Home | History | Annotate | Line # | Download | only in dev
flsc.c revision 1.41.4.1
      1 /*	$NetBSD: flsc.c,v 1.41.4.1 2010/03/11 15:02:00 yamt Exp $ */
      2 
      3 /*
      4  * Copyright (c) 1997 Michael L. Hitch
      5  * Copyright (c) 1995 Daniel Widenfalk
      6  * Copyright (c) 1994 Christian E. Hopps
      7  * Copyright (c) 1982, 1990 The Regents of the University of California.
      8  * All rights reserved.
      9  *
     10  * Redistribution and use in source and binary forms, with or without
     11  * modification, are permitted provided that the following conditions
     12  * are met:
     13  * 1. Redistributions of source code must retain the above copyright
     14  *    notice, this list of conditions and the following disclaimer.
     15  * 2. Redistributions in binary form must reproduce the above copyright
     16  *    notice, this list of conditions and the following disclaimer in the
     17  *    documentation and/or other materials provided with the distribution.
     18  * 3. All advertising materials mentioning features or use of this software
     19  *    must display the following acknowledgement:
     20  *	This product includes software developed by Daniel Widenfalk
     21  *	and Michael L. Hitch.
     22  * 4. Neither the name of the University nor the names of its contributors
     23  *    may be used to endorse or promote products derived from this software
     24  *    without specific prior written permission.
     25  *
     26  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     27  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     28  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     29  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     30  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     31  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     32  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     33  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     34  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     35  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     36  * SUCH DAMAGE.
     37  */
     38 
     39 /*
     40  * Initial amiga Fastlane driver by Daniel Widenfalk.  Conversion to
     41  * 53c9x MI driver by Michael L. Hitch (mhitch (at) montana.edu).
     42  */
     43 
     44 #include "opt_ddb.h"
     45 
     46 #include <sys/cdefs.h>
     47 __KERNEL_RCSID(0, "$NetBSD: flsc.c,v 1.41.4.1 2010/03/11 15:02:00 yamt Exp $");
     48 
     49 #include <sys/types.h>
     50 #include <sys/param.h>
     51 #include <sys/systm.h>
     52 #include <sys/kernel.h>
     53 #include <sys/errno.h>
     54 #include <sys/ioctl.h>
     55 #include <sys/device.h>
     56 #include <sys/buf.h>
     57 #include <sys/proc.h>
     58 #include <sys/queue.h>
     59 
     60 #include <uvm/uvm_extern.h>
     61 
     62 #include <dev/scsipi/scsi_all.h>
     63 #include <dev/scsipi/scsipi_all.h>
     64 #include <dev/scsipi/scsiconf.h>
     65 #include <dev/scsipi/scsi_message.h>
     66 
     67 #include <machine/cpu.h>
     68 #include <machine/param.h>
     69 
     70 #include <dev/ic/ncr53c9xreg.h>
     71 #include <dev/ic/ncr53c9xvar.h>
     72 
     73 #include <amiga/amiga/isr.h>
     74 #include <amiga/dev/flscvar.h>
     75 #include <amiga/dev/zbusvar.h>
     76 
     77 int	flscmatch(device_t, cfdata_t, void *);
     78 void	flscattach(device_t, device_t, void *);
     79 
     80 /* Linkup to the rest of the kernel */
     81 CFATTACH_DECL_NEW(flsc, sizeof(struct flsc_softc),
     82     flscmatch, flscattach, NULL, NULL);
     83 
     84 /*
     85  * Functions and the switch for the MI code.
     86  */
     87 uint8_t	flsc_read_reg(struct ncr53c9x_softc *, int);
     88 void	flsc_write_reg(struct ncr53c9x_softc *, int, uint8_t);
     89 int	flsc_dma_isintr(struct ncr53c9x_softc *);
     90 void	flsc_dma_reset(struct ncr53c9x_softc *);
     91 int	flsc_dma_intr(struct ncr53c9x_softc *);
     92 int	flsc_dma_setup(struct ncr53c9x_softc *, uint8_t **,
     93 	    size_t *, int, size_t *);
     94 void	flsc_dma_go(struct ncr53c9x_softc *);
     95 void	flsc_dma_stop(struct ncr53c9x_softc *);
     96 int	flsc_dma_isactive(struct ncr53c9x_softc *);
     97 void	flsc_clear_latched_intr(struct ncr53c9x_softc *);
     98 
     99 struct ncr53c9x_glue flsc_glue = {
    100 	flsc_read_reg,
    101 	flsc_write_reg,
    102 	flsc_dma_isintr,
    103 	flsc_dma_reset,
    104 	flsc_dma_intr,
    105 	flsc_dma_setup,
    106 	flsc_dma_go,
    107 	flsc_dma_stop,
    108 	flsc_dma_isactive,
    109 	flsc_clear_latched_intr,
    110 };
    111 
    112 /* Maximum DMA transfer length to reduce impact on high-speed serial input */
    113 u_long flsc_max_dma = 1024;
    114 extern int ser_open_speed;
    115 
    116 extern int ncr53c9x_debug;
    117 extern u_long scsi_nosync;
    118 extern int shift_nosync;
    119 
    120 /*
    121  * if we are an Advanced Systems & Software FastlaneZ3
    122  */
    123 int
    124 flscmatch(device_t parent, cfdata_t cf, void *aux)
    125 {
    126 	struct zbus_args *zap;
    127 
    128 	if (!is_a4000() && !is_a3000())
    129 		return 0;
    130 
    131 	zap = aux;
    132 	if (zap->manid == 0x2140 && zap->prodid == 11
    133 	    && iszthreepa(zap->pa))
    134 		return 1;
    135 
    136 	return 0;
    137 }
    138 
    139 /*
    140  * Attach this instance, and then all the sub-devices
    141  */
    142 void
    143 flscattach(device_t parent, device_t self, void *aux)
    144 {
    145 	struct flsc_softc *fsc = device_private(self);
    146 	struct ncr53c9x_softc *sc = &fsc->sc_ncr53c9x;
    147 	struct zbus_args  *zap;
    148 
    149 	/*
    150 	 * Set up the glue for MI code early; we use some of it here.
    151 	 */
    152 	sc->sc_dev = self;
    153 	sc->sc_glue = &flsc_glue;
    154 
    155 	/*
    156 	 * Save the regs
    157 	 */
    158 	zap = aux;
    159 	fsc->sc_dmabase = (volatile uint8_t *)zap->va;
    160 	fsc->sc_reg = &((volatile uint8_t *)zap->va)[0x1000001];
    161 
    162 	sc->sc_freq = 40;		/* Clocked at 40 MHz */
    163 
    164 	aprint_normal(": address %p", fsc->sc_reg);
    165 
    166 	sc->sc_id = 7;
    167 
    168 	/*
    169 	 * It is necessary to try to load the 2nd config register here,
    170 	 * to find out what rev the flsc chip is, else the flsc_reset
    171 	 * will not set up the defaults correctly.
    172 	 */
    173 	sc->sc_cfg1 = sc->sc_id | NCRCFG1_PARENB;
    174 	sc->sc_cfg2 = NCRCFG2_SCSI2 | NCRCFG2_FE;
    175 	sc->sc_cfg3 = 0x08 /*FCLK*/ | NCRESPCFG3_FSCSI | NCRESPCFG3_CDB;
    176 	sc->sc_rev = NCR_VARIANT_FAS216;
    177 
    178 	/*
    179 	 * This is the value used to start sync negotiations
    180 	 * Note that the NCR register "SYNCTP" is programmed
    181 	 * in "clocks per byte", and has a minimum value of 4.
    182 	 * The SCSI period used in negotiation is one-fourth
    183 	 * of the time (in nanoseconds) needed to transfer one byte.
    184 	 * Since the chip's clock is given in MHz, we have the following
    185 	 * formula: 4 * period = (1000 / freq) * 4
    186 	 */
    187 	sc->sc_minsync = 1000 / sc->sc_freq;
    188 
    189 	if (((scsi_nosync >> shift_nosync) & 0xff00) == 0xff00)
    190 		sc->sc_minsync = 0;
    191 
    192 	/* Really no limit, but since we want to fit into the TCR... */
    193 	sc->sc_maxxfer = 64 * 1024;
    194 
    195 	fsc->sc_portbits = 0xa0 | FLSC_PB_EDI | FLSC_PB_ESI;
    196 	fsc->sc_hardbits = fsc->sc_reg[0x40];
    197 
    198 	fsc->sc_alignbuf = (uint8_t *)((u_long)fsc->sc_unalignbuf & -4);
    199 
    200 	device_cfdata(self)->cf_flags |=
    201 	    (scsi_nosync >> shift_nosync) & 0xffff;
    202 	shift_nosync += 16;
    203 	ncr53c9x_debug |= (scsi_nosync >> shift_nosync) & 0xffff;
    204 	shift_nosync += 16;
    205 
    206 	/*
    207 	 * Configure interrupts.
    208 	 */
    209 	fsc->sc_isr.isr_intr = ncr53c9x_intr;
    210 	fsc->sc_isr.isr_arg  = sc;
    211 	fsc->sc_isr.isr_ipl  = 2;
    212 	add_isr(&fsc->sc_isr);
    213 
    214 	fsc->sc_reg[0x40] = fsc->sc_portbits;
    215 
    216 	/*
    217 	 * Now try to attach all the sub-devices
    218 	 */
    219 	sc->sc_adapter.adapt_request = ncr53c9x_scsipi_request;
    220 	sc->sc_adapter.adapt_minphys = minphys;
    221 	ncr53c9x_attach(sc);
    222 }
    223 
    224 /*
    225  * Glue functions.
    226  */
    227 
    228 uint8_t
    229 flsc_read_reg(struct ncr53c9x_softc *sc, int reg)
    230 {
    231 	struct flsc_softc *fsc = (struct flsc_softc *)sc;
    232 
    233 	return fsc->sc_reg[reg * 4];
    234 }
    235 
    236 void
    237 flsc_write_reg(struct ncr53c9x_softc *sc, int reg, uint8_t val)
    238 {
    239 	struct flsc_softc *fsc = (struct flsc_softc *)sc;
    240 	struct ncr53c9x_tinfo *ti;
    241 	uint8_t v = val;
    242 
    243 	if (fsc->sc_piomode && reg == NCR_CMD &&
    244 	    v == (NCRCMD_TRANS | NCRCMD_DMA)) {
    245 		v = NCRCMD_TRANS;
    246 	}
    247 	/*
    248 	 * Can't do synchronous transfers in XS_CTL_POLL mode:
    249 	 * If starting XS_CTL_POLL command, clear defer sync negotiation
    250 	 * by clearing the T_NEGOTIATE flag.  If starting XS_CTL_POLL and
    251 	 * the device is currently running synchronous, force another
    252 	 * T_NEGOTIATE with 0 offset.
    253 	 */
    254 	if (reg == NCR_SELID) {
    255 		ti = &sc->sc_tinfo[
    256 		    sc->sc_nexus->xs->xs_periph->periph_target];
    257 		if (sc->sc_nexus->xs->xs_control & XS_CTL_POLL) {
    258 			if (ti->flags & T_SYNCMODE) {
    259 				ti->flags ^= T_SYNCMODE | T_NEGOTIATE;
    260 			} else if (ti->flags & T_NEGOTIATE) {
    261 				ti->flags ^= T_NEGOTIATE | T_SYNCHOFF;
    262 				/* save T_NEGOTIATE in private flags? */
    263 			}
    264 		} else {
    265 			/*
    266 			 * If we haven't attempted sync negotiation yet,
    267 			 * do it now.
    268 			 */
    269 			if ((ti->flags & (T_SYNCMODE | T_SYNCHOFF)) ==
    270 			    T_SYNCHOFF &&
    271 			    sc->sc_minsync != 0)	/* XXX */
    272 				ti->flags ^= T_NEGOTIATE | T_SYNCHOFF;
    273 		}
    274 	}
    275 	if (reg == NCR_CMD && v == NCRCMD_SETATN  &&
    276 	    sc->sc_flags & NCR_SYNCHNEGO &&
    277 	     sc->sc_nexus->xs->xs_control & XS_CTL_POLL) {
    278 		ti = &sc->sc_tinfo[
    279 		    sc->sc_nexus->xs->xs_periph->periph_target];
    280 		ti->offset = 0;
    281 	}
    282 	fsc->sc_reg[reg * 4] = v;
    283 }
    284 
    285 int
    286 flsc_dma_isintr(struct ncr53c9x_softc *sc)
    287 {
    288 	struct flsc_softc *fsc = (struct flsc_softc *)sc;
    289 	unsigned int hardbits;
    290 
    291 	hardbits = fsc->sc_reg[0x40];
    292 	if ((hardbits & FLSC_HB_IACT) != 0)
    293 		return (fsc->sc_csr = 0);
    294 
    295 	if (sc->sc_state == NCR_CONNECTED || sc->sc_state == NCR_SELECTING)
    296 		fsc->sc_portbits |= FLSC_PB_LED;
    297 	else
    298 		fsc->sc_portbits &= ~FLSC_PB_LED;
    299 
    300 	if ((hardbits & FLSC_HB_CREQ) != 0 && (hardbits & FLSC_HB_MINT) == 0 &&
    301 	    (fsc->sc_reg[NCR_STAT * 4] & NCRSTAT_INT) != 0) {
    302 		return 1;
    303 	}
    304 	/* Do I still need this? */
    305 	if (fsc->sc_piomode && (fsc->sc_reg[NCR_STAT * 4] & NCRSTAT_INT) != 0 &&
    306 	    (hardbits & FLSC_HB_MINT) == 0)
    307 		return 1;
    308 
    309 	fsc->sc_reg[0x40] = fsc->sc_portbits & ~FLSC_PB_INT_BITS;
    310 	fsc->sc_reg[0x40] = fsc->sc_portbits;
    311 	return 0;
    312 }
    313 
    314 void
    315 flsc_clear_latched_intr(struct ncr53c9x_softc *sc)
    316 {
    317 	struct flsc_softc *fsc = (struct flsc_softc *)sc;
    318 
    319 	fsc->sc_reg[0x40] = fsc->sc_portbits & ~FLSC_PB_INT_BITS;
    320 	fsc->sc_reg[0x40] = fsc->sc_portbits;
    321 }
    322 
    323 void
    324 flsc_dma_reset(struct ncr53c9x_softc *sc)
    325 {
    326 	struct flsc_softc *fsc = (struct flsc_softc *)sc;
    327 	struct ncr53c9x_tinfo *ti;
    328 
    329 	if (sc->sc_nexus)
    330 		ti = &sc->sc_tinfo[sc->sc_nexus->xs->xs_periph->periph_target];
    331 	else
    332 		ti = &sc->sc_tinfo[1];	/* XXX */
    333 	if (fsc->sc_active) {
    334 		printf("dmaaddr %p dmasize %d stat %x flags %x off %d ",
    335 		    *fsc->sc_dmaaddr, fsc->sc_dmasize,
    336 		    fsc->sc_reg[NCR_STAT * 4], ti->flags, ti->offset);
    337 		printf("per %d ff %x intr %x\n",
    338 		    ti->period, fsc->sc_reg[NCR_FFLAG * 4],
    339 		    fsc->sc_reg[NCR_INTR * 4]);
    340 #ifdef DDB
    341 		Debugger();
    342 #endif
    343 	}
    344 	fsc->sc_portbits &= ~FLSC_PB_DMA_BITS;
    345 	fsc->sc_reg[0x40] = fsc->sc_portbits;
    346 	fsc->sc_reg[0x80] = 0;
    347 	*((volatile uint32_t *)fsc->sc_dmabase) = 0;
    348 	fsc->sc_active = 0;
    349 	fsc->sc_piomode = 0;
    350 }
    351 
    352 int
    353 flsc_dma_intr(struct ncr53c9x_softc *sc)
    354 {
    355 	register struct flsc_softc *fsc = (struct flsc_softc *)sc;
    356 	uint8_t *p;
    357 	volatile uint8_t *cmdreg, *intrreg, *statreg, *fiforeg;
    358 	u_int flscphase, flscstat, flscintr;
    359 	int cnt;
    360 
    361 	NCR_DMA(("flsc_dma_intr: pio %d cnt %d int %x stat %x fifo %d ",
    362 	    fsc->sc_piomode, fsc->sc_dmasize, sc->sc_espintr, sc->sc_espstat,
    363 	    fsc->sc_reg[NCR_FFLAG * 4] & NCRFIFO_FF));
    364 	if ((fsc->sc_reg[0x40] & FLSC_HB_CREQ) == 0)
    365 		printf("flsc_dma_intr: csr %x stat %x intr %x\n", fsc->sc_csr,
    366 		    sc->sc_espstat, sc->sc_espintr);
    367 	if (fsc->sc_active == 0) {
    368 		printf("flsc_intr--inactive DMA\n");
    369 		return -1;
    370 	}
    371 
    372 /* if DMA transfer, update sc_dmaaddr and sc_pdmalen, else PIO xfer */
    373 	if (fsc->sc_piomode == 0) {
    374 		fsc->sc_portbits &= ~FLSC_PB_DMA_BITS;
    375 		fsc->sc_reg[0x40] = fsc->sc_portbits;
    376 		fsc->sc_reg[0x80] = 0;
    377 		*((volatile uint32_t *)fsc->sc_dmabase) = 0;
    378 		cnt = fsc->sc_reg[NCR_TCL * 4];
    379 		cnt += fsc->sc_reg[NCR_TCM * 4] << 8;
    380 		cnt += fsc->sc_reg[NCR_TCH * 4] << 16;
    381 		if (!fsc->sc_datain) {
    382 			cnt += fsc->sc_reg[NCR_FFLAG * 4] & NCRFIFO_FF;
    383 			fsc->sc_reg[NCR_CMD * 4] = NCRCMD_FLUSH;
    384 		}
    385 		cnt = fsc->sc_dmasize - cnt;	/* number of bytes transferred */
    386 		NCR_DMA(("DMA xferred %d\n", cnt));
    387 		if (fsc->sc_xfr_align) {
    388 			int i;
    389 			for (i = 0; i < cnt; ++i)
    390 				(*fsc->sc_dmaaddr)[i] = fsc->sc_alignbuf[i];
    391 			fsc->sc_xfr_align = 0;
    392 		}
    393 		*fsc->sc_dmaaddr += cnt;
    394 		*fsc->sc_pdmalen -= cnt;
    395 		fsc->sc_active = 0;
    396 		return 0;
    397 	}
    398 
    399 	if ((sc->sc_espintr & NCRINTR_BS) == 0) {
    400 		fsc->sc_active = 0;
    401 		fsc->sc_piomode = 0;
    402 		NCR_DMA(("no NCRINTR_BS\n"));
    403 		return 0;
    404 	}
    405 
    406 	cnt = fsc->sc_dmasize;
    407 #if 0
    408 	if (cnt == 0) {
    409 		printf("data interrupt, but no count left.");
    410 	}
    411 #endif
    412 
    413 	p = *fsc->sc_dmaaddr;
    414 	flscphase = sc->sc_phase;
    415 	flscstat = (u_int)sc->sc_espstat;
    416 	flscintr = (u_int)sc->sc_espintr;
    417 	cmdreg = fsc->sc_reg + NCR_CMD * 4;
    418 	fiforeg = fsc->sc_reg + NCR_FIFO * 4;
    419 	statreg = fsc->sc_reg + NCR_STAT * 4;
    420 	intrreg = fsc->sc_reg + NCR_INTR * 4;
    421 	NCR_DMA(("PIO %d datain %d phase %d stat %x intr %x\n",
    422 	    cnt, fsc->sc_datain, flscphase, flscstat, flscintr));
    423 	do {
    424 		if (fsc->sc_datain) {
    425 			*p++ = *fiforeg;
    426 			cnt--;
    427 			if (flscphase == DATA_IN_PHASE) {
    428 				*cmdreg = NCRCMD_TRANS;
    429 			} else {
    430 				fsc->sc_active = 0;
    431 			}
    432 	 	} else {
    433 NCR_DMA(("flsc_dma_intr: PIO out- phase %d cnt %d active %d\n", flscphase, cnt,
    434     fsc->sc_active));
    435 			if (   (flscphase == DATA_OUT_PHASE)
    436 			    || (flscphase == MESSAGE_OUT_PHASE)) {
    437 				int n;
    438 				n = 16 - (fsc->sc_reg[NCR_FFLAG * 4] & NCRFIFO_FF);
    439 				if (n > cnt)
    440 					n = cnt;
    441 				cnt -= n;
    442 				while (n-- > 0)
    443 					*fiforeg = *p++;
    444 				*cmdreg = NCRCMD_TRANS;
    445 			} else {
    446 				fsc->sc_active = 0;
    447 			}
    448 		}
    449 
    450 		if (fsc->sc_active && cnt) {
    451 			while ((*statreg & 0x80) == 0)
    452 				;
    453 			flscstat = *statreg;
    454 			flscintr = *intrreg;
    455 			flscphase = (flscintr & NCRINTR_DIS)
    456 				    ? /* Disconnected */ BUSFREE_PHASE
    457 				    : flscstat & PHASE_MASK;
    458 		}
    459 	} while (cnt && fsc->sc_active && (flscintr & NCRINTR_BS) != 0);
    460 #if 1
    461 if (fsc->sc_dmasize < 8 && cnt)
    462   printf("flsc_dma_intr: short transfer: dmasize %d cnt %d\n",
    463     fsc->sc_dmasize, cnt);
    464 #endif
    465 	NCR_DMA(("flsc_dma_intr: PIO transfer [%d], %d->%d phase %d stat %x intr %x\n",
    466 	    *fsc->sc_pdmalen, fsc->sc_dmasize, cnt, flscphase, flscstat, flscintr));
    467 	sc->sc_phase = flscphase;
    468 	sc->sc_espstat = (uint8_t)flscstat;
    469 	sc->sc_espintr = (uint8_t)flscintr;
    470 	*fsc->sc_dmaaddr = p;
    471 	*fsc->sc_pdmalen -= fsc->sc_dmasize - cnt;
    472 	fsc->sc_dmasize = cnt;
    473 
    474 	if (*fsc->sc_pdmalen == 0) {
    475 		sc->sc_espstat |= NCRSTAT_TC;
    476 		fsc->sc_piomode = 0;
    477 	}
    478 	return 0;
    479 }
    480 
    481 int
    482 flsc_dma_setup(struct ncr53c9x_softc *sc, uint8_t **addr, size_t *len,
    483                int datain, size_t *dmasize)
    484 {
    485 	struct flsc_softc *fsc = (struct flsc_softc *)sc;
    486 	paddr_t pa;
    487 	uint8_t *ptr;
    488 	size_t xfer;
    489 
    490 	fsc->sc_dmaaddr = addr;
    491 	fsc->sc_pdmalen = len;
    492 	fsc->sc_datain = datain;
    493 	fsc->sc_dmasize = *dmasize;
    494 	if (sc->sc_nexus->xs->xs_control & XS_CTL_POLL) {
    495 		/* polling mode, use PIO */
    496 		*dmasize = fsc->sc_dmasize;
    497 		NCR_DMA(("pfsc_dma_setup: PIO %p/%d [%d]\n", *addr,
    498 		    fsc->sc_dmasize, *len));
    499 		fsc->sc_piomode = 1;
    500 		if (datain == 0) {
    501 			int n;
    502 			n = fsc->sc_dmasize;
    503 			if (n > 16)
    504 				n = 16;
    505 			while (n-- > 0) {
    506 				fsc->sc_reg[NCR_FIFO * 4] = **fsc->sc_dmaaddr;
    507 				(*fsc->sc_pdmalen)--;
    508 				(*fsc->sc_dmaaddr)++;
    509 				--fsc->sc_dmasize;
    510 			}
    511 		}
    512 		return 0;
    513 	}
    514 	/*
    515 	 * DMA can be nasty for high-speed serial input, so limit the
    516 	 * size of this DMA operation if the serial port is running at
    517 	 * a high speed (higher than 19200 for now - should be adjusted
    518 	 * based on CPU type and speed?).
    519 	 * XXX - add serial speed check XXX
    520 	 */
    521 	if (ser_open_speed > 19200 && flsc_max_dma != 0 &&
    522 	    fsc->sc_dmasize > flsc_max_dma)
    523 		fsc->sc_dmasize = flsc_max_dma;
    524 	ptr = *addr;			/* Kernel virtual address */
    525 	pa = kvtop(ptr);		/* Physical address of DMA */
    526 	xfer = min(fsc->sc_dmasize, PAGE_SIZE - (pa & (PAGE_SIZE - 1)));
    527 	fsc->sc_xfr_align = 0;
    528 	fsc->sc_piomode = 0;
    529 	fsc->sc_portbits &= ~FLSC_PB_DMA_BITS;
    530 	fsc->sc_reg[0x40] = fsc->sc_portbits;
    531 	fsc->sc_reg[0x80] = 0;
    532 	*((volatile uint32_t *)fsc->sc_dmabase) = 0;
    533 
    534 	/*
    535 	 * If output and length < 16, copy to fifo
    536 	 */
    537 	if (datain == 0 && fsc->sc_dmasize < 16) {
    538 		int n;
    539 		for (n = 0; n < fsc->sc_dmasize; ++n)
    540 			fsc->sc_reg[NCR_FIFO * 4] = *ptr++;
    541 		NCR_DMA(("flsc_dma_setup: %d bytes written to fifo\n", n));
    542 		fsc->sc_piomode = 1;
    543 		fsc->sc_active = 1;
    544 		*fsc->sc_pdmalen -= fsc->sc_dmasize;
    545 		*fsc->sc_dmaaddr += fsc->sc_dmasize;
    546 		*dmasize = fsc->sc_dmasize;
    547 		fsc->sc_dmasize = 0;
    548 		return 0;		/* All done */
    549 	}
    550 	/*
    551 	 * If output and unaligned, copy unaligned data to fifo
    552 	 */
    553 	else if (datain == 0 && (int)ptr & 3) {
    554 		int n = 4 - ((int)ptr & 3);
    555 		NCR_DMA(("flsc_dma_setup: align %d bytes written to fifo\n", n));
    556 		pa += n;
    557 		xfer -= n;
    558 		while (n--)
    559 			fsc->sc_reg[NCR_FIFO * 4] = *ptr++;
    560 	}
    561 	/*
    562 	 * If unaligned address, read unaligned bytes into alignment buffer
    563 	 */
    564 	else if ((int)ptr & 3 || xfer & 3) {
    565 		pa = kvtop((void *)fsc->sc_alignbuf);
    566 		xfer = fsc->sc_dmasize = min(xfer, sizeof(fsc->sc_unalignbuf));
    567 		NCR_DMA(("flsc_dma_setup: align read by %d bytes\n", xfer));
    568 		fsc->sc_xfr_align = 1;
    569 	}
    570 	/*
    571 	 * If length smaller than longword, read into alignment buffer
    572 	 * XXX doesn't work for 1 or 2 bytes !!!!
    573 	 */
    574 	else if (fsc->sc_dmasize < 4) {
    575 		NCR_DMA(("flsc_dma_setup: read remaining %d bytes\n",
    576 		    fsc->sc_dmasize));
    577 		pa = kvtop((void *)fsc->sc_alignbuf);
    578 		fsc->sc_xfr_align = 1;
    579 	}
    580 	/*
    581 	 * Finally, limit transfer length to multiple of 4 bytes.
    582 	 */
    583 	else {
    584 		fsc->sc_dmasize &= -4;
    585 		xfer &= -4;
    586 	}
    587 
    588 	while (xfer < fsc->sc_dmasize) {
    589 		if ((pa + xfer) != kvtop(*addr + xfer))
    590 			break;
    591 		if ((fsc->sc_dmasize - xfer) < PAGE_SIZE)
    592 			xfer = fsc->sc_dmasize;
    593 		else
    594 			xfer += PAGE_SIZE;
    595 	}
    596 
    597 	fsc->sc_dmasize = xfer;
    598 	*dmasize = fsc->sc_dmasize;
    599 	fsc->sc_pa = pa;
    600 #if defined(M68040) || defined(M68060)
    601 	if (mmutype == MMU_68040) {
    602 		if (fsc->sc_xfr_align) {
    603 			int n;
    604 			for (n = 0; n < sizeof(fsc->sc_unalignbuf); ++n)
    605 				fsc->sc_alignbuf[n] = n | 0x80;
    606 			dma_cachectl(fsc->sc_alignbuf,
    607 			    sizeof(fsc->sc_unalignbuf));
    608 		}
    609 		else
    610 			dma_cachectl(*fsc->sc_dmaaddr, fsc->sc_dmasize);
    611 	}
    612 #endif
    613 	fsc->sc_reg[0x80] = 0;
    614 	*((volatile uint32_t *)(fsc->sc_dmabase + (pa & 0x00fffffc))) = pa;
    615 	fsc->sc_portbits &= ~FLSC_PB_DMA_BITS;
    616 	fsc->sc_portbits |= FLSC_PB_ENABLE_DMA |
    617 	    (fsc->sc_datain ? FLSC_PB_DMA_READ : FLSC_PB_DMA_WRITE);
    618 	fsc->sc_reg[0x40] = fsc->sc_portbits;
    619 	NCR_DMA(("flsc_dma_setup: DMA %p->%lx/%d [%d]\n",
    620 	    ptr, pa, fsc->sc_dmasize, *len));
    621 	fsc->sc_active = 1;
    622 	return 0;
    623 }
    624 
    625 void
    626 flsc_dma_go(struct ncr53c9x_softc *sc)
    627 {
    628 	struct flsc_softc *fsc = (struct flsc_softc *)sc;
    629 
    630 	NCR_DMA(("flsc_dma_go: datain %d size %d\n", fsc->sc_datain,
    631 	    fsc->sc_dmasize));
    632 	if (sc->sc_nexus->xs->xs_control & XS_CTL_POLL) {
    633 		fsc->sc_active = 1;
    634 		return;
    635 	} else if (fsc->sc_piomode == 0) {
    636 		fsc->sc_portbits &= ~FLSC_PB_DMA_BITS;
    637 		fsc->sc_portbits |= FLSC_PB_ENABLE_DMA |
    638 		    (fsc->sc_datain ? FLSC_PB_DMA_READ : FLSC_PB_DMA_WRITE);
    639 		fsc->sc_reg[0x40] = fsc->sc_portbits;
    640 	}
    641 }
    642 
    643 void
    644 flsc_dma_stop(struct ncr53c9x_softc *sc)
    645 {
    646 	struct flsc_softc *fsc = (struct flsc_softc *)sc;
    647 
    648 	fsc->sc_portbits &= ~FLSC_PB_DMA_BITS;
    649 	fsc->sc_reg[0x40] = fsc->sc_portbits;
    650 
    651 	fsc->sc_reg[0x80] = 0;
    652 	*((volatile uint32_t *)fsc->sc_dmabase) = 0;
    653 	fsc->sc_piomode = 0;
    654 }
    655 
    656 int
    657 flsc_dma_isactive(struct ncr53c9x_softc *sc)
    658 {
    659 	struct flsc_softc *fsc = (struct flsc_softc *)sc;
    660 
    661 	return fsc->sc_active;
    662 }
    663