grf_rh.c revision 1.11 1 /* $NetBSD: grf_rh.c,v 1.11 1996/03/06 20:13:28 is Exp $ */
2
3 /*
4 * Copyright (c) 1994 Markus Wild
5 * Copyright (c) 1994 Lutz Vieweg
6 * All rights reserved.
7 *
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 * 1. Redistributions of source code must retain the above copyright
12 * notice, this list of conditions and the following disclaimer.
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution.
16 * 3. All advertising materials mentioning features or use of this software
17 * must display the following acknowledgement:
18 * This product includes software developed by Lutz Vieweg.
19 * 4. The name of the author may not be used to endorse or promote products
20 * derived from this software without specific prior written permission
21 *
22 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
23 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
24 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
25 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
26 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
27 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
28 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
29 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
30 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
31 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
32 */
33 #include "grfrh.h"
34 #if NGRFRH > 0
35
36 /*
37 * Graphics routines for the Retina BLT Z3 board,
38 * using the NCR 77C32BLT VGA controller.
39 */
40
41 #include <sys/param.h>
42 #include <sys/errno.h>
43 #include <sys/ioctl.h>
44 #include <sys/device.h>
45 #include <sys/malloc.h>
46 #include <machine/cpu.h>
47 #include <amiga/amiga/device.h>
48 #include <amiga/dev/grfioctl.h>
49 #include <amiga/dev/grfvar.h>
50 #include <amiga/dev/grf_rhreg.h>
51 #include <amiga/dev/zbusvar.h>
52
53 enum mode_type { MT_TXTONLY, MT_GFXONLY, MT_BOTH };
54
55 int rh_mondefok __P((struct MonDef *));
56
57 u_short CompFQ __P((u_int fq));
58 int rh_load_mon __P((struct grf_softc *gp, struct MonDef *md));
59 int rh_getvmode __P((struct grf_softc *gp, struct grfvideo_mode *vm));
60 int rh_setvmode __P((struct grf_softc *gp, unsigned int mode,
61 enum mode_type type));
62
63 /* make it patchable, and settable by kernel config option */
64 #ifndef RH_MEMCLK
65 #define RH_MEMCLK 61000000 /* this is the memory clock value, you shouldn't
66 set it to less than 61000000, higher values may
67 speed up blits a little bit, if you raise this
68 value too much, some trash will appear on your
69 screen. */
70 #endif
71 int rh_memclk = RH_MEMCLK;
72
73
74 extern unsigned char kernel_font_8x8_width, kernel_font_8x8_height;
75 extern unsigned char kernel_font_8x8_lo, kernel_font_8x8_hi;
76 extern unsigned char kernel_font_8x8[];
77 #ifdef KFONT_8X11
78 extern unsigned char kernel_font_8x11_width, kernel_font_8x11_height;
79 extern unsigned char kernel_font_8x11_lo, kernel_font_8x11_hi;
80 extern unsigned char kernel_font_8x11[];
81 #endif
82
83 /*
84 * This driver for the MacroSystem Retina board was only possible,
85 * because MacroSystem provided information about the pecularities
86 * of the board. THANKS! Competition in Europe among gfx board
87 * manufacturers is rather tough, so Lutz Vieweg, who wrote the
88 * initial driver, has made an agreement with MS not to document
89 * the driver source (see also his comment below).
90 * -> ALL comments after
91 * -> "/* -------------- START OF CODE -------------- * /"
92 * -> have been added by myself (mw) from studying the publically
93 * -> available "NCR 77C32BLT" Data Manual
94 */
95 /*
96 * This code offers low-level routines to access the Retina BLT Z3
97 * graphics-board manufactured by MS MacroSystem GmbH from within NetBSD
98 * for the Amiga.
99 *
100 * Thanks to MacroSystem for providing me with the neccessary information
101 * to create theese routines. The sparse documentation of this code
102 * results from the agreements between MS and me.
103 */
104
105
106
107 #define MDF_DBL 1
108 #define MDF_LACE 2
109 #define MDF_CLKDIV2 4
110
111 /* set this as an option in your kernel config file! */
112 /* #define RH_64BIT_SPRITE */
113
114 /* -------------- START OF CODE -------------- */
115
116 /* Convert big-endian long into little-endian long. */
117
118 #define M2I(val) \
119 asm volatile (" rorw #8,%0 ; \
120 swap %0 ; \
121 rorw #8,%0 ; " : "=d" (val) : "0" (val));
122
123 #define M2INS(val) \
124 asm volatile (" rorw #8,%0 ; \
125 swap %0 ; \
126 rorw #8,%0 ; \
127 swap %0 ; " : "=d" (val) : "0" (val));
128
129 #define ACM_OFFSET (0x00b00000)
130 #define LM_OFFSET (0x00c00000)
131
132 static unsigned char optab[] = {
133 0x00, 0x80, 0x40, 0xc0, 0x20, 0xa0, 0x60, 0xe0,
134 0x10, 0x90, 0x50, 0xd0, 0x30, 0xb0, 0x70, 0xf0
135 };
136 static char optabs[] = {
137 0, -1, -1, -1, -1, 0, -1, -1,
138 -1, -1, 0, -1, -1, -1, -1, 0
139 };
140
141 void
142 RZ3DisableHWC(gp)
143 struct grf_softc *gp;
144 {
145 volatile void *ba = gp->g_regkva;
146
147 WSeq(ba, SEQ_ID_CURSOR_Y_INDEX, 0x00);
148 }
149
150 void
151 RZ3SetupHWC(gp, col1, col2, hsx, hsy, data)
152 struct grf_softc *gp;
153 unsigned char col1;
154 unsigned col2;
155 unsigned char hsx;
156 unsigned char hsy;
157 const unsigned long *data;
158 {
159 volatile unsigned char *ba = gp->g_regkva;
160 unsigned long *c = (unsigned long *)(ba + LM_OFFSET + HWC_MEM_OFF);
161 const unsigned long *s = data;
162 struct MonDef *MonitorDef = (struct MonDef *) gp->g_data;
163 #ifdef RH_64BIT_SPRITE
164 short x = (HWC_MEM_SIZE / (4*4)) - 1;
165 #else
166 short x = (HWC_MEM_SIZE / (4*4*2)) - 1;
167 #endif
168 /* copy only, if there is a data pointer. */
169 if (data) do {
170 *c++ = *s++;
171 *c++ = *s++;
172 *c++ = *s++;
173 *c++ = *s++;
174 } while (x-- > 0);
175
176 WSeq(ba, SEQ_ID_CURSOR_COLOR1, col1);
177 WSeq(ba, SEQ_ID_CURSOR_COLOR0, col2);
178 if (MonitorDef->DEP <= 8) {
179 #ifdef RH_64BIT_SPRITE
180 WSeq(ba, SEQ_ID_CURSOR_CONTROL, 0x85);
181 #else
182 WSeq(ba, SEQ_ID_CURSOR_CONTROL, 0x03);
183 #endif
184 }
185 else if (MonitorDef->DEP <= 16) {
186 #ifdef RH_64BIT_SPRITE
187 WSeq(ba, SEQ_ID_CURSOR_CONTROL, 0xa5);
188 #else
189 WSeq(ba, SEQ_ID_CURSOR_CONTROL, 0x23);
190 #endif
191 }
192 else {
193 #ifdef RH_64BIT_SPRITE
194 WSeq(ba, SEQ_ID_CURSOR_CONTROL, 0xc5);
195 #else
196 WSeq(ba, SEQ_ID_CURSOR_CONTROL, 0x43);
197 #endif
198 }
199 WSeq(ba, SEQ_ID_CURSOR_X_LOC_HI, 0x00);
200 WSeq(ba, SEQ_ID_CURSOR_X_LOC_LO, 0x00);
201 WSeq(ba, SEQ_ID_CURSOR_Y_LOC_HI, 0x00);
202 WSeq(ba, SEQ_ID_CURSOR_Y_LOC_LO, 0x00);
203 WSeq(ba, SEQ_ID_CURSOR_X_INDEX, hsx);
204 WSeq(ba, SEQ_ID_CURSOR_Y_INDEX, hsy);
205 WSeq(ba, SEQ_ID_CURSOR_STORE_HI, 0x00);
206 WSeq(ba, SEQ_ID_CURSOR_STORE_LO, ((HWC_MEM_OFF / 4) & 0x0000f));
207 WSeq(ba, SEQ_ID_CURSOR_ST_OFF_HI, (((HWC_MEM_OFF / 4) & 0xff000) >> 12));
208 WSeq(ba, SEQ_ID_CURSOR_ST_OFF_LO, (((HWC_MEM_OFF / 4) & 0x00ff0) >> 4));
209 WSeq(ba, SEQ_ID_CURSOR_PIXELMASK, 0xff);
210 }
211
212 void
213 RZ3AlphaErase (gp, xd, yd, w, h)
214 struct grf_softc *gp;
215 unsigned short xd;
216 unsigned short yd;
217 unsigned short w;
218 unsigned short h;
219 {
220 const struct MonDef * md = (struct MonDef *) gp->g_data;
221 RZ3AlphaCopy(gp, xd, yd+md->TY, xd, yd, w, h);
222 }
223
224 void
225 RZ3AlphaCopy (gp, xs, ys, xd, yd, w, h)
226 struct grf_softc *gp;
227 unsigned short xs;
228 unsigned short ys;
229 unsigned short xd;
230 unsigned short yd;
231 unsigned short w;
232 unsigned short h;
233 {
234 volatile unsigned char *ba = gp->g_regkva;
235 const struct MonDef *md = (struct MonDef *) gp->g_data;
236 volatile unsigned long *acm = (unsigned long *) (ba + ACM_OFFSET);
237 unsigned short mod;
238
239 xs *= 4;
240 ys *= 4;
241 xd *= 4;
242 yd *= 4;
243 w *= 4;
244
245 {
246 /* anyone got Windoze GDI opcodes handy?... */
247 unsigned long tmp = 0x0000ca00;
248 *(acm + ACM_RASTEROP_ROTATION/4) = tmp;
249 }
250
251 mod = 0xc0c2;
252
253 {
254 unsigned long pat = 8 * PAT_MEM_OFF;
255 unsigned long dst = 8 * (xd + yd * md->TX);
256
257 unsigned long src = 8 * (xs + ys * md->TX);
258
259 if (xd > xs) {
260 mod &= ~0x8000;
261 src += 8 * (w - 1);
262 dst += 8 * (w - 1);
263 pat += 8 * 2;
264 }
265 if (yd > ys) {
266 mod &= ~0x4000;
267 src += 8 * (h - 1) * md->TX * 4;
268 dst += 8 * (h - 1) * md->TX * 4;
269 pat += 8 * 4;
270 }
271
272 M2I(src);
273 *(acm + ACM_SOURCE/4) = src;
274
275 M2I(pat);
276 *(acm + ACM_PATTERN/4) = pat;
277
278 M2I(dst);
279 *(acm + ACM_DESTINATION/4) = dst;
280 }
281 {
282
283 unsigned long tmp = mod << 16;
284 *(acm + ACM_CONTROL/4) = tmp;
285 }
286 {
287
288 unsigned long tmp = w | (h << 16);
289 M2I(tmp);
290 *(acm + ACM_BITMAP_DIMENSION/4) = tmp;
291 }
292
293 *(((volatile unsigned char *)acm) + ACM_START_STATUS) = 0x00;
294 *(((volatile unsigned char *)acm) + ACM_START_STATUS) = 0x01;
295
296 while ((*(((volatile unsigned char *)acm) +
297 (ACM_START_STATUS + 2)) & 1) == 0);
298 }
299
300 void
301 RZ3BitBlit (gp, gbb)
302 struct grf_softc *gp;
303 struct grf_bitblt * gbb;
304 {
305 volatile unsigned char *ba = gp->g_regkva;
306 volatile unsigned char *lm = ba + LM_OFFSET;
307 volatile unsigned long *acm = (unsigned long *) (ba + ACM_OFFSET);
308 const struct MonDef *md = (struct MonDef *) gp->g_data;
309 unsigned short mod;
310
311 {
312 unsigned long * pt = (unsigned long *) (lm + PAT_MEM_OFF);
313 unsigned long tmp = gbb->mask | ((unsigned long)gbb->mask << 16);
314 *pt++ = tmp;
315 *pt = tmp;
316 }
317
318 {
319
320 unsigned long tmp = optab[ gbb->op ] << 8;
321 *(acm + ACM_RASTEROP_ROTATION/4) = tmp;
322 }
323
324 mod = 0xc0c2;
325
326 {
327 unsigned long pat = 8 * PAT_MEM_OFF;
328 unsigned long dst = 8 * (gbb->dst_x + gbb->dst_y * md->TX);
329
330 if (optabs[gbb->op]) {
331 unsigned long src = 8 * (gbb->src_x + gbb->src_y * md->TX);
332
333 if (gbb->dst_x > gbb->src_x) {
334 mod &= ~0x8000;
335 src += 8 * (gbb->w - 1);
336 dst += 8 * (gbb->w - 1);
337 pat += 8 * 2;
338 }
339 if (gbb->dst_y > gbb->src_y) {
340 mod &= ~0x4000;
341 src += 8 * (gbb->h - 1) * md->TX;
342 dst += 8 * (gbb->h - 1) * md->TX;
343 pat += 8 * 4;
344 }
345
346 M2I(src);
347 *(acm + ACM_SOURCE/4) = src;
348 }
349
350 M2I(pat);
351 *(acm + ACM_PATTERN/4) = pat;
352
353 M2I(dst);
354 *(acm + ACM_DESTINATION/4) = dst;
355 }
356 {
357
358 unsigned long tmp = mod << 16;
359 *(acm + ACM_CONTROL/4) = tmp;
360 }
361 {
362 unsigned long tmp = gbb->w | (gbb->h << 16);
363 M2I(tmp);
364 *(acm + ACM_BITMAP_DIMENSION/4) = tmp;
365 }
366
367 *(((volatile unsigned char *)acm) + ACM_START_STATUS) = 0x00;
368 *(((volatile unsigned char *)acm) + ACM_START_STATUS) = 0x01;
369
370 while ((*(((volatile unsigned char *)acm) +
371 (ACM_START_STATUS + 2)) & 1) == 0);
372 }
373
374 void
375 RZ3BitBlit16 (gp, gbb)
376 struct grf_softc *gp;
377 struct grf_bitblt * gbb;
378 {
379 volatile unsigned char *ba = gp->g_regkva;
380 volatile unsigned char *lm = ba + LM_OFFSET;
381 volatile unsigned long * acm = (unsigned long *) (ba + ACM_OFFSET);
382 const struct MonDef * md = (struct MonDef *) gp->g_data;
383 unsigned short mod;
384
385 {
386 unsigned long * pt = (unsigned long *) (lm + PAT_MEM_OFF);
387 unsigned long tmp = gbb->mask | ((unsigned long)gbb->mask << 16);
388 *pt++ = tmp;
389 *pt++ = tmp;
390 *pt++ = tmp;
391 *pt = tmp;
392 }
393
394 {
395
396 unsigned long tmp = optab[ gbb->op ] << 8;
397 *(acm + ACM_RASTEROP_ROTATION/4) = tmp;
398 }
399
400 mod = 0xc0c2;
401
402 {
403 unsigned long pat = 8 * PAT_MEM_OFF;
404 unsigned long dst = 8 * 2 * (gbb->dst_x + gbb->dst_y * md->TX);
405
406 if (optabs[gbb->op]) {
407 unsigned long src = 8 * 2 * (gbb->src_x + gbb->src_y * md->TX);
408
409 if (gbb->dst_x > gbb->src_x) {
410 mod &= ~0x8000;
411 src += 8 * 2 * (gbb->w);
412 dst += 8 * 2 * (gbb->w);
413 pat += 8 * 2 * 2;
414 }
415 if (gbb->dst_y > gbb->src_y) {
416 mod &= ~0x4000;
417 src += 8 * 2 * (gbb->h - 1) * md->TX;
418 dst += 8 * 2 * (gbb->h - 1) * md->TX;
419 pat += 8 * 4 * 2;
420 }
421
422 M2I(src);
423 *(acm + ACM_SOURCE/4) = src;
424 }
425
426 M2I(pat);
427 *(acm + ACM_PATTERN/4) = pat;
428
429 M2I(dst);
430 *(acm + ACM_DESTINATION/4) = dst;
431 }
432 {
433
434 unsigned long tmp = mod << 16;
435 *(acm + ACM_CONTROL/4) = tmp;
436 }
437 {
438
439 unsigned long tmp = gbb->w | (gbb->h << 16);
440 M2I(tmp);
441 *(acm + ACM_BITMAP_DIMENSION/4) = tmp;
442 }
443
444 *(((volatile unsigned char *)acm) + ACM_START_STATUS) = 0x00;
445 *(((volatile unsigned char *)acm) + ACM_START_STATUS) = 0x01;
446
447 while ((*(((volatile unsigned char *)acm) +
448 (ACM_START_STATUS+ 2)) & 1) == 0);
449 }
450
451 void
452 RZ3BitBlit24 (gp, gbb)
453 struct grf_softc *gp;
454 struct grf_bitblt * gbb;
455 {
456 volatile unsigned char *ba = gp->g_regkva;
457 volatile unsigned char *lm = ba + LM_OFFSET;
458 volatile unsigned long * acm = (unsigned long *) (ba + ACM_OFFSET);
459 const struct MonDef * md = (struct MonDef *) gp->g_data;
460 unsigned short mod;
461
462
463 {
464 unsigned long * pt = (unsigned long *) (lm + PAT_MEM_OFF);
465 unsigned long tmp = gbb->mask | ((unsigned long)gbb->mask << 16);
466 *pt++ = tmp;
467 *pt++ = tmp;
468 *pt++ = tmp;
469 *pt++ = tmp;
470 *pt++ = tmp;
471 *pt = tmp;
472 }
473
474 {
475
476 unsigned long tmp = optab[ gbb->op ] << 8;
477 *(acm + ACM_RASTEROP_ROTATION/4) = tmp;
478 }
479
480 mod = 0xc0c2;
481
482 {
483 unsigned long pat = 8 * PAT_MEM_OFF;
484 unsigned long dst = 8 * 3 * (gbb->dst_x + gbb->dst_y * md->TX);
485
486 if (optabs[gbb->op]) {
487 unsigned long src = 8 * 3 * (gbb->src_x + gbb->src_y * md->TX);
488
489 if (gbb->dst_x > gbb->src_x ) {
490 mod &= ~0x8000;
491 src += 8 * 3 * (gbb->w);
492 dst += 8 * 3 * (gbb->w);
493 pat += 8 * 3 * 2;
494 }
495 if (gbb->dst_y > gbb->src_y) {
496 mod &= ~0x4000;
497 src += 8 * 3 * (gbb->h - 1) * md->TX;
498 dst += 8 * 3 * (gbb->h - 1) * md->TX;
499 pat += 8 * 4 * 3;
500 }
501
502 M2I(src);
503 *(acm + ACM_SOURCE/4) = src;
504 }
505
506
507 M2I(pat);
508 *(acm + ACM_PATTERN/4) = pat;
509
510
511 M2I(dst);
512 *(acm + ACM_DESTINATION/4) = dst;
513 }
514 {
515
516 unsigned long tmp = mod << 16;
517 *(acm + ACM_CONTROL/4) = tmp;
518 }
519 {
520
521 unsigned long tmp = gbb->w | (gbb->h << 16);
522 M2I(tmp);
523 *(acm + ACM_BITMAP_DIMENSION/4) = tmp;
524 }
525
526
527 *(((volatile unsigned char *)acm) + ACM_START_STATUS) = 0x00;
528 *(((volatile unsigned char *)acm) + ACM_START_STATUS) = 0x01;
529
530 while ( (*(((volatile unsigned char *)acm)
531 + (ACM_START_STATUS+ 2)) & 1) == 0 ) {};
532
533 }
534
535
536 void
537 RZ3SetCursorPos (gp, pos)
538 struct grf_softc *gp;
539 unsigned short pos;
540 {
541 volatile unsigned char *ba = gp->g_regkva;
542
543 WCrt(ba, CRT_ID_CURSOR_LOC_LOW, (unsigned char)pos);
544 WCrt(ba, CRT_ID_CURSOR_LOC_HIGH, (unsigned char)(pos >> 8));
545
546 }
547
548 void
549 RZ3LoadPalette (gp, pal, firstcol, colors)
550 struct grf_softc *gp;
551 unsigned char * pal;
552 unsigned char firstcol;
553 unsigned char colors;
554 {
555 volatile unsigned char *ba = gp->g_regkva;
556
557 if (colors == 0)
558 return;
559
560 vgaw(ba, VDAC_ADDRESS_W, firstcol);
561
562 {
563
564 short x = colors-1;
565 const unsigned char * col = pal;
566 do {
567
568 vgaw(ba, VDAC_DATA, (*col++ >> 2));
569 vgaw(ba, VDAC_DATA, (*col++ >> 2));
570 vgaw(ba, VDAC_DATA, (*col++ >> 2));
571
572 } while (x-- > 0);
573
574 }
575 }
576
577 void
578 RZ3SetPalette (gp, colornum, red, green, blue)
579 struct grf_softc *gp;
580 unsigned char colornum;
581 unsigned char red, green, blue;
582 {
583 volatile unsigned char *ba = gp->g_regkva;
584
585 vgaw(ba, VDAC_ADDRESS_W, colornum);
586
587 vgaw(ba, VDAC_DATA, (red >> 2));
588 vgaw(ba, VDAC_DATA, (green >> 2));
589 vgaw(ba, VDAC_DATA, (blue >> 2));
590
591 }
592
593 /* XXXXXXXXX !! */
594 static unsigned short xpan;
595 static unsigned short ypan;
596
597 void
598 RZ3SetPanning (gp, xoff, yoff)
599 struct grf_softc *gp;
600 unsigned short xoff, yoff;
601 {
602 volatile unsigned char *ba = gp->g_regkva;
603 const struct MonDef * md = (struct MonDef *) gp->g_data;
604 unsigned long off;
605
606 xpan = xoff;
607 ypan = yoff;
608
609
610 if (md->DEP > 8 && md->DEP <= 16) xoff *= 2;
611 else if (md->DEP > 16) xoff *= 3;
612
613 vgar(ba, ACT_ADDRESS_RESET);
614 WAttr(ba, ACT_ID_HOR_PEL_PANNING, (unsigned char)((xoff << 1) & 0x07));
615 /* have the color lookup function normally again */
616 vgaw(ba, ACT_ADDRESS_W, 0x20);
617
618 if (md->DEP == 8)
619 off = ((yoff * md->TX)/ 4) + (xoff >> 2);
620 else if (md->DEP == 16)
621 off = ((yoff * md->TX * 2)/ 4) + (xoff >> 2);
622 else
623 off = ((yoff * md->TX * 3)/ 4) + (xoff >> 2);
624 WCrt(ba, CRT_ID_START_ADDR_LOW, ((unsigned char)off));
625 off >>= 8;
626 WCrt(ba, CRT_ID_START_ADDR_HIGH, ((unsigned char)off));
627 off >>= 8;
628 WCrt(ba, CRT_ID_EXT_START_ADDR,
629 ((RCrt(ba, CRT_ID_EXT_START_ADDR) & 0xf0) | (off & 0x0f)));
630
631
632 }
633
634 void
635 RZ3SetHWCloc (gp, x, y)
636 struct grf_softc *gp;
637 unsigned short x, y;
638 {
639 volatile unsigned char *ba = gp->g_regkva;
640 const struct MonDef *md = (struct MonDef *) gp->g_data;
641 volatile unsigned char *acm = ba + ACM_OFFSET;
642
643 if (x < xpan)
644 RZ3SetPanning(gp, x, ypan);
645
646 if (x >= (xpan+md->MW))
647 RZ3SetPanning(gp, (1 + x - md->MW) , ypan);
648
649 if (y < ypan)
650 RZ3SetPanning(gp, xpan, y);
651
652 if (y >= (ypan+md->MH))
653 RZ3SetPanning(gp, xpan, (1 + y - md->MH));
654
655 x -= xpan;
656 y -= ypan;
657
658 *(acm + (ACM_CURSOR_POSITION+0)) = x & 0xff;
659 *(acm + (ACM_CURSOR_POSITION+1)) = x >> 8;
660 *(acm + (ACM_CURSOR_POSITION+2)) = y & 0xff;
661 *(acm + (ACM_CURSOR_POSITION+3)) = y >> 8;
662 }
663
664 u_short
665 CompFQ(fq)
666 u_int fq;
667 {
668 /* yuck... this sure could need some explanation.. */
669
670 unsigned long f = fq;
671 long n2 = 3;
672 long abw = 0x7fffffff;
673 long n1 = 3;
674 unsigned long m;
675 unsigned short erg = 0;
676
677 f *= 8;
678
679 do {
680
681 if (f <= 250000000)
682 break;
683 f /= 2;
684
685 } while (n2-- > 0);
686
687 if (n2 < 0)
688 return(0);
689
690
691 do {
692 long tmp;
693
694 f = fq;
695 f >>= 3;
696 f <<= n2;
697 f >>= 7;
698
699 m = (f * n1) / (14318180/1024);
700
701 if (m > 129)
702 break;
703
704 tmp = (((m * 14318180) >> n2) / n1) - fq;
705 if (tmp < 0)
706 tmp = -tmp;
707
708 if (tmp < abw) {
709 abw = tmp;
710 erg = (((n2 << 5) | (n1-2)) << 8) | (m-2);
711 }
712
713 } while ( (++n1) <= 21);
714
715 return(erg);
716 }
717
718 int
719 rh_mondefok(mdp)
720 struct MonDef *mdp;
721 {
722 switch(mdp->DEP) {
723 case 8:
724 case 16:
725 case 24:
726 return(1);
727 case 4:
728 if (mdp->FX == 4 || (mdp->FX >= 7 && mdp->FX <= 16))
729 return(1);
730 /*FALLTHROUGH*/
731 default:
732 return(0);
733 }
734 }
735
736
737 int
738 rh_load_mon(gp, md)
739 struct grf_softc *gp;
740 struct MonDef *md;
741 {
742 struct grfinfo *gi = &gp->g_display;
743 volatile unsigned char *ba;
744 volatile unsigned char *fb;
745 short FW, clksel, HDE, VDE;
746 unsigned short *c, z;
747 const unsigned char *f;
748
749 ba = gp->g_regkva;;
750 fb = gp->g_fbkva;
751
752 /* provide all needed information in grf device-independant
753 * locations */
754 gp->g_data = (caddr_t) md;
755 gi->gd_regaddr = (caddr_t) kvtop (ba);
756 gi->gd_regsize = LM_OFFSET;
757 gi->gd_fbaddr = (caddr_t) kvtop (fb);
758 gi->gd_fbsize = MEMSIZE *1024*1024;
759 #ifdef BANKEDDEVPAGER
760 /* we're not using banks NO MORE! */
761 gi->gd_bank_size = 0;
762 #endif
763 gi->gd_colors = 1 << md->DEP;
764 gi->gd_planes = md->DEP;
765
766 if (md->DEP == 4) {
767 gi->gd_fbwidth = md->MW;
768 gi->gd_fbheight = md->MH;
769 gi->gd_fbx = 0;
770 gi->gd_fby = 0;
771 gi->gd_dwidth = md->TX * md->FX;
772 gi->gd_dheight = md->TY * md->FY;
773 gi->gd_dx = 0;
774 gi->gd_dy = 0;
775 } else {
776 gi->gd_fbwidth = md->TX;
777 gi->gd_fbheight = md->TY;
778 gi->gd_fbx = 0;
779 gi->gd_fby = 0;
780 gi->gd_dwidth = md->MW;
781 gi->gd_dheight = md->MH;
782 gi->gd_dx = 0;
783 gi->gd_dy = 0;
784 }
785
786 FW =0;
787 if (md->DEP == 4) { /* XXX some text-mode! */
788 switch (md->FX) {
789 case 4:
790 FW = 0;
791 break;
792 case 7:
793 FW = 1;
794 break;
795 case 8:
796 FW = 2;
797 break;
798 case 9:
799 FW = 3;
800 break;
801 case 10:
802 FW = 4;
803 break;
804 case 11:
805 FW = 5;
806 break;
807 case 12:
808 FW = 6;
809 break;
810 case 13:
811 FW = 7;
812 break;
813 case 14:
814 FW = 8;
815 break;
816 case 15:
817 FW = 9;
818 break;
819 case 16:
820 FW = 11;
821 break;
822 default:
823 return(0);
824 break;
825 }
826 }
827
828 if (md->DEP == 4) HDE = (md->MW+md->FX-1)/md->FX;
829 else if (md->DEP == 8) HDE = (md->MW+3)/4;
830 else if (md->DEP == 16) HDE = (md->MW*2+3)/4;
831 else if (md->DEP == 24) HDE = (md->MW*3+3)/4;
832
833 VDE = md->MH-1;
834
835 clksel = 0;
836
837 vgaw(ba, GREG_MISC_OUTPUT_W, 0xe3 | ((clksel & 3) * 0x04));
838 vgaw(ba, GREG_FEATURE_CONTROL_W, 0x00);
839
840 WSeq(ba, SEQ_ID_RESET, 0x00);
841 WSeq(ba, SEQ_ID_RESET, 0x03);
842 WSeq(ba, SEQ_ID_CLOCKING_MODE, 0x01 | ((md->FLG & MDF_CLKDIV2)/ MDF_CLKDIV2 * 8));
843 WSeq(ba, SEQ_ID_MAP_MASK, 0x0f);
844 WSeq(ba, SEQ_ID_CHAR_MAP_SELECT, 0x00);
845 WSeq(ba, SEQ_ID_MEMORY_MODE, 0x06);
846 WSeq(ba, SEQ_ID_RESET, 0x01);
847 WSeq(ba, SEQ_ID_RESET, 0x03);
848
849 WSeq(ba, SEQ_ID_EXTENDED_ENABLE, 0x05);
850 WSeq(ba, SEQ_ID_CURSOR_CONTROL, 0x00);
851 WSeq(ba, SEQ_ID_PRIM_HOST_OFF_HI, 0x00);
852 WSeq(ba, SEQ_ID_PRIM_HOST_OFF_HI, 0x00);
853 WSeq(ba, SEQ_ID_LINEAR_0, 0x4a);
854 WSeq(ba, SEQ_ID_LINEAR_1, 0x00);
855
856 WSeq(ba, SEQ_ID_SEC_HOST_OFF_HI, 0x00);
857 WSeq(ba, SEQ_ID_SEC_HOST_OFF_LO, 0x00);
858 WSeq(ba, SEQ_ID_EXTENDED_MEM_ENA, 0x3 | 0x4 | 0x10 | 0x40);
859 WSeq(ba, SEQ_ID_EXT_CLOCK_MODE, 0x10 | (FW & 0x0f));
860 WSeq(ba, SEQ_ID_EXT_VIDEO_ADDR, 0x03);
861 if (md->DEP == 4) {
862 /* 8bit pixel, no gfx byte path */
863 WSeq(ba, SEQ_ID_EXT_PIXEL_CNTL, 0x00);
864 }
865 else if (md->DEP == 8) {
866 /* 8bit pixel, gfx byte path */
867 WSeq(ba, SEQ_ID_EXT_PIXEL_CNTL, 0x01);
868 }
869 else if (md->DEP == 16) {
870 /* 16bit pixel, gfx byte path */
871 WSeq(ba, SEQ_ID_EXT_PIXEL_CNTL, 0x11);
872 }
873 else if (md->DEP == 24) {
874 /* 24bit pixel, gfx byte path */
875 WSeq(ba, SEQ_ID_EXT_PIXEL_CNTL, 0x21);
876 }
877 WSeq(ba, SEQ_ID_BUS_WIDTH_FEEDB, 0x04);
878 WSeq(ba, SEQ_ID_COLOR_EXP_WFG, 0x01);
879 WSeq(ba, SEQ_ID_COLOR_EXP_WBG, 0x00);
880 WSeq(ba, SEQ_ID_EXT_RW_CONTROL, 0x00);
881 WSeq(ba, SEQ_ID_MISC_FEATURE_SEL, (0x51 | (clksel & 8)));
882 WSeq(ba, SEQ_ID_COLOR_KEY_CNTL, 0x40);
883 WSeq(ba, SEQ_ID_COLOR_KEY_MATCH0, 0x00);
884 WSeq(ba, SEQ_ID_COLOR_KEY_MATCH1, 0x00);
885 WSeq(ba, SEQ_ID_COLOR_KEY_MATCH2, 0x00);
886 WSeq(ba, SEQ_ID_CRC_CONTROL, 0x00);
887 WSeq(ba, SEQ_ID_PERF_SELECT, 0x10);
888 WSeq(ba, SEQ_ID_ACM_APERTURE_1, 0x00);
889 WSeq(ba, SEQ_ID_ACM_APERTURE_2, 0x30);
890 WSeq(ba, SEQ_ID_ACM_APERTURE_3, 0x00);
891 WSeq(ba, SEQ_ID_MEMORY_MAP_CNTL, 0x07);
892
893 WCrt(ba, CRT_ID_END_VER_RETR, (md->VSE & 0xf) | 0x20);
894 WCrt(ba, CRT_ID_HOR_TOTAL, md->HT & 0xff);
895 WCrt(ba, CRT_ID_HOR_DISP_ENA_END, (HDE-1) & 0xff);
896 WCrt(ba, CRT_ID_START_HOR_BLANK, md->HBS & 0xff);
897 WCrt(ba, CRT_ID_END_HOR_BLANK, (md->HBE & 0x1f) | 0x80);
898
899 WCrt(ba, CRT_ID_START_HOR_RETR, md->HSS & 0xff);
900 WCrt(ba, CRT_ID_END_HOR_RETR,
901 (md->HSE & 0x1f) |
902 ((md->HBE & 0x20)/ 0x20 * 0x80));
903 WCrt(ba, CRT_ID_VER_TOTAL, (md->VT & 0xff));
904 WCrt(ba, CRT_ID_OVERFLOW,
905 ((md->VSS & 0x200) / 0x200 * 0x80) |
906 ((VDE & 0x200) / 0x200 * 0x40) |
907 ((md->VT & 0x200) / 0x200 * 0x20) |
908 0x10 |
909 ((md->VBS & 0x100) / 0x100 * 8) |
910 ((md->VSS & 0x100) / 0x100 * 4) |
911 ((VDE & 0x100) / 0x100 * 2) |
912 ((md->VT & 0x100) / 0x100));
913 WCrt(ba, CRT_ID_PRESET_ROW_SCAN, 0x00);
914
915 if (md->DEP == 4) {
916 WCrt(ba, CRT_ID_MAX_SCAN_LINE,
917 ((md->FLG & MDF_DBL)/ MDF_DBL * 0x80) |
918 0x40 |
919 ((md->VBS & 0x200)/0x200*0x20) |
920 ((md->FY-1) & 0x1f));
921 } else {
922 WCrt(ba, CRT_ID_MAX_SCAN_LINE,
923 ((md->FLG & MDF_DBL)/ MDF_DBL * 0x80) |
924 0x40 |
925 ((md->VBS & 0x200)/0x200*0x20) |
926 (0 & 0x1f));
927 }
928
929 /* I prefer "_" cursor to "block" cursor.. */
930 #if 1
931 WCrt(ba, CRT_ID_CURSOR_START, (md->FY & 0x1f) - 2);
932 WCrt(ba, CRT_ID_CURSOR_END, (md->FY & 0x1f) - 1);
933 #else
934 WCrt(ba, CRT_ID_CURSOR_START, 0x00);
935 WCrt(ba, CRT_ID_CURSOR_END, md->FY & 0x1f);
936 #endif
937
938 WCrt(ba, CRT_ID_START_ADDR_HIGH, 0x00);
939 WCrt(ba, CRT_ID_START_ADDR_LOW, 0x00);
940
941 WCrt(ba, CRT_ID_CURSOR_LOC_HIGH, 0x00);
942 WCrt(ba, CRT_ID_CURSOR_LOC_LOW, 0x00);
943
944 WCrt(ba, CRT_ID_START_VER_RETR, md->VSS & 0xff);
945 WCrt(ba, CRT_ID_END_VER_RETR, (md->VSE & 0xf) | 0x80 | 0x20);
946 WCrt(ba, CRT_ID_VER_DISP_ENA_END, VDE & 0xff);
947
948 if (md->DEP == 4) {
949 WCrt(ba, CRT_ID_OFFSET, (HDE / 2) & 0xff );
950 }
951 /* all gfx-modes are in byte-mode, means values are multiplied by 8 */
952 else if (md->DEP == 8) {
953 WCrt(ba, CRT_ID_OFFSET, (md->TX / 8) & 0xff );
954 } else if (md->DEP == 16) {
955 WCrt(ba, CRT_ID_OFFSET, (md->TX / 4) & 0xff );
956 } else {
957 WCrt(ba, CRT_ID_OFFSET, (md->TX * 3 / 8) & 0xff );
958 }
959
960 WCrt(ba, CRT_ID_UNDERLINE_LOC, (md->FY-1) & 0x1f);
961 WCrt(ba, CRT_ID_START_VER_BLANK, md->VBS & 0xff);
962 WCrt(ba, CRT_ID_END_VER_BLANK, md->VBE & 0xff);
963 WCrt(ba, CRT_ID_MODE_CONTROL, 0xe3);
964 WCrt(ba, CRT_ID_LINE_COMPARE, 0xff);
965
966 WCrt(ba, CRT_ID_EXT_HOR_TIMING1,
967 0 | 0x20 |
968 ((md->FLG & MDF_LACE) / MDF_LACE * 0x10) |
969 ((md->HT & 0x100) / 0x100) |
970 (((HDE-1) & 0x100) / 0x100 * 2) |
971 ((md->HBS & 0x100) / 0x100 * 4) |
972 ((md->HSS & 0x100) / 0x100 * 8));
973
974 if (md->DEP == 4) {
975 WCrt(ba, CRT_ID_EXT_START_ADDR, (((HDE / 2) & 0x100)/0x100 * 16));
976 }
977 else if (md->DEP == 8) {
978 WCrt(ba, CRT_ID_EXT_START_ADDR, (((md->TX / 8) & 0x100)/0x100 * 16));
979 } else if (md->DEP == 16) {
980 WCrt(ba, CRT_ID_EXT_START_ADDR, (((md->TX / 4) & 0x100)/0x100 * 16));
981 } else {
982 WCrt(ba, CRT_ID_EXT_START_ADDR, (((md->TX * 3 / 8) & 0x100)/0x100 * 16));
983 }
984
985 WCrt(ba, CRT_ID_EXT_HOR_TIMING2,
986 ((md->HT & 0x200)/ 0x200) |
987 (((HDE-1) & 0x200)/ 0x200 * 2 ) |
988 ((md->HBS & 0x200)/ 0x200 * 4 ) |
989 ((md->HSS & 0x200)/ 0x200 * 8 ) |
990 ((md->HBE & 0xc0) / 0x40 * 16 ) |
991 ((md->HSE & 0x60) / 0x20 * 64));
992
993 WCrt(ba, CRT_ID_EXT_VER_TIMING,
994 ((md->VSE & 0x10) / 0x10 * 0x80 ) |
995 ((md->VBE & 0x300)/ 0x100 * 0x20 ) |
996 0x10 |
997 ((md->VSS & 0x400)/ 0x400 * 8 ) |
998 ((md->VBS & 0x400)/ 0x400 * 4 ) |
999 ((VDE & 0x400)/ 0x400 * 2 ) |
1000 ((md->VT & 0x400)/ 0x400));
1001 WCrt(ba, CRT_ID_MONITOR_POWER, 0x00);
1002
1003 {
1004 unsigned short tmp = CompFQ(md->FQ);
1005 WPLL(ba, 2 , tmp);
1006 tmp = CompFQ(rh_memclk);
1007 WPLL(ba,10 , tmp);
1008 WPLL(ba,14 , 0x22);
1009 }
1010
1011 WGfx(ba, GCT_ID_SET_RESET, 0x00);
1012 WGfx(ba, GCT_ID_ENABLE_SET_RESET, 0x00);
1013 WGfx(ba, GCT_ID_COLOR_COMPARE, 0x00);
1014 WGfx(ba, GCT_ID_DATA_ROTATE, 0x00);
1015 WGfx(ba, GCT_ID_READ_MAP_SELECT, 0x00);
1016 WGfx(ba, GCT_ID_GRAPHICS_MODE, 0x00);
1017 if (md->DEP == 4)
1018 WGfx(ba, GCT_ID_MISC, 0x04);
1019 else
1020 WGfx(ba, GCT_ID_MISC, 0x05);
1021 WGfx(ba, GCT_ID_COLOR_XCARE, 0x0f);
1022 WGfx(ba, GCT_ID_BITMASK, 0xff);
1023
1024 vgar(ba, ACT_ADDRESS_RESET);
1025 WAttr(ba, ACT_ID_PALETTE0 , 0x00);
1026 WAttr(ba, ACT_ID_PALETTE1 , 0x01);
1027 WAttr(ba, ACT_ID_PALETTE2 , 0x02);
1028 WAttr(ba, ACT_ID_PALETTE3 , 0x03);
1029 WAttr(ba, ACT_ID_PALETTE4 , 0x04);
1030 WAttr(ba, ACT_ID_PALETTE5 , 0x05);
1031 WAttr(ba, ACT_ID_PALETTE6 , 0x06);
1032 WAttr(ba, ACT_ID_PALETTE7 , 0x07);
1033 WAttr(ba, ACT_ID_PALETTE8 , 0x08);
1034 WAttr(ba, ACT_ID_PALETTE9 , 0x09);
1035 WAttr(ba, ACT_ID_PALETTE10, 0x0a);
1036 WAttr(ba, ACT_ID_PALETTE11, 0x0b);
1037 WAttr(ba, ACT_ID_PALETTE12, 0x0c);
1038 WAttr(ba, ACT_ID_PALETTE13, 0x0d);
1039 WAttr(ba, ACT_ID_PALETTE14, 0x0e);
1040 WAttr(ba, ACT_ID_PALETTE15, 0x0f);
1041
1042 vgar(ba, ACT_ADDRESS_RESET);
1043 if (md->DEP == 4)
1044 WAttr(ba, ACT_ID_ATTR_MODE_CNTL, 0x08);
1045 else
1046 WAttr(ba, ACT_ID_ATTR_MODE_CNTL, 0x09);
1047
1048 WAttr(ba, ACT_ID_OVERSCAN_COLOR, 0x00);
1049 WAttr(ba, ACT_ID_COLOR_PLANE_ENA, 0x0f);
1050 WAttr(ba, ACT_ID_HOR_PEL_PANNING, 0x00);
1051 WAttr(ba, ACT_ID_COLOR_SELECT, 0x00);
1052
1053 vgar(ba, ACT_ADDRESS_RESET);
1054 vgaw(ba, ACT_ADDRESS_W, 0x20);
1055
1056 vgaw(ba, VDAC_MASK, 0xff);
1057 /* probably some PLL timing stuff here. The value
1058 for 24bit was found by trial&error :-) */
1059 if (md->DEP < 16) {
1060 vgaw(ba, 0x83c6, ((0 & 7) << 5) );
1061 }
1062 else if (md->DEP == 16) {
1063 /* well... */
1064 vgaw(ba, 0x83c6, ((3 & 7) << 5) );
1065 }
1066 else if (md->DEP == 24) {
1067 vgaw(ba, 0x83c6, 0xe0);
1068 }
1069 vgaw(ba, VDAC_ADDRESS_W, 0x00);
1070
1071 if (md->DEP < 16) {
1072 short x = 256-17;
1073 unsigned char cl = 16;
1074 RZ3LoadPalette(gp, md->PAL, 0, 16);
1075 do {
1076 vgaw(ba, VDAC_DATA, (cl >> 2));
1077 vgaw(ba, VDAC_DATA, (cl >> 2));
1078 vgaw(ba, VDAC_DATA, (cl >> 2));
1079 cl++;
1080 } while (x-- > 0);
1081 }
1082
1083 if (md->DEP == 4) {
1084 {
1085 struct grf_bitblt bb = {
1086 GRFBBOPset,
1087 0, 0,
1088 0, 0,
1089 md->TX*4, 2*md->TY,
1090 EMPTY_ALPHA
1091 };
1092 RZ3BitBlit(gp, &bb);
1093 }
1094
1095 c = (unsigned short *)(ba + LM_OFFSET);
1096 c += 2 * md->FLo*32;
1097 c += 1;
1098 f = md->FData;
1099 for (z = md->FLo; z <= md->FHi; z++) {
1100 short y = md->FY-1;
1101 if (md->FX > 8){
1102 do {
1103 *c = *((const unsigned short *)f);
1104 c += 2;
1105 f += 2;
1106 } while (y-- > 0);
1107 } else {
1108 do {
1109 *c = (*f++) << 8;
1110 c += 2;
1111 } while (y-- > 0);
1112 }
1113
1114 c += 2 * (32-md->FY);
1115 }
1116 {
1117 unsigned long * pt = (unsigned long *) (ba + LM_OFFSET + PAT_MEM_OFF);
1118 unsigned long tmp = 0xffff0000;
1119 *pt++ = tmp;
1120 *pt = tmp;
1121 }
1122
1123 WSeq(ba, SEQ_ID_MAP_MASK, 3);
1124
1125 c = (unsigned short *)(ba + LM_OFFSET);
1126 c += (md->TX-6)*2;
1127 {
1128 /* it's show-time :-) */
1129 static unsigned short init_msg[6] = {
1130 0x520a, 0x450b, 0x540c, 0x490d, 0x4e0e, 0x410f
1131 };
1132 unsigned short * m = init_msg;
1133 short x = 5;
1134 do {
1135 *c = *m++;
1136 c += 2;
1137 } while (x-- > 0);
1138 }
1139
1140 return(1);
1141 } else if (md->DEP == 8) {
1142 struct grf_bitblt bb = {
1143 GRFBBOPset,
1144 0, 0,
1145 0, 0,
1146 md->TX, md->TY,
1147 0x0000
1148 };
1149 WSeq(ba, SEQ_ID_MAP_MASK, 0x0f);
1150
1151 RZ3BitBlit(gp, &bb);
1152
1153 xpan = 0;
1154 ypan = 0;
1155
1156 return(1);
1157 } else if (md->DEP == 16) {
1158 struct grf_bitblt bb = {
1159 GRFBBOPset,
1160 0, 0,
1161 0, 0,
1162 md->TX, md->TY,
1163 0x0000
1164 };
1165 WSeq(ba, SEQ_ID_MAP_MASK, 0x0f);
1166
1167 RZ3BitBlit16(gp, &bb);
1168
1169 xpan = 0;
1170 ypan = 0;
1171
1172 return(1);
1173 } else if (md->DEP == 24) {
1174 struct grf_bitblt bb = {
1175 GRFBBOPset,
1176 0, 0,
1177 0, 0,
1178 md->TX, md->TY,
1179 0x0000
1180 };
1181 WSeq(ba, SEQ_ID_MAP_MASK, 0x0f );
1182
1183 RZ3BitBlit24(gp, &bb );
1184
1185 xpan = 0;
1186 ypan = 0;
1187
1188 return 1;
1189 } else
1190 return(0);
1191 }
1192
1193 /* standard-palette definition */
1194
1195 unsigned char RZ3StdPalette[16*3] = {
1196 /* R G B */
1197 0, 0, 0,
1198 192,192,192,
1199 128, 0, 0,
1200 0,128, 0,
1201 0, 0,128,
1202 128,128, 0,
1203 0,128,128,
1204 128, 0,128,
1205 64, 64, 64, /* the higher 8 colors have more intensity for */
1206 255,255,255, /* compatibility with standard attributes */
1207 255, 0, 0,
1208 0,255, 0,
1209 0, 0,255,
1210 255,255, 0,
1211 0,255,255,
1212 255, 0,255
1213 };
1214
1215 /*
1216 * The following structures are examples for monitor-definitions. To make one
1217 * of your own, first use "DefineMonitor" and create the 8-bit or 16-bit
1218 * monitor-mode of your dreams. Then save it, and make a structure from the
1219 * values provided in the file DefineMonitor stored - the labels in the comment
1220 * above the structure definition show where to put what value.
1221 *
1222 * If you want to use your definition for the text-mode, you'll need to adapt
1223 * your 8-bit monitor-definition to the font you want to use. Be FX the width of
1224 * the font, then the following modifications have to be applied to your values:
1225 *
1226 * HBS = (HBS * 4) / FX
1227 * HSS = (HSS * 4) / FX
1228 * HSE = (HSE * 4) / FX
1229 * HBE = (HBE * 4) / FX
1230 * HT = (HT * 4) / FX
1231 *
1232 * Make sure your maximum width (MW) and height (MH) are even multiples of
1233 * the fonts' width and height.
1234 *
1235 * You may use definitons created by the old DefineMonitor, but you'll get
1236 * better results with the new DefineMonitor supplied along with the Retin Z3.
1237 */
1238
1239 /*
1240 * FQ FLG MW MH HBS HSS HSE HBE HT VBS VSS VSE VBE VT
1241 * Depth, PAL, TX, TY, XY,FontX, FontY, FontData, FLo, Fhi
1242 */
1243 #ifdef KFONT_8X11
1244 #define KERNEL_FONT kernel_font_8x11
1245 #define FY 11
1246 #define FX 8
1247 #else
1248 #define KERNEL_FONT kernel_font_8x8
1249 #define FY 8
1250 #define FX 8
1251 #endif
1252
1253
1254 static struct MonDef monitor_defs[] = {
1255 /* Text-mode definitions */
1256
1257 /* horizontal 31.5 kHz */
1258 { 50000000, 28, 640, 512, 81, 86, 93, 98, 95, 513, 513, 521, 535, 535,
1259 4, RZ3StdPalette, 80, 64, 5120, FX, FY, KERNEL_FONT, 32, 255},
1260
1261 /* horizontal 38kHz */
1262 { 75000000, 28, 768, 600, 97, 99,107,120,117, 601, 615, 625, 638, 638,
1263 4, RZ3StdPalette, 96, 75, 7200, FX, FY, KERNEL_FONT, 32, 255},
1264
1265 /* horizontal 64kHz */
1266 { 50000000, 24, 768, 600, 97,104,112,122,119, 601, 606, 616, 628, 628,
1267 4, RZ3StdPalette, 96, 75, 7200, FX, FY, KERNEL_FONT, 32, 255},
1268
1269 /* 8-bit gfx-mode definitions */
1270
1271 /* IMPORTANT: the "logical" screen size can be up to 2048x2048 pixels,
1272 independent from the "physical" screen size. If your code does NOT
1273 support panning, please adjust the "logical" screen sizes below to
1274 match the physical ones
1275 */
1276
1277 /* 640 x 480, 8 Bit, 31862 Hz, 63 Hz */
1278 { 26000000, 0, 640, 480, 161,175,188,200,199, 481, 483, 491, 502, 502,
1279 8, RZ3StdPalette,1280,1024, 5120, FX, FY, KERNEL_FONT, 32, 255},
1280 /* This is the logical ^ ^ screen size */
1281
1282 /* 640 x 480, 8 Bit, 38366 Hz, 76 Hz */
1283 { 31000000, 0, 640, 480, 161,169,182,198,197, 481, 482, 490, 502, 502,
1284 8, RZ3StdPalette,1280,1024, 5120, FX, FY, KERNEL_FONT, 32, 255},
1285
1286 /* 800 x 600, 8 Bit, 38537 Hz, 61 Hz */
1287 { 39000000, 0, 800, 600, 201,211,227,249,248, 601, 603, 613, 628, 628,
1288 8, RZ3StdPalette,1280,1024, 5120, FX, FY, KERNEL_FONT, 32, 255},
1289
1290 /* 1024 x 768, 8 Bit, 63862 Hz, 79 Hz */
1291 { 82000000, 0, 1024, 768, 257,257,277,317,316, 769, 771, 784, 804, 804,
1292 8, RZ3StdPalette,1280,1024, 5120, FX, FY, KERNEL_FONT, 32, 255},
1293
1294 /* 1120 x 896, 8 Bit, 64000 Hz, 69 Hz */
1295 { 97000000, 0, 1120, 896, 281,283,306,369,368, 897, 898, 913, 938, 938,
1296 8, RZ3StdPalette,1280,1024, 5120, FX, FY, KERNEL_FONT, 32, 255},
1297
1298 /* 1152 x 910, 8 Bit, 76177 Hz, 79 Hz */
1299 {110000000, 0, 1152, 910, 289,310,333,357,356, 911, 923, 938, 953, 953,
1300 8, RZ3StdPalette,1280,1024, 5120, FX, FY, KERNEL_FONT, 32, 255},
1301
1302 /* 1184 x 848, 8 Bit, 73529 Hz, 82 Hz */
1303 {110000000, 0, 1184, 848, 297,319,342,370,369, 849, 852, 866, 888, 888,
1304 8, RZ3StdPalette,1280,1024, 5120, FX, FY, KERNEL_FONT, 32, 255},
1305
1306 /* 1280 x 1024, 8 Bit, 64516 Hz, 60 Hz */
1307 {104000000, 0, 1280,1024, 321,323,348,399,398,1025,1026,1043,1073,1073,
1308 8, RZ3StdPalette,1280,1024, 5120, FX, FY, KERNEL_FONT, 32, 255},
1309
1310 /* WARNING: THE FOLLOWING MONITOR MODE EXCEEDS THE 110-MHz LIMIT THE PROCESSOR
1311 HAS BEEN SPECIFIED FOR. USE AT YOUR OWN RISK (AND THINK ABOUT
1312 MOUNTING SOME COOLING DEVICE AT THE PROCESSOR AND RAMDAC)! */
1313 /* 1280 x 1024, 8 Bit, 75436 Hz, 70 Hz */
1314 {121000000, 0, 1280,1024, 321,322,347,397,396,1025,1026,1043,1073,1073,
1315 8, RZ3StdPalette,1280,1024, 5120, FX, FY, KERNEL_FONT, 32, 255},
1316
1317
1318 /* 16-bit gfx-mode definitions */
1319
1320 /* 640 x 480, 16 Bit, 31795 Hz, 63 Hz */
1321 { 51000000, 0, 640, 480, 321,344,369,397,396, 481, 482, 490, 502, 502,
1322 16, 0,1280, 1024, 7200, FX, FY, KERNEL_FONT, 32, 255},
1323
1324 /* 800 x 600, 16 Bit, 38500 Hz, 61 Hz */
1325 { 77000000, 0, 800, 600, 401,418,449,496,495, 601, 602, 612, 628, 628,
1326 16, 0,1280, 1024, 7200, FX, FY, KERNEL_FONT, 32, 255},
1327
1328 /* 1024 x 768, 16 Bit, 42768 Hz, 53 Hz */
1329 {110000000, 0, 1024, 768, 513,514,554,639,638, 769, 770, 783, 804, 804,
1330 16, 0,1280, 1024, 7200, FX, FY, KERNEL_FONT, 32, 255},
1331
1332 /* 864 x 648, 16 Bit, 50369 Hz, 74 Hz */
1333 {109000000, 0, 864, 648, 433,434,468,537,536, 649, 650, 661, 678, 678,
1334 16, 0,1280, 1024, 7200, FX, FY, KERNEL_FONT, 32, 255},
1335
1336 /* WARNING: THE FOLLOWING MONITOR MODE EXCEEDS THE 110-MHz LIMIT THE PROCESSOR
1337 HAS BEEN SPECIFIED FOR. USE AT YOUR OWN RISK (AND THINK ABOUT
1338 MOUNTING SOME COOLING DEVICE AT THE PROCESSOR AND RAMDAC)! */
1339 /* 1024 x 768, 16 Bit, 48437 Hz, 60 Hz */
1340 {124000000, 0, 1024, 768, 513,537,577,636,635, 769, 770, 783, 804, 804,
1341 16, 0,1280, 1024, 7200, FX, FY, KERNEL_FONT, 32, 255},
1342
1343
1344 /* 24-bit gfx-mode definitions */
1345
1346 /* 320 x 200, 24 Bit, 35060 Hz, 83 Hz d */
1347 { 46000000, 1, 320, 200, 241,268,287,324,323, 401, 405, 412, 418, 418,
1348 24, 0,1280, 1024, 7200, FX, FY, KERNEL_FONT, 32, 255},
1349
1350 /* 640 x 400, 24 Bit, 31404 Hz, 75 Hz */
1351 { 76000000, 0, 640, 400, 481,514,552,601,600, 401, 402, 409, 418, 418,
1352 24, 0,1280, 1024, 7200, FX, FY, KERNEL_FONT, 32, 255},
1353
1354 /* 724 x 482, 24 Bit, 36969 Hz, 73 Hz */
1355 {101000000, 0, 724, 482, 544,576,619,682,678, 483, 487, 495, 495, 504,
1356 24, 0,1280, 1024, 7200, FX, FY, KERNEL_FONT, 32, 255},
1357
1358 /* 800 x 600, 24 Bit, 37826 Hz, 60 Hz */
1359 {110000000, 0, 800, 600, 601,602,647,723,722, 601, 602, 612, 628, 628,
1360 24, 0,1280, 1024, 7200, FX, FY, KERNEL_FONT, 32, 255},
1361
1362 /* 800 x 600, 24 Bit, 43824 Hz, 69 Hz */
1363 {132000000, 0, 800, 600, 601,641,688,749,748, 601, 611, 621, 628, 628,
1364 24, 0,1280, 1024, 7200, FX, FY, KERNEL_FONT, 32, 255},
1365
1366 /*1024 x 768, 24 Bit, 32051 Hz, 79 Hz i */
1367 {110000000, 2, 1024, 768, 769,770,824,854,853, 385, 386, 392, 401, 401,
1368 24, 0,1280, 1024, 7200, FX, FY, KERNEL_FONT, 32, 255},
1369 };
1370 #undef KERNEL_FONT
1371 #undef FX
1372 #undef FY
1373
1374 static const char *monitor_descr[] = {
1375 #ifdef KFONT_8X11
1376 "80x46 (640x506) 31.5kHz",
1377 "96x54 (768x594) 38kHz",
1378 "96x54 (768x594) 64kHz",
1379 #else
1380 "80x64 (640x512) 31.5kHz",
1381 "96x75 (768x600) 38kHz",
1382 "96x75 (768x600) 64kHz",
1383 #endif
1384
1385 "GFX-8 (640x480) 31.5kHz",
1386 "GFX-8 (640x480) 38kHz",
1387 "GFX-8 (800x600) 38.5kHz",
1388 "GFX-8 (1024x768) 64kHz",
1389 "GFX-8 (1120x896) 64kHz",
1390 "GFX-8 (1152x910) 76kHz",
1391 "GFX-8 (1182x848) 73kHz",
1392 "GFX-8 (1280x1024) 64.5kHz",
1393 "GFX-8 (1280x1024) 75.5kHz ***EXCEEDS CHIP LIMIT!!!***",
1394
1395 "GFX-16 (640x480) 31.8kHz",
1396 "GFX-16 (800x600) 38.5kHz",
1397 "GFX-16 (1024x768) 42.8kHz",
1398 "GFX-16 (864x648) 50kHz",
1399 "GFX-16 (1024x768) 48.5kHz ***EXCEEDS CHIP LIMIT!!!***",
1400
1401 "GFX-24 (320x200 d) 35kHz",
1402 "GFX-24 (640x400) 31.4kHz",
1403 "GFX-24 (724x482) 37kHz",
1404 "GFX-24 (800x600) 38kHz",
1405 "GFX-24 (800x600) 44kHz ***EXCEEDS CHIP LIMIT!!!***",
1406 "GFX-24 (1024x768) 32kHz-i",
1407 };
1408
1409 int rh_mon_max = sizeof (monitor_defs)/sizeof (monitor_defs[0]);
1410
1411 /* patchable */
1412 int rh_default_mon = 0;
1413 int rh_default_gfx = 4;
1414
1415 static struct MonDef *current_mon;
1416
1417 int rh_mode __P((struct grf_softc *, int, void *, int, int));
1418 void grfrhattach __P((struct device *, struct device *, void *));
1419 int grfrhprint __P((void *, char *));
1420 int grfrhmatch __P((struct device *, struct cfdata *, void *));
1421
1422 struct cfdriver grfrhcd = {
1423 NULL, "grfrh", (cfmatch_t)grfrhmatch, grfrhattach,
1424 DV_DULL, sizeof(struct grf_softc), NULL, 0
1425 };
1426
1427 static struct cfdata *cfdata;
1428
1429 int
1430 grfrhmatch(pdp, cfp, auxp)
1431 struct device *pdp;
1432 struct cfdata *cfp;
1433 void *auxp;
1434 {
1435 #ifdef RETINACONSOLE
1436 static int rhconunit = -1;
1437 #endif
1438 struct zbus_args *zap;
1439
1440 zap = auxp;
1441
1442 if (amiga_realconfig == 0)
1443 #ifdef RETINACONSOLE
1444 if (rhconunit != -1)
1445 #endif
1446 return(0);
1447 if (zap->manid != 18260 ||
1448 (zap->prodid != 16) && (zap->prodid != 19))
1449 return(0);
1450 #ifdef RETINACONSOLE
1451 if (amiga_realconfig == 0 || rhconunit != cfp->cf_unit) {
1452 #endif
1453 if ((unsigned)rh_default_mon >= rh_mon_max ||
1454 monitor_defs[rh_default_mon].DEP == 8)
1455 rh_default_mon = 0;
1456 current_mon = monitor_defs + rh_default_mon;
1457 if (rh_mondefok(current_mon) == 0)
1458 return(0);
1459 #ifdef RETINACONSOLE
1460 if (amiga_realconfig == 0) {
1461 rhconunit = cfp->cf_unit;
1462 cfdata = cfp;
1463 }
1464 }
1465 #endif
1466 return(1);
1467 }
1468
1469 void
1470 grfrhattach(pdp, dp, auxp)
1471 struct device *pdp, *dp;
1472 void *auxp;
1473 {
1474 static struct grf_softc congrf;
1475 static int coninited;
1476 struct zbus_args *zap;
1477 struct grf_softc *gp;
1478
1479 zap = auxp;
1480
1481 if (dp == NULL)
1482 gp = &congrf;
1483 else
1484 gp = (struct grf_softc *)dp;
1485 if (dp != NULL && congrf.g_regkva != 0) {
1486 /*
1487 * inited earlier, just copy (not device struct)
1488 */
1489 bcopy(&congrf.g_display, &gp->g_display,
1490 (char *)&gp[1] - (char *)&gp->g_display);
1491 } else {
1492 gp->g_regkva = (volatile caddr_t)zap->va;
1493 gp->g_fbkva = (volatile caddr_t)zap->va + LM_OFFSET;
1494 gp->g_unit = GRF_RETINAIII_UNIT;
1495 gp->g_mode = rh_mode;
1496 gp->g_conpri = grfrh_cnprobe();
1497 gp->g_flags = GF_ALIVE;
1498 grfrh_iteinit(gp);
1499 (void)rh_load_mon(gp, current_mon);
1500 }
1501 if (dp != NULL)
1502 printf("\n");
1503 /*
1504 * attach grf
1505 */
1506 amiga_config_found(cfdata, &gp->g_device, gp, grfrhprint);
1507 }
1508
1509 int
1510 grfrhprint(auxp, pnp)
1511 void *auxp;
1512 char *pnp;
1513 {
1514 if (pnp)
1515 printf("ite at %s", pnp);
1516 return(UNCONF);
1517 }
1518
1519 int
1520 rh_getvmode(gp, vm)
1521 struct grf_softc *gp;
1522 struct grfvideo_mode *vm;
1523 {
1524 struct MonDef *md;
1525
1526 if (vm->mode_num && vm->mode_num > rh_mon_max)
1527 return(EINVAL);
1528
1529 if (! vm->mode_num)
1530 vm->mode_num = (current_mon - monitor_defs) + 1;
1531
1532 md = monitor_defs + (vm->mode_num - 1);
1533 strncpy (vm->mode_descr, monitor_descr + (vm->mode_num - 1),
1534 sizeof (vm->mode_descr));
1535 vm->pixel_clock = md->FQ;
1536 vm->disp_width = (md->DEP == 4) ? md->MW : md->TX;
1537 vm->disp_height = (md->DEP == 4) ? md->MH : md->TY;
1538 vm->depth = md->DEP;
1539
1540 /*
1541 * From observation of the monitor definition table above, I guess
1542 * that the horizontal timings are in units of longwords. Hence, I
1543 * get the pixels by multiplication with 32 and division by the depth.
1544 * The text modes, apparently marked by depth == 4, are even more
1545 * wierd. According to a comment above, they are computed from a
1546 * depth==8 mode thats for us: * 32 / 8) by applying another factor
1547 * of 4 / font width.
1548 * Reverse applying the latter formula most of the constants cancel
1549 * themselves and we are left with a nice (* font width).
1550 * That is, internal timings are in units of longwords for graphics
1551 * modes, or in units of characters widths for text modes.
1552 * We better don't WRITE modes until this has been real live checked.
1553 * - Ignatios Souvatzis
1554 */
1555
1556 if (md->DEP == 4) {
1557 vm->hblank_start = md->HBS * 32 / md->DEP;
1558 vm->hblank_stop = md->HBE * 32 / md->DEP;
1559 vm->hsync_start = md->HSS * 32 / md->DEP;
1560 vm->hsync_stop = md->HSE * 32 / md->DEP;
1561 vm->htotal = md->HT * 32 / md->DEP;
1562 } else {
1563 vm->hblank_start = md->HBS * md->FX;
1564 vm->hblank_stop = md->HBE * md->FX;
1565 vm->hsync_start = md->HSS * md->FX;
1566 vm->hsync_stop = md->HSE * md->FX;
1567 vm->htotal = md->HT * md->FX;
1568 }
1569
1570 vm->vblank_start = md->VBS;
1571 vm->vblank_stop = md->VBE;
1572 vm->vsync_start = md->VSS;
1573 vm->vsync_stop = md->VSE;
1574 vm->vtotal = md->VT;
1575
1576 return(0);
1577 }
1578
1579
1580 int
1581 rh_setvmode(gp, mode, type)
1582 struct grf_softc *gp;
1583 unsigned mode;
1584 enum mode_type type;
1585 {
1586 struct MonDef *md;
1587 int error;
1588
1589 if (!mode || mode > rh_mon_max)
1590 return(EINVAL);
1591
1592 if ((type == MT_TXTONLY && monitor_defs[mode-1].DEP != 4)
1593 || (type == MT_GFXONLY && monitor_defs[mode-1].DEP == 4))
1594 return(EINVAL);
1595
1596 current_mon = monitor_defs + (mode - 1);
1597
1598 error = rh_load_mon (gp, current_mon) ? 0 : EINVAL;
1599
1600 return(error);
1601 }
1602
1603
1604 /*
1605 * Change the mode of the display.
1606 * Return a UNIX error number or 0 for success.
1607 */
1608 rh_mode(gp, cmd, arg, a2, a3)
1609 register struct grf_softc *gp;
1610 int cmd;
1611 void *arg;
1612 int a2, a3;
1613 {
1614 switch (cmd) {
1615 case GM_GRFON:
1616 rh_setvmode (gp, rh_default_gfx + 1, MT_GFXONLY);
1617 return(0);
1618
1619 case GM_GRFOFF:
1620 rh_setvmode (gp, rh_default_mon + 1, MT_TXTONLY);
1621 return(0);
1622
1623 case GM_GRFCONFIG:
1624 return(0);
1625
1626 case GM_GRFGETVMODE:
1627 return(rh_getvmode (gp, (struct grfvideo_mode *) arg));
1628
1629 case GM_GRFSETVMODE:
1630 return(rh_setvmode (gp, *(unsigned *) arg,
1631 (gp->g_flags & GF_GRFON) ? MT_GFXONLY : MT_TXTONLY));
1632
1633 case GM_GRFGETNUMVM:
1634 *(int *)arg = rh_mon_max;
1635 return(0);
1636
1637 #ifdef BANKEDDEVPAGER
1638 case GM_GRFGETBANK:
1639 case GM_GRFGETCURBANK:
1640 case GM_GRFSETBANK:
1641 return(EINVAL);
1642 #endif
1643 case GM_GRFIOCTL:
1644 return(rh_ioctl (gp, (u_long) arg, (caddr_t) a2));
1645
1646 default:
1647 break;
1648 }
1649
1650 return(EINVAL);
1651 }
1652
1653 int
1654 rh_ioctl (gp, cmd, data)
1655 register struct grf_softc *gp;
1656 u_long cmd;
1657 void *data;
1658 {
1659 switch (cmd) {
1660 case GRFIOCGSPRITEPOS:
1661 return(rh_getspritepos (gp, (struct grf_position *) data));
1662
1663 case GRFIOCSSPRITEPOS:
1664 return(rh_setspritepos (gp, (struct grf_position *) data));
1665
1666 case GRFIOCSSPRITEINF:
1667 return(rh_setspriteinfo (gp, (struct grf_spriteinfo *) data));
1668
1669 case GRFIOCGSPRITEINF:
1670 return(rh_getspriteinfo (gp, (struct grf_spriteinfo *) data));
1671
1672 case GRFIOCGSPRITEMAX:
1673 return(rh_getspritemax (gp, (struct grf_position *) data));
1674
1675 case GRFIOCGETCMAP:
1676 return(rh_getcmap (gp, (struct grf_colormap *) data));
1677
1678 case GRFIOCPUTCMAP:
1679 return(rh_putcmap (gp, (struct grf_colormap *) data));
1680
1681 case GRFIOCBITBLT:
1682 return(rh_bitblt (gp, (struct grf_bitblt *) data));
1683 }
1684
1685 return(EINVAL);
1686 }
1687
1688
1689 int
1690 rh_getcmap (gfp, cmap)
1691 struct grf_softc *gfp;
1692 struct grf_colormap *cmap;
1693 {
1694 volatile unsigned char *ba;
1695 u_char red[256], green[256], blue[256], *rp, *gp, *bp;
1696 short x;
1697 int error;
1698
1699 if (cmap->count == 0 || cmap->index >= 256)
1700 return 0;
1701
1702 if (cmap->index + cmap->count > 256)
1703 cmap->count = 256 - cmap->index;
1704
1705 ba = gfp->g_regkva;
1706 /* first read colors out of the chip, then copyout to userspace */
1707 vgaw (ba, VDAC_ADDRESS_W, cmap->index);
1708 x = cmap->count - 1;
1709 rp = red + cmap->index;
1710 gp = green + cmap->index;
1711 bp = blue + cmap->index;
1712 do {
1713 *rp++ = vgar (ba, VDAC_DATA) << 2;
1714 *gp++ = vgar (ba, VDAC_DATA) << 2;
1715 *bp++ = vgar (ba, VDAC_DATA) << 2;
1716 } while (x-- > 0);
1717
1718 if (!(error = copyout (red + cmap->index, cmap->red, cmap->count))
1719 && !(error = copyout (green + cmap->index, cmap->green, cmap->count))
1720 && !(error = copyout (blue + cmap->index, cmap->blue, cmap->count)))
1721 return(0);
1722
1723 return(error);
1724 }
1725
1726 int
1727 rh_putcmap (gfp, cmap)
1728 struct grf_softc *gfp;
1729 struct grf_colormap *cmap;
1730 {
1731 volatile unsigned char *ba;
1732 u_char red[256], green[256], blue[256], *rp, *gp, *bp;
1733 short x;
1734 int error;
1735
1736 if (cmap->count == 0 || cmap->index >= 256)
1737 return(0);
1738
1739 if (cmap->index + cmap->count > 256)
1740 cmap->count = 256 - cmap->index;
1741
1742 /* first copy the colors into kernelspace */
1743 if (!(error = copyin (cmap->red, red + cmap->index, cmap->count))
1744 && !(error = copyin (cmap->green, green + cmap->index, cmap->count))
1745 && !(error = copyin (cmap->blue, blue + cmap->index, cmap->count))) {
1746 /* argl.. LoadPalette wants a different format, so do it like with
1747 * Retina2.. */
1748 ba = gfp->g_regkva;
1749 vgaw (ba, VDAC_ADDRESS_W, cmap->index);
1750 x = cmap->count - 1;
1751 rp = red + cmap->index;
1752 gp = green + cmap->index;
1753 bp = blue + cmap->index;
1754 do {
1755 vgaw (ba, VDAC_DATA, *rp++ >> 2);
1756 vgaw (ba, VDAC_DATA, *gp++ >> 2);
1757 vgaw (ba, VDAC_DATA, *bp++ >> 2);
1758 } while (x-- > 0);
1759 return(0);
1760 }
1761 else
1762 return(error);
1763 }
1764
1765 int
1766 rh_getspritepos (gp, pos)
1767 struct grf_softc *gp;
1768 struct grf_position *pos;
1769 {
1770 volatile unsigned char *acm = gp->g_regkva + ACM_OFFSET;
1771
1772 pos->x = acm[ACM_CURSOR_POSITION + 0] +
1773 (acm[ACM_CURSOR_POSITION + 1] << 8);
1774 pos->y = acm[ACM_CURSOR_POSITION + 2] +
1775 (acm[ACM_CURSOR_POSITION + 3] << 8);
1776
1777 pos->x += xpan;
1778 pos->y += ypan;
1779
1780 return(0);
1781 }
1782
1783 int
1784 rh_setspritepos (gp, pos)
1785 struct grf_softc *gp;
1786 struct grf_position *pos;
1787 {
1788 RZ3SetHWCloc (gp, pos->x, pos->y);
1789 return(0);
1790 }
1791
1792 int
1793 rh_getspriteinfo (gp, info)
1794 struct grf_softc *gp;
1795 struct grf_spriteinfo *info;
1796 {
1797 volatile unsigned char *ba, *fb;
1798
1799 ba = gp->g_regkva;
1800 fb = gp->g_fbkva;
1801 if (info->set & GRFSPRSET_ENABLE)
1802 info->enable = RSeq (ba, SEQ_ID_CURSOR_CONTROL) & 0x01;
1803 if (info->set & GRFSPRSET_POS)
1804 rh_getspritepos (gp, &info->pos);
1805 if (info->set & GRFSPRSET_HOT) {
1806 info->hot.x = RSeq (ba, SEQ_ID_CURSOR_X_INDEX) & 0x3f;
1807 info->hot.y = RSeq (ba, SEQ_ID_CURSOR_Y_INDEX) & 0x7f;
1808 }
1809 if (info->set & GRFSPRSET_CMAP) {
1810 struct grf_colormap cmap;
1811 int index;
1812 cmap.index = 0;
1813 cmap.count = 256;
1814 rh_getcmap (gp, &cmap);
1815 index = RSeq (ba, SEQ_ID_CURSOR_COLOR0);
1816 info->cmap.red[0] = cmap.red[index];
1817 info->cmap.green[0] = cmap.green[index];
1818 info->cmap.blue[0] = cmap.blue[index];
1819 index = RSeq (ba, SEQ_ID_CURSOR_COLOR1);
1820 info->cmap.red[1] = cmap.red[index];
1821 info->cmap.green[1] = cmap.green[index];
1822 info->cmap.blue[1] = cmap.blue[index];
1823 }
1824 if (info->set & GRFSPRSET_SHAPE) {
1825 u_char image[128], mask[128];
1826 volatile u_long *hwp;
1827 u_char *imp, *mp;
1828 short row;
1829
1830 /* sprite bitmap is WEIRD in this chip.. see grf_rhvar.h
1831 * for an explanation. To convert to "our" format, the
1832 * following holds:
1833 * col2 = !image & mask
1834 * col1 = image & mask
1835 * transp = !mask
1836 * and thus:
1837 * image = col1
1838 * mask = col1 | col2
1839 * hope I got these bool-eqs right below..
1840 */
1841
1842 #ifdef RH_64BIT_SPRITE
1843 info->size.x = 64;
1844 info->size.y = 64;
1845 for (row = 0, hwp = (u_long *)(ba + LM_OFFSET + HWC_MEM_OFF),
1846 mp = mask, imp = image;
1847 row < 64;
1848 row++) {
1849 u_long bp10, bp20, bp11, bp21;
1850 bp10 = *hwp++;
1851 bp20 = *hwp++;
1852 bp11 = *hwp++;
1853 bp21 = *hwp++;
1854 M2I (bp10);
1855 M2I (bp20);
1856 M2I (bp11);
1857 M2I (bp21);
1858 *imp++ = (~bp10) & bp11;
1859 *imp++ = (~bp20) & bp21;
1860 *mp++ = (~bp10) | (bp10 & ~bp11);
1861 *mp++ = (~bp20) & (bp20 & ~bp21);
1862 }
1863 #else
1864 info->size.x = 32;
1865 info->size.y = 32;
1866 for (row = 0, hwp = (u_long *)(ba + LM_OFFSET + HWC_MEM_OFF),
1867 mp = mask, imp = image;
1868 row < 32;
1869 row++) {
1870 u_long bp10, bp11;
1871 bp10 = *hwp++;
1872 bp11 = *hwp++;
1873 M2I (bp10);
1874 M2I (bp11);
1875 *imp++ = (~bp10) & bp11;
1876 *mp++ = (~bp10) | (bp10 & ~bp11);
1877 }
1878 #endif
1879 copyout (image, info->image, sizeof (image));
1880 copyout (mask, info->mask, sizeof (mask));
1881 }
1882 return(0);
1883 }
1884
1885 int
1886 rh_setspriteinfo (gp, info)
1887 struct grf_softc *gp;
1888 struct grf_spriteinfo *info;
1889 {
1890 volatile unsigned char *ba, *fb;
1891 u_char control;
1892
1893 ba = gp->g_regkva;
1894 fb = gp->g_fbkva;
1895
1896 if (info->set & GRFSPRSET_SHAPE) {
1897 /*
1898 * For an explanation of these weird actions here, see above
1899 * when reading the shape. We set the shape directly into
1900 * the video memory, there's no reason to keep 1k on the
1901 * kernel stack just as template
1902 */
1903 u_char *image, *mask;
1904 volatile u_long *hwp;
1905 u_char *imp, *mp;
1906 short row;
1907
1908 #ifdef RH_64BIT_SPRITE
1909 if (info->size.y > 64)
1910 info->size.y = 64;
1911 if (info->size.x > 64)
1912 info->size.x = 64;
1913 #else
1914 if (info->size.y > 32)
1915 info->size.y = 32;
1916 if (info->size.x > 32)
1917 info->size.x = 32;
1918 #endif
1919
1920 if (info->size.x < 32)
1921 info->size.x = 32;
1922
1923 image = malloc(HWC_MEM_SIZE, M_TEMP, M_WAITOK);
1924 mask = image + HWC_MEM_SIZE/2;
1925
1926 copyin(info->image, image, info->size.y * info->size.x / 8);
1927 copyin(info->mask, mask, info->size.y * info->size.x / 8);
1928
1929 hwp = (u_long *)(ba + LM_OFFSET + HWC_MEM_OFF);
1930
1931 /*
1932 * setting it is slightly more difficult, because we can't
1933 * force the application to not pass a *smaller* than
1934 * supported bitmap
1935 */
1936
1937 for (row = 0, mp = mask, imp = image;
1938 row < info->size.y;
1939 row++) {
1940 u_long im1, im2, m1, m2;
1941
1942 im1 = *(unsigned long *)imp;
1943 imp += 4;
1944 m1 = *(unsigned long *)mp;
1945 mp += 4;
1946 #ifdef RH_64BIT_SPRITE
1947 if (info->size.x > 32) {
1948 im2 = *(unsigned long *)imp;
1949 imp += 4;
1950 m2 = *(unsigned long *)mp;
1951 mp += 4;
1952 }
1953 else
1954 #endif
1955 im2 = m2 = 0;
1956
1957 M2I(im1);
1958 M2I(im2);
1959 M2I(m1);
1960 M2I(m2);
1961
1962 *hwp++ = ~m1;
1963 #ifdef RH_64BIT_SPRITE
1964 *hwp++ = ~m2;
1965 #endif
1966 *hwp++ = m1 & im1;
1967 #ifdef RH_64BIT_SPRITE
1968 *hwp++ = m2 & im2;
1969 #endif
1970 }
1971 #ifdef RH_64BIT_SPRITE
1972 for (; row < 64; row++) {
1973 *hwp++ = 0xffffffff;
1974 *hwp++ = 0xffffffff;
1975 *hwp++ = 0x00000000;
1976 *hwp++ = 0x00000000;
1977 }
1978 #else
1979 for (; row < 32; row++) {
1980 *hwp++ = 0xffffffff;
1981 *hwp++ = 0x00000000;
1982 }
1983 #endif
1984
1985 free(image, M_TEMP);
1986 RZ3SetupHWC(gp, 1, 0, 0, 0, 0);
1987 }
1988 if (info->set & GRFSPRSET_CMAP) {
1989 /* hey cheat a bit here.. XXX */
1990 WSeq(ba, SEQ_ID_CURSOR_COLOR0, 0);
1991 WSeq(ba, SEQ_ID_CURSOR_COLOR1, 1);
1992 }
1993 if (info->set & GRFSPRSET_ENABLE) {
1994 #if 0
1995 if (info->enable)
1996 control = 0x85;
1997 else
1998 control = 0;
1999 WSeq(ba, SEQ_ID_CURSOR_CONTROL, control);
2000 #endif
2001 }
2002 if (info->set & GRFSPRSET_POS)
2003 rh_setspritepos(gp, &info->pos);
2004 if (info->set & GRFSPRSET_HOT) {
2005 WSeq(ba, SEQ_ID_CURSOR_X_INDEX, info->hot.x & 0x3f);
2006 WSeq(ba, SEQ_ID_CURSOR_Y_INDEX, info->hot.y & 0x7f);
2007 }
2008
2009 return(0);
2010 }
2011
2012 int
2013 rh_getspritemax (gp, pos)
2014 struct grf_softc *gp;
2015 struct grf_position *pos;
2016 {
2017 #ifdef RH_64BIT_SPRITE
2018 pos->x = 64;
2019 pos->y = 64;
2020 #else
2021 pos->x = 32;
2022 pos->y = 32;
2023 #endif
2024
2025 return(0);
2026 }
2027
2028
2029 int
2030 rh_bitblt (gp, bb)
2031 struct grf_softc *gp;
2032 struct grf_bitblt *bb;
2033 {
2034 struct MonDef *md = (struct MonDef *)gp->g_data;
2035 if (md->DEP <= 8)
2036 RZ3BitBlit(gp, bb);
2037 else if (md->DEP <= 16)
2038 RZ3BitBlit16(gp, bb);
2039 else
2040 RZ3BitBlit24(gp, bb);
2041 }
2042 #endif /* NGRF */
2043