grf_rh.c revision 1.24 1 /* $NetBSD: grf_rh.c,v 1.24 1996/10/13 03:07:05 christos Exp $ */
2
3 /*
4 * Copyright (c) 1994 Markus Wild
5 * Copyright (c) 1994 Lutz Vieweg
6 * All rights reserved.
7 *
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 * 1. Redistributions of source code must retain the above copyright
12 * notice, this list of conditions and the following disclaimer.
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution.
16 * 3. All advertising materials mentioning features or use of this software
17 * must display the following acknowledgement:
18 * This product includes software developed by Lutz Vieweg.
19 * 4. The name of the author may not be used to endorse or promote products
20 * derived from this software without specific prior written permission
21 *
22 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
23 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
24 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
25 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
26 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
27 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
28 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
29 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
30 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
31 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
32 */
33 #include "grfrh.h"
34 #if NGRFRH > 0
35
36 /*
37 * Graphics routines for the Retina BLT Z3 board,
38 * using the NCR 77C32BLT VGA controller.
39 */
40
41 #include <sys/param.h>
42 #include <sys/systm.h>
43 #include <sys/errno.h>
44 #include <sys/ioctl.h>
45 #include <sys/device.h>
46 #include <sys/malloc.h>
47 #include <machine/cpu.h>
48 #include <amiga/amiga/device.h>
49 #include <amiga/dev/grfioctl.h>
50 #include <amiga/dev/grfvar.h>
51 #include <amiga/dev/grf_rhreg.h>
52 #include <amiga/dev/zbusvar.h>
53
54 enum mode_type { MT_TXTONLY, MT_GFXONLY, MT_BOTH };
55
56 int rh_mondefok __P((struct MonDef *));
57
58 u_short rh_CompFQ __P((u_int fq));
59 int rh_load_mon __P((struct grf_softc *gp, struct MonDef *md));
60 int rh_getvmode __P((struct grf_softc *gp, struct grfvideo_mode *vm));
61 int rh_setvmode __P((struct grf_softc *gp, unsigned int mode,
62 enum mode_type type));
63
64 /* make it patchable, and settable by kernel config option */
65 #ifndef RH_MEMCLK
66 #define RH_MEMCLK 61000000 /* this is the memory clock value, you shouldn't
67 set it to less than 61000000, higher values may
68 speed up blits a little bit, if you raise this
69 value too much, some trash will appear on your
70 screen. */
71 #endif
72 int rh_memclk = RH_MEMCLK;
73
74
75 extern unsigned char kernel_font_8x8_width, kernel_font_8x8_height;
76 extern unsigned char kernel_font_8x8_lo, kernel_font_8x8_hi;
77 extern unsigned char kernel_font_8x8[];
78 #ifdef KFONT_8X11
79 extern unsigned char kernel_font_8x11_width, kernel_font_8x11_height;
80 extern unsigned char kernel_font_8x11_lo, kernel_font_8x11_hi;
81 extern unsigned char kernel_font_8x11[];
82 #endif
83
84 /*
85 * This driver for the MacroSystem Retina board was only possible,
86 * because MacroSystem provided information about the pecularities
87 * of the board. THANKS! Competition in Europe among gfx board
88 * manufacturers is rather tough, so Lutz Vieweg, who wrote the
89 * initial driver, has made an agreement with MS not to document
90 * the driver source (see also his comment below).
91 * -> ALL comments after
92 * -> " -------------- START OF CODE -------------- "
93 * -> have been added by myself (mw) from studying the publically
94 * -> available "NCR 77C32BLT" Data Manual
95 */
96 /*
97 * This code offers low-level routines to access the Retina BLT Z3
98 * graphics-board manufactured by MS MacroSystem GmbH from within NetBSD
99 * for the Amiga.
100 *
101 * Thanks to MacroSystem for providing me with the neccessary information
102 * to create theese routines. The sparse documentation of this code
103 * results from the agreements between MS and me.
104 */
105
106
107
108 #define MDF_DBL 1
109 #define MDF_LACE 2
110 #define MDF_CLKDIV2 4
111
112 /* set this as an option in your kernel config file! */
113 /* #define RH_64BIT_SPRITE */
114
115 /* -------------- START OF CODE -------------- */
116
117 /* Convert big-endian long into little-endian long. */
118
119 #define M2I(val) \
120 asm volatile (" rorw #8,%0 ; \
121 swap %0 ; \
122 rorw #8,%0 ; " : "=d" (val) : "0" (val));
123
124 #define M2INS(val) \
125 asm volatile (" rorw #8,%0 ; \
126 swap %0 ; \
127 rorw #8,%0 ; \
128 swap %0 ; " : "=d" (val) : "0" (val));
129
130 #define ACM_OFFSET (0x00b00000)
131 #define LM_OFFSET (0x00c00000)
132
133 static unsigned char optab[] = {
134 0x00, 0x80, 0x40, 0xc0, 0x20, 0xa0, 0x60, 0xe0,
135 0x10, 0x90, 0x50, 0xd0, 0x30, 0xb0, 0x70, 0xf0
136 };
137 static char optabs[] = {
138 0, -1, -1, -1, -1, 0, -1, -1,
139 -1, -1, 0, -1, -1, -1, -1, 0
140 };
141
142 void
143 RZ3DisableHWC(gp)
144 struct grf_softc *gp;
145 {
146 volatile void *ba = gp->g_regkva;
147
148 WSeq(ba, SEQ_ID_CURSOR_Y_INDEX, 0x00);
149 }
150
151 void
152 RZ3SetupHWC(gp, col1, col2, hsx, hsy, data)
153 struct grf_softc *gp;
154 unsigned char col1;
155 unsigned col2;
156 unsigned char hsx;
157 unsigned char hsy;
158 const unsigned long *data;
159 {
160 volatile unsigned char *ba = gp->g_regkva;
161 unsigned long *c = (unsigned long *)(ba + LM_OFFSET + HWC_MEM_OFF);
162 const unsigned long *s = data;
163 struct MonDef *MonitorDef = (struct MonDef *) gp->g_data;
164 #ifdef RH_64BIT_SPRITE
165 short x = (HWC_MEM_SIZE / (4*4)) - 1;
166 #else
167 short x = (HWC_MEM_SIZE / (4*4*2)) - 1;
168 #endif
169 /* copy only, if there is a data pointer. */
170 if (data) do {
171 *c++ = *s++;
172 *c++ = *s++;
173 *c++ = *s++;
174 *c++ = *s++;
175 } while (x-- > 0);
176
177 WSeq(ba, SEQ_ID_CURSOR_COLOR1, col1);
178 WSeq(ba, SEQ_ID_CURSOR_COLOR0, col2);
179 if (MonitorDef->DEP <= 8) {
180 #ifdef RH_64BIT_SPRITE
181 WSeq(ba, SEQ_ID_CURSOR_CONTROL, 0x85);
182 #else
183 WSeq(ba, SEQ_ID_CURSOR_CONTROL, 0x03);
184 #endif
185 }
186 else if (MonitorDef->DEP <= 16) {
187 #ifdef RH_64BIT_SPRITE
188 WSeq(ba, SEQ_ID_CURSOR_CONTROL, 0xa5);
189 #else
190 WSeq(ba, SEQ_ID_CURSOR_CONTROL, 0x23);
191 #endif
192 }
193 else {
194 #ifdef RH_64BIT_SPRITE
195 WSeq(ba, SEQ_ID_CURSOR_CONTROL, 0xc5);
196 #else
197 WSeq(ba, SEQ_ID_CURSOR_CONTROL, 0x43);
198 #endif
199 }
200 WSeq(ba, SEQ_ID_CURSOR_X_LOC_HI, 0x00);
201 WSeq(ba, SEQ_ID_CURSOR_X_LOC_LO, 0x00);
202 WSeq(ba, SEQ_ID_CURSOR_Y_LOC_HI, 0x00);
203 WSeq(ba, SEQ_ID_CURSOR_Y_LOC_LO, 0x00);
204 WSeq(ba, SEQ_ID_CURSOR_X_INDEX, hsx);
205 WSeq(ba, SEQ_ID_CURSOR_Y_INDEX, hsy);
206 WSeq(ba, SEQ_ID_CURSOR_STORE_HI, 0x00);
207 WSeq(ba, SEQ_ID_CURSOR_STORE_LO, ((HWC_MEM_OFF / 4) & 0x0000f));
208 WSeq(ba, SEQ_ID_CURSOR_ST_OFF_HI, (((HWC_MEM_OFF / 4) & 0xff000) >> 12));
209 WSeq(ba, SEQ_ID_CURSOR_ST_OFF_LO, (((HWC_MEM_OFF / 4) & 0x00ff0) >> 4));
210 WSeq(ba, SEQ_ID_CURSOR_PIXELMASK, 0xff);
211 }
212
213 void
214 RZ3AlphaErase (gp, xd, yd, w, h)
215 struct grf_softc *gp;
216 unsigned short xd;
217 unsigned short yd;
218 unsigned short w;
219 unsigned short h;
220 {
221 const struct MonDef * md = (struct MonDef *) gp->g_data;
222 RZ3AlphaCopy(gp, xd, yd+md->TY, xd, yd, w, h);
223 }
224
225 void
226 RZ3AlphaCopy (gp, xs, ys, xd, yd, w, h)
227 struct grf_softc *gp;
228 unsigned short xs;
229 unsigned short ys;
230 unsigned short xd;
231 unsigned short yd;
232 unsigned short w;
233 unsigned short h;
234 {
235 volatile unsigned char *ba = gp->g_regkva;
236 const struct MonDef *md = (struct MonDef *) gp->g_data;
237 volatile unsigned long *acm = (unsigned long *) (ba + ACM_OFFSET);
238 unsigned short mod;
239
240 xs *= 4;
241 ys *= 4;
242 xd *= 4;
243 yd *= 4;
244 w *= 4;
245
246 {
247 /* anyone got Windoze GDI opcodes handy?... */
248 unsigned long tmp = 0x0000ca00;
249 *(acm + ACM_RASTEROP_ROTATION/4) = tmp;
250 }
251
252 mod = 0xc0c2;
253
254 {
255 unsigned long pat = 8 * PAT_MEM_OFF;
256 unsigned long dst = 8 * (xd + yd * md->TX);
257
258 unsigned long src = 8 * (xs + ys * md->TX);
259
260 if (xd > xs) {
261 mod &= ~0x8000;
262 src += 8 * (w - 1);
263 dst += 8 * (w - 1);
264 pat += 8 * 2;
265 }
266 if (yd > ys) {
267 mod &= ~0x4000;
268 src += 8 * (h - 1) * md->TX * 4;
269 dst += 8 * (h - 1) * md->TX * 4;
270 pat += 8 * 4;
271 }
272
273 M2I(src);
274 *(acm + ACM_SOURCE/4) = src;
275
276 M2I(pat);
277 *(acm + ACM_PATTERN/4) = pat;
278
279 M2I(dst);
280 *(acm + ACM_DESTINATION/4) = dst;
281 }
282 {
283
284 unsigned long tmp = mod << 16;
285 *(acm + ACM_CONTROL/4) = tmp;
286 }
287 {
288
289 unsigned long tmp = w | (h << 16);
290 M2I(tmp);
291 *(acm + ACM_BITMAP_DIMENSION/4) = tmp;
292 }
293
294 *(((volatile unsigned char *)acm) + ACM_START_STATUS) = 0x00;
295 *(((volatile unsigned char *)acm) + ACM_START_STATUS) = 0x01;
296
297 while ((*(((volatile unsigned char *)acm) +
298 (ACM_START_STATUS + 2)) & 1) == 0);
299 }
300
301 void
302 RZ3BitBlit (gp, gbb)
303 struct grf_softc *gp;
304 struct grf_bitblt * gbb;
305 {
306 volatile unsigned char *ba = gp->g_regkva;
307 volatile unsigned char *lm = ba + LM_OFFSET;
308 volatile unsigned long *acm = (unsigned long *) (ba + ACM_OFFSET);
309 const struct MonDef *md = (struct MonDef *) gp->g_data;
310 unsigned short mod;
311
312 {
313 unsigned long * pt = (unsigned long *) (lm + PAT_MEM_OFF);
314 unsigned long tmp = gbb->mask | ((unsigned long)gbb->mask << 16);
315 *pt++ = tmp;
316 *pt = tmp;
317 }
318
319 {
320
321 unsigned long tmp = optab[ gbb->op ] << 8;
322 *(acm + ACM_RASTEROP_ROTATION/4) = tmp;
323 }
324
325 mod = 0xc0c2;
326
327 {
328 unsigned long pat = 8 * PAT_MEM_OFF;
329 unsigned long dst = 8 * (gbb->dst_x + gbb->dst_y * md->TX);
330
331 if (optabs[gbb->op]) {
332 unsigned long src = 8 * (gbb->src_x + gbb->src_y * md->TX);
333
334 if (gbb->dst_x > gbb->src_x) {
335 mod &= ~0x8000;
336 src += 8 * (gbb->w - 1);
337 dst += 8 * (gbb->w - 1);
338 pat += 8 * 2;
339 }
340 if (gbb->dst_y > gbb->src_y) {
341 mod &= ~0x4000;
342 src += 8 * (gbb->h - 1) * md->TX;
343 dst += 8 * (gbb->h - 1) * md->TX;
344 pat += 8 * 4;
345 }
346
347 M2I(src);
348 *(acm + ACM_SOURCE/4) = src;
349 }
350
351 M2I(pat);
352 *(acm + ACM_PATTERN/4) = pat;
353
354 M2I(dst);
355 *(acm + ACM_DESTINATION/4) = dst;
356 }
357 {
358
359 unsigned long tmp = mod << 16;
360 *(acm + ACM_CONTROL/4) = tmp;
361 }
362 {
363 unsigned long tmp = gbb->w | (gbb->h << 16);
364 M2I(tmp);
365 *(acm + ACM_BITMAP_DIMENSION/4) = tmp;
366 }
367
368 *(((volatile unsigned char *)acm) + ACM_START_STATUS) = 0x00;
369 *(((volatile unsigned char *)acm) + ACM_START_STATUS) = 0x01;
370
371 while ((*(((volatile unsigned char *)acm) +
372 (ACM_START_STATUS + 2)) & 1) == 0);
373 }
374
375 void
376 RZ3BitBlit16 (gp, gbb)
377 struct grf_softc *gp;
378 struct grf_bitblt * gbb;
379 {
380 volatile unsigned char *ba = gp->g_regkva;
381 volatile unsigned char *lm = ba + LM_OFFSET;
382 volatile unsigned long * acm = (unsigned long *) (ba + ACM_OFFSET);
383 const struct MonDef * md = (struct MonDef *) gp->g_data;
384 unsigned short mod;
385
386 {
387 unsigned long * pt = (unsigned long *) (lm + PAT_MEM_OFF);
388 unsigned long tmp = gbb->mask | ((unsigned long)gbb->mask << 16);
389 *pt++ = tmp;
390 *pt++ = tmp;
391 *pt++ = tmp;
392 *pt = tmp;
393 }
394
395 {
396
397 unsigned long tmp = optab[ gbb->op ] << 8;
398 *(acm + ACM_RASTEROP_ROTATION/4) = tmp;
399 }
400
401 mod = 0xc0c2;
402
403 {
404 unsigned long pat = 8 * PAT_MEM_OFF;
405 unsigned long dst = 8 * 2 * (gbb->dst_x + gbb->dst_y * md->TX);
406
407 if (optabs[gbb->op]) {
408 unsigned long src = 8 * 2 * (gbb->src_x + gbb->src_y * md->TX);
409
410 if (gbb->dst_x > gbb->src_x) {
411 mod &= ~0x8000;
412 src += 8 * 2 * (gbb->w);
413 dst += 8 * 2 * (gbb->w);
414 pat += 8 * 2 * 2;
415 }
416 if (gbb->dst_y > gbb->src_y) {
417 mod &= ~0x4000;
418 src += 8 * 2 * (gbb->h - 1) * md->TX;
419 dst += 8 * 2 * (gbb->h - 1) * md->TX;
420 pat += 8 * 4 * 2;
421 }
422
423 M2I(src);
424 *(acm + ACM_SOURCE/4) = src;
425 }
426
427 M2I(pat);
428 *(acm + ACM_PATTERN/4) = pat;
429
430 M2I(dst);
431 *(acm + ACM_DESTINATION/4) = dst;
432 }
433 {
434
435 unsigned long tmp = mod << 16;
436 *(acm + ACM_CONTROL/4) = tmp;
437 }
438 {
439
440 unsigned long tmp = gbb->w | (gbb->h << 16);
441 M2I(tmp);
442 *(acm + ACM_BITMAP_DIMENSION/4) = tmp;
443 }
444
445 *(((volatile unsigned char *)acm) + ACM_START_STATUS) = 0x00;
446 *(((volatile unsigned char *)acm) + ACM_START_STATUS) = 0x01;
447
448 while ((*(((volatile unsigned char *)acm) +
449 (ACM_START_STATUS+ 2)) & 1) == 0);
450 }
451
452 void
453 RZ3BitBlit24 (gp, gbb)
454 struct grf_softc *gp;
455 struct grf_bitblt * gbb;
456 {
457 volatile unsigned char *ba = gp->g_regkva;
458 volatile unsigned char *lm = ba + LM_OFFSET;
459 volatile unsigned long * acm = (unsigned long *) (ba + ACM_OFFSET);
460 const struct MonDef * md = (struct MonDef *) gp->g_data;
461 unsigned short mod;
462
463
464 {
465 unsigned long * pt = (unsigned long *) (lm + PAT_MEM_OFF);
466 unsigned long tmp = gbb->mask | ((unsigned long)gbb->mask << 16);
467 *pt++ = tmp;
468 *pt++ = tmp;
469 *pt++ = tmp;
470 *pt++ = tmp;
471 *pt++ = tmp;
472 *pt = tmp;
473 }
474
475 {
476
477 unsigned long tmp = optab[ gbb->op ] << 8;
478 *(acm + ACM_RASTEROP_ROTATION/4) = tmp;
479 }
480
481 mod = 0xc0c2;
482
483 {
484 unsigned long pat = 8 * PAT_MEM_OFF;
485 unsigned long dst = 8 * 3 * (gbb->dst_x + gbb->dst_y * md->TX);
486
487 if (optabs[gbb->op]) {
488 unsigned long src = 8 * 3 * (gbb->src_x + gbb->src_y * md->TX);
489
490 if (gbb->dst_x > gbb->src_x ) {
491 mod &= ~0x8000;
492 src += 8 * 3 * (gbb->w);
493 dst += 8 * 3 * (gbb->w);
494 pat += 8 * 3 * 2;
495 }
496 if (gbb->dst_y > gbb->src_y) {
497 mod &= ~0x4000;
498 src += 8 * 3 * (gbb->h - 1) * md->TX;
499 dst += 8 * 3 * (gbb->h - 1) * md->TX;
500 pat += 8 * 4 * 3;
501 }
502
503 M2I(src);
504 *(acm + ACM_SOURCE/4) = src;
505 }
506
507
508 M2I(pat);
509 *(acm + ACM_PATTERN/4) = pat;
510
511
512 M2I(dst);
513 *(acm + ACM_DESTINATION/4) = dst;
514 }
515 {
516
517 unsigned long tmp = mod << 16;
518 *(acm + ACM_CONTROL/4) = tmp;
519 }
520 {
521
522 unsigned long tmp = gbb->w | (gbb->h << 16);
523 M2I(tmp);
524 *(acm + ACM_BITMAP_DIMENSION/4) = tmp;
525 }
526
527
528 *(((volatile unsigned char *)acm) + ACM_START_STATUS) = 0x00;
529 *(((volatile unsigned char *)acm) + ACM_START_STATUS) = 0x01;
530
531 while ( (*(((volatile unsigned char *)acm)
532 + (ACM_START_STATUS+ 2)) & 1) == 0 ) {};
533
534 }
535
536
537 void
538 RZ3SetCursorPos (gp, pos)
539 struct grf_softc *gp;
540 unsigned short pos;
541 {
542 volatile unsigned char *ba = gp->g_regkva;
543
544 WCrt(ba, CRT_ID_CURSOR_LOC_LOW, (unsigned char)pos);
545 WCrt(ba, CRT_ID_CURSOR_LOC_HIGH, (unsigned char)(pos >> 8));
546
547 }
548
549 void
550 RZ3LoadPalette (gp, pal, firstcol, colors)
551 struct grf_softc *gp;
552 unsigned char * pal;
553 unsigned char firstcol;
554 unsigned char colors;
555 {
556 volatile unsigned char *ba = gp->g_regkva;
557
558 if (colors == 0)
559 return;
560
561 vgaw(ba, VDAC_ADDRESS_W, firstcol);
562
563 {
564
565 short x = colors-1;
566 const unsigned char * col = pal;
567 do {
568
569 vgaw(ba, VDAC_DATA, (*col++ >> 2));
570 vgaw(ba, VDAC_DATA, (*col++ >> 2));
571 vgaw(ba, VDAC_DATA, (*col++ >> 2));
572
573 } while (x-- > 0);
574
575 }
576 }
577
578 void
579 RZ3SetPalette (gp, colornum, red, green, blue)
580 struct grf_softc *gp;
581 unsigned char colornum;
582 unsigned char red, green, blue;
583 {
584 volatile unsigned char *ba = gp->g_regkva;
585
586 vgaw(ba, VDAC_ADDRESS_W, colornum);
587
588 vgaw(ba, VDAC_DATA, (red >> 2));
589 vgaw(ba, VDAC_DATA, (green >> 2));
590 vgaw(ba, VDAC_DATA, (blue >> 2));
591
592 }
593
594 /* XXXXXXXXX !! */
595 static unsigned short xpan;
596 static unsigned short ypan;
597
598 void
599 RZ3SetPanning (gp, xoff, yoff)
600 struct grf_softc *gp;
601 unsigned short xoff, yoff;
602 {
603 volatile unsigned char *ba = gp->g_regkva;
604 const struct MonDef * md = (struct MonDef *) gp->g_data;
605 unsigned long off;
606
607 xpan = xoff;
608 ypan = yoff;
609
610
611 if (md->DEP > 8 && md->DEP <= 16) xoff *= 2;
612 else if (md->DEP > 16) xoff *= 3;
613
614 vgar(ba, ACT_ADDRESS_RESET);
615 WAttr(ba, ACT_ID_HOR_PEL_PANNING, (unsigned char)((xoff << 1) & 0x07));
616 /* have the color lookup function normally again */
617 vgaw(ba, ACT_ADDRESS_W, 0x20);
618
619 if (md->DEP == 8)
620 off = ((yoff * md->TX)/ 4) + (xoff >> 2);
621 else if (md->DEP == 16)
622 off = ((yoff * md->TX * 2)/ 4) + (xoff >> 2);
623 else
624 off = ((yoff * md->TX * 3)/ 4) + (xoff >> 2);
625 WCrt(ba, CRT_ID_START_ADDR_LOW, ((unsigned char)off));
626 off >>= 8;
627 WCrt(ba, CRT_ID_START_ADDR_HIGH, ((unsigned char)off));
628 off >>= 8;
629 WCrt(ba, CRT_ID_EXT_START_ADDR,
630 ((RCrt(ba, CRT_ID_EXT_START_ADDR) & 0xf0) | (off & 0x0f)));
631
632
633 }
634
635 void
636 RZ3SetHWCloc (gp, x, y)
637 struct grf_softc *gp;
638 unsigned short x, y;
639 {
640 volatile unsigned char *ba = gp->g_regkva;
641 const struct MonDef *md = (struct MonDef *) gp->g_data;
642 volatile unsigned char *acm = ba + ACM_OFFSET;
643
644 if (x < xpan)
645 RZ3SetPanning(gp, x, ypan);
646
647 if (x >= (xpan+md->MW))
648 RZ3SetPanning(gp, (1 + x - md->MW) , ypan);
649
650 if (y < ypan)
651 RZ3SetPanning(gp, xpan, y);
652
653 if (y >= (ypan+md->MH))
654 RZ3SetPanning(gp, xpan, (1 + y - md->MH));
655
656 x -= xpan;
657 y -= ypan;
658
659 *(acm + (ACM_CURSOR_POSITION+0)) = x & 0xff;
660 *(acm + (ACM_CURSOR_POSITION+1)) = x >> 8;
661 *(acm + (ACM_CURSOR_POSITION+2)) = y & 0xff;
662 *(acm + (ACM_CURSOR_POSITION+3)) = y >> 8;
663 }
664
665 u_short
666 rh_CompFQ(fq)
667 u_int fq;
668 {
669 /* yuck... this sure could need some explanation.. */
670
671 unsigned long f = fq;
672 long n2 = 3;
673 long abw = 0x7fffffff;
674 long n1 = 3;
675 unsigned long m;
676 unsigned short erg = 0;
677
678 f *= 8;
679
680 do {
681
682 if (f <= 250000000)
683 break;
684 f /= 2;
685
686 } while (n2-- > 0);
687
688 if (n2 < 0)
689 return(0);
690
691
692 do {
693 long tmp;
694
695 f = fq;
696 f >>= 3;
697 f <<= n2;
698 f >>= 7;
699
700 m = (f * n1) / (14318180/1024);
701
702 if (m > 129)
703 break;
704
705 tmp = (((m * 14318180) >> n2) / n1) - fq;
706 if (tmp < 0)
707 tmp = -tmp;
708
709 if (tmp < abw) {
710 abw = tmp;
711 erg = (((n2 << 5) | (n1-2)) << 8) | (m-2);
712 }
713
714 } while ( (++n1) <= 21);
715
716 return(erg);
717 }
718
719 int
720 rh_mondefok(mdp)
721 struct MonDef *mdp;
722 {
723 switch(mdp->DEP) {
724 case 8:
725 case 16:
726 case 24:
727 return(1);
728 case 4:
729 if (mdp->FX == 4 || (mdp->FX >= 7 && mdp->FX <= 16))
730 return(1);
731 /*FALLTHROUGH*/
732 default:
733 return(0);
734 }
735 }
736
737
738 int
739 rh_load_mon(gp, md)
740 struct grf_softc *gp;
741 struct MonDef *md;
742 {
743 struct grfinfo *gi = &gp->g_display;
744 volatile caddr_t ba;
745 volatile caddr_t fb;
746 short FW, clksel, HDE = 0, VDE;
747 unsigned short *c, z;
748 const unsigned char *f;
749
750 ba = gp->g_regkva;;
751 fb = gp->g_fbkva;
752
753 /* provide all needed information in grf device-independant
754 * locations */
755 gp->g_data = (caddr_t) md;
756 gi->gd_regaddr = (caddr_t) kvtop (ba);
757 gi->gd_regsize = LM_OFFSET;
758 gi->gd_fbaddr = (caddr_t) kvtop (fb);
759 gi->gd_fbsize = MEMSIZE *1024*1024;
760 #ifdef BANKEDDEVPAGER
761 /* we're not using banks NO MORE! */
762 gi->gd_bank_size = 0;
763 #endif
764 gi->gd_colors = 1 << md->DEP;
765 gi->gd_planes = md->DEP;
766
767 if (md->DEP == 4) {
768 gi->gd_fbwidth = md->MW;
769 gi->gd_fbheight = md->MH;
770 gi->gd_fbx = 0;
771 gi->gd_fby = 0;
772 gi->gd_dwidth = md->TX * md->FX;
773 gi->gd_dheight = md->TY * md->FY;
774 gi->gd_dx = 0;
775 gi->gd_dy = 0;
776 } else {
777 gi->gd_fbwidth = md->TX;
778 gi->gd_fbheight = md->TY;
779 gi->gd_fbx = 0;
780 gi->gd_fby = 0;
781 gi->gd_dwidth = md->MW;
782 gi->gd_dheight = md->MH;
783 gi->gd_dx = 0;
784 gi->gd_dy = 0;
785 }
786
787 FW =0;
788 if (md->DEP == 4) { /* XXX some text-mode! */
789 switch (md->FX) {
790 case 4:
791 FW = 0;
792 break;
793 case 7:
794 FW = 1;
795 break;
796 case 8:
797 FW = 2;
798 break;
799 case 9:
800 FW = 3;
801 break;
802 case 10:
803 FW = 4;
804 break;
805 case 11:
806 FW = 5;
807 break;
808 case 12:
809 FW = 6;
810 break;
811 case 13:
812 FW = 7;
813 break;
814 case 14:
815 FW = 8;
816 break;
817 case 15:
818 FW = 9;
819 break;
820 case 16:
821 FW = 11;
822 break;
823 default:
824 return(0);
825 break;
826 }
827 }
828
829 if (md->DEP == 4) HDE = (md->MW+md->FX-1)/md->FX;
830 else if (md->DEP == 8) HDE = (md->MW+3)/4;
831 else if (md->DEP == 16) HDE = (md->MW*2+3)/4;
832 else if (md->DEP == 24) HDE = (md->MW*3+3)/4;
833
834 VDE = md->MH-1;
835
836 clksel = 0;
837
838 vgaw(ba, GREG_MISC_OUTPUT_W, 0xe3 | ((clksel & 3) * 0x04));
839 vgaw(ba, GREG_FEATURE_CONTROL_W, 0x00);
840
841 WSeq(ba, SEQ_ID_RESET, 0x00);
842 WSeq(ba, SEQ_ID_RESET, 0x03);
843 WSeq(ba, SEQ_ID_CLOCKING_MODE, 0x01 | ((md->FLG & MDF_CLKDIV2)/ MDF_CLKDIV2 * 8));
844 WSeq(ba, SEQ_ID_MAP_MASK, 0x0f);
845 WSeq(ba, SEQ_ID_CHAR_MAP_SELECT, 0x00);
846 WSeq(ba, SEQ_ID_MEMORY_MODE, 0x06);
847 WSeq(ba, SEQ_ID_RESET, 0x01);
848 WSeq(ba, SEQ_ID_RESET, 0x03);
849
850 WSeq(ba, SEQ_ID_EXTENDED_ENABLE, 0x05);
851 WSeq(ba, SEQ_ID_CURSOR_CONTROL, 0x00);
852 WSeq(ba, SEQ_ID_PRIM_HOST_OFF_HI, 0x00);
853 WSeq(ba, SEQ_ID_PRIM_HOST_OFF_HI, 0x00);
854 WSeq(ba, SEQ_ID_LINEAR_0, 0x4a);
855 WSeq(ba, SEQ_ID_LINEAR_1, 0x00);
856
857 WSeq(ba, SEQ_ID_SEC_HOST_OFF_HI, 0x00);
858 WSeq(ba, SEQ_ID_SEC_HOST_OFF_LO, 0x00);
859 WSeq(ba, SEQ_ID_EXTENDED_MEM_ENA, 0x3 | 0x4 | 0x10 | 0x40);
860 WSeq(ba, SEQ_ID_EXT_CLOCK_MODE, 0x10 | (FW & 0x0f));
861 WSeq(ba, SEQ_ID_EXT_VIDEO_ADDR, 0x03);
862 if (md->DEP == 4) {
863 /* 8bit pixel, no gfx byte path */
864 WSeq(ba, SEQ_ID_EXT_PIXEL_CNTL, 0x00);
865 }
866 else if (md->DEP == 8) {
867 /* 8bit pixel, gfx byte path */
868 WSeq(ba, SEQ_ID_EXT_PIXEL_CNTL, 0x01);
869 }
870 else if (md->DEP == 16) {
871 /* 16bit pixel, gfx byte path */
872 WSeq(ba, SEQ_ID_EXT_PIXEL_CNTL, 0x11);
873 }
874 else if (md->DEP == 24) {
875 /* 24bit pixel, gfx byte path */
876 WSeq(ba, SEQ_ID_EXT_PIXEL_CNTL, 0x21);
877 }
878 WSeq(ba, SEQ_ID_BUS_WIDTH_FEEDB, 0x04);
879 WSeq(ba, SEQ_ID_COLOR_EXP_WFG, 0x01);
880 WSeq(ba, SEQ_ID_COLOR_EXP_WBG, 0x00);
881 WSeq(ba, SEQ_ID_EXT_RW_CONTROL, 0x00);
882 WSeq(ba, SEQ_ID_MISC_FEATURE_SEL, (0x51 | (clksel & 8)));
883 WSeq(ba, SEQ_ID_COLOR_KEY_CNTL, 0x40);
884 WSeq(ba, SEQ_ID_COLOR_KEY_MATCH0, 0x00);
885 WSeq(ba, SEQ_ID_COLOR_KEY_MATCH1, 0x00);
886 WSeq(ba, SEQ_ID_COLOR_KEY_MATCH2, 0x00);
887 WSeq(ba, SEQ_ID_CRC_CONTROL, 0x00);
888 WSeq(ba, SEQ_ID_PERF_SELECT, 0x10);
889 WSeq(ba, SEQ_ID_ACM_APERTURE_1, 0x00);
890 WSeq(ba, SEQ_ID_ACM_APERTURE_2, 0x30);
891 WSeq(ba, SEQ_ID_ACM_APERTURE_3, 0x00);
892 WSeq(ba, SEQ_ID_MEMORY_MAP_CNTL, 0x07);
893
894 WCrt(ba, CRT_ID_END_VER_RETR, (md->VSE & 0xf) | 0x20);
895 WCrt(ba, CRT_ID_HOR_TOTAL, md->HT & 0xff);
896 WCrt(ba, CRT_ID_HOR_DISP_ENA_END, (HDE-1) & 0xff);
897 WCrt(ba, CRT_ID_START_HOR_BLANK, md->HBS & 0xff);
898 WCrt(ba, CRT_ID_END_HOR_BLANK, (md->HBE & 0x1f) | 0x80);
899
900 WCrt(ba, CRT_ID_START_HOR_RETR, md->HSS & 0xff);
901 WCrt(ba, CRT_ID_END_HOR_RETR,
902 (md->HSE & 0x1f) |
903 ((md->HBE & 0x20)/ 0x20 * 0x80));
904 WCrt(ba, CRT_ID_VER_TOTAL, (md->VT & 0xff));
905 WCrt(ba, CRT_ID_OVERFLOW,
906 ((md->VSS & 0x200) / 0x200 * 0x80) |
907 ((VDE & 0x200) / 0x200 * 0x40) |
908 ((md->VT & 0x200) / 0x200 * 0x20) |
909 0x10 |
910 ((md->VBS & 0x100) / 0x100 * 8) |
911 ((md->VSS & 0x100) / 0x100 * 4) |
912 ((VDE & 0x100) / 0x100 * 2) |
913 ((md->VT & 0x100) / 0x100));
914 WCrt(ba, CRT_ID_PRESET_ROW_SCAN, 0x00);
915
916 if (md->DEP == 4) {
917 WCrt(ba, CRT_ID_MAX_SCAN_LINE,
918 ((md->FLG & MDF_DBL)/ MDF_DBL * 0x80) |
919 0x40 |
920 ((md->VBS & 0x200)/0x200*0x20) |
921 ((md->FY-1) & 0x1f));
922 } else {
923 WCrt(ba, CRT_ID_MAX_SCAN_LINE,
924 ((md->FLG & MDF_DBL)/ MDF_DBL * 0x80) |
925 0x40 |
926 ((md->VBS & 0x200)/0x200*0x20) |
927 (0 & 0x1f));
928 }
929
930 /* I prefer "_" cursor to "block" cursor.. */
931 #if 1
932 WCrt(ba, CRT_ID_CURSOR_START, (md->FY & 0x1f) - 2);
933 WCrt(ba, CRT_ID_CURSOR_END, (md->FY & 0x1f) - 1);
934 #else
935 WCrt(ba, CRT_ID_CURSOR_START, 0x00);
936 WCrt(ba, CRT_ID_CURSOR_END, md->FY & 0x1f);
937 #endif
938
939 WCrt(ba, CRT_ID_START_ADDR_HIGH, 0x00);
940 WCrt(ba, CRT_ID_START_ADDR_LOW, 0x00);
941
942 WCrt(ba, CRT_ID_CURSOR_LOC_HIGH, 0x00);
943 WCrt(ba, CRT_ID_CURSOR_LOC_LOW, 0x00);
944
945 WCrt(ba, CRT_ID_START_VER_RETR, md->VSS & 0xff);
946 WCrt(ba, CRT_ID_END_VER_RETR, (md->VSE & 0xf) | 0x80 | 0x20);
947 WCrt(ba, CRT_ID_VER_DISP_ENA_END, VDE & 0xff);
948
949 if (md->DEP == 4) {
950 WCrt(ba, CRT_ID_OFFSET, (HDE / 2) & 0xff );
951 }
952 /* all gfx-modes are in byte-mode, means values are multiplied by 8 */
953 else if (md->DEP == 8) {
954 WCrt(ba, CRT_ID_OFFSET, (md->TX / 8) & 0xff );
955 } else if (md->DEP == 16) {
956 WCrt(ba, CRT_ID_OFFSET, (md->TX / 4) & 0xff );
957 } else {
958 WCrt(ba, CRT_ID_OFFSET, (md->TX * 3 / 8) & 0xff );
959 }
960
961 WCrt(ba, CRT_ID_UNDERLINE_LOC, (md->FY-1) & 0x1f);
962 WCrt(ba, CRT_ID_START_VER_BLANK, md->VBS & 0xff);
963 WCrt(ba, CRT_ID_END_VER_BLANK, md->VBE & 0xff);
964 WCrt(ba, CRT_ID_MODE_CONTROL, 0xe3);
965 WCrt(ba, CRT_ID_LINE_COMPARE, 0xff);
966
967 WCrt(ba, CRT_ID_EXT_HOR_TIMING1,
968 0 | 0x20 |
969 ((md->FLG & MDF_LACE) / MDF_LACE * 0x10) |
970 ((md->HT & 0x100) / 0x100) |
971 (((HDE-1) & 0x100) / 0x100 * 2) |
972 ((md->HBS & 0x100) / 0x100 * 4) |
973 ((md->HSS & 0x100) / 0x100 * 8));
974
975 if (md->DEP == 4) {
976 WCrt(ba, CRT_ID_EXT_START_ADDR, (((HDE / 2) & 0x100)/0x100 * 16));
977 }
978 else if (md->DEP == 8) {
979 WCrt(ba, CRT_ID_EXT_START_ADDR, (((md->TX / 8) & 0x100)/0x100 * 16));
980 } else if (md->DEP == 16) {
981 WCrt(ba, CRT_ID_EXT_START_ADDR, (((md->TX / 4) & 0x100)/0x100 * 16));
982 } else {
983 WCrt(ba, CRT_ID_EXT_START_ADDR, (((md->TX * 3 / 8) & 0x100)/0x100 * 16));
984 }
985
986 WCrt(ba, CRT_ID_EXT_HOR_TIMING2,
987 ((md->HT & 0x200)/ 0x200) |
988 (((HDE-1) & 0x200)/ 0x200 * 2 ) |
989 ((md->HBS & 0x200)/ 0x200 * 4 ) |
990 ((md->HSS & 0x200)/ 0x200 * 8 ) |
991 ((md->HBE & 0xc0) / 0x40 * 16 ) |
992 ((md->HSE & 0x60) / 0x20 * 64));
993
994 WCrt(ba, CRT_ID_EXT_VER_TIMING,
995 ((md->VSE & 0x10) / 0x10 * 0x80 ) |
996 ((md->VBE & 0x300)/ 0x100 * 0x20 ) |
997 0x10 |
998 ((md->VSS & 0x400)/ 0x400 * 8 ) |
999 ((md->VBS & 0x400)/ 0x400 * 4 ) |
1000 ((VDE & 0x400)/ 0x400 * 2 ) |
1001 ((md->VT & 0x400)/ 0x400));
1002 WCrt(ba, CRT_ID_MONITOR_POWER, 0x00);
1003
1004 {
1005 unsigned short tmp = rh_CompFQ(md->FQ);
1006 WPLL(ba, 2 , tmp);
1007 tmp = rh_CompFQ(rh_memclk);
1008 WPLL(ba,10 , tmp);
1009 WPLL(ba,14 , 0x22);
1010 }
1011
1012 WGfx(ba, GCT_ID_SET_RESET, 0x00);
1013 WGfx(ba, GCT_ID_ENABLE_SET_RESET, 0x00);
1014 WGfx(ba, GCT_ID_COLOR_COMPARE, 0x00);
1015 WGfx(ba, GCT_ID_DATA_ROTATE, 0x00);
1016 WGfx(ba, GCT_ID_READ_MAP_SELECT, 0x00);
1017 WGfx(ba, GCT_ID_GRAPHICS_MODE, 0x00);
1018 if (md->DEP == 4)
1019 WGfx(ba, GCT_ID_MISC, 0x04);
1020 else
1021 WGfx(ba, GCT_ID_MISC, 0x05);
1022 WGfx(ba, GCT_ID_COLOR_XCARE, 0x0f);
1023 WGfx(ba, GCT_ID_BITMASK, 0xff);
1024
1025 vgar(ba, ACT_ADDRESS_RESET);
1026 WAttr(ba, ACT_ID_PALETTE0 , 0x00);
1027 WAttr(ba, ACT_ID_PALETTE1 , 0x01);
1028 WAttr(ba, ACT_ID_PALETTE2 , 0x02);
1029 WAttr(ba, ACT_ID_PALETTE3 , 0x03);
1030 WAttr(ba, ACT_ID_PALETTE4 , 0x04);
1031 WAttr(ba, ACT_ID_PALETTE5 , 0x05);
1032 WAttr(ba, ACT_ID_PALETTE6 , 0x06);
1033 WAttr(ba, ACT_ID_PALETTE7 , 0x07);
1034 WAttr(ba, ACT_ID_PALETTE8 , 0x08);
1035 WAttr(ba, ACT_ID_PALETTE9 , 0x09);
1036 WAttr(ba, ACT_ID_PALETTE10, 0x0a);
1037 WAttr(ba, ACT_ID_PALETTE11, 0x0b);
1038 WAttr(ba, ACT_ID_PALETTE12, 0x0c);
1039 WAttr(ba, ACT_ID_PALETTE13, 0x0d);
1040 WAttr(ba, ACT_ID_PALETTE14, 0x0e);
1041 WAttr(ba, ACT_ID_PALETTE15, 0x0f);
1042
1043 vgar(ba, ACT_ADDRESS_RESET);
1044 if (md->DEP == 4)
1045 WAttr(ba, ACT_ID_ATTR_MODE_CNTL, 0x08);
1046 else
1047 WAttr(ba, ACT_ID_ATTR_MODE_CNTL, 0x09);
1048
1049 WAttr(ba, ACT_ID_OVERSCAN_COLOR, 0x00);
1050 WAttr(ba, ACT_ID_COLOR_PLANE_ENA, 0x0f);
1051 WAttr(ba, ACT_ID_HOR_PEL_PANNING, 0x00);
1052 WAttr(ba, ACT_ID_COLOR_SELECT, 0x00);
1053
1054 vgar(ba, ACT_ADDRESS_RESET);
1055 vgaw(ba, ACT_ADDRESS_W, 0x20);
1056
1057 vgaw(ba, VDAC_MASK, 0xff);
1058 /* probably some PLL timing stuff here. The value
1059 for 24bit was found by trial&error :-) */
1060 if (md->DEP < 16) {
1061 vgaw(ba, 0x83c6, ((0 & 7) << 5) );
1062 }
1063 else if (md->DEP == 16) {
1064 /* well... */
1065 vgaw(ba, 0x83c6, ((3 & 7) << 5) );
1066 }
1067 else if (md->DEP == 24) {
1068 vgaw(ba, 0x83c6, 0xe0);
1069 }
1070 vgaw(ba, VDAC_ADDRESS_W, 0x00);
1071
1072 if (md->DEP < 16) {
1073 short x = 256-17;
1074 unsigned char cl = 16;
1075 RZ3LoadPalette(gp, md->PAL, 0, 16);
1076 do {
1077 vgaw(ba, VDAC_DATA, (cl >> 2));
1078 vgaw(ba, VDAC_DATA, (cl >> 2));
1079 vgaw(ba, VDAC_DATA, (cl >> 2));
1080 cl++;
1081 } while (x-- > 0);
1082 }
1083
1084 if (md->DEP == 4) {
1085 {
1086 struct grf_bitblt bb = {
1087 GRFBBOPset,
1088 0, 0,
1089 0, 0,
1090 md->TX*4, 2*md->TY,
1091 EMPTY_ALPHA
1092 };
1093 RZ3BitBlit(gp, &bb);
1094 }
1095
1096 c = (unsigned short *)(ba + LM_OFFSET);
1097 c += 2 * md->FLo*32;
1098 c += 1;
1099 f = md->FData;
1100 for (z = md->FLo; z <= md->FHi; z++) {
1101 short y = md->FY-1;
1102 if (md->FX > 8){
1103 do {
1104 *c = *((const unsigned short *)f);
1105 c += 2;
1106 f += 2;
1107 } while (y-- > 0);
1108 } else {
1109 do {
1110 *c = (*f++) << 8;
1111 c += 2;
1112 } while (y-- > 0);
1113 }
1114
1115 c += 2 * (32-md->FY);
1116 }
1117 {
1118 unsigned long * pt = (unsigned long *) (ba + LM_OFFSET + PAT_MEM_OFF);
1119 unsigned long tmp = 0xffff0000;
1120 *pt++ = tmp;
1121 *pt = tmp;
1122 }
1123
1124 WSeq(ba, SEQ_ID_MAP_MASK, 3);
1125
1126 c = (unsigned short *)(ba + LM_OFFSET);
1127 c += (md->TX-6)*2;
1128 {
1129 /* it's show-time :-) */
1130 static unsigned short init_msg[6] = {
1131 0x520a, 0x450b, 0x540c, 0x490d, 0x4e0e, 0x410f
1132 };
1133 unsigned short * m = init_msg;
1134 short x = 5;
1135 do {
1136 *c = *m++;
1137 c += 2;
1138 } while (x-- > 0);
1139 }
1140
1141 return(1);
1142 } else if (md->DEP == 8) {
1143 struct grf_bitblt bb = {
1144 GRFBBOPset,
1145 0, 0,
1146 0, 0,
1147 md->TX, md->TY,
1148 0x0000
1149 };
1150 WSeq(ba, SEQ_ID_MAP_MASK, 0x0f);
1151
1152 RZ3BitBlit(gp, &bb);
1153
1154 xpan = 0;
1155 ypan = 0;
1156
1157 return(1);
1158 } else if (md->DEP == 16) {
1159 struct grf_bitblt bb = {
1160 GRFBBOPset,
1161 0, 0,
1162 0, 0,
1163 md->TX, md->TY,
1164 0x0000
1165 };
1166 WSeq(ba, SEQ_ID_MAP_MASK, 0x0f);
1167
1168 RZ3BitBlit16(gp, &bb);
1169
1170 xpan = 0;
1171 ypan = 0;
1172
1173 return(1);
1174 } else if (md->DEP == 24) {
1175 struct grf_bitblt bb = {
1176 GRFBBOPset,
1177 0, 0,
1178 0, 0,
1179 md->TX, md->TY,
1180 0x0000
1181 };
1182 WSeq(ba, SEQ_ID_MAP_MASK, 0x0f );
1183
1184 RZ3BitBlit24(gp, &bb );
1185
1186 xpan = 0;
1187 ypan = 0;
1188
1189 return 1;
1190 } else
1191 return(0);
1192 }
1193
1194 /* standard-palette definition */
1195
1196 unsigned char RZ3StdPalette[16*3] = {
1197 /* R G B */
1198 0, 0, 0,
1199 192,192,192,
1200 128, 0, 0,
1201 0,128, 0,
1202 0, 0,128,
1203 128,128, 0,
1204 0,128,128,
1205 128, 0,128,
1206 64, 64, 64, /* the higher 8 colors have more intensity for */
1207 255,255,255, /* compatibility with standard attributes */
1208 255, 0, 0,
1209 0,255, 0,
1210 0, 0,255,
1211 255,255, 0,
1212 0,255,255,
1213 255, 0,255
1214 };
1215
1216 /*
1217 * The following structures are examples for monitor-definitions. To make one
1218 * of your own, first use "DefineMonitor" and create the 8-bit or 16-bit
1219 * monitor-mode of your dreams. Then save it, and make a structure from the
1220 * values provided in the file DefineMonitor stored - the labels in the comment
1221 * above the structure definition show where to put what value.
1222 *
1223 * If you want to use your definition for the text-mode, you'll need to adapt
1224 * your 8-bit monitor-definition to the font you want to use. Be FX the width of
1225 * the font, then the following modifications have to be applied to your values:
1226 *
1227 * HBS = (HBS * 4) / FX
1228 * HSS = (HSS * 4) / FX
1229 * HSE = (HSE * 4) / FX
1230 * HBE = (HBE * 4) / FX
1231 * HT = (HT * 4) / FX
1232 *
1233 * Make sure your maximum width (MW) and height (MH) are even multiples of
1234 * the fonts' width and height.
1235 *
1236 * You may use definitons created by the old DefineMonitor, but you'll get
1237 * better results with the new DefineMonitor supplied along with the Retin Z3.
1238 */
1239
1240 /*
1241 * FQ FLG MW MH HBS HSS HSE HBE HT VBS VSS VSE VBE VT
1242 * Depth, PAL, TX, TY, XY,FontX, FontY, FontData, FLo, Fhi
1243 */
1244 #ifdef KFONT_8X11
1245 #define KERNEL_FONT kernel_font_8x11
1246 #define FY 11
1247 #define FX 8
1248 #else
1249 #define KERNEL_FONT kernel_font_8x8
1250 #define FY 8
1251 #define FX 8
1252 #endif
1253
1254
1255 static struct MonDef monitor_defs[] = {
1256 /* Text-mode definitions */
1257
1258 /* horizontal 31.5 kHz */
1259 { 50000000, 28, 640, 512, 81, 86, 93, 98, 95, 513, 513, 521, 535, 535,
1260 4, RZ3StdPalette, 80, 64, 5120, FX, FY, KERNEL_FONT, 32, 255},
1261
1262 /* horizontal 38kHz */
1263 { 75000000, 28, 768, 600, 97, 99,107,120,117, 601, 615, 625, 638, 638,
1264 4, RZ3StdPalette, 96, 75, 7200, FX, FY, KERNEL_FONT, 32, 255},
1265
1266 /* horizontal 64kHz */
1267 { 50000000, 24, 768, 600, 97,104,112,122,119, 601, 606, 616, 628, 628,
1268 4, RZ3StdPalette, 96, 75, 7200, FX, FY, KERNEL_FONT, 32, 255},
1269
1270 /* 8-bit gfx-mode definitions */
1271
1272 /* IMPORTANT: the "logical" screen size can be up to 2048x2048 pixels,
1273 independent from the "physical" screen size. If your code does NOT
1274 support panning, please adjust the "logical" screen sizes below to
1275 match the physical ones
1276 */
1277
1278 #ifdef RH_HARDWARECURSOR
1279
1280 /* 640 x 480, 8 Bit, 31862 Hz, 63 Hz */
1281 { 26000000, 0, 640, 480, 161,175,188,200,199, 481, 483, 491, 502, 502,
1282 8, RZ3StdPalette,1280,1024, 5120, FX, FY, KERNEL_FONT, 32, 255},
1283 /* This is the logical ^ ^ screen size */
1284
1285 /* 640 x 480, 8 Bit, 38366 Hz, 76 Hz */
1286 { 31000000, 0, 640, 480, 161,169,182,198,197, 481, 482, 490, 502, 502,
1287 8, RZ3StdPalette,1280,1024, 5120, FX, FY, KERNEL_FONT, 32, 255},
1288
1289 /* 800 x 600, 8 Bit, 38537 Hz, 61 Hz */
1290 { 39000000, 0, 800, 600, 201,211,227,249,248, 601, 603, 613, 628, 628,
1291 8, RZ3StdPalette,1280,1024, 5120, FX, FY, KERNEL_FONT, 32, 255},
1292
1293 /* 1024 x 768, 8 Bit, 63862 Hz, 79 Hz */
1294 { 82000000, 0, 1024, 768, 257,257,277,317,316, 769, 771, 784, 804, 804,
1295 8, RZ3StdPalette,1280,1024, 5120, FX, FY, KERNEL_FONT, 32, 255},
1296
1297 /* 1120 x 896, 8 Bit, 64000 Hz, 69 Hz */
1298 { 97000000, 0, 1120, 896, 281,283,306,369,368, 897, 898, 913, 938, 938,
1299 8, RZ3StdPalette,1280,1024, 5120, FX, FY, KERNEL_FONT, 32, 255},
1300
1301 /* 1152 x 910, 8 Bit, 76177 Hz, 79 Hz */
1302 {110000000, 0, 1152, 910, 289,310,333,357,356, 911, 923, 938, 953, 953,
1303 8, RZ3StdPalette,1280,1024, 5120, FX, FY, KERNEL_FONT, 32, 255},
1304
1305 /* 1184 x 848, 8 Bit, 73529 Hz, 82 Hz */
1306 {110000000, 0, 1184, 848, 297,319,342,370,369, 849, 852, 866, 888, 888,
1307 8, RZ3StdPalette,1280,1024, 5120, FX, FY, KERNEL_FONT, 32, 255},
1308
1309 /* 1280 x 1024, 8 Bit, 64516 Hz, 60 Hz */
1310 {104000000, 0, 1280,1024, 321,323,348,399,398,1025,1026,1043,1073,1073,
1311 8, RZ3StdPalette,1280,1024, 5120, FX, FY, KERNEL_FONT, 32, 255},
1312
1313 /*
1314 * WARNING: THE FOLLOWING MONITOR MODE EXCEEDS THE 110-MHz LIMIT THE PROCESSOR
1315 * HAS BEEN SPECIFIED FOR. USE AT YOUR OWN RISK (AND THINK ABOUT
1316 * MOUNTING SOME COOLING DEVICE AT THE PROCESSOR AND RAMDAC)!
1317 */
1318 /* 1280 x 1024, 8 Bit, 75436 Hz, 70 Hz */
1319 {121000000, 0, 1280,1024, 321,322,347,397,396,1025,1026,1043,1073,1073,
1320 8, RZ3StdPalette,1280,1024, 5120, FX, FY, KERNEL_FONT, 32, 255},
1321
1322
1323 /* 16-bit gfx-mode definitions */
1324
1325 /* 640 x 480, 16 Bit, 31795 Hz, 63 Hz */
1326 { 51000000, 0, 640, 480, 321,344,369,397,396, 481, 482, 490, 502, 502,
1327 16, 0,1280, 1024, 7200, FX, FY, KERNEL_FONT, 32, 255},
1328
1329 /* 800 x 600, 16 Bit, 38500 Hz, 61 Hz */
1330 { 77000000, 0, 800, 600, 401,418,449,496,495, 601, 602, 612, 628, 628,
1331 16, 0,1280, 1024, 7200, FX, FY, KERNEL_FONT, 32, 255},
1332
1333 /* 1024 x 768, 16 Bit, 42768 Hz, 53 Hz */
1334 {110000000, 0, 1024, 768, 513,514,554,639,638, 769, 770, 783, 804, 804,
1335 16, 0,1280, 1024, 7200, FX, FY, KERNEL_FONT, 32, 255},
1336
1337 /* 864 x 648, 16 Bit, 50369 Hz, 74 Hz */
1338 {109000000, 0, 864, 648, 433,434,468,537,536, 649, 650, 661, 678, 678,
1339 16, 0,1280, 1024, 7200, FX, FY, KERNEL_FONT, 32, 255},
1340
1341 /*
1342 * WARNING: THE FOLLOWING MONITOR MODE EXCEEDS THE 110-MHz LIMIT THE PROCESSOR
1343 * HAS BEEN SPECIFIED FOR. USE AT YOUR OWN RISK (AND THINK ABOUT
1344 * MOUNTING SOME COOLING DEVICE AT THE PROCESSOR AND RAMDAC)!
1345 */
1346 /* 1024 x 768, 16 Bit, 48437 Hz, 60 Hz */
1347 {124000000, 0, 1024, 768, 513,537,577,636,635, 769, 770, 783, 804, 804,
1348 16, 0,1280, 1024, 7200, FX, FY, KERNEL_FONT, 32, 255},
1349
1350
1351 /* 24-bit gfx-mode definitions */
1352
1353 /* 320 x 200, 24 Bit, 35060 Hz, 83 Hz d */
1354 { 46000000, 1, 320, 200, 241,268,287,324,323, 401, 405, 412, 418, 418,
1355 24, 0,1280, 1024, 7200, FX, FY, KERNEL_FONT, 32, 255},
1356
1357 /* 640 x 400, 24 Bit, 31404 Hz, 75 Hz */
1358 { 76000000, 0, 640, 400, 481,514,552,601,600, 401, 402, 409, 418, 418,
1359 24, 0,1280, 1024, 7200, FX, FY, KERNEL_FONT, 32, 255},
1360
1361 /* 724 x 482, 24 Bit, 36969 Hz, 73 Hz */
1362 {101000000, 0, 724, 482, 544,576,619,682,678, 483, 487, 495, 495, 504,
1363 24, 0,1280, 1024, 7200, FX, FY, KERNEL_FONT, 32, 255},
1364
1365 /* 800 x 600, 24 Bit, 37826 Hz, 60 Hz */
1366 {110000000, 0, 800, 600, 601,602,647,723,722, 601, 602, 612, 628, 628,
1367 24, 0,1280, 1024, 7200, FX, FY, KERNEL_FONT, 32, 255},
1368
1369 /* 800 x 600, 24 Bit, 43824 Hz, 69 Hz */
1370 {132000000, 0, 800, 600, 601,641,688,749,748, 601, 611, 621, 628, 628,
1371 24, 0,1280, 1024, 7200, FX, FY, KERNEL_FONT, 32, 255},
1372
1373 /*1024 x 768, 24 Bit, 32051 Hz, 79 Hz i */
1374 {110000000, 2, 1024, 768, 769,770,824,854,853, 385, 386, 392, 401, 401,
1375 24, 0,1280, 1024, 7200, FX, FY, KERNEL_FONT, 32, 255},
1376
1377 #else /* RH_HARDWARECURSOR */
1378
1379 /* 640 x 480, 8 Bit, 31862 Hz, 63 Hz */
1380 { 26000000, 0, 640, 480, 161,175,188,200,199, 481, 483, 491, 502, 502,
1381 8, RZ3StdPalette, 640, 480, 5120, FX, FY, KERNEL_FONT, 32, 255},
1382 /* This is the logical ^ ^ screen size */
1383
1384 /* 640 x 480, 8 Bit, 38366 Hz, 76 Hz */
1385 { 31000000, 0, 640, 480, 161,169,182,198,197, 481, 482, 490, 502, 502,
1386 8, RZ3StdPalette, 640, 480, 5120, FX, FY, KERNEL_FONT, 32, 255},
1387
1388 /* 800 x 600, 8 Bit, 38537 Hz, 61 Hz */
1389 { 39000000, 0, 800, 600, 201,211,227,249,248, 601, 603, 613, 628, 628,
1390 8, RZ3StdPalette, 800, 600, 5120, FX, FY, KERNEL_FONT, 32, 255},
1391
1392 /* 1024 x 768, 8 Bit, 63862 Hz, 79 Hz */
1393 { 82000000, 0, 1024, 768, 257,257,277,317,316, 769, 771, 784, 804, 804,
1394 8, RZ3StdPalette, 1024, 768, 5120, FX, FY, KERNEL_FONT, 32, 255},
1395
1396 /* 1120 x 896, 8 Bit, 64000 Hz, 69 Hz */
1397 { 97000000, 0, 1120, 896, 281,283,306,369,368, 897, 898, 913, 938, 938,
1398 8, RZ3StdPalette, 1120, 896, 5120, FX, FY, KERNEL_FONT, 32, 255},
1399
1400 /* 1152 x 910, 8 Bit, 76177 Hz, 79 Hz */
1401 {110000000, 0, 1152, 910, 289,310,333,357,356, 911, 923, 938, 953, 953,
1402 8, RZ3StdPalette, 1152, 910, 5120, FX, FY, KERNEL_FONT, 32, 255},
1403
1404 /* 1184 x 848, 8 Bit, 73529 Hz, 82 Hz */
1405 {110000000, 0, 1184, 848, 297,319,342,370,369, 849, 852, 866, 888, 888,
1406 8, RZ3StdPalette, 1184, 848, 5120, FX, FY, KERNEL_FONT, 32, 255},
1407
1408 /* 1280 x 1024, 8 Bit, 64516 Hz, 60 Hz */
1409 {104000000, 0, 1280,1024, 321,323,348,399,398,1025,1026,1043,1073,1073,
1410 8, RZ3StdPalette, 1280, 1024, 5120, FX, FY, KERNEL_FONT, 32, 255},
1411
1412 /*
1413 * WARNING: THE FOLLOWING MONITOR MODE EXCEEDS THE 110-MHz LIMIT THE PROCESSOR
1414 * HAS BEEN SPECIFIED FOR. USE AT YOUR OWN RISK (AND THINK ABOUT
1415 * MOUNTING SOME COOLING DEVICE AT THE PROCESSOR AND RAMDAC)!
1416 */
1417 /* 1280 x 1024, 8 Bit, 75436 Hz, 70 Hz */
1418 {121000000, 0, 1280,1024, 321,322,347,397,396,1025,1026,1043,1073,1073,
1419 8, RZ3StdPalette, 1280, 1024, 5120, FX, FY, KERNEL_FONT, 32, 255},
1420
1421
1422 /* 16-bit gfx-mode definitions */
1423
1424 /* 640 x 480, 16 Bit, 31795 Hz, 63 Hz */
1425 { 51000000, 0, 640, 480, 321,344,369,397,396, 481, 482, 490, 502, 502,
1426 16, 0, 640, 480, 7200, FX, FY, KERNEL_FONT, 32, 255},
1427
1428 /* 800 x 600, 16 Bit, 38500 Hz, 61 Hz */
1429 { 77000000, 0, 800, 600, 401,418,449,496,495, 601, 602, 612, 628, 628,
1430 16, 0, 800, 600, 7200, FX, FY, KERNEL_FONT, 32, 255},
1431
1432 /* 1024 x 768, 16 Bit, 42768 Hz, 53 Hz */
1433 {110000000, 0, 1024, 768, 513,514,554,639,638, 769, 770, 783, 804, 804,
1434 16, 0, 1024, 768, 7200, FX, FY, KERNEL_FONT, 32, 255},
1435
1436 /* 864 x 648, 16 Bit, 50369 Hz, 74 Hz */
1437 {109000000, 0, 864, 648, 433,434,468,537,536, 649, 650, 661, 678, 678,
1438 16, 0, 864, 648, 7200, FX, FY, KERNEL_FONT, 32, 255},
1439
1440 /*
1441 * WARNING: THE FOLLOWING MONITOR MODE EXCEEDS THE 110-MHz LIMIT THE PROCESSOR
1442 * HAS BEEN SPECIFIED FOR. USE AT YOUR OWN RISK (AND THINK ABOUT
1443 * MOUNTING SOME COOLING DEVICE AT THE PROCESSOR AND RAMDAC)!
1444 */
1445 /* 1024 x 768, 16 Bit, 48437 Hz, 60 Hz */
1446 {124000000, 0, 1024, 768, 513,537,577,636,635, 769, 770, 783, 804, 804,
1447 16, 0, 1024, 768, 7200, FX, FY, KERNEL_FONT, 32, 255},
1448
1449
1450 /* 24-bit gfx-mode definitions */
1451
1452 /* 320 x 200, 24 Bit, 35060 Hz, 83 Hz d */
1453 { 46000000, 1, 320, 200, 241,268,287,324,323, 401, 405, 412, 418, 418,
1454 24, 0, 320, 200, 7200, FX, FY, KERNEL_FONT, 32, 255},
1455
1456 /* 640 x 400, 24 Bit, 31404 Hz, 75 Hz */
1457 { 76000000, 0, 640, 400, 481,514,552,601,600, 401, 402, 409, 418, 418,
1458 24, 0, 640, 400, 7200, FX, FY, KERNEL_FONT, 32, 255},
1459
1460 /* 724 x 482, 24 Bit, 36969 Hz, 73 Hz */
1461 {101000000, 0, 724, 482, 544,576,619,682,678, 483, 487, 495, 495, 504,
1462 24, 0, 724, 482, 7200, FX, FY, KERNEL_FONT, 32, 255},
1463
1464 /* 800 x 600, 24 Bit, 37826 Hz, 60 Hz */
1465 {110000000, 0, 800, 600, 601,602,647,723,722, 601, 602, 612, 628, 628,
1466 24, 0, 800, 600, 7200, FX, FY, KERNEL_FONT, 32, 255},
1467
1468 /* 800 x 600, 24 Bit, 43824 Hz, 69 Hz */
1469 {132000000, 0, 800, 600, 601,641,688,749,748, 601, 611, 621, 628, 628,
1470 24, 0, 800, 600, 7200, FX, FY, KERNEL_FONT, 32, 255},
1471
1472 /*1024 x 768, 24 Bit, 32051 Hz, 79 Hz i */
1473 {110000000, 2, 1024, 768, 769,770,824,854,853, 385, 386, 392, 401, 401,
1474 24, 0, 1024, 768, 7200, FX, FY, KERNEL_FONT, 32, 255},
1475
1476 #endif /* RH_HARDWARECURSOR */
1477 };
1478 #undef KERNEL_FONT
1479 #undef FX
1480 #undef FY
1481
1482 static const char *monitor_descr[] = {
1483 #ifdef KFONT_8X11
1484 "80x46 (640x506) 31.5kHz",
1485 "96x54 (768x594) 38kHz",
1486 "96x54 (768x594) 64kHz",
1487 #else
1488 "80x64 (640x512) 31.5kHz",
1489 "96x75 (768x600) 38kHz",
1490 "96x75 (768x600) 64kHz",
1491 #endif
1492
1493 "GFX-8 (640x480) 31.5kHz",
1494 "GFX-8 (640x480) 38kHz",
1495 "GFX-8 (800x600) 38.5kHz",
1496 "GFX-8 (1024x768) 64kHz",
1497 "GFX-8 (1120x896) 64kHz",
1498 "GFX-8 (1152x910) 76kHz",
1499 "GFX-8 (1182x848) 73kHz",
1500 "GFX-8 (1280x1024) 64.5kHz",
1501 "GFX-8 (1280x1024) 75.5kHz ***EXCEEDS CHIP LIMIT!!!***",
1502
1503 "GFX-16 (640x480) 31.8kHz",
1504 "GFX-16 (800x600) 38.5kHz",
1505 "GFX-16 (1024x768) 42.8kHz",
1506 "GFX-16 (864x648) 50kHz",
1507 "GFX-16 (1024x768) 48.5kHz ***EXCEEDS CHIP LIMIT!!!***",
1508
1509 "GFX-24 (320x200 d) 35kHz",
1510 "GFX-24 (640x400) 31.4kHz",
1511 "GFX-24 (724x482) 37kHz",
1512 "GFX-24 (800x600) 38kHz",
1513 "GFX-24 (800x600) 44kHz ***EXCEEDS CHIP LIMIT!!!***",
1514 "GFX-24 (1024x768) 32kHz-i",
1515 };
1516
1517 int rh_mon_max = sizeof (monitor_defs)/sizeof (monitor_defs[0]);
1518
1519 /* patchable */
1520 int rh_default_mon = 0;
1521 int rh_default_gfx = 4;
1522
1523 static struct MonDef *current_mon; /* EVIL */
1524
1525 int rh_mode __P((struct grf_softc *, u_long, void *, u_long, int));
1526 void grfrhattach __P((struct device *, struct device *, void *));
1527 int grfrhprint __P((void *, const char *));
1528 int grfrhmatch __P((struct device *, void *, void *));
1529
1530 struct cfattach grfrh_ca = {
1531 sizeof(struct grf_softc), grfrhmatch, grfrhattach
1532 };
1533
1534 struct cfdriver grfrh_cd = {
1535 NULL, "grfrh", DV_DULL, NULL, 0
1536 };
1537
1538 static struct cfdata *cfdata;
1539
1540 int
1541 grfrhmatch(pdp, match, auxp)
1542 struct device *pdp;
1543 void *match, *auxp;
1544 {
1545 #ifdef RETINACONSOLE
1546 struct cfdata *cfp = match;
1547 static int rhconunit = -1;
1548 #endif
1549 struct zbus_args *zap;
1550
1551 zap = auxp;
1552
1553 if (amiga_realconfig == 0)
1554 #ifdef RETINACONSOLE
1555 if (rhconunit != -1)
1556 #endif
1557 return(0);
1558 if (zap->manid != 18260 ||
1559 ((zap->prodid != 16) && (zap->prodid != 19)))
1560 return(0);
1561 #ifdef RETINACONSOLE
1562 if (amiga_realconfig == 0 || rhconunit != cfp->cf_unit) {
1563 #endif
1564 if ((unsigned)rh_default_mon >= rh_mon_max ||
1565 monitor_defs[rh_default_mon].DEP == 8)
1566 rh_default_mon = 0;
1567 current_mon = monitor_defs + rh_default_mon;
1568 if (rh_mondefok(current_mon) == 0)
1569 return(0);
1570 #ifdef RETINACONSOLE
1571 if (amiga_realconfig == 0) {
1572 rhconunit = cfp->cf_unit;
1573 cfdata = cfp;
1574 }
1575 }
1576 #endif
1577 return(1);
1578 }
1579
1580 void
1581 grfrhattach(pdp, dp, auxp)
1582 struct device *pdp, *dp;
1583 void *auxp;
1584 {
1585 static struct grf_softc congrf;
1586 struct zbus_args *zap;
1587 struct grf_softc *gp;
1588
1589 zap = auxp;
1590
1591 if (dp == NULL)
1592 gp = &congrf;
1593 else
1594 gp = (struct grf_softc *)dp;
1595 if (dp != NULL && congrf.g_regkva != 0) {
1596 /*
1597 * inited earlier, just copy (not device struct)
1598 */
1599 bcopy(&congrf.g_display, &gp->g_display,
1600 (char *)&gp[1] - (char *)&gp->g_display);
1601 } else {
1602 gp->g_regkva = (volatile caddr_t)zap->va;
1603 gp->g_fbkva = (volatile caddr_t)zap->va + LM_OFFSET;
1604 gp->g_unit = GRF_RETINAIII_UNIT;
1605 gp->g_mode = rh_mode;
1606 gp->g_conpri = grfrh_cnprobe();
1607 gp->g_flags = GF_ALIVE;
1608 grfrh_iteinit(gp);
1609 (void)rh_load_mon(gp, current_mon);
1610 }
1611 if (dp != NULL)
1612 printf("\n");
1613 /*
1614 * attach grf
1615 */
1616 amiga_config_found(cfdata, &gp->g_device, gp, grfrhprint);
1617 }
1618
1619 int
1620 grfrhprint(auxp, pnp)
1621 void *auxp;
1622 const char *pnp;
1623 {
1624 if (pnp)
1625 printf("ite at %s", pnp);
1626 return(UNCONF);
1627 }
1628
1629 int
1630 rh_getvmode(gp, vm)
1631 struct grf_softc *gp;
1632 struct grfvideo_mode *vm;
1633 {
1634 struct MonDef *md;
1635
1636 if (vm->mode_num && vm->mode_num > rh_mon_max)
1637 return(EINVAL);
1638
1639 if (! vm->mode_num)
1640 vm->mode_num = (current_mon - monitor_defs) + 1;
1641
1642 md = monitor_defs + (vm->mode_num - 1);
1643 strncpy (vm->mode_descr, monitor_descr[vm->mode_num - 1],
1644 sizeof (vm->mode_descr));
1645 vm->pixel_clock = md->FQ;
1646 vm->disp_width = (md->DEP == 4) ? md->MW : md->TX;
1647 vm->disp_height = (md->DEP == 4) ? md->MH : md->TY;
1648 vm->depth = md->DEP;
1649
1650 /*
1651 * From observation of the monitor definition table above, I guess
1652 * that the horizontal timings are in units of longwords. Hence, I
1653 * get the pixels by multiplication with 32 and division by the depth.
1654 * The text modes, apparently marked by depth == 4, are even more
1655 * wierd. According to a comment above, they are computed from a
1656 * depth==8 mode thats for us: * 32 / 8) by applying another factor
1657 * of 4 / font width.
1658 * Reverse applying the latter formula most of the constants cancel
1659 * themselves and we are left with a nice (* font width).
1660 * That is, internal timings are in units of longwords for graphics
1661 * modes, or in units of characters widths for text modes.
1662 * We better don't WRITE modes until this has been real live checked.
1663 * - Ignatios Souvatzis
1664 */
1665
1666 if (md->DEP == 4) {
1667 vm->hblank_start = md->HBS * 32 / md->DEP;
1668 vm->hblank_stop = md->HBE * 32 / md->DEP;
1669 vm->hsync_start = md->HSS * 32 / md->DEP;
1670 vm->hsync_stop = md->HSE * 32 / md->DEP;
1671 vm->htotal = md->HT * 32 / md->DEP;
1672 } else {
1673 vm->hblank_start = md->HBS * md->FX;
1674 vm->hblank_stop = md->HBE * md->FX;
1675 vm->hsync_start = md->HSS * md->FX;
1676 vm->hsync_stop = md->HSE * md->FX;
1677 vm->htotal = md->HT * md->FX;
1678 }
1679
1680 vm->vblank_start = md->VBS;
1681 vm->vblank_stop = md->VBE;
1682 vm->vsync_start = md->VSS;
1683 vm->vsync_stop = md->VSE;
1684 vm->vtotal = md->VT;
1685
1686 return(0);
1687 }
1688
1689
1690 int
1691 rh_setvmode(gp, mode, type)
1692 struct grf_softc *gp;
1693 unsigned mode;
1694 enum mode_type type;
1695 {
1696 int error;
1697
1698 if (!mode || mode > rh_mon_max)
1699 return(EINVAL);
1700
1701 if ((type == MT_TXTONLY && monitor_defs[mode-1].DEP != 4)
1702 || (type == MT_GFXONLY && monitor_defs[mode-1].DEP == 4))
1703 return(EINVAL);
1704
1705 current_mon = monitor_defs + (mode - 1);
1706
1707 error = rh_load_mon (gp, current_mon) ? 0 : EINVAL;
1708
1709 return(error);
1710 }
1711
1712
1713 /*
1714 * Change the mode of the display.
1715 * Return a UNIX error number or 0 for success.
1716 */
1717 int
1718 rh_mode(gp, cmd, arg, a2, a3)
1719 register struct grf_softc *gp;
1720 u_long cmd;
1721 void *arg;
1722 u_long a2;
1723 int a3;
1724 {
1725 switch (cmd) {
1726 case GM_GRFON:
1727 rh_setvmode (gp, rh_default_gfx + 1, MT_GFXONLY);
1728 return(0);
1729
1730 case GM_GRFOFF:
1731 rh_setvmode (gp, rh_default_mon + 1, MT_TXTONLY);
1732 return(0);
1733
1734 case GM_GRFCONFIG:
1735 return(0);
1736
1737 case GM_GRFGETVMODE:
1738 return(rh_getvmode (gp, (struct grfvideo_mode *) arg));
1739
1740 case GM_GRFSETVMODE:
1741 return(rh_setvmode (gp, *(unsigned *) arg,
1742 (gp->g_flags & GF_GRFON) ? MT_GFXONLY : MT_TXTONLY));
1743
1744 case GM_GRFGETNUMVM:
1745 *(int *)arg = rh_mon_max;
1746 return(0);
1747
1748 #ifdef BANKEDDEVPAGER
1749 case GM_GRFGETBANK:
1750 case GM_GRFGETCURBANK:
1751 case GM_GRFSETBANK:
1752 return(EINVAL);
1753 #endif
1754 case GM_GRFIOCTL:
1755 return(rh_ioctl (gp, a2, arg));
1756
1757 default:
1758 break;
1759 }
1760
1761 return(EINVAL);
1762 }
1763
1764 int
1765 rh_ioctl (gp, cmd, data)
1766 register struct grf_softc *gp;
1767 u_long cmd;
1768 void *data;
1769 {
1770 switch (cmd) {
1771 #ifdef RH_HARDWARECURSOR
1772 case GRFIOCGSPRITEPOS:
1773 return(rh_getspritepos (gp, (struct grf_position *) data));
1774
1775 case GRFIOCSSPRITEPOS:
1776 return(rh_setspritepos (gp, (struct grf_position *) data));
1777
1778 case GRFIOCSSPRITEINF:
1779 return(rh_setspriteinfo (gp, (struct grf_spriteinfo *) data));
1780
1781 case GRFIOCGSPRITEINF:
1782 return(rh_getspriteinfo (gp, (struct grf_spriteinfo *) data));
1783
1784 case GRFIOCGSPRITEMAX:
1785 return(rh_getspritemax (gp, (struct grf_position *) data));
1786 #else /* RH_HARDWARECURSOR */
1787 case GRFIOCGSPRITEPOS:
1788 case GRFIOCSSPRITEPOS:
1789 case GRFIOCSSPRITEINF:
1790 case GRFIOCGSPRITEMAX:
1791 break;
1792 #endif /* RH_HARDWARECURSOR */
1793
1794 case GRFIOCGETCMAP:
1795 return(rh_getcmap (gp, (struct grf_colormap *) data));
1796
1797 case GRFIOCPUTCMAP:
1798 return(rh_putcmap (gp, (struct grf_colormap *) data));
1799
1800 case GRFIOCBITBLT:
1801 return(rh_bitblt (gp, (struct grf_bitblt *) data));
1802
1803 case GRFIOCBLANK:
1804 return (rh_blank(gp, (int *)data));
1805 }
1806
1807 return(EINVAL);
1808 }
1809
1810
1811 int
1812 rh_getcmap (gfp, cmap)
1813 struct grf_softc *gfp;
1814 struct grf_colormap *cmap;
1815 {
1816 volatile unsigned char *ba;
1817 u_char red[256], green[256], blue[256], *rp, *gp, *bp;
1818 short x;
1819 int error;
1820
1821 if (cmap->count == 0 || cmap->index >= 256)
1822 return 0;
1823
1824 if (cmap->index + cmap->count > 256)
1825 cmap->count = 256 - cmap->index;
1826
1827 ba = gfp->g_regkva;
1828 /* first read colors out of the chip, then copyout to userspace */
1829 vgaw (ba, VDAC_ADDRESS_W, cmap->index);
1830 x = cmap->count - 1;
1831 rp = red + cmap->index;
1832 gp = green + cmap->index;
1833 bp = blue + cmap->index;
1834 do {
1835 *rp++ = vgar (ba, VDAC_DATA) << 2;
1836 *gp++ = vgar (ba, VDAC_DATA) << 2;
1837 *bp++ = vgar (ba, VDAC_DATA) << 2;
1838 } while (x-- > 0);
1839
1840 if (!(error = copyout (red + cmap->index, cmap->red, cmap->count))
1841 && !(error = copyout (green + cmap->index, cmap->green, cmap->count))
1842 && !(error = copyout (blue + cmap->index, cmap->blue, cmap->count)))
1843 return(0);
1844
1845 return(error);
1846 }
1847
1848 int
1849 rh_putcmap (gfp, cmap)
1850 struct grf_softc *gfp;
1851 struct grf_colormap *cmap;
1852 {
1853 volatile unsigned char *ba;
1854 u_char red[256], green[256], blue[256], *rp, *gp, *bp;
1855 short x;
1856 int error;
1857
1858 if (cmap->count == 0 || cmap->index >= 256)
1859 return(0);
1860
1861 if (cmap->index + cmap->count > 256)
1862 cmap->count = 256 - cmap->index;
1863
1864 /* first copy the colors into kernelspace */
1865 if (!(error = copyin (cmap->red, red + cmap->index, cmap->count))
1866 && !(error = copyin (cmap->green, green + cmap->index, cmap->count))
1867 && !(error = copyin (cmap->blue, blue + cmap->index, cmap->count))) {
1868 /* argl.. LoadPalette wants a different format, so do it like with
1869 * Retina2.. */
1870 ba = gfp->g_regkva;
1871 vgaw (ba, VDAC_ADDRESS_W, cmap->index);
1872 x = cmap->count - 1;
1873 rp = red + cmap->index;
1874 gp = green + cmap->index;
1875 bp = blue + cmap->index;
1876 do {
1877 vgaw (ba, VDAC_DATA, *rp++ >> 2);
1878 vgaw (ba, VDAC_DATA, *gp++ >> 2);
1879 vgaw (ba, VDAC_DATA, *bp++ >> 2);
1880 } while (x-- > 0);
1881 return(0);
1882 }
1883 else
1884 return(error);
1885 }
1886
1887 int
1888 rh_getspritepos (gp, pos)
1889 struct grf_softc *gp;
1890 struct grf_position *pos;
1891 {
1892 volatile unsigned char *acm = gp->g_regkva + ACM_OFFSET;
1893
1894 pos->x = acm[ACM_CURSOR_POSITION + 0] +
1895 (acm[ACM_CURSOR_POSITION + 1] << 8);
1896 pos->y = acm[ACM_CURSOR_POSITION + 2] +
1897 (acm[ACM_CURSOR_POSITION + 3] << 8);
1898
1899 pos->x += xpan;
1900 pos->y += ypan;
1901
1902 return(0);
1903 }
1904
1905 int
1906 rh_setspritepos (gp, pos)
1907 struct grf_softc *gp;
1908 struct grf_position *pos;
1909 {
1910 RZ3SetHWCloc (gp, pos->x, pos->y);
1911 return(0);
1912 }
1913
1914 int
1915 rh_getspriteinfo (gp, info)
1916 struct grf_softc *gp;
1917 struct grf_spriteinfo *info;
1918 {
1919 volatile unsigned char *ba, *fb;
1920
1921 ba = gp->g_regkva;
1922 fb = gp->g_fbkva;
1923 if (info->set & GRFSPRSET_ENABLE)
1924 info->enable = RSeq (ba, SEQ_ID_CURSOR_CONTROL) & 0x01;
1925 if (info->set & GRFSPRSET_POS)
1926 rh_getspritepos (gp, &info->pos);
1927 if (info->set & GRFSPRSET_HOT) {
1928 info->hot.x = RSeq (ba, SEQ_ID_CURSOR_X_INDEX) & 0x3f;
1929 info->hot.y = RSeq (ba, SEQ_ID_CURSOR_Y_INDEX) & 0x7f;
1930 }
1931 if (info->set & GRFSPRSET_CMAP) {
1932 struct grf_colormap cmap;
1933 int index;
1934 cmap.index = 0;
1935 cmap.count = 256;
1936 rh_getcmap (gp, &cmap);
1937 index = RSeq (ba, SEQ_ID_CURSOR_COLOR0);
1938 info->cmap.red[0] = cmap.red[index];
1939 info->cmap.green[0] = cmap.green[index];
1940 info->cmap.blue[0] = cmap.blue[index];
1941 index = RSeq (ba, SEQ_ID_CURSOR_COLOR1);
1942 info->cmap.red[1] = cmap.red[index];
1943 info->cmap.green[1] = cmap.green[index];
1944 info->cmap.blue[1] = cmap.blue[index];
1945 }
1946 if (info->set & GRFSPRSET_SHAPE) {
1947 u_char image[128], mask[128];
1948 volatile u_long *hwp;
1949 u_char *imp, *mp;
1950 short row;
1951
1952 /* sprite bitmap is WEIRD in this chip.. see grf_rhvar.h
1953 * for an explanation. To convert to "our" format, the
1954 * following holds:
1955 * col2 = !image & mask
1956 * col1 = image & mask
1957 * transp = !mask
1958 * and thus:
1959 * image = col1
1960 * mask = col1 | col2
1961 * hope I got these bool-eqs right below..
1962 */
1963
1964 #ifdef RH_64BIT_SPRITE
1965 info->size.x = 64;
1966 info->size.y = 64;
1967 for (row = 0, hwp = (u_long *)(ba + LM_OFFSET + HWC_MEM_OFF),
1968 mp = mask, imp = image;
1969 row < 64;
1970 row++) {
1971 u_long bp10, bp20, bp11, bp21;
1972 bp10 = *hwp++;
1973 bp20 = *hwp++;
1974 bp11 = *hwp++;
1975 bp21 = *hwp++;
1976 M2I (bp10);
1977 M2I (bp20);
1978 M2I (bp11);
1979 M2I (bp21);
1980 *imp++ = (~bp10) & bp11;
1981 *imp++ = (~bp20) & bp21;
1982 *mp++ = (~bp10) | (bp10 & ~bp11);
1983 *mp++ = (~bp20) & (bp20 & ~bp21);
1984 }
1985 #else
1986 info->size.x = 32;
1987 info->size.y = 32;
1988 for (row = 0, hwp = (u_long *)(ba + LM_OFFSET + HWC_MEM_OFF),
1989 mp = mask, imp = image;
1990 row < 32;
1991 row++) {
1992 u_long bp10, bp11;
1993 bp10 = *hwp++;
1994 bp11 = *hwp++;
1995 M2I (bp10);
1996 M2I (bp11);
1997 *imp++ = (~bp10) & bp11;
1998 *mp++ = (~bp10) | (bp10 & ~bp11);
1999 }
2000 #endif
2001 copyout (image, info->image, sizeof (image));
2002 copyout (mask, info->mask, sizeof (mask));
2003 }
2004 return(0);
2005 }
2006
2007 int
2008 rh_setspriteinfo (gp, info)
2009 struct grf_softc *gp;
2010 struct grf_spriteinfo *info;
2011 {
2012 volatile unsigned char *ba, *fb;
2013 #if 0
2014 u_char control;
2015 #endif
2016
2017 ba = gp->g_regkva;
2018 fb = gp->g_fbkva;
2019
2020 if (info->set & GRFSPRSET_SHAPE) {
2021 /*
2022 * For an explanation of these weird actions here, see above
2023 * when reading the shape. We set the shape directly into
2024 * the video memory, there's no reason to keep 1k on the
2025 * kernel stack just as template
2026 */
2027 u_char *image, *mask;
2028 volatile u_long *hwp;
2029 u_char *imp, *mp;
2030 short row;
2031
2032 #ifdef RH_64BIT_SPRITE
2033 if (info->size.y > 64)
2034 info->size.y = 64;
2035 if (info->size.x > 64)
2036 info->size.x = 64;
2037 #else
2038 if (info->size.y > 32)
2039 info->size.y = 32;
2040 if (info->size.x > 32)
2041 info->size.x = 32;
2042 #endif
2043
2044 if (info->size.x < 32)
2045 info->size.x = 32;
2046
2047 image = malloc(HWC_MEM_SIZE, M_TEMP, M_WAITOK);
2048 mask = image + HWC_MEM_SIZE/2;
2049
2050 copyin(info->image, image, info->size.y * info->size.x / 8);
2051 copyin(info->mask, mask, info->size.y * info->size.x / 8);
2052
2053 hwp = (u_long *)(ba + LM_OFFSET + HWC_MEM_OFF);
2054
2055 /*
2056 * setting it is slightly more difficult, because we can't
2057 * force the application to not pass a *smaller* than
2058 * supported bitmap
2059 */
2060
2061 for (row = 0, mp = mask, imp = image;
2062 row < info->size.y;
2063 row++) {
2064 u_long im1, im2, m1, m2;
2065
2066 im1 = *(unsigned long *)imp;
2067 imp += 4;
2068 m1 = *(unsigned long *)mp;
2069 mp += 4;
2070 #ifdef RH_64BIT_SPRITE
2071 if (info->size.x > 32) {
2072 im2 = *(unsigned long *)imp;
2073 imp += 4;
2074 m2 = *(unsigned long *)mp;
2075 mp += 4;
2076 }
2077 else
2078 #endif
2079 im2 = m2 = 0;
2080
2081 M2I(im1);
2082 M2I(im2);
2083 M2I(m1);
2084 M2I(m2);
2085
2086 *hwp++ = ~m1;
2087 #ifdef RH_64BIT_SPRITE
2088 *hwp++ = ~m2;
2089 #endif
2090 *hwp++ = m1 & im1;
2091 #ifdef RH_64BIT_SPRITE
2092 *hwp++ = m2 & im2;
2093 #endif
2094 }
2095 #ifdef RH_64BIT_SPRITE
2096 for (; row < 64; row++) {
2097 *hwp++ = 0xffffffff;
2098 *hwp++ = 0xffffffff;
2099 *hwp++ = 0x00000000;
2100 *hwp++ = 0x00000000;
2101 }
2102 #else
2103 for (; row < 32; row++) {
2104 *hwp++ = 0xffffffff;
2105 *hwp++ = 0x00000000;
2106 }
2107 #endif
2108
2109 free(image, M_TEMP);
2110 RZ3SetupHWC(gp, 1, 0, 0, 0, 0);
2111 }
2112 if (info->set & GRFSPRSET_CMAP) {
2113 /* hey cheat a bit here.. XXX */
2114 WSeq(ba, SEQ_ID_CURSOR_COLOR0, 0);
2115 WSeq(ba, SEQ_ID_CURSOR_COLOR1, 1);
2116 }
2117 if (info->set & GRFSPRSET_ENABLE) {
2118 #if 0
2119 if (info->enable)
2120 control = 0x85;
2121 else
2122 control = 0;
2123 WSeq(ba, SEQ_ID_CURSOR_CONTROL, control);
2124 #endif
2125 }
2126 if (info->set & GRFSPRSET_POS)
2127 rh_setspritepos(gp, &info->pos);
2128 if (info->set & GRFSPRSET_HOT) {
2129 WSeq(ba, SEQ_ID_CURSOR_X_INDEX, info->hot.x & 0x3f);
2130 WSeq(ba, SEQ_ID_CURSOR_Y_INDEX, info->hot.y & 0x7f);
2131 }
2132
2133 return(0);
2134 }
2135
2136 int
2137 rh_getspritemax (gp, pos)
2138 struct grf_softc *gp;
2139 struct grf_position *pos;
2140 {
2141 #ifdef RH_64BIT_SPRITE
2142 pos->x = 64;
2143 pos->y = 64;
2144 #else
2145 pos->x = 32;
2146 pos->y = 32;
2147 #endif
2148
2149 return(0);
2150 }
2151
2152
2153 int
2154 rh_bitblt (gp, bb)
2155 struct grf_softc *gp;
2156 struct grf_bitblt *bb;
2157 {
2158 struct MonDef *md = (struct MonDef *)gp->g_data;
2159 if (md->DEP <= 8)
2160 RZ3BitBlit(gp, bb);
2161 else if (md->DEP <= 16)
2162 RZ3BitBlit16(gp, bb);
2163 else
2164 RZ3BitBlit24(gp, bb);
2165
2166 return(0);
2167 }
2168
2169
2170 int
2171 rh_blank(gp, on)
2172 struct grf_softc *gp;
2173 int *on;
2174 {
2175 struct MonDef *md = (struct MonDef *)gp->g_data;
2176 int r;
2177
2178 r = 0x01 | ((md->FLG & MDF_CLKDIV2)/ MDF_CLKDIV2 * 8);
2179
2180 WSeq(gp->g_regkva, SEQ_ID_CLOCKING_MODE, *on > 0 ? r : 0x21);
2181
2182 return(0);
2183 }
2184
2185 #endif /* NGRF */
2186