapt_request = ncr53c9x_scsipi_request;
220 sc->sc_adapter.adapt_minphys = minphys;
221 ncr53c9x_attach(sc);
222 }
223
224 /*
225 * Glue functions.
226 */
227
228 u_char
229 flsc_read_reg(sc, reg)
230 struct ncr53c9x_softc *sc;
231 int reg;
232 {
233 struct flsc_softc *fsc = (struct flsc_softc *)sc;
234
235 return fsc->sc_reg[reg * 4];
236 }
237
238 void
239 flsc_write_reg(sc, reg, val)
240 struct ncr53c9x_softc *sc;
241 int reg;
242 u_char val;
243 {
244 struct flsc_softc *fsc = (struct flsc_softc *)sc;
245 struct ncr53c9x_tinfo *ti;
246 u_char v = val;
247
248 if (fsc->sc_piomode && reg == NCR_CMD &&
249 v == (NCRCMD_TRANS|NCRCMD_DMA)) {
250 v = NCRCMD_TRANS;
251 }
252 /*
253 * Can't do synchronous transfers in XS_CTL_POLL mode:
254 * If starting XS_CTL_POLL command, clear defer sync negotiation
255 * by clearing the T_NEGOTIATE flag. If starting XS_CTL_POLL and
256 * the device is currently running synchronous, force another
257 * T_NEGOTIATE with 0 offset.
258 */
259 if (reg == NCR_SELID) {
260 ti = &sc->sc_tinfo[
261 sc->sc_nexus->xs->xs_periph->periph_target];
262 if (sc->sc_nexus->xs->xs_control & XS_CTL_POLL) {
263 if (ti->flags & T_SYNCMODE) {
264 ti->flags ^= T_SYNCMODE | T_NEGOTIATE;
265 } else if (ti->flags & T_NEGOTIATE) {
266 ti->flags ^= T_NEGOTIATE | T_SYNCHOFF;
267 /* save T_NEGOTIATE in private flags? */
268 }
269 } else {
270 /*
271 * If we haven't attempted sync negotiation yet,
272 * do it now.
273 */
274 if ((ti->flags & (T_SYNCMODE | T_SYNCHOFF)) ==
275 T_SYNCHOFF &&
276 sc->sc_minsync != 0) /* XXX */
277 ti->flags ^= T_NEGOTIATE | T_SYNCHOFF;
278 }
279 }
280 if (reg == NCR_CMD && v == NCRCMD_SETATN &&
281 sc->sc_flags & NCR_SYNCHNEGO &&
282 sc->sc_nexus->xs->xs_control & XS_CTL_POLL) {
283 ti = &sc->sc_tinfo[
284 sc->sc_nexus->xs->xs_periph->periph_target];
285 ti->offset = 0;
286 }
287 fsc->sc_reg[reg * 4] = v;
288 }
289
290 int
291 flsc_dma_isintr(sc)
292 struct ncr53c9x_softc *sc;
293 {
294 struct flsc_softc *fsc = (struct flsc_softc *)sc;
295 unsigned hardbits;
296
297 hardbits = fsc->sc_reg[0x40];
298 if (hardbits & FLSC_HB_IACT)
299 return (fsc->sc_csr = 0);
300
301 if (sc->sc_state == NCR_CONNECTED || sc->sc_state == NCR_SELECTING)
302 fsc->sc_portbits |= FLSC_PB_LED;
303 else
304 fsc->sc_portbits &= ~FLSC_PB_LED;
305
306 if ((hardbits & FLSC_HB_CREQ) && !(hardbits & FLSC_HB_MINT) &&
307 fsc->sc_reg[NCR_STAT * 4] & NCRSTAT_INT) {
308 return 1;
309 }
310 /* Do I still need this? */
311 if (fsc->sc_piomode && fsc->sc_reg[NCR_STAT * 4] & NCRSTAT_INT &&
312 !(hardbits & FLSC_HB_MINT))
313 return 1;
314
315 fsc->sc_reg[0x40] = fsc->sc_portbits & ~FLSC_PB_INT_BITS;
316 fsc->sc_reg[0x40] = fsc->sc_portbits;
317 return 0;
318 }
319
320 void
321 flsc_clear_latched_intr(sc)
322 struct ncr53c9x_softc *sc;
323 {
324 struct flsc_softc *fsc = (struct flsc_softc *)sc;
325
326 fsc->sc_reg[0x40] = fsc->sc_portbits & ~FLSC_PB_INT_BITS;
327 fsc->sc_reg[0x40] = fsc->sc_portbits;
328 }
329
330 void
331 flsc_dma_reset(sc)
332 struct ncr53c9x_softc *sc;
333 {
334 struct flsc_softc *fsc = (struct flsc_softc *)sc;
335 struct ncr53c9x_tinfo *ti;
336
337 if (sc->sc_nexus)
338 ti = &sc->sc_tinfo[sc->sc_nexus->xs->xs_periph->periph_target];
339 else
340 ti = &sc->sc_tinfo[1]; /* XXX */
341 if (fsc->sc_active) {
342 printf("dmaaddr %p dmasize %d stat %x flags %x off %d per %d ff %x",
343 *fsc->sc_dmaaddr, fsc->sc_dmasize, fsc->sc_reg[NCR_STAT * 4],
344 ti->flags, ti->offset, ti->period, fsc->sc_reg[NCR_FFLAG * 4]);
345 printf(" intr %x\n", fsc->sc_reg[NCR_INTR * 4]);
346 #ifdef DDB
347 Debugger();
348 #endif
349 }
350 fsc->sc_portbits &= ~FLSC_PB_DMA_BITS;
351 fsc->sc_reg[0x40] = fsc->sc_portbits;
352 fsc->sc_reg[0x80] = 0;
353 *((u_long *)fsc->sc_dmabase) = 0;
354 fsc->sc_active = 0;
355 fsc->sc_piomode = 0;
356 }
357
358 int
359 flsc_dma_intr(sc)
360 struct ncr53c9x_softc *sc;
361 {
362 register struct flsc_softc *fsc = (struct flsc_softc *)sc;
363 register u_char *p;
364 volatile u_char *cmdreg, *intrreg, *statreg, *fiforeg;
365 register u_int flscphase, flscstat, flscintr;
366 register int cnt;
367
368 NCR_DMA(("flsc_dma_intr: pio %d cnt %d int %x stat %x fifo %d ",
369 fsc->sc_piomode, fsc->sc_dmasize, sc->sc_espintr, sc->sc_espstat,
370 fsc->sc_reg[NCR_FFLAG * 4] & NCRFIFO_FF));
371 if (!(fsc->sc_reg[0x40] & FLSC_HB_CREQ))
372 printf("flsc_dma_intr: csr %x stat %x intr %x\n", fsc->sc_csr,
373 sc->sc_espstat, sc->sc_espintr);
374 if (fsc->sc_active == 0) {
375 printf("flsc_intr--inactive DMA\n");
376 return -1;
377 }
378
379 /* if DMA transfer, update sc_dmaaddr and sc_pdmalen, else PIO xfer */
380 if (fsc->sc_piomode == 0) {
381 fsc->sc_portbits &= ~FLSC_PB_DMA_BITS;
382 fsc->sc_reg[0x40] = fsc->sc_portbits;
383 fsc->sc_reg[0x80] = 0;
384 *((u_long *)fsc->sc_dmabase) = 0;
385 cnt = fsc->sc_reg[NCR_TCL * 4];
386 cnt += fsc->sc_reg[NCR_TCM * 4] << 8;
387 cnt += fsc->sc_reg[NCR_TCH * 4] << 16;
388 if (!fsc->sc_datain) {
389 cnt += fsc->sc_reg[NCR_FFLAG * 4] & NCRFIFO_FF;
390 fsc->sc_reg[NCR_CMD * 4] = NCRCMD_FLUSH;
391 }
392 cnt = fsc->sc_dmasize - cnt; /* number of bytes transferred */
393 NCR_DMA(("DMA xferred %d\n", cnt));
394 if (fsc->sc_xfr_align) {
395 int i;
396 for (i = 0; i < cnt; ++i)
397 (*fsc->sc_dmaaddr)[i] = fsc->sc_alignbuf[i];
398 fsc->sc_xfr_align = 0;
399 }
400 *fsc->sc_dmaaddr += cnt;
401 *fsc->sc_pdmalen -= cnt;
402 fsc->sc_active = 0;
403 return 0;
404 }
405
406 if ((sc->sc_espintr & NCRINTR_BS) == 0) {
407 fsc->sc_active = 0;
408 fsc->sc_piomode = 0;
409 NCR_DMA(("no NCRINTR_BS\n"));
410 return 0;
411 }
412
413 cnt = fsc->sc_dmasize;
414 #if 0
415 if (cnt == 0) {
416 printf("data interrupt, but no count left.");
417 }
418 #endif
419
420 p = *fsc->sc_dmaaddr;
421 flscphase = sc->sc_phase;
422 flscstat = (u_int) sc->sc_espstat;
423 flscintr = (u_int) sc->sc_espintr;
424 cmdreg = fsc->sc_reg + NCR_CMD * 4;
425 fiforeg = fsc->sc_reg + NCR_FIFO * 4;
426 statreg = fsc->sc_reg + NCR_STAT * 4;
427 intrreg = fsc->sc_reg + NCR_INTR * 4;
428 NCR_DMA(("PIO %d datain %d phase %d stat %x intr %x\n",
429 cnt, fsc->sc_datain, flscphase, flscstat, flscintr));
430 do {
431 if (fsc->sc_datain) {
432 *p++ = *fiforeg;
433 cnt--;
434 if (flscphase == DATA_IN_PHASE) {
435 *cmdreg = NCRCMD_TRANS;
436 } else {
437 fsc->sc_active = 0;
438 }
439 } else {
440 NCR_DMA(("flsc_dma_intr: PIO out- phase %d cnt %d active %d\n", flscphase, cnt,
441 fsc->sc_active));
442 if ( (flscphase == DATA_OUT_PHASE)
443 || (flscphase == MESSAGE_OUT_PHASE)) {
444 int n;
445 n = 16 - (fsc->sc_reg[NCR_FFLAG * 4] & NCRFIFO_FF);
446 if (n > cnt)
447 n = cnt;
448 cnt -= n;
449 while (n-- > 0)
450 *fiforeg = *p++;
451 *cmdreg = NCRCMD_TRANS;
452 } else {
453 fsc->sc_active = 0;
454 }
455 }
456
457 if (fsc->sc_active && cnt) {
458 while (!(*statreg & 0x80));
459 flscstat = *statreg;
460 flscintr = *intrreg;
461 flscphase = (flscintr & NCRINTR_DIS)
462 ? /* Disconnected */ BUSFREE_PHASE
463 : flscstat & PHASE_MASK;
464 }
465 } while (cnt && fsc->sc_active && (flscintr & NCRINTR_BS));
466 #if 1
467 if (fsc->sc_dmasize < 8 && cnt)
468 printf("flsc_dma_intr: short transfer: dmasize %d cnt %d\n",
469 fsc->sc_dmasize, cnt);
470 #endif
471 NCR_DMA(("flsc_dma_intr: PIO transfer [%d], %d->%d phase %d stat %x intr %x\n",
472 *fsc->sc_pdmalen, fsc->sc_dmasize, cnt, flscphase, flscstat, flscintr));
473 sc->sc_phase = flscphase;
474 sc->sc_espstat = (u_char) flscstat;
475 sc->sc_espintr = (u_char) flscintr;
476 *fsc->sc_dmaaddr = p;
477 *fsc->sc_pdmalen -= fsc->sc_dmasize - cnt;
478 fsc->sc_dmasize = cnt;
479
480 if (*fsc->sc_pdmalen == 0) {
481 sc->sc_espstat |= NCRSTAT_TC;
482 fsc->sc_piomode = 0;
483 }
484 return 0;
485 }
486
487 int
488 flsc_dma_setup(sc, addr, len, datain, dmasize)
489 struct ncr53c9x_softc *sc;
490 caddr_t *addr;
491 size_t *len;
492 int datain;
493 size_t *dmasize;
494 {
495 struct flsc_softc *fsc = (struct flsc_softc *)sc;
496 paddr_t pa;
497 u_char *ptr;
498 size_t xfer;
499
500 fsc->sc_dmaaddr = addr;
501 fsc->sc_pdmalen = len;
502 fsc->sc_datain = datain;
503 fsc->sc_dmasize = *dmasize;
504 if (sc->sc_nexus->xs->xs_control & XS_CTL_POLL) {
505 /* polling mode, use PIO */
506 *dmasize = fsc->sc_dmasize;
507 NCR_DMA(("pfsc_dma_setup: PIO %p/%d [%d]\n", *addr,
508 fsc->sc_dmasize, *len));
509 fsc->sc_piomode = 1;
510 if (datain == 0) {
511 int n;
512 n = fsc->sc_dmasize;
513 if (n > 16)
514 n = 16;
515 while (n-- > 0) {
516 fsc->sc_reg[NCR_FIFO * 4] = **fsc->sc_dmaaddr;
517 (*fsc->sc_pdmalen)--;
518 (*fsc->sc_dmaaddr)++;
519 --fsc->sc_dmasize;
520 }
521 }
522 return 0;
523 }
524 /*
525 * DMA can be nasty for high-speed serial input, so limit the
526 * size of this DMA operation if the serial port is running at
527 * a high speed (higher than 19200 for now - should be adjusted
528 * based on cpu type and speed?).
529 * XXX - add serial speed check XXX
530 */
531 if (ser_open_speed > 19200 && flsc_max_dma != 0 &&
532 fsc->sc_dmasize > flsc_max_dma)
533 fsc->sc_dmasize = flsc_max_dma;
534 ptr = *addr; /* Kernel virtual address */
535 pa = kvtop(ptr); /* Physical address of DMA */
536 xfer = min(fsc->sc_dmasize, NBPG - (pa & (NBPG - 1)));
537 fsc->sc_xfr_align = 0;
538 fsc->sc_piomode = 0;
539 fsc->sc_portbits &= ~FLSC_PB_DMA_BITS;
540 fsc->sc_reg[0x40] = fsc->sc_portbits;
541 fsc->sc_reg[0x80] = 0;
542 *((u_long *)fsc->sc_dmabase) = 0;
543
544 /*
545 * If output and length < 16, copy to fifo
546 */
547 if (datain == 0 && fsc->sc_dmasize < 16) {
548 int n;
549 for (n = 0; n < fsc->sc_dmasize; ++n)
550 fsc->sc_reg[NCR_FIFO * 4] = *ptr++;
551 NCR_DMA(("flsc_dma_setup: %d bytes written to fifo\n", n));
552 fsc->sc_piomode = 1;
553 fsc->sc_active = 1;
554 *fsc->sc_pdmalen -= fsc->sc_dmasize;
555 *fsc->sc_dmaaddr += fsc->sc_dmasize;
556 *dmasize = fsc->sc_dmasize;
557 fsc->sc_dmasize = 0;
558 return 0; /* All done */
559 }
560 /*
561 * If output and unaligned, copy unaligned data to fifo
562 */
563 else if (datain == 0 && (int)ptr & 3) {
564 int n = 4 - ((int)ptr & 3);
565 NCR_DMA(("flsc_dma_setup: align %d bytes written to fifo\n", n));
566 pa += n;
567 xfer -= n;
568 while (n--)
569 fsc->sc_reg[NCR_FIFO * 4] = *ptr++;
570 }
571 /*
572 * If unaligned address, read unaligned bytes into alignment buffer
573 */
574 else if ((int)ptr & 3 || xfer & 3) {
575 pa = kvtop((caddr_t)fsc->sc_alignbuf);
576 xfer = fsc->sc_dmasize = min(xfer, sizeof (fsc->sc_unalignbuf));
577 NCR_DMA(("flsc_dma_setup: align read by %d bytes\n", xfer));
578 fsc->sc_xfr_align = 1;
579 }
580 /*
581 * If length smaller than longword, read into alignment buffer
582 * XXX doesn't work for 1 or 2 bytes !!!!
583 */
584 else if (fsc->sc_dmasize < 4) {
585 NCR_DMA(("flsc_dma_setup: read remaining %d bytes\n",
586 fsc->sc_dmasize));
587 pa = kvtop((caddr_t)fsc->sc_alignbuf);
588 fsc->sc_xfr_align = 1;
589 }
590 /*
591 * Finally, limit transfer length to multiple of 4 bytes.
592 */
593 else {
594 fsc->sc_dmasize &= -4;
595 xfer &= -4;
596 }
597
598 while (xfer < fsc->sc_dmasize) {
599 if ((pa + xfer) != kvtop(*addr + xfer))
600 break;
601 if ((fsc->sc_dmasize - xfer) < NBPG)
602 xfer = fsc->sc_dmasize;
603 else
604 xfer += NBPG;
605 }
606
607 fsc->sc_dmasize = xfer;
608 *dmasize = fsc->sc_dmasize;
609 fsc->sc_pa = pa;
610 #if defined(M68040) || defined(M68060)
611 if (mmutype == MMU_68040) {
612 if (fsc->sc_xfr_align) {
613 int n;
614 for (n = 0; n < sizeof (fsc->sc_unalignbuf); ++n)
615 fsc->sc_alignbuf[n] = n | 0x80;
616 dma_cachectl(fsc->sc_alignbuf,
617 sizeof(fsc->sc_unalignbuf));
618 }
619 else
620 dma_cachectl(*fsc->sc_dmaaddr, fsc->sc_dmasize);
621 }
622 #endif
623 fsc->sc_reg[0x80] = 0;
624 *((u_long *)(fsc->sc_dmabase + (pa & 0x00fffffc))) = pa;
625 fsc->sc_portbits &= ~FLSC_PB_DMA_BITS;
626 fsc->sc_portbits |= FLSC_PB_ENABLE_DMA |
627 (fsc->sc_datain ? FLSC_PB_DMA_READ : FLSC_PB_DMA_WRITE);
628 fsc->sc_reg[0x40] = fsc->sc_portbits;
629 NCR_DMA(("flsc_dma_setup: DMA %p->%lx/%d [%d]\n",
630 ptr, pa, fsc->sc_dmasize, *len));
631 fsc->sc_active = 1;
632 return 0;
633 }
634
635 void
636 flsc_dma_go(sc)
637 struct ncr53c9x_softc *sc;
638 {
639 struct flsc_softc *fsc = (struct flsc_softc *)sc;
640
641 NCR_DMA(("flsc_dma_go: datain %d size %d\n", fsc->sc_datain,
642 fsc->sc_dmasize));
643 if (sc->sc_nexus->xs->xs_control & XS_CTL_POLL) {
644 fsc->sc_active = 1;
645 return;
646 } else if (fsc->sc_piomode == 0) {
647 fsc->sc_portbits &= ~FLSC_PB_DMA_BITS;
648 fsc->sc_portbits |= FLSC_PB_ENABLE_DMA |
649 (fsc->sc_datain ? FLSC_PB_DMA_READ : FLSC_PB_DMA_WRITE);
650 fsc->sc_reg[0x40] = fsc->sc_portbits;
651 }
652 }
653
654 void
655 flsc_dma_stop(sc)
656 struct ncr53c9x_softc *sc;
657 {
658 struct flsc_softc *fsc = (struct flsc_softc *)sc;
659
660 fsc->sc_portbits &= ~FLSC_PB_DMA_BITS;
661 fsc->sc_reg[0x40] = fsc->sc_portbits;
662
663 fsc->sc_reg[0x80] = 0;
664 *((u_long *)fsc->sc_dmabase) = 0;
665 fsc->sc_piomode = 0;
666 }
667
668 int
669 flsc_dma_isactive(sc)
670 struct ncr53c9x_softc *sc;
671 {
672 struct flsc_softc *fsc = (struct flsc_softc *)sc;
673
674 return fsc->sc_active;
675 }
676