flsc.c revision 1.26 1 /* $NetBSD: flsc.c,v 1.26 2000/06/05 15:08:02 tsutsui Exp $ */
2
3 /*
4 * Copyright (c) 1997 Michael L. Hitch
5 * Copyright (c) 1995 Daniel Widenfalk
6 * Copyright (c) 1994 Christian E. Hopps
7 * Copyright (c) 1982, 1990 The Regents of the University of California.
8 * All rights reserved.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 * 3. All advertising materials mentioning features or use of this software
19 * must display the following acknowledgement:
20 * This product includes software developed by Daniel Widenfalk
21 * and Michael L. Hitch.
22 * 4. Neither the name of the University nor the names of its contributors
23 * may be used to endorse or promote products derived from this software
24 * without specific prior written permission.
25 *
26 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
27 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
28 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
29 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
30 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
31 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
32 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
33 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
34 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
35 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
36 * SUCH DAMAGE.
37 */
38
39 /*
40 * Initial amiga Fastlane driver by Daniel Widenfalk. Conversion to
41 * 53c9x MI driver by Michael L. Hitch (mhitch (at) montana.edu).
42 */
43
44 #include "opt_ddb.h"
45
46 #include <sys/types.h>
47 #include <sys/param.h>
48 #include <sys/systm.h>
49 #include <sys/kernel.h>
50 #include <sys/errno.h>
51 #include <sys/ioctl.h>
52 #include <sys/device.h>
53 #include <sys/buf.h>
54 #include <sys/proc.h>
55 #include <sys/user.h>
56 #include <sys/queue.h>
57
58 #include <dev/scsipi/scsi_all.h>
59 #include <dev/scsipi/scsipi_all.h>
60 #include <dev/scsipi/scsiconf.h>
61 #include <dev/scsipi/scsi_message.h>
62
63 #include <machine/cpu.h>
64 #include <machine/param.h>
65
66 #include <dev/ic/ncr53c9xreg.h>
67 #include <dev/ic/ncr53c9xvar.h>
68
69 #include <amiga/amiga/isr.h>
70 #include <amiga/dev/flscvar.h>
71 #include <amiga/dev/zbusvar.h>
72
73 void flscattach __P((struct device *, struct device *, void *));
74 int flscmatch __P((struct device *, struct cfdata *, void *));
75
76 /* Linkup to the rest of the kernel */
77 struct cfattach flsc_ca = {
78 sizeof(struct flsc_softc), flscmatch, flscattach
79 };
80
81 /*
82 * Functions and the switch for the MI code.
83 */
84 u_char flsc_read_reg __P((struct ncr53c9x_softc *, int));
85 void flsc_write_reg __P((struct ncr53c9x_softc *, int, u_char));
86 int flsc_dma_isintr __P((struct ncr53c9x_softc *));
87 void flsc_dma_reset __P((struct ncr53c9x_softc *));
88 int flsc_dma_intr __P((struct ncr53c9x_softc *));
89 int flsc_dma_setup __P((struct ncr53c9x_softc *, caddr_t *,
90 size_t *, int, size_t *));
91 void flsc_dma_go __P((struct ncr53c9x_softc *));
92 void flsc_dma_stop __P((struct ncr53c9x_softc *));
93 int flsc_dma_isactive __P((struct ncr53c9x_softc *));
94 void flsc_clear_latched_intr __P((struct ncr53c9x_softc *));
95
96 struct ncr53c9x_glue flsc_glue = {
97 flsc_read_reg,
98 flsc_write_reg,
99 flsc_dma_isintr,
100 flsc_dma_reset,
101 flsc_dma_intr,
102 flsc_dma_setup,
103 flsc_dma_go,
104 flsc_dma_stop,
105 flsc_dma_isactive,
106 flsc_clear_latched_intr,
107 };
108
109 /* Maximum DMA transfer length to reduce impact on high-speed serial input */
110 u_long flsc_max_dma = 1024;
111 extern int ser_open_speed;
112
113 extern int ncr53c9x_debug;
114 extern u_long scsi_nosync;
115 extern int shift_nosync;
116
117 /*
118 * if we are an Advanced Systems & Software FastlaneZ3
119 */
120 int
121 flscmatch(parent, cf, aux)
122 struct device *parent;
123 struct cfdata *cf;
124 void *aux;
125 {
126 struct zbus_args *zap;
127
128 if (!is_a4000() && !is_a3000())
129 return(0);
130
131 zap = aux;
132 if (zap->manid == 0x2140 && zap->prodid == 11
133 && iszthreepa(zap->pa))
134 return(1);
135
136 return(0);
137 }
138
139 /*
140 * Attach this instance, and then all the sub-devices
141 */
142 void
143 flscattach(parent, self, aux)
144 struct device *parent, *self;
145 void *aux;
146 {
147 struct flsc_softc *fsc = (void *)self;
148 struct ncr53c9x_softc *sc = &fsc->sc_ncr53c9x;
149 struct zbus_args *zap;
150
151 /*
152 * Set up the glue for MI code early; we use some of it here.
153 */
154 sc->sc_glue = &flsc_glue;
155
156 /*
157 * Save the regs
158 */
159 zap = aux;
160 fsc->sc_dmabase = (volatile u_char *)zap->va;
161 fsc->sc_reg = &((volatile u_char *)zap->va)[0x1000001];
162
163 sc->sc_freq = 40; /* Clocked at 40Mhz */
164
165 printf(": address %p", fsc->sc_reg);
166
167 sc->sc_id = 7;
168
169 /*
170 * It is necessary to try to load the 2nd config register here,
171 * to find out what rev the flsc chip is, else the flsc_reset
172 * will not set up the defaults correctly.
173 */
174 sc->sc_cfg1 = sc->sc_id | NCRCFG1_PARENB;
175 sc->sc_cfg2 = NCRCFG2_SCSI2 | NCRCFG2_FE;
176 sc->sc_cfg3 = 0x08 /*FCLK*/ | NCRESPCFG3_FSCSI | NCRESPCFG3_CDB;
177 sc->sc_rev = NCR_VARIANT_FAS216;
178
179 /*
180 * This is the value used to start sync negotiations
181 * Note that the NCR register "SYNCTP" is programmed
182 * in "clocks per byte", and has a minimum value of 4.
183 * The SCSI period used in negotiation is one-fourth
184 * of the time (in nanoseconds) needed to transfer one byte.
185 * Since the chip's clock is given in MHz, we have the following
186 * formula: 4 * period = (1000 / freq) * 4
187 */
188 sc->sc_minsync = 1000 / sc->sc_freq;
189
190 if (((scsi_nosync >> shift_nosync) & 0xff00) == 0xff00)
191 sc->sc_minsync = 0;
192
193 /* Really no limit, but since we want to fit into the TCR... */
194 sc->sc_maxxfer = 64 * 1024;
195
196 fsc->sc_portbits = 0xa0 | FLSC_PB_EDI | FLSC_PB_ESI;
197 fsc->sc_hardbits = fsc->sc_reg[0x40];
198
199 fsc->sc_alignbuf = (char *)((u_long)fsc->sc_unalignbuf & -4);
200
201 sc->sc_dev.dv_cfdata->cf_flags |= (scsi_nosync >> shift_nosync) & 0xffff;
202 shift_nosync += 16;
203 ncr53c9x_debug |= (scsi_nosync >> shift_nosync) & 0xffff;
204 shift_nosync += 16;
205
206 /*
207 * Configure interrupts.
208 */
209 fsc->sc_isr.isr_intr = ncr53c9x_intr;
210 fsc->sc_isr.isr_arg = sc;
211 fsc->sc_isr.isr_ipl = 2;
212 add_isr(&fsc->sc_isr);
213
214 fsc->sc_reg[0x40] = fsc->sc_portbits;
215
216 /*
217 * Now try to attach all the sub-devices
218 */
219 ncr53c9x_attach(sc, NULL, NULL);
220 }
221
222 /*
223 * Glue functions.
224 */
225
226 u_char
227 flsc_read_reg(sc, reg)
228 struct ncr53c9x_softc *sc;
229 int reg;
230 {
231 struct flsc_softc *fsc = (struct flsc_softc *)sc;
232
233 return fsc->sc_reg[reg * 4];
234 }
235
236 void
237 flsc_write_reg(sc, reg, val)
238 struct ncr53c9x_softc *sc;
239 int reg;
240 u_char val;
241 {
242 struct flsc_softc *fsc = (struct flsc_softc *)sc;
243 struct ncr53c9x_tinfo *ti;
244 u_char v = val;
245
246 if (fsc->sc_piomode && reg == NCR_CMD &&
247 v == (NCRCMD_TRANS|NCRCMD_DMA)) {
248 v = NCRCMD_TRANS;
249 }
250 /*
251 * Can't do synchronous transfers in XS_CTL_POLL mode:
252 * If starting XS_CTL_POLL command, clear defer sync negotiation
253 * by clearing the T_NEGOTIATE flag. If starting XS_CTL_POLL and
254 * the device is currently running synchronous, force another
255 * T_NEGOTIATE with 0 offset.
256 */
257 if (reg == NCR_SELID) {
258 ti = &sc->sc_tinfo[
259 sc->sc_nexus->xs->sc_link->scsipi_scsi.target];
260 if (sc->sc_nexus->xs->xs_control & XS_CTL_POLL) {
261 if (ti->flags & T_SYNCMODE) {
262 ti->flags ^= T_SYNCMODE | T_NEGOTIATE;
263 } else if (ti->flags & T_NEGOTIATE) {
264 ti->flags ^= T_NEGOTIATE | T_SYNCHOFF;
265 /* save T_NEGOTIATE in private flags? */
266 }
267 } else {
268 /*
269 * If we haven't attempted sync negotiation yet,
270 * do it now.
271 */
272 if ((ti->flags & (T_SYNCMODE | T_SYNCHOFF)) ==
273 T_SYNCHOFF &&
274 sc->sc_minsync != 0) /* XXX */
275 ti->flags ^= T_NEGOTIATE | T_SYNCHOFF;
276 }
277 }
278 if (reg == NCR_CMD && v == NCRCMD_SETATN &&
279 sc->sc_flags & NCR_SYNCHNEGO &&
280 sc->sc_nexus->xs->xs_control & XS_CTL_POLL) {
281 ti = &sc->sc_tinfo[
282 sc->sc_nexus->xs->sc_link->scsipi_scsi.target];
283 ti->offset = 0;
284 }
285 fsc->sc_reg[reg * 4] = v;
286 }
287
288 int
289 flsc_dma_isintr(sc)
290 struct ncr53c9x_softc *sc;
291 {
292 struct flsc_softc *fsc = (struct flsc_softc *)sc;
293 unsigned hardbits;
294
295 hardbits = fsc->sc_reg[0x40];
296 if (hardbits & FLSC_HB_IACT)
297 return (fsc->sc_csr = 0);
298
299 if (sc->sc_state == NCR_CONNECTED || sc->sc_state == NCR_SELECTING)
300 fsc->sc_portbits |= FLSC_PB_LED;
301 else
302 fsc->sc_portbits &= ~FLSC_PB_LED;
303
304 if ((hardbits & FLSC_HB_CREQ) && !(hardbits & FLSC_HB_MINT) &&
305 fsc->sc_reg[NCR_STAT * 4] & NCRSTAT_INT) {
306 return 1;
307 }
308 /* Do I still need this? */
309 if (fsc->sc_piomode && fsc->sc_reg[NCR_STAT * 4] & NCRSTAT_INT &&
310 !(hardbits & FLSC_HB_MINT))
311 return 1;
312
313 fsc->sc_reg[0x40] = fsc->sc_portbits & ~FLSC_PB_INT_BITS;
314 fsc->sc_reg[0x40] = fsc->sc_portbits;
315 return 0;
316 }
317
318 void
319 flsc_clear_latched_intr(sc)
320 struct ncr53c9x_softc *sc;
321 {
322 struct flsc_softc *fsc = (struct flsc_softc *)sc;
323
324 fsc->sc_reg[0x40] = fsc->sc_portbits & ~FLSC_PB_INT_BITS;
325 fsc->sc_reg[0x40] = fsc->sc_portbits;
326 }
327
328 void
329 flsc_dma_reset(sc)
330 struct ncr53c9x_softc *sc;
331 {
332 struct flsc_softc *fsc = (struct flsc_softc *)sc;
333 struct ncr53c9x_tinfo *ti;
334
335 if (sc->sc_nexus)
336 ti = &sc->sc_tinfo[sc->sc_nexus->xs->sc_link->scsipi_scsi.target];
337 else
338 ti = &sc->sc_tinfo[1]; /* XXX */
339 if (fsc->sc_active) {
340 printf("dmaaddr %p dmasize %d stat %x flags %x off %d per %d ff %x",
341 *fsc->sc_dmaaddr, fsc->sc_dmasize, fsc->sc_reg[NCR_STAT * 4],
342 ti->flags, ti->offset, ti->period, fsc->sc_reg[NCR_FFLAG * 4]);
343 printf(" intr %x\n", fsc->sc_reg[NCR_INTR * 4]);
344 #ifdef DDB
345 Debugger();
346 #endif
347 }
348 fsc->sc_portbits &= ~FLSC_PB_DMA_BITS;
349 fsc->sc_reg[0x40] = fsc->sc_portbits;
350 fsc->sc_reg[0x80] = 0;
351 *((u_long *)fsc->sc_dmabase) = 0;
352 fsc->sc_active = 0;
353 fsc->sc_piomode = 0;
354 }
355
356 int
357 flsc_dma_intr(sc)
358 struct ncr53c9x_softc *sc;
359 {
360 register struct flsc_softc *fsc = (struct flsc_softc *)sc;
361 register u_char *p;
362 volatile u_char *cmdreg, *intrreg, *statreg, *fiforeg;
363 register u_int flscphase, flscstat, flscintr;
364 register int cnt;
365
366 NCR_DMA(("flsc_dma_intr: pio %d cnt %d int %x stat %x fifo %d ",
367 fsc->sc_piomode, fsc->sc_dmasize, sc->sc_espintr, sc->sc_espstat,
368 fsc->sc_reg[NCR_FFLAG * 4] & NCRFIFO_FF));
369 if (!(fsc->sc_reg[0x40] & FLSC_HB_CREQ))
370 printf("flsc_dma_intr: csr %x stat %x intr %x\n", fsc->sc_csr,
371 sc->sc_espstat, sc->sc_espintr);
372 if (fsc->sc_active == 0) {
373 printf("flsc_intr--inactive DMA\n");
374 return -1;
375 }
376
377 /* if DMA transfer, update sc_dmaaddr and sc_pdmalen, else PIO xfer */
378 if (fsc->sc_piomode == 0) {
379 fsc->sc_portbits &= ~FLSC_PB_DMA_BITS;
380 fsc->sc_reg[0x40] = fsc->sc_portbits;
381 fsc->sc_reg[0x80] = 0;
382 *((u_long *)fsc->sc_dmabase) = 0;
383 cnt = fsc->sc_reg[NCR_TCL * 4];
384 cnt += fsc->sc_reg[NCR_TCM * 4] << 8;
385 cnt += fsc->sc_reg[NCR_TCH * 4] << 16;
386 if (!fsc->sc_datain) {
387 cnt += fsc->sc_reg[NCR_FFLAG * 4] & NCRFIFO_FF;
388 fsc->sc_reg[NCR_CMD * 4] = NCRCMD_FLUSH;
389 }
390 cnt = fsc->sc_dmasize - cnt; /* number of bytes transferred */
391 NCR_DMA(("DMA xferred %d\n", cnt));
392 if (fsc->sc_xfr_align) {
393 int i;
394 for (i = 0; i < cnt; ++i)
395 (*fsc->sc_dmaaddr)[i] = fsc->sc_alignbuf[i];
396 fsc->sc_xfr_align = 0;
397 }
398 *fsc->sc_dmaaddr += cnt;
399 *fsc->sc_pdmalen -= cnt;
400 fsc->sc_active = 0;
401 return 0;
402 }
403
404 if ((sc->sc_espintr & NCRINTR_BS) == 0) {
405 fsc->sc_active = 0;
406 fsc->sc_piomode = 0;
407 NCR_DMA(("no NCRINTR_BS\n"));
408 return 0;
409 }
410
411 cnt = fsc->sc_dmasize;
412 #if 0
413 if (cnt == 0) {
414 printf("data interrupt, but no count left.");
415 }
416 #endif
417
418 p = *fsc->sc_dmaaddr;
419 flscphase = sc->sc_phase;
420 flscstat = (u_int) sc->sc_espstat;
421 flscintr = (u_int) sc->sc_espintr;
422 cmdreg = fsc->sc_reg + NCR_CMD * 4;
423 fiforeg = fsc->sc_reg + NCR_FIFO * 4;
424 statreg = fsc->sc_reg + NCR_STAT * 4;
425 intrreg = fsc->sc_reg + NCR_INTR * 4;
426 NCR_DMA(("PIO %d datain %d phase %d stat %x intr %x\n",
427 cnt, fsc->sc_datain, flscphase, flscstat, flscintr));
428 do {
429 if (fsc->sc_datain) {
430 *p++ = *fiforeg;
431 cnt--;
432 if (flscphase == DATA_IN_PHASE) {
433 *cmdreg = NCRCMD_TRANS;
434 } else {
435 fsc->sc_active = 0;
436 }
437 } else {
438 NCR_DMA(("flsc_dma_intr: PIO out- phase %d cnt %d active %d\n", flscphase, cnt,
439 fsc->sc_active));
440 if ( (flscphase == DATA_OUT_PHASE)
441 || (flscphase == MESSAGE_OUT_PHASE)) {
442 int n;
443 n = 16 - (fsc->sc_reg[NCR_FFLAG * 4] & NCRFIFO_FF);
444 if (n > cnt)
445 n = cnt;
446 cnt -= n;
447 while (n-- > 0)
448 *fiforeg = *p++;
449 *cmdreg = NCRCMD_TRANS;
450 } else {
451 fsc->sc_active = 0;
452 }
453 }
454
455 if (fsc->sc_active && cnt) {
456 while (!(*statreg & 0x80));
457 flscstat = *statreg;
458 flscintr = *intrreg;
459 flscphase = (flscintr & NCRINTR_DIS)
460 ? /* Disconnected */ BUSFREE_PHASE
461 : flscstat & PHASE_MASK;
462 }
463 } while (cnt && fsc->sc_active && (flscintr & NCRINTR_BS));
464 #if 1
465 if (fsc->sc_dmasize < 8 && cnt)
466 printf("flsc_dma_intr: short transfer: dmasize %d cnt %d\n",
467 fsc->sc_dmasize, cnt);
468 #endif
469 NCR_DMA(("flsc_dma_intr: PIO transfer [%d], %d->%d phase %d stat %x intr %x\n",
470 *fsc->sc_pdmalen, fsc->sc_dmasize, cnt, flscphase, flscstat, flscintr));
471 sc->sc_phase = flscphase;
472 sc->sc_espstat = (u_char) flscstat;
473 sc->sc_espintr = (u_char) flscintr;
474 *fsc->sc_dmaaddr = p;
475 *fsc->sc_pdmalen -= fsc->sc_dmasize - cnt;
476 fsc->sc_dmasize = cnt;
477
478 if (*fsc->sc_pdmalen == 0) {
479 sc->sc_espstat |= NCRSTAT_TC;
480 fsc->sc_piomode = 0;
481 }
482 return 0;
483 }
484
485 int
486 flsc_dma_setup(sc, addr, len, datain, dmasize)
487 struct ncr53c9x_softc *sc;
488 caddr_t *addr;
489 size_t *len;
490 int datain;
491 size_t *dmasize;
492 {
493 struct flsc_softc *fsc = (struct flsc_softc *)sc;
494 paddr_t pa;
495 u_char *ptr;
496 size_t xfer;
497
498 fsc->sc_dmaaddr = addr;
499 fsc->sc_pdmalen = len;
500 fsc->sc_datain = datain;
501 fsc->sc_dmasize = *dmasize;
502 if (sc->sc_nexus->xs->xs_control & XS_CTL_POLL) {
503 /* polling mode, use PIO */
504 *dmasize = fsc->sc_dmasize;
505 NCR_DMA(("pfsc_dma_setup: PIO %p/%d [%d]\n", *addr,
506 fsc->sc_dmasize, *len));
507 fsc->sc_piomode = 1;
508 if (datain == 0) {
509 int n;
510 n = fsc->sc_dmasize;
511 if (n > 16)
512 n = 16;
513 while (n-- > 0) {
514 fsc->sc_reg[NCR_FIFO * 4] = **fsc->sc_dmaaddr;
515 (*fsc->sc_pdmalen)--;
516 (*fsc->sc_dmaaddr)++;
517 --fsc->sc_dmasize;
518 }
519 }
520 return 0;
521 }
522 /*
523 * DMA can be nasty for high-speed serial input, so limit the
524 * size of this DMA operation if the serial port is running at
525 * a high speed (higher than 19200 for now - should be adjusted
526 * based on cpu type and speed?).
527 * XXX - add serial speed check XXX
528 */
529 if (ser_open_speed > 19200 && flsc_max_dma != 0 &&
530 fsc->sc_dmasize > flsc_max_dma)
531 fsc->sc_dmasize = flsc_max_dma;
532 ptr = *addr; /* Kernel virtual address */
533 pa = kvtop(ptr); /* Physical address of DMA */
534 xfer = min(fsc->sc_dmasize, NBPG - (pa & (NBPG - 1)));
535 fsc->sc_xfr_align = 0;
536 fsc->sc_piomode = 0;
537 fsc->sc_portbits &= ~FLSC_PB_DMA_BITS;
538 fsc->sc_reg[0x40] = fsc->sc_portbits;
539 fsc->sc_reg[0x80] = 0;
540 *((u_long *)fsc->sc_dmabase) = 0;
541
542 /*
543 * If output and length < 16, copy to fifo
544 */
545 if (datain == 0 && fsc->sc_dmasize < 16) {
546 int n;
547 for (n = 0; n < fsc->sc_dmasize; ++n)
548 fsc->sc_reg[NCR_FIFO * 4] = *ptr++;
549 NCR_DMA(("flsc_dma_setup: %d bytes written to fifo\n", n));
550 fsc->sc_piomode = 1;
551 fsc->sc_active = 1;
552 *fsc->sc_pdmalen -= fsc->sc_dmasize;
553 *fsc->sc_dmaaddr += fsc->sc_dmasize;
554 *dmasize = fsc->sc_dmasize;
555 fsc->sc_dmasize = 0;
556 return 0; /* All done */
557 }
558 /*
559 * If output and unaligned, copy unaligned data to fifo
560 */
561 else if (datain == 0 && (int)ptr & 3) {
562 int n = 4 - ((int)ptr & 3);
563 NCR_DMA(("flsc_dma_setup: align %d bytes written to fifo\n", n));
564 pa += n;
565 xfer -= n;
566 while (n--)
567 fsc->sc_reg[NCR_FIFO * 4] = *ptr++;
568 }
569 /*
570 * If unaligned address, read unaligned bytes into alignment buffer
571 */
572 else if ((int)ptr & 3 || xfer & 3) {
573 pa = kvtop((caddr_t)fsc->sc_alignbuf);
574 xfer = fsc->sc_dmasize = min(xfer, sizeof (fsc->sc_unalignbuf));
575 NCR_DMA(("flsc_dma_setup: align read by %d bytes\n", xfer));
576 fsc->sc_xfr_align = 1;
577 }
578 /*
579 * If length smaller than longword, read into alignment buffer
580 * XXX doesn't work for 1 or 2 bytes !!!!
581 */
582 else if (fsc->sc_dmasize < 4) {
583 NCR_DMA(("flsc_dma_setup: read remaining %d bytes\n",
584 fsc->sc_dmasize));
585 pa = kvtop((caddr_t)fsc->sc_alignbuf);
586 fsc->sc_xfr_align = 1;
587 }
588 /*
589 * Finally, limit transfer length to multiple of 4 bytes.
590 */
591 else {
592 fsc->sc_dmasize &= -4;
593 xfer &= -4;
594 }
595
596 while (xfer < fsc->sc_dmasize) {
597 if ((pa + xfer) != kvtop(*addr + xfer))
598 break;
599 if ((fsc->sc_dmasize - xfer) < NBPG)
600 xfer = fsc->sc_dmasize;
601 else
602 xfer += NBPG;
603 }
604
605 fsc->sc_dmasize = xfer;
606 *dmasize = fsc->sc_dmasize;
607 fsc->sc_pa = pa;
608 #if defined(M68040) || defined(M68060)
609 if (mmutype == MMU_68040) {
610 if (fsc->sc_xfr_align) {
611 int n;
612 for (n = 0; n < sizeof (fsc->sc_unalignbuf); ++n)
613 fsc->sc_alignbuf[n] = n | 0x80;
614 dma_cachectl(fsc->sc_alignbuf,
615 sizeof(fsc->sc_unalignbuf));
616 }
617 else
618 dma_cachectl(*fsc->sc_dmaaddr, fsc->sc_dmasize);
619 }
620 #endif
621 fsc->sc_reg[0x80] = 0;
622 *((u_long *)(fsc->sc_dmabase + (pa & 0x00fffffc))) = pa;
623 fsc->sc_portbits &= ~FLSC_PB_DMA_BITS;
624 fsc->sc_portbits |= FLSC_PB_ENABLE_DMA |
625 (fsc->sc_datain ? FLSC_PB_DMA_READ : FLSC_PB_DMA_WRITE);
626 fsc->sc_reg[0x40] = fsc->sc_portbits;
627 NCR_DMA(("flsc_dma_setup: DMA %p->%lx/%d [%d]\n",
628 ptr, pa, fsc->sc_dmasize, *len));
629 fsc->sc_active = 1;
630 return 0;
631 }
632
633 void
634 flsc_dma_go(sc)
635 struct ncr53c9x_softc *sc;
636 {
637 struct flsc_softc *fsc = (struct flsc_softc *)sc;
638
639 NCR_DMA(("flsc_dma_go: datain %d size %d\n", fsc->sc_datain,
640 fsc->sc_dmasize));
641 if (sc->sc_nexus->xs->xs_control & XS_CTL_POLL) {
642 fsc->sc_active = 1;
643 return;
644 } else if (fsc->sc_piomode == 0) {
645 fsc->sc_portbits &= ~FLSC_PB_DMA_BITS;
646 fsc->sc_portbits |= FLSC_PB_ENABLE_DMA |
647 (fsc->sc_datain ? FLSC_PB_DMA_READ : FLSC_PB_DMA_WRITE);
648 fsc->sc_reg[0x40] = fsc->sc_portbits;
649 }
650 }
651
652 void
653 flsc_dma_stop(sc)
654 struct ncr53c9x_softc *sc;
655 {
656 struct flsc_softc *fsc = (struct flsc_softc *)sc;
657
658 fsc->sc_portbits &= ~FLSC_PB_DMA_BITS;
659 fsc->sc_reg[0x40] = fsc->sc_portbits;
660
661 fsc->sc_reg[0x80] = 0;
662 *((u_long *)fsc->sc_dmabase) = 0;
663 fsc->sc_piomode = 0;
664 }
665
666 int
667 flsc_dma_isactive(sc)
668 struct ncr53c9x_softc *sc;
669 {
670 struct flsc_softc *fsc = (struct flsc_softc *)sc;
671
672 return fsc->sc_active;
673 }
674