Home | History | Annotate | Line # | Download | only in dev
grf_rt.c revision 1.7
      1  1.6  chopps /*
      2  1.7  chopps  *	$Id: grf_rt.c,v 1.7 1994/02/13 21:10:27 chopps Exp $
      3  1.6  chopps  */
      4  1.6  chopps 
      5  1.1      mw #include "grf.h"
      6  1.1      mw #if NGRF > 0
      7  1.1      mw 
      8  1.1      mw /* Graphics routines for the Retina board,
      9  1.1      mw    using the NCR 77C22E+ VGA controller. */
     10  1.1      mw 
     11  1.4      mw #include <sys/param.h>
     12  1.4      mw #include <sys/errno.h>
     13  1.4      mw #include <sys/ioctl.h>
     14  1.7  chopps #include <amiga/dev/grfioctl.h>
     15  1.7  chopps #include <amiga/dev/grfvar.h>
     16  1.7  chopps #include <amiga/dev/grf_rtreg.h>
     17  1.4      mw #include <machine/cpu.h>
     18  1.7  chopps #include <amiga/dev/device.h>
     19  1.1      mw 
     20  1.1      mw extern caddr_t ZORRO2ADDR;
     21  1.1      mw 
     22  1.1      mw /* NOTE: this driver for the MacroSystem Retina board was only possible,
     23  1.1      mw          because MacroSystem provided information about the pecularities
     24  1.1      mw          of the board. THANKS! Competition in Europe among gfx board
     25  1.1      mw          manufacturers is rather tough, so Lutz Vieweg, who wrote the
     26  1.1      mw          initial driver, has made an agreement with MS not to document
     27  1.1      mw          the driver source (see also his Copyright disclaimer below).
     28  1.1      mw          -> ALL comments after
     29  1.1      mw 	 -> "/* -------------- START OF CODE -------------- * /"
     30  1.1      mw 	 -> have been added by myself (mw) from studying the publically
     31  1.1      mw 	 -> available "NCR 77C22E+" Data Manual
     32  1.1      mw 
     33  1.1      mw 	 Lutz' original driver source (without any of my comments) is
     34  1.1      mw 	 available on request. */
     35  1.1      mw 
     36  1.1      mw 
     37  1.1      mw /* This code offers low-level routines to access the Retina graphics-board
     38  1.1      mw    manufactured by MS MacroSystem GmbH from within NetBSD for the Amiga.
     39  1.1      mw    No warranties for any kind of function at all - this code may crash
     40  1.1      mw    your hardware and scratch your harddisk.
     41  1.1      mw    Use at your own risk.
     42  1.1      mw    Freely distributable.
     43  1.1      mw 
     44  1.1      mw    Written by Lutz Vieweg 07/93
     45  1.1      mw 
     46  1.1      mw    Thanks to MacroSystem for providing me with the neccessary information
     47  1.1      mw    to create theese routines. The sparse documentation of this code
     48  1.1      mw    results from the agreements between MS and me.
     49  1.1      mw */
     50  1.1      mw 
     51  1.1      mw extern unsigned char kernel_font_width, kernel_font_height;
     52  1.1      mw extern unsigned char kernel_font_lo, kernel_font_hi;
     53  1.1      mw extern unsigned char kernel_font[];
     54  1.1      mw 
     55  1.1      mw 
     56  1.1      mw #define MDF_DBL 1
     57  1.1      mw #define MDF_LACE 2
     58  1.1      mw #define MDF_CLKDIV2 4
     59  1.1      mw 
     60  1.1      mw 
     61  1.1      mw /* standard-palette definition */
     62  1.1      mw 
     63  1.1      mw unsigned char NCRStdPalette[16*3] = {
     64  1.1      mw /*   R   G   B  */
     65  1.1      mw 	  0,  0,  0,
     66  1.1      mw 	192,192,192,
     67  1.1      mw 	128,  0,  0,
     68  1.1      mw 	  0,128,  0,
     69  1.1      mw 	  0,  0,128,
     70  1.1      mw 	128,128,  0,
     71  1.1      mw 	  0,128,128,
     72  1.1      mw 	128,  0,128,
     73  1.1      mw 	 64, 64, 64, /* the higher 8 colors have more intensity for  */
     74  1.1      mw 	255,255,255, /* compatibility with standard attributes       */
     75  1.1      mw 	255,  0,  0,
     76  1.1      mw 	  0,255,  0,
     77  1.1      mw 	  0,  0,255,
     78  1.1      mw 	255,255,  0,
     79  1.1      mw 	  0,255,255,
     80  1.1      mw 	255,  0,255
     81  1.1      mw };
     82  1.1      mw 
     83  1.1      mw 
     84  1.1      mw /* The following structures are examples for monitor-definitions. To make one
     85  1.1      mw    of your own, first use "DefineMonitor" and create the 8-bit monitor-mode of
     86  1.1      mw    your dreams. Then save it, and make a structure from the values provided in
     87  1.1      mw    the file DefineMonitor stored - the labels in the comment above the
     88  1.1      mw    structure definition show where to put what value.
     89  1.1      mw 
     90  1.1      mw    Then you'll need to adapt your monitor-definition to the font you want to
     91  1.1      mw    use. Be FX the width of the font, then the following modifications have to
     92  1.1      mw    be applied to your values:
     93  1.1      mw 
     94  1.1      mw    HBS = (HBS * 4) / FX
     95  1.1      mw    HSS = (HSS * 4) / FX
     96  1.1      mw    HSE = (HSE * 4) / FX
     97  1.1      mw    HBE = (HBE * 4) / FX
     98  1.1      mw    HT  = (HT  * 4) / FX
     99  1.1      mw 
    100  1.1      mw    Make sure your maximum width (MW) and height (MH) are even multiples of
    101  1.1      mw    the fonts' width and height.
    102  1.1      mw */
    103  1.1      mw 
    104  1.1      mw #if 0
    105  1.1      mw /* horizontal 31.5 kHz */
    106  1.1      mw 
    107  1.1      mw /*                                      FQ     FLG    MW   MH   HBS HSS HSE HBE  HT  VBS  VSS  VSE  VBE   VT  */
    108  1.1      mw    struct MonDef MON_640_512_60  = { 50000000,  28,  640, 512,   81, 86, 93, 98, 95, 513, 513, 521, 535, 535,
    109  1.1      mw    /* Depth,           PAL, TX,  TY,    XY,FontX, FontY,    FontData,  FLo,  Fhi */
    110  1.1      mw           4, NCRStdPalette, 80,  64,  5120,    8,     8, kernel_font,   32,  255};
    111  1.1      mw 
    112  1.4      mw  struct MonDef MON_640_480_62_G  = { 50000000,   4,  640, 480,  161,171,184,196,195, 481, 484, 492, 502, 502,
    113  1.4      mw           8, NCRStdPalette,640,480,  5120,    8,     8, kernel_font,   32,  255};
    114  1.4      mw /* Enter higher values here ^   ^ for panning! */
    115  1.4      mw 
    116  1.1      mw /* horizontal 38kHz */
    117  1.1      mw 
    118  1.1      mw    struct MonDef MON_768_600_60  = { 75000000,  28,  768, 600,   97, 99,107,120,117, 601, 615, 625, 638, 638,
    119  1.1      mw           4, NCRStdPalette, 96,  75,  7200,    8,     8, kernel_font,   32,  255};
    120  1.1      mw 
    121  1.1      mw /* horizontal 64kHz */
    122  1.1      mw 
    123  1.1      mw    struct MonDef MON_768_600_80  = { 50000000, 24,  768, 600,   97,104,112,122,119, 601, 606, 616, 628, 628,
    124  1.1      mw           4, NCRStdPalette, 96,  75,  7200,    8,     8, kernel_font,   32,  255};
    125  1.1      mw 
    126  1.1      mw    struct MonDef MON_1024_768_80 = { 90000000, 24, 1024, 768,  129,130,141,172,169, 769, 770, 783, 804, 804,
    127  1.1      mw           4, NCRStdPalette,128,  96, 12288,    8,     8, kernel_font,   32,  255};
    128  1.4      mw 
    129  1.4      mw /*                                     FQ     FLG    MW   MH   HBS HSS HSE HBE  HT  VBS  VSS  VSE  VBE   VT  */
    130  1.4      mw  struct MonDef MON_1024_768_80_G = { 90000000, 0,  1024, 768,  257,258,280,344,343, 769, 770, 783, 804, 804,
    131  1.4      mw           8, NCRStdPalette, 1024, 768, 12288,    8,     8, kernel_font,   32,  255};
    132  1.1      mw 
    133  1.1      mw    struct MonDef MON_1024_1024_59= { 90000000, 24, 1024,1024,  129,130,141,173,170,1025,1059,1076,1087,1087,
    134  1.1      mw           4, NCRStdPalette,128, 128, 16384,    8,     8, kernel_font,   32,  255};
    135  1.1      mw 
    136  1.1      mw /* WARNING: THE FOLLOWING MONITOR MODES EXCEED THE 90-MHz LIMIT THE PROCESSOR
    137  1.1      mw             HAS BEEN SPECIFIED FOR. USE AT YOUR OWN RISK (AND THINK ABOUT
    138  1.1      mw             MOUNTING SOME COOLING DEVICE AT THE PROCESSOR AND RAMDAC)!     */
    139  1.1      mw 
    140  1.1      mw    struct MonDef MON_1280_1024_60= {110000000,  24, 1280,1024,  161,162,176,211,208,1025,1026,1043,1073,1073,
    141  1.1      mw           4, NCRStdPalette,160, 128, 20480,    8,     8, kernel_font,   32,  255};
    142  1.1      mw 
    143  1.4      mw  struct MonDef MON_1280_1024_60_G= {110000000,   0, 1280,1024,  321,322,349,422,421,1025,1026,1043,1073,1073,
    144  1.4      mw           8, NCRStdPalette,1280,1024, 20480,    8,     8, kernel_font,   32,  255};
    145  1.4      mw 
    146  1.1      mw /* horizontal 75kHz */
    147  1.1      mw 
    148  1.1      mw    struct MonDef MON_1280_1024_69= {120000000,  24, 1280,1024,  161,162,175,200,197,1025,1026,1043,1073,1073,
    149  1.1      mw           4, NCRStdPalette,160, 128, 20480,    8,     8, kernel_font,   32,  255};
    150  1.1      mw 
    151  1.1      mw #else
    152  1.1      mw 
    153  1.1      mw struct MonDef monitor_defs[] = {
    154  1.1      mw /* horizontal 31.5 kHz */
    155  1.1      mw 
    156  1.1      mw    { 50000000,  28,  640, 512,   81, 86, 93, 98, 95, 513, 513, 521, 535, 535,
    157  1.1      mw           4, NCRStdPalette, 80,  64,  5120,    8,     8, kernel_font,   32,  255},
    158  1.1      mw 
    159  1.1      mw /* horizontal 38kHz */
    160  1.1      mw 
    161  1.1      mw    { 75000000,  28,  768, 600,   97, 99,107,120,117, 601, 615, 625, 638, 638,
    162  1.1      mw           4, NCRStdPalette, 96,  75,  7200,    8,     8, kernel_font,   32,  255},
    163  1.1      mw 
    164  1.1      mw /* horizontal 64kHz */
    165  1.1      mw 
    166  1.1      mw    { 50000000, 24,  768, 600,   97,104,112,122,119, 601, 606, 616, 628, 628,
    167  1.1      mw           4, NCRStdPalette, 96,  75,  7200,    8,     8, kernel_font,   32,  255},
    168  1.4      mw 
    169  1.1      mw    { 90000000, 24, 1024, 768,  129,130,141,172,169, 769, 770, 783, 804, 804,
    170  1.1      mw           4, NCRStdPalette,128,  96, 12288,    8,     8, kernel_font,   32,  255},
    171  1.1      mw 
    172  1.4      mw    /* GFX modes */
    173  1.2      mw 
    174  1.4      mw /* horizontal 31.5 kHz */
    175  1.2      mw 
    176  1.4      mw    { 50000000,   4,  640, 480,  161,171,184,196,195, 481, 484, 492, 502, 502,
    177  1.4      mw           8, NCRStdPalette,640, 480,  5120,    8,     8, kernel_font,   32,  255},
    178  1.2      mw 
    179  1.4      mw /* horizontal 64kHz */
    180  1.2      mw 
    181  1.4      mw    { 90000000, 0,  1024, 768,  257,258,280,344,343, 769, 770, 783, 804, 804,
    182  1.4      mw           8, NCRStdPalette, 1024, 768, 12288,    8,     8, kernel_font,   32,  255},
    183  1.1      mw 
    184  1.1      mw /* WARNING: THE FOLLOWING MONITOR MODES EXCEED THE 90-MHz LIMIT THE PROCESSOR
    185  1.1      mw             HAS BEEN SPECIFIED FOR. USE AT YOUR OWN RISK (AND THINK ABOUT
    186  1.1      mw             MOUNTING SOME COOLING DEVICE AT THE PROCESSOR AND RAMDAC)!     */
    187  1.1      mw 
    188  1.4      mw    {110000000,   0, 1280,1024,  321,322,349,422,421,1025,1026,1043,1073,1073,
    189  1.4      mw           8, NCRStdPalette,1280,1024, 20480,    8,     8, kernel_font,   32,  255},
    190  1.1      mw };
    191  1.1      mw 
    192  1.1      mw static const char *monitor_descr[] = {
    193  1.1      mw   "80x64 (640x512) 31.5kHz",
    194  1.1      mw   "96x75 (768x600) 38kHz",
    195  1.1      mw   "96x75 (768x600) 64kHz",
    196  1.1      mw   "128x96 (1024x768) 64kHz",
    197  1.4      mw 
    198  1.4      mw   "GFX (640x480) 31.5kHz",
    199  1.4      mw   "GFX (1024x768) 64kHz",
    200  1.4      mw   "GFX (1280x1024) 64kHz ***EXCEEDS CHIP LIMIT!!!***",
    201  1.1      mw };
    202  1.1      mw 
    203  1.1      mw int retina_mon_max = sizeof (monitor_defs)/sizeof (monitor_defs[0]);
    204  1.1      mw 
    205  1.1      mw /* patchable */
    206  1.1      mw int retina_default_mon = 2;
    207  1.4      mw int retina_default_gfx = 5;
    208  1.1      mw 
    209  1.1      mw #endif
    210  1.1      mw 
    211  1.1      mw 
    212  1.1      mw static struct MonDef *current_mon;
    213  1.1      mw 
    214  1.1      mw /* -------------- START OF CODE -------------- */
    215  1.1      mw 
    216  1.1      mw 
    217  1.1      mw static const long FQTab[16] =
    218  1.1      mw { 25175000,  28322000,  36000000,  65000000,
    219  1.1      mw   44900000,  50000000,  80000000,  75000000,
    220  1.1      mw   56644000,  63000000,  72000000, 130000000,
    221  1.1      mw   90000000, 100000000, 110000000, 120000000 };
    222  1.1      mw 
    223  1.1      mw 
    224  1.1      mw /*--------------------------------------------------*/
    225  1.1      mw /*--------------------------------------------------*/
    226  1.1      mw 
    227  1.1      mw #if 0
    228  1.1      mw static struct MonDef *default_monitor = &DEFAULT_MONDEF;
    229  1.1      mw #endif
    230  1.1      mw 
    231  1.1      mw 
    232  1.1      mw static int rt_load_mon (struct grf_softc *gp, struct MonDef *md)
    233  1.1      mw {
    234  1.1      mw 	struct grfinfo *gi = &gp->g_display;
    235  1.1      mw 	volatile unsigned char *ba;
    236  1.1      mw 	volatile unsigned char *fb;
    237  1.1      mw 	short FW, clksel, HDE, VDE;
    238  1.1      mw 
    239  1.1      mw 	for (clksel = 15; clksel; clksel--) {
    240  1.1      mw 		if (FQTab[clksel] == md->FQ) break;
    241  1.1      mw 	}
    242  1.1      mw 	if (clksel < 0) return 0;
    243  1.1      mw 
    244  1.1      mw 	ba = gp->g_regkva;;
    245  1.1      mw 	fb = gp->g_fbkva;
    246  1.4      mw 
    247  1.4      mw 	FW = 0;
    248  1.4      mw 	if (md->DEP == 4) {
    249  1.4      mw 		switch (md->FX) {
    250  1.4      mw 		case 4:
    251  1.4      mw 			FW = 0;
    252  1.4      mw 			break;
    253  1.4      mw 		case 7:
    254  1.4      mw 			FW = 1;
    255  1.4      mw 			break;
    256  1.4      mw 		case 8:
    257  1.4      mw 			FW = 2;
    258  1.4      mw 			break;
    259  1.4      mw 		case 9:
    260  1.4      mw 			FW = 3;
    261  1.4      mw 			break;
    262  1.4      mw 		case 10:
    263  1.4      mw 			FW = 4;
    264  1.4      mw 			break;
    265  1.4      mw 		case 11:
    266  1.4      mw 			FW = 5;
    267  1.4      mw 			break;
    268  1.4      mw 		case 12:
    269  1.4      mw 			FW = 6;
    270  1.4      mw 			break;
    271  1.4      mw 		case 13:
    272  1.4      mw 			FW = 7;
    273  1.4      mw 			break;
    274  1.4      mw 		case 14:
    275  1.4      mw 			FW = 8;
    276  1.4      mw 			break;
    277  1.4      mw 		case 15:
    278  1.4      mw 			FW = 9;
    279  1.4      mw 			break;
    280  1.4      mw 		case 16:
    281  1.4      mw 			FW = 11;
    282  1.4      mw 			break;
    283  1.4      mw 		default:
    284  1.4      mw 			return 0;
    285  1.4      mw 			break;
    286  1.4      mw 		};
    287  1.4      mw 	}
    288  1.1      mw 
    289  1.4      mw         if (md->DEP == 4) HDE = (md->MW+md->FX-1)/md->FX;
    290  1.4      mw         else              HDE = (md->MW+3)/4;
    291  1.1      mw 	VDE = md->MH-1;
    292  1.1      mw 
    293  1.1      mw 	/* hmm... */
    294  1.1      mw 	fb[0x8000] = 0;
    295  1.1      mw 
    296  1.2      mw 		/* enable extension registers */
    297  1.2      mw 	WSeq (ba, SEQ_ID_EXTENDED_ENABLE,	0x05);
    298  1.2      mw 
    299  1.2      mw #if 0
    300  1.1      mw 	/* program the clock oscillator */
    301  1.1      mw 	vgaw (ba, GREG_MISC_OUTPUT_W, 0xe3 | ((clksel & 3) * 0x04));
    302  1.1      mw 	vgaw (ba, GREG_FEATURE_CONTROL_W, 0x00);
    303  1.1      mw 
    304  1.1      mw 	/* XXXX according to the NCR specs, this register should be set to 1
    305  1.1      mw 	   XXXX before doing the MISC_OUTPUT setting and CLOCKING_MODE
    306  1.1      mw 	   XXXX setting. */
    307  1.1      mw 	WSeq (ba, SEQ_ID_RESET, 		0x03);
    308  1.1      mw 
    309  1.1      mw 	WSeq (ba, SEQ_ID_CLOCKING_MODE, 	0x01 | ((md->FLG & MDF_CLKDIV2)/ MDF_CLKDIV2 * 8));
    310  1.1      mw 	WSeq (ba, SEQ_ID_MAP_MASK, 		0x0f);
    311  1.1      mw 	WSeq (ba, SEQ_ID_CHAR_MAP_SELECT, 	0x00);
    312  1.1      mw 		/* odd/even write select + extended memory */
    313  1.1      mw 	WSeq (ba, SEQ_ID_MEMORY_MODE, 	0x06);
    314  1.1      mw 	/* XXXX I think this order of setting RESET is wrong... */
    315  1.1      mw 	WSeq (ba, SEQ_ID_RESET, 		0x01);
    316  1.1      mw 	WSeq (ba, SEQ_ID_RESET, 		0x03);
    317  1.2      mw #else
    318  1.2      mw 	WSeq (ba, SEQ_ID_RESET, 		0x01);
    319  1.2      mw 
    320  1.2      mw 		/* set font width + rest of clocks */
    321  1.2      mw 	WSeq (ba, SEQ_ID_EXT_CLOCK_MODE,	0x30 | (FW & 0x0f) | ((clksel & 4) / 4 * 0x40) );
    322  1.2      mw 		/* another clock bit, plus hw stuff */
    323  1.2      mw 	WSeq (ba, SEQ_ID_MISC_FEATURE_SEL,	0xf4 | (clksel & 8) );
    324  1.2      mw 
    325  1.2      mw 	/* program the clock oscillator */
    326  1.2      mw 	vgaw (ba, GREG_MISC_OUTPUT_W, 		0xe3 | ((clksel & 3) * 0x04));
    327  1.2      mw 	vgaw (ba, GREG_FEATURE_CONTROL_W, 	0x00);
    328  1.2      mw 
    329  1.2      mw 	WSeq (ba, SEQ_ID_CLOCKING_MODE, 	0x01 | ((md->FLG & MDF_CLKDIV2)/ MDF_CLKDIV2 * 8));
    330  1.2      mw 	WSeq (ba, SEQ_ID_MAP_MASK, 		0x0f);
    331  1.2      mw 	WSeq (ba, SEQ_ID_CHAR_MAP_SELECT, 	0x00);
    332  1.2      mw 		/* odd/even write select + extended memory */
    333  1.2      mw 	WSeq (ba, SEQ_ID_MEMORY_MODE, 		0x06);
    334  1.2      mw 	WSeq (ba, SEQ_ID_RESET, 		0x03);
    335  1.2      mw #endif
    336  1.1      mw 
    337  1.1      mw 		/* monochrome cursor */
    338  1.1      mw 	WSeq (ba, SEQ_ID_CURSOR_CONTROL,	0x00);
    339  1.1      mw 		/* bank0 */
    340  1.1      mw 	WSeq (ba, SEQ_ID_PRIM_HOST_OFF_HI,	0x00);
    341  1.1      mw 	WSeq (ba, SEQ_ID_PRIM_HOST_OFF_LO,	0x00);
    342  1.4      mw 	WSeq (ba, SEQ_ID_DISP_OFF_HI , 		0x00);
    343  1.4      mw 	WSeq (ba, SEQ_ID_DISP_OFF_LO , 		0x00);
    344  1.1      mw 		/* bank0 */
    345  1.1      mw 	WSeq (ba, SEQ_ID_SEC_HOST_OFF_HI,	0x00);
    346  1.1      mw 	WSeq (ba, SEQ_ID_SEC_HOST_OFF_LO,	0x00);
    347  1.1      mw 		/* 1M-chips + ena SEC + ena EMem + rw PrimA0/rw Sec/B0 */
    348  1.1      mw 	WSeq (ba, SEQ_ID_EXTENDED_MEM_ENA,	0x3 | 0x4 | 0x10 | 0x40);
    349  1.2      mw #if 0
    350  1.1      mw 		/* set font width + rest of clocks */
    351  1.1      mw 	WSeq (ba, SEQ_ID_EXT_CLOCK_MODE,	0x30 | (FW & 0x0f) | ((clksel & 4) / 4 * 0x40) );
    352  1.2      mw #endif
    353  1.4      mw 	if (md->DEP == 4) {
    354  1.4      mw 			/* no ext-chain4 + no host-addr-bit-16 */
    355  1.4      mw 		WSeq (ba, SEQ_ID_EXT_VIDEO_ADDR,	0x00);
    356  1.4      mw 			/* no packed/nibble + no 256bit gfx format */
    357  1.4      mw 		WSeq (ba, SEQ_ID_EXT_PIXEL_CNTL,	0x00);
    358  1.4      mw 	}
    359  1.4      mw 	else {
    360  1.4      mw 		WSeq (ba, SEQ_ID_EXT_VIDEO_ADDR,	0x02);
    361  1.4      mw 			/* 256bit gfx format */
    362  1.4      mw 		WSeq (ba, SEQ_ID_EXT_PIXEL_CNTL,	0x01);
    363  1.4      mw 	}
    364  1.1      mw 		/* AT-interface */
    365  1.1      mw 	WSeq (ba, SEQ_ID_BUS_WIDTH_FEEDB,	0x06);
    366  1.1      mw 		/* see fg/bg color expansion */
    367  1.1      mw 	WSeq (ba, SEQ_ID_COLOR_EXP_WFG,		0x01);
    368  1.1      mw 	WSeq (ba, SEQ_ID_COLOR_EXP_WBG,		0x00);
    369  1.1      mw 	WSeq (ba, SEQ_ID_EXT_RW_CONTROL,	0x00);
    370  1.2      mw #if 0
    371  1.1      mw 		/* another clock bit, plus hw stuff */
    372  1.1      mw 	WSeq (ba, SEQ_ID_MISC_FEATURE_SEL,	0xf4 | (clksel & 8) );
    373  1.2      mw #endif
    374  1.1      mw 		/* don't tristate PCLK and PIX */
    375  1.1      mw 	WSeq (ba, SEQ_ID_COLOR_KEY_CNTL,	0x40 );
    376  1.1      mw 		/* reset CRC circuit */
    377  1.1      mw 	WSeq (ba, SEQ_ID_CRC_CONTROL,		0x00 );
    378  1.1      mw 		/* set RAS/CAS swap */
    379  1.1      mw 	WSeq (ba, SEQ_ID_PERF_SELECT,		0x20);
    380  1.1      mw 
    381  1.1      mw 	WCrt (ba, CRT_ID_END_VER_RETR,		(md->VSE & 0xf ) | 0x20);
    382  1.1      mw 	WCrt (ba, CRT_ID_HOR_TOTAL,		md->HT   & 0xff);
    383  1.1      mw 	WCrt (ba, CRT_ID_HOR_DISP_ENA_END,	(HDE-1)  & 0xff);
    384  1.1      mw 	WCrt (ba, CRT_ID_START_HOR_BLANK,	md->HBS  & 0xff);
    385  1.1      mw 	WCrt (ba, CRT_ID_END_HOR_BLANK,		(md->HBE & 0x1f) | 0x80);
    386  1.1      mw 
    387  1.1      mw 	WCrt (ba, CRT_ID_START_HOR_RETR,	md->HSS  & 0xff);
    388  1.1      mw 	WCrt (ba, CRT_ID_END_HOR_RETR,		(md->HSE & 0x1f) | ((md->HBE & 0x20)/ 0x20 * 0x80));
    389  1.1      mw 	WCrt (ba, CRT_ID_VER_TOTAL,		(md->VT  & 0xff));
    390  1.1      mw 	WCrt (ba, CRT_ID_OVERFLOW,		(( (md->VSS  & 0x200) / 0x200 * 0x80)
    391  1.1      mw 						 | ((VDE     & 0x200) / 0x200 * 0x40)
    392  1.1      mw 						 | ((md->VT  & 0x200) / 0x200 * 0x20)
    393  1.1      mw 						 | 				0x10
    394  1.1      mw 						 | ((md->VBS & 0x100) / 0x100 * 8   )
    395  1.1      mw 						 | ((md->VSS & 0x100) / 0x100 * 4   )
    396  1.1      mw 						 | ((VDE     & 0x100) / 0x100 * 2   )
    397  1.1      mw 						 | ((md->VT  & 0x100) / 0x100       )));
    398  1.1      mw 	WCrt (ba, CRT_ID_PRESET_ROW_SCAN,	0x00);
    399  1.1      mw 
    400  1.4      mw 	if (md->DEP == 4) {
    401  1.4      mw 		WCrt (ba, CRT_ID_MAX_SCAN_LINE, 	((  (md->FLG & MDF_DBL)/ MDF_DBL * 0x80)
    402  1.4      mw 							 | 				   0x40
    403  1.4      mw 							 | ((md->VBS & 0x200)/0x200	 * 0x20)
    404  1.4      mw 							 | ((md->FY-1) 			 & 0x1f)));
    405  1.4      mw 	}
    406  1.4      mw 	else {
    407  1.4      mw 		WCrt (ba, CRT_ID_MAX_SCAN_LINE, 	((  (md->FLG & MDF_DBL)/ MDF_DBL * 0x80)
    408  1.4      mw 							 | 				   0x40
    409  1.4      mw 							 | ((md->VBS & 0x200)/0x200	 * 0x20)
    410  1.4      mw 							 | (0	 			 & 0x1f)));
    411  1.4      mw 	}
    412  1.1      mw 
    413  1.1      mw 	WCrt (ba, CRT_ID_CURSOR_START,		(md->FY & 0x1f) - 2);
    414  1.1      mw 	WCrt (ba, CRT_ID_CURSOR_END,		(md->FY & 0x1f) - 1);
    415  1.1      mw 
    416  1.1      mw 	WCrt (ba, CRT_ID_START_ADDR_HIGH,	0x00);
    417  1.1      mw 	WCrt (ba, CRT_ID_START_ADDR_LOW,	0x00);
    418  1.1      mw 
    419  1.1      mw 	WCrt (ba, CRT_ID_CURSOR_LOC_HIGH,	0x00);
    420  1.1      mw 	WCrt (ba, CRT_ID_CURSOR_LOC_LOW,	0x00);
    421  1.1      mw 
    422  1.1      mw 	WCrt (ba, CRT_ID_START_VER_RETR,	md->VSS    & 0xff);
    423  1.1      mw 	WCrt (ba, CRT_ID_END_VER_RETR,		(md->VSE   & 0x0f) | 0x80 | 0x20);
    424  1.1      mw 	WCrt (ba, CRT_ID_VER_DISP_ENA_END,	VDE        & 0xff);
    425  1.4      mw 	if (md->DEP == 4)
    426  1.4      mw 		WCrt (ba, CRT_ID_OFFSET,	(HDE / 2)  & 0xff);
    427  1.4      mw 	else
    428  1.4      mw 		WCrt (ba, CRT_ID_OFFSET,	(md->TX / 8)  & 0xff);
    429  1.4      mw 
    430  1.1      mw 	WCrt (ba, CRT_ID_UNDERLINE_LOC,		(md->FY-1) & 0x1f);
    431  1.1      mw 	WCrt (ba, CRT_ID_START_VER_BLANK,	md->VBS    & 0xff);
    432  1.1      mw 	WCrt (ba, CRT_ID_END_VER_BLANK,		md->VBE    & 0xff);
    433  1.1      mw 		/* byte mode + wrap + select row scan counter + cms */
    434  1.1      mw 	WCrt (ba, CRT_ID_MODE_CONTROL,		0xe3);
    435  1.1      mw 	WCrt (ba, CRT_ID_LINE_COMPARE,		0xff);
    436  1.1      mw 
    437  1.1      mw 		/* enable extended end bits + those bits */
    438  1.1      mw 	WCrt (ba, CRT_ID_EXT_HOR_TIMING1,	(           				 0x20
    439  1.1      mw 						 | ((md->FLG & MDF_LACE)  / MDF_LACE   * 0x10)
    440  1.1      mw 						 | ((md->HT  & 0x100) / 0x100          * 0x01)
    441  1.1      mw 						 | (((HDE-1) & 0x100) / 0x100 	       * 0x02)
    442  1.1      mw 						 | ((md->HBS & 0x100) / 0x100 	       * 0x04)
    443  1.1      mw 						 | ((md->HSS & 0x100) / 0x100 	       * 0x08)));
    444  1.1      mw 
    445  1.4      mw 	if (md->DEP == 4)
    446  1.4      mw 		WCrt (ba, CRT_ID_EXT_START_ADDR,	(((HDE / 2) & 0x100)/0x100 * 16));
    447  1.4      mw 	else
    448  1.4      mw 		WCrt (ba, CRT_ID_EXT_START_ADDR,	(((md->TX / 8) & 0x100)/0x100 * 16));
    449  1.1      mw 
    450  1.1      mw 	WCrt (ba, CRT_ID_EXT_HOR_TIMING2, 	(  ((md->HT  & 0x200)/ 0x200  	       * 0x01)
    451  1.1      mw 						 | (((HDE-1) & 0x200)/ 0x200 	       * 0x02)
    452  1.1      mw 						 | ((md->HBS & 0x200)/ 0x200 	       * 0x04)
    453  1.1      mw 						 | ((md->HSS & 0x200)/ 0x200 	       * 0x08)
    454  1.1      mw 						 | ((md->HBE & 0xc0) / 0x40  	       * 0x10)
    455  1.1      mw 						 | ((md->HSE & 0x60) / 0x20  	       * 0x40)));
    456  1.1      mw 
    457  1.1      mw 	WCrt (ba, CRT_ID_EXT_VER_TIMING,	(  ((md->VSE & 0x10) / 0x10  	       * 0x80)
    458  1.1      mw 						 | ((md->VBE & 0x300)/ 0x100 	       * 0x20)
    459  1.1      mw 						 |				         0x10
    460  1.1      mw 						 | ((md->VSS & 0x400)/ 0x400 	       * 0x08)
    461  1.1      mw 						 | ((md->VBS & 0x400)/ 0x400 	       * 0x04)
    462  1.1      mw 						 | ((VDE     & 0x400)/ 0x400 	       * 0x02)
    463  1.1      mw 						 | ((md->VT  & 0x400)/ 0x400           * 0x01)));
    464  1.1      mw 
    465  1.1      mw 	WGfx (ba, GCT_ID_SET_RESET,		0x00);
    466  1.1      mw 	WGfx (ba, GCT_ID_ENABLE_SET_RESET,	0x00);
    467  1.1      mw 	WGfx (ba, GCT_ID_COLOR_COMPARE,		0x00);
    468  1.1      mw 	WGfx (ba, GCT_ID_DATA_ROTATE,		0x00);
    469  1.1      mw 	WGfx (ba, GCT_ID_READ_MAP_SELECT,	0x00);
    470  1.4      mw 	WGfx (ba, GCT_ID_GRAPHICS_MODE,		0x00);
    471  1.4      mw 	if (md->DEP == 4)
    472  1.4      mw 		WGfx (ba, GCT_ID_MISC,			0x04);
    473  1.4      mw 	else
    474  1.4      mw 		WGfx (ba, GCT_ID_MISC,			0x05);
    475  1.1      mw 	WGfx (ba, GCT_ID_COLOR_XCARE,		0xff);
    476  1.1      mw 	WGfx (ba, GCT_ID_BITMASK,		0xff);
    477  1.1      mw 
    478  1.1      mw 	/* reset the Attribute Controller flipflop */
    479  1.1      mw 	vgar (ba, GREG_STATUS1_R);
    480  1.1      mw 	WAttr (ba, ACT_ID_PALETTE0,		0x00);
    481  1.1      mw 	WAttr (ba, ACT_ID_PALETTE1,		0x01);
    482  1.1      mw 	WAttr (ba, ACT_ID_PALETTE2,		0x02);
    483  1.1      mw 	WAttr (ba, ACT_ID_PALETTE3,		0x03);
    484  1.1      mw 	WAttr (ba, ACT_ID_PALETTE4,		0x04);
    485  1.1      mw 	WAttr (ba, ACT_ID_PALETTE5,		0x05);
    486  1.1      mw 	WAttr (ba, ACT_ID_PALETTE6,		0x06);
    487  1.1      mw 	WAttr (ba, ACT_ID_PALETTE7,		0x07);
    488  1.1      mw 	WAttr (ba, ACT_ID_PALETTE8,		0x08);
    489  1.1      mw 	WAttr (ba, ACT_ID_PALETTE9,		0x09);
    490  1.1      mw 	WAttr (ba, ACT_ID_PALETTE10,		0x0a);
    491  1.1      mw 	WAttr (ba, ACT_ID_PALETTE11,		0x0b);
    492  1.1      mw 	WAttr (ba, ACT_ID_PALETTE12,		0x0c);
    493  1.1      mw 	WAttr (ba, ACT_ID_PALETTE13,		0x0d);
    494  1.1      mw 	WAttr (ba, ACT_ID_PALETTE14,		0x0e);
    495  1.1      mw 	WAttr (ba, ACT_ID_PALETTE15,		0x0f);
    496  1.1      mw 
    497  1.1      mw 	vgar (ba, GREG_STATUS1_R);
    498  1.4      mw 	if (md->DEP == 4)
    499  1.4      mw 		WAttr (ba, ACT_ID_ATTR_MODE_CNTL,	0x08);
    500  1.4      mw 	else
    501  1.4      mw 		WAttr (ba, ACT_ID_ATTR_MODE_CNTL,	0x09);
    502  1.1      mw 
    503  1.1      mw 	WAttr (ba, ACT_ID_OVERSCAN_COLOR,	0x00);
    504  1.1      mw 	WAttr (ba, ACT_ID_COLOR_PLANE_ENA,	0x0f);
    505  1.1      mw 	WAttr (ba, ACT_ID_HOR_PEL_PANNING,	0x00);
    506  1.1      mw 	WAttr (ba, ACT_ID_COLOR_SELECT,	0x00);
    507  1.1      mw 
    508  1.1      mw 	vgar (ba, GREG_STATUS1_R);
    509  1.1      mw 		/* I have *NO* idea what strobing reg-0x20 might do... */
    510  1.1      mw 	vgaw (ba, ACT_ADDRESS_W, 0x20);
    511  1.1      mw 
    512  1.4      mw 	if (md->DEP == 4)
    513  1.4      mw 		WCrt (ba, CRT_ID_MAX_SCAN_LINE,	( ((md->FLG & MDF_DBL)/ MDF_DBL * 0x80)
    514  1.1      mw 						|	                          0x40
    515  1.1      mw 						| ((md->VBS & 0x200)/0x200	* 0x20)
    516  1.4      mw 						| ((md->FY-1) 			& 0x1f)));
    517  1.4      mw 	else
    518  1.4      mw 		WCrt (ba, CRT_ID_MAX_SCAN_LINE,	( ((md->FLG & MDF_DBL)/ MDF_DBL * 0x80)
    519  1.4      mw 						|	                          0x40
    520  1.4      mw 						| ((md->VBS & 0x200)/0x200	* 0x20)
    521  1.4      mw 						| (0	 			& 0x1f)));
    522  1.4      mw 
    523  1.1      mw 
    524  1.1      mw 	/* not it's time for guessing... */
    525  1.1      mw 
    526  1.1      mw 	vgaw (ba, VDAC_REG_D, 	   0x02);
    527  1.1      mw 
    528  1.1      mw 		/* if this does what I think it does, it selects DAC
    529  1.1      mw 		   register 0, and writes the palette in subsequent
    530  1.1      mw 		   registers, thus it works similar to the WD33C93
    531  1.1      mw 		   select/data mechanism */
    532  1.1      mw 	vgaw (ba, VDAC_REG_SELECT, 0x00);
    533  1.1      mw 
    534  1.1      mw 	{
    535  1.1      mw 
    536  1.1      mw 		short x = 15;
    537  1.1      mw 		const unsigned char * col = md->PAL;
    538  1.1      mw 		do {
    539  1.1      mw 
    540  1.1      mw 			vgaw (ba, VDAC_REG_DATA, *col++);
    541  1.1      mw 			vgaw (ba, VDAC_REG_DATA, *col++);
    542  1.1      mw 			vgaw (ba, VDAC_REG_DATA, *col++);
    543  1.1      mw 
    544  1.1      mw 
    545  1.1      mw 		} while (x--);
    546  1.4      mw 
    547  1.4      mw 		if (md->DEP != 4) {
    548  1.4      mw 			short x = 256-17;
    549  1.4      mw 			unsigned char col = 16;
    550  1.4      mw 			do {
    551  1.4      mw 
    552  1.4      mw 				vgaw(ba, VDAC_REG_DATA, col);
    553  1.4      mw 				vgaw(ba, VDAC_REG_DATA, col);
    554  1.4      mw 				vgaw(ba, VDAC_REG_DATA, col);
    555  1.4      mw 				col++;
    556  1.4      mw 
    557  1.4      mw 			} while (x--);
    558  1.4      mw 		}
    559  1.1      mw 	}
    560  1.1      mw 
    561  1.1      mw 
    562  1.1      mw 	/* now load the font into maps 2 (and 3 for fonts wider than 8 pixels) */
    563  1.4      mw 	if (md->DEP == 4) {
    564  1.1      mw 
    565  1.1      mw 		/* first set the whole font memory to a test-pattern, so we
    566  1.1      mw 		   can see if something that shouldn't be drawn IS drawn.. */
    567  1.1      mw 		{
    568  1.5  chopps 			volatile unsigned char * c = fb;
    569  1.1      mw 			long x;
    570  1.1      mw 			Map(2);
    571  1.1      mw 
    572  1.1      mw 			for (x = 0; x < 65536; x++) {
    573  1.1      mw 				*c++ = (x & 1)? 0xaa : 0x55;
    574  1.1      mw 			}
    575  1.1      mw 		}
    576  1.1      mw 
    577  1.1      mw 		{
    578  1.5  chopps 			volatile unsigned char * c = fb;
    579  1.1      mw 			long x;
    580  1.1      mw 			Map(3);
    581  1.1      mw 
    582  1.1      mw 			for (x = 0; x < 65536; x++) {
    583  1.1      mw 				*c++ = (x & 1)? 0xaa : 0x55;
    584  1.1      mw 			}
    585  1.1      mw 		}
    586  1.1      mw 
    587  1.1      mw 		{
    588  1.1      mw 		  /* ok, now position at first defined character, and
    589  1.1      mw 		     copy over the images */
    590  1.5  chopps 		  volatile unsigned char * c = fb + md->FLo * 32;
    591  1.1      mw 		  const unsigned char * f = md->FData;
    592  1.1      mw 		  unsigned short z;
    593  1.1      mw 
    594  1.1      mw 		  Map(2);
    595  1.1      mw 		  for (z = md->FLo; z <= md->FHi; z++) {
    596  1.1      mw 
    597  1.1      mw 			short y = md->FY-1;
    598  1.1      mw 			if (md->FX > 8){
    599  1.1      mw 				do {
    600  1.1      mw 					*c++ = *f;
    601  1.1      mw 					f += 2;
    602  1.1      mw 				} while (y--);
    603  1.1      mw 			}
    604  1.1      mw 			else {
    605  1.1      mw 				do {
    606  1.1      mw 					*c++ = *f++;
    607  1.1      mw 				} while (y--);
    608  1.1      mw 			}
    609  1.1      mw 
    610  1.1      mw 			c += 32-md->FY;
    611  1.1      mw 
    612  1.1      mw 		  }
    613  1.1      mw 
    614  1.1      mw 		  if (md->FX > 8) {
    615  1.1      mw 			unsigned short z;
    616  1.1      mw 
    617  1.1      mw 			Map(3);
    618  1.1      mw 			c = fb + md->FLo*32;
    619  1.1      mw 			f = md->FData+1;
    620  1.1      mw 			for (z = md->FLo; z <= md->FHi; z++) {
    621  1.1      mw 
    622  1.1      mw 				short y = md->FY-1;
    623  1.1      mw 				do {
    624  1.1      mw 					*c++ = *f;
    625  1.1      mw 					f += 2;
    626  1.1      mw 				} while (y--);
    627  1.1      mw 
    628  1.1      mw 				c += 32-md->FY;
    629  1.1      mw 
    630  1.1      mw 			}
    631  1.1      mw 		  }
    632  1.1      mw 		}
    633  1.1      mw 
    634  1.1      mw 	}
    635  1.1      mw 
    636  1.1      mw 		/* select map 0 */
    637  1.1      mw 	WGfx (ba, GCT_ID_READ_MAP_SELECT,	0);
    638  1.4      mw 	if (md->DEP == 4)
    639  1.4      mw 			/* allow writes into maps 0 and 1 */
    640  1.4      mw 		WSeq (ba, SEQ_ID_MAP_MASK,		3);
    641  1.4      mw 	else
    642  1.4      mw 			/* allow writes into all maps */
    643  1.4      mw 		WSeq (ba, SEQ_ID_MAP_MASK,		0x0f);
    644  1.4      mw 
    645  1.1      mw 		/* select extended chain4 addressing:
    646  1.1      mw 		    !A0/!A1	map 0	character to be displayed
    647  1.1      mw 		    !A1/ A1	map 1	attribute of that character
    648  1.1      mw 		     A0/!A1	map 2	not used (masked out, ignored)
    649  1.1      mw 		     A0/ A1 	map 3	not used (masked out, ignored) */
    650  1.1      mw 	WSeq (ba, SEQ_ID_EXT_VIDEO_ADDR,	RSeq(ba, SEQ_ID_EXT_VIDEO_ADDR) | 0x02);
    651  1.1      mw 
    652  1.4      mw 	if (md->DEP == 4) {
    653  1.1      mw 		/* position in display memory */
    654  1.1      mw 		unsigned short * c = (unsigned short *) fb;
    655  1.1      mw 
    656  1.1      mw 		/* fill with blank, white on black */
    657  1.1      mw 		const unsigned short fill_val = 0x2010;
    658  1.1      mw 		short x = md->XY;
    659  1.1      mw 		do {
    660  1.1      mw 			*c = fill_val;
    661  1.1      mw 			c += 2;
    662  1.1      mw 		} while (x--);
    663  1.1      mw 
    664  1.1      mw 		/* I won't comment this :-)) */
    665  1.1      mw 		c = (unsigned short *) fb;
    666  1.1      mw 		c += (md->TX-6)*2;
    667  1.1      mw 		{
    668  1.1      mw 		  unsigned short init_msg[6] = {0x520a, 0x450b, 0x540c, 0x490d, 0x4e0e, 0x410f};
    669  1.1      mw 		  unsigned short * f = init_msg;
    670  1.1      mw 		  x = 5;
    671  1.1      mw 		  do {
    672  1.1      mw 			*c = *f++;
    673  1.1      mw 			c += 2;
    674  1.1      mw 	 	  } while (x--);
    675  1.1      mw 	 	}
    676  1.1      mw 	}
    677  1.4      mw 	else if (md->DEP == 8) {
    678  1.4      mw 		/* could clear the gfx screen here, but that's what the X server does anyway */
    679  1.4      mw 	        ;
    680  1.4      mw 	}
    681  1.1      mw 
    682  1.3      mw 	gp->g_data	= (caddr_t) md;
    683  1.5  chopps 	gi->gd_regaddr  = (caddr_t) ((long)ba - (long)ZORRO2ADDR + (long)ZORRO2BASE);
    684  1.3      mw 	gi->gd_regsize  = 64*1024;
    685  1.1      mw 
    686  1.5  chopps 	gi->gd_fbaddr   = (caddr_t) ((long)fb - (long)ZORRO2ADDR + (long)ZORRO2BASE);
    687  1.4      mw #ifdef BANKEDDEVPAGER
    688  1.4      mw 	gi->gd_fbsize	= 4*1024*1024;  /* XXX */
    689  1.4      mw 	gi->gd_bank_size = 64*1024;
    690  1.4      mw #else
    691  1.1      mw 	gi->gd_fbsize   = 64*1024;	/* larger, but that's whats mappable */
    692  1.4      mw #endif
    693  1.1      mw 
    694  1.1      mw 	gi->gd_colors   = 1 << md->DEP;
    695  1.1      mw 	gi->gd_planes   = md->DEP;
    696  1.1      mw 
    697  1.1      mw 	gi->gd_fbwidth  = md->MW;
    698  1.1      mw 	gi->gd_fbheight = md->MH;
    699  1.1      mw 	gi->gd_fbx	= 0;
    700  1.1      mw 	gi->gd_fby	= 0;
    701  1.1      mw 	gi->gd_dwidth   = md->TX * md->FX;
    702  1.1      mw 	gi->gd_dheight  = md->TY * md->FY;
    703  1.1      mw 	gi->gd_dx	= 0;
    704  1.1      mw 	gi->gd_dy	= 0;
    705  1.1      mw 
    706  1.1      mw 	/* initialized, works, return 1 */
    707  1.1      mw 	return 1;
    708  1.1      mw }
    709  1.1      mw 
    710  1.1      mw int rt_init (struct grf_softc *gp, struct amiga_device *ad, struct amiga_hw *ahw)
    711  1.1      mw {
    712  1.1      mw   /* if already initialized, fail */
    713  1.1      mw   if (gp->g_regkva)
    714  1.1      mw     return 0;
    715  1.1      mw 
    716  1.1      mw   gp->g_regkva = ahw->hw_kva;
    717  1.1      mw   gp->g_fbkva  = ahw->hw_kva + 64*1024;
    718  1.1      mw 
    719  1.1      mw   /* don't let them patch it out of bounds */
    720  1.4      mw   if ((unsigned)retina_default_mon >= retina_mon_max
    721  1.4      mw       || monitor_defs[retina_default_mon].DEP == 8)
    722  1.1      mw     retina_default_mon = 0;
    723  1.1      mw 
    724  1.1      mw   current_mon = monitor_defs + retina_default_mon;
    725  1.1      mw 
    726  1.1      mw   return rt_load_mon (gp, current_mon);
    727  1.1      mw }
    728  1.1      mw 
    729  1.1      mw static int
    730  1.1      mw rt_getvmode (gp, vm)
    731  1.1      mw      struct grf_softc *gp;
    732  1.1      mw      struct grfvideo_mode *vm;
    733  1.1      mw {
    734  1.1      mw   struct MonDef *md;
    735  1.1      mw 
    736  1.1      mw   if (vm->mode_num && vm->mode_num > retina_mon_max)
    737  1.1      mw     return EINVAL;
    738  1.1      mw 
    739  1.1      mw   if (! vm->mode_num)
    740  1.1      mw     vm->mode_num = (current_mon - monitor_defs) + 1;
    741  1.1      mw 
    742  1.1      mw   md = monitor_defs + (vm->mode_num - 1);
    743  1.1      mw   strncpy (vm->mode_descr, monitor_descr + (vm->mode_num - 1),
    744  1.1      mw 	   sizeof (vm->mode_descr));
    745  1.1      mw   vm->pixel_clock  = md->FQ;
    746  1.1      mw   vm->disp_width   = md->MW;
    747  1.1      mw   vm->disp_height  = md->MH;
    748  1.1      mw   vm->depth        = md->DEP;
    749  1.1      mw   vm->hblank_start = md->HBS;
    750  1.1      mw   vm->hblank_stop  = md->HBE;
    751  1.1      mw   vm->hsync_start  = md->HSS;
    752  1.1      mw   vm->hsync_stop   = md->HSE;
    753  1.1      mw   vm->htotal       = md->HT;
    754  1.1      mw   vm->vblank_start = md->VBS;
    755  1.1      mw   vm->vblank_stop  = md->VBE;
    756  1.1      mw   vm->vsync_start  = md->VSS;
    757  1.1      mw   vm->vsync_stop   = md->VSE;
    758  1.1      mw   vm->vtotal       = md->VT;
    759  1.1      mw 
    760  1.1      mw   return 0;
    761  1.1      mw }
    762  1.1      mw 
    763  1.1      mw 
    764  1.1      mw static int
    765  1.4      mw rt_setvmode (gp, mode, txtonly)
    766  1.1      mw      struct grf_softc *gp;
    767  1.1      mw      unsigned mode;
    768  1.4      mw      int txtonly;
    769  1.1      mw {
    770  1.1      mw   struct MonDef *md;
    771  1.4      mw   int error;
    772  1.1      mw 
    773  1.1      mw   if (!mode || mode > retina_mon_max)
    774  1.1      mw     return EINVAL;
    775  1.1      mw 
    776  1.4      mw   if (txtonly && monitor_defs[mode-1].DEP == 8)
    777  1.4      mw     return EINVAL;
    778  1.4      mw 
    779  1.1      mw   current_mon = monitor_defs + (mode - 1);
    780  1.4      mw 
    781  1.4      mw   error = rt_load_mon (gp, current_mon) ? 0 : EINVAL;
    782  1.4      mw 
    783  1.4      mw   return error;
    784  1.1      mw }
    785  1.1      mw 
    786  1.1      mw 
    787  1.1      mw /*
    788  1.1      mw  * Change the mode of the display.
    789  1.1      mw  * Return a UNIX error number or 0 for success.
    790  1.1      mw  */
    791  1.4      mw rt_mode(gp, cmd, arg, a2, a3)
    792  1.1      mw 	register struct grf_softc *gp;
    793  1.1      mw 	int cmd;
    794  1.1      mw 	void *arg;
    795  1.4      mw 	int a2, a3;
    796  1.1      mw {
    797  1.1      mw   /* implement these later... */
    798  1.1      mw 
    799  1.1      mw   switch (cmd)
    800  1.1      mw     {
    801  1.1      mw     case GM_GRFON:
    802  1.4      mw       rt_setvmode (gp, retina_default_gfx + 1, 0);
    803  1.1      mw       return 0;
    804  1.1      mw 
    805  1.1      mw     case GM_GRFOFF:
    806  1.4      mw       rt_setvmode (gp, retina_default_mon + 1, 0);
    807  1.1      mw       return 0;
    808  1.1      mw 
    809  1.1      mw     case GM_GRFCONFIG:
    810  1.1      mw       return 0;
    811  1.1      mw 
    812  1.1      mw     case GM_GRFGETVMODE:
    813  1.1      mw       return rt_getvmode (gp, (struct grfvideo_mode *) arg);
    814  1.1      mw 
    815  1.1      mw     case GM_GRFSETVMODE:
    816  1.4      mw       return rt_setvmode (gp, *(unsigned *) arg, 1);
    817  1.1      mw 
    818  1.1      mw     case GM_GRFGETNUMVM:
    819  1.1      mw       *(int *)arg = retina_mon_max;
    820  1.1      mw       return 0;
    821  1.1      mw 
    822  1.4      mw #ifdef BANKEDDEVPAGER
    823  1.4      mw     case GM_GRFGETBANK:
    824  1.4      mw       *(int *)arg = rt_getbank (gp, a2, a3);
    825  1.4      mw       return 0;
    826  1.4      mw 
    827  1.4      mw     case GM_GRFGETCURBANK:
    828  1.4      mw       *(int *)arg = rt_getcurbank (gp);
    829  1.4      mw       return 0;
    830  1.4      mw 
    831  1.4      mw     case GM_GRFSETBANK:
    832  1.4      mw       return rt_setbank (gp, arg);
    833  1.4      mw #endif
    834  1.4      mw     case GM_GRFIOCTL:
    835  1.4      mw       return rt_ioctl (gp, arg, a2);
    836  1.4      mw 
    837  1.1      mw     default:
    838  1.1      mw       break;
    839  1.1      mw     }
    840  1.1      mw 
    841  1.1      mw   return EINVAL;
    842  1.1      mw }
    843  1.4      mw 
    844  1.4      mw int
    845  1.4      mw rt_ioctl (gp, cmd, data)
    846  1.4      mw 	register struct grf_softc *gp;
    847  1.4      mw 	int cmd;
    848  1.4      mw 	void *data;
    849  1.4      mw {
    850  1.4      mw   switch (cmd)
    851  1.4      mw     {
    852  1.4      mw     case GRFIOCGSPRITEPOS:
    853  1.4      mw       return rt_getspritepos (gp, (struct grf_position *) data);
    854  1.4      mw 
    855  1.4      mw     case GRFIOCSSPRITEPOS:
    856  1.4      mw       return rt_setspritepos (gp, (struct grf_position *) data);
    857  1.4      mw 
    858  1.4      mw     case GRFIOCSSPRITEINF:
    859  1.4      mw       return rt_setspriteinfo (gp, (struct grf_spriteinfo *) data);
    860  1.4      mw 
    861  1.4      mw     case GRFIOCGSPRITEINF:
    862  1.4      mw       return rt_getspriteinfo (gp, (struct grf_spriteinfo *) data);
    863  1.4      mw 
    864  1.4      mw     case GRFIOCGSPRITEMAX:
    865  1.4      mw       return rt_getspritemax (gp, (struct grf_position *) data);
    866  1.4      mw 
    867  1.4      mw     case GRFIOCGETCMAP:
    868  1.4      mw       return rt_getcmap (gp, (struct grf_colormap *) data);
    869  1.4      mw 
    870  1.4      mw     case GRFIOCPUTCMAP:
    871  1.4      mw       return rt_putcmap (gp, (struct grf_colormap *) data);
    872  1.4      mw 
    873  1.4      mw     case GRFIOCBITBLT:
    874  1.4      mw       return rt_bitblt (gp, (struct grf_bitblt *) data);
    875  1.4      mw     }
    876  1.4      mw 
    877  1.4      mw   return EINVAL;
    878  1.4      mw }
    879  1.4      mw 
    880  1.4      mw #ifdef BANKEDDEVPAGER
    881  1.4      mw 
    882  1.4      mw /* Retina banks can overlap. Don't use this information (yet?), and
    883  1.4      mw    only switch 64k sized banks. */
    884  1.4      mw 
    885  1.4      mw int
    886  1.4      mw rt_getbank (gp, offs, prot)
    887  1.4      mw      struct grf_softc *gp;
    888  1.4      mw      off_t offs;
    889  1.4      mw      int prot;
    890  1.4      mw {
    891  1.4      mw   /* XXX */
    892  1.4      mw   if (offs <  0 || offs >= 4*1024*1024)
    893  1.4      mw     return -1;
    894  1.4      mw   else
    895  1.4      mw     return offs >> 16;
    896  1.4      mw }
    897  1.4      mw 
    898  1.4      mw int
    899  1.4      mw rt_getcurbank (gp)
    900  1.4      mw      struct grf_softc *gp;
    901  1.4      mw {
    902  1.4      mw   struct grfinfo *gi = &gp->g_display;
    903  1.4      mw   volatile unsigned char *ba;
    904  1.4      mw   int bank;
    905  1.4      mw 
    906  1.4      mw   ba = gp->g_regkva;
    907  1.4      mw   bank = RSeq (ba, SEQ_ID_PRIM_HOST_OFF_LO) | (RSeq (ba, SEQ_ID_PRIM_HOST_OFF_HI) << 8);
    908  1.4      mw 
    909  1.4      mw   /* bank register is multiple of 64 byte, make this multiple of 64k */
    910  1.4      mw   bank >>= 10;
    911  1.4      mw   return bank;
    912  1.4      mw }
    913  1.4      mw 
    914  1.4      mw int
    915  1.4      mw rt_setbank (gp, bank)
    916  1.4      mw      struct grf_softc *gp;
    917  1.4      mw      int bank;
    918  1.4      mw {
    919  1.4      mw   volatile unsigned char *ba;
    920  1.4      mw 
    921  1.4      mw   ba = gp->g_regkva;
    922  1.4      mw   /* bank register is multiple of 64 byte, make this multiple of 64k */
    923  1.4      mw   bank <<= 10;
    924  1.4      mw   WSeq (ba, SEQ_ID_PRIM_HOST_OFF_LO, (unsigned char) bank);
    925  1.4      mw   bank >>= 8;
    926  1.4      mw   WSeq (ba, SEQ_ID_PRIM_HOST_OFF_HI, (unsigned char) bank);
    927  1.4      mw 
    928  1.4      mw   return 0;
    929  1.4      mw }
    930  1.4      mw 
    931  1.4      mw #endif
    932  1.4      mw 
    933  1.4      mw int
    934  1.4      mw rt_getcmap (gfp, cmap)
    935  1.4      mw      struct grf_softc *gfp;
    936  1.4      mw      struct grf_colormap *cmap;
    937  1.4      mw {
    938  1.4      mw   volatile unsigned char *ba;
    939  1.4      mw   u_char red[256], green[256], blue[256], *rp, *gp, *bp;
    940  1.4      mw   short x;
    941  1.4      mw   int error;
    942  1.4      mw 
    943  1.4      mw   if (cmap->count == 0 || cmap->index >= 256)
    944  1.4      mw     return 0;
    945  1.4      mw 
    946  1.4      mw   if (cmap->index + cmap->count > 256)
    947  1.4      mw     cmap->count = 256 - cmap->index;
    948  1.4      mw 
    949  1.4      mw   ba = gfp->g_regkva;
    950  1.4      mw   /* first read colors out of the chip, then copyout to userspace */
    951  1.4      mw   vgaw (ba, VDAC_REG_SELECT, cmap->index);
    952  1.4      mw   x = cmap->count - 1;
    953  1.4      mw   rp = red + cmap->index;
    954  1.4      mw   gp = green + cmap->index;
    955  1.4      mw   bp = blue + cmap->index;
    956  1.4      mw   do
    957  1.4      mw     {
    958  1.4      mw       *rp++ = vgar (ba, VDAC_REG_DATA);
    959  1.4      mw       *gp++ = vgar (ba, VDAC_REG_DATA);
    960  1.4      mw       *bp++ = vgar (ba, VDAC_REG_DATA);
    961  1.4      mw     }
    962  1.4      mw   while (x--);
    963  1.4      mw 
    964  1.4      mw   if (!(error = copyout (red + cmap->index, cmap->red, cmap->count))
    965  1.4      mw       && !(error = copyout (green + cmap->index, cmap->green, cmap->count))
    966  1.4      mw       && !(error = copyout (blue + cmap->index, cmap->blue, cmap->count)))
    967  1.4      mw     return 0;
    968  1.4      mw 
    969  1.4      mw   return error;
    970  1.4      mw }
    971  1.4      mw 
    972  1.4      mw int
    973  1.4      mw rt_putcmap (gfp, cmap)
    974  1.4      mw      struct grf_softc *gfp;
    975  1.4      mw      struct grf_colormap *cmap;
    976  1.4      mw {
    977  1.4      mw   volatile unsigned char *ba;
    978  1.4      mw   u_char red[256], green[256], blue[256], *rp, *gp, *bp;
    979  1.4      mw   short x;
    980  1.4      mw   int error;
    981  1.4      mw 
    982  1.4      mw   if (cmap->count == 0 || cmap->index >= 256)
    983  1.4      mw     return 0;
    984  1.4      mw 
    985  1.4      mw   if (cmap->index + cmap->count > 256)
    986  1.4      mw     cmap->count = 256 - cmap->index;
    987  1.4      mw 
    988  1.4      mw   /* first copy the colors into kernelspace */
    989  1.4      mw   if (!(error = copyin (cmap->red, red + cmap->index, cmap->count))
    990  1.4      mw       && !(error = copyin (cmap->green, green + cmap->index, cmap->count))
    991  1.4      mw       && !(error = copyin (cmap->blue, blue + cmap->index, cmap->count)))
    992  1.4      mw     {
    993  1.4      mw       ba = gfp->g_regkva;
    994  1.4      mw       vgaw (ba, VDAC_REG_SELECT, cmap->index);
    995  1.4      mw       x = cmap->count - 1;
    996  1.4      mw       rp = red + cmap->index;
    997  1.4      mw       gp = green + cmap->index;
    998  1.4      mw       bp = blue + cmap->index;
    999  1.4      mw       do
   1000  1.4      mw 	{
   1001  1.4      mw 	  vgaw (ba, VDAC_REG_DATA, *rp++);
   1002  1.4      mw 	  vgaw (ba, VDAC_REG_DATA, *gp++);
   1003  1.4      mw 	  vgaw (ba, VDAC_REG_DATA, *bp++);
   1004  1.4      mw 	}
   1005  1.4      mw       while (x--);
   1006  1.4      mw       return 0;
   1007  1.4      mw     }
   1008  1.4      mw   else
   1009  1.4      mw     return error;
   1010  1.4      mw }
   1011  1.4      mw 
   1012  1.4      mw int
   1013  1.4      mw rt_getspritepos (gp, pos)
   1014  1.4      mw      struct grf_softc *gp;
   1015  1.4      mw      struct grf_position *pos;
   1016  1.4      mw {
   1017  1.4      mw   volatile unsigned char *ba;
   1018  1.4      mw 
   1019  1.4      mw   ba = gp->g_regkva;
   1020  1.4      mw   pos->x = vgar (ba, SEQ_ID_CURSOR_X_LOC_LO) | (vgar (ba, SEQ_ID_CURSOR_X_LOC_HI) << 8);
   1021  1.4      mw   pos->y = vgar (ba, SEQ_ID_CURSOR_Y_LOC_LO) | (vgar (ba, SEQ_ID_CURSOR_Y_LOC_HI) << 8);
   1022  1.4      mw   return 0;
   1023  1.4      mw }
   1024  1.4      mw 
   1025  1.4      mw int
   1026  1.4      mw rt_setspritepos (gp, pos)
   1027  1.4      mw      struct grf_softc *gp;
   1028  1.4      mw      struct grf_position *pos;
   1029  1.4      mw {
   1030  1.4      mw   volatile unsigned char *ba;
   1031  1.4      mw 
   1032  1.4      mw   ba = gp->g_regkva;
   1033  1.4      mw   vgaw (ba, SEQ_ID_CURSOR_X_LOC_LO, pos->x & 0xff);
   1034  1.4      mw   vgaw (ba, SEQ_ID_CURSOR_X_LOC_HI, (pos->x >> 8) & 0x07);
   1035  1.4      mw   vgaw (ba, SEQ_ID_CURSOR_Y_LOC_LO, pos->y & 0xff);
   1036  1.4      mw   vgaw (ba, SEQ_ID_CURSOR_Y_LOC_HI, (pos->y >> 8) & 0x07);
   1037  1.4      mw   return 0;
   1038  1.4      mw }
   1039  1.4      mw 
   1040  1.4      mw /* assume an at least 2M retina (XXX), sprite is last in memory.
   1041  1.4      mw    According to the bogus docs, the cursor can be at most 128 lines
   1042  1.4      mw    in height, and the x-hostspot can be placed at most at pos 31,
   1043  1.4      mw    this gives width of a long */
   1044  1.4      mw #define SPRITE_ADDR (2*1024*1024 - 128*4)
   1045  1.4      mw 
   1046  1.4      mw int
   1047  1.4      mw rt_getspriteinfo (gp, info)
   1048  1.4      mw      struct grf_softc *gp;
   1049  1.4      mw      struct grf_spriteinfo *info;
   1050  1.4      mw {
   1051  1.4      mw   volatile unsigned char *ba, *fb;
   1052  1.4      mw 
   1053  1.4      mw   ba = gp->g_regkva;
   1054  1.4      mw   fb = gp->g_fbkva;
   1055  1.4      mw   if (info->set & GRFSPRSET_ENABLE)
   1056  1.4      mw     info->enable = vgar (ba, SEQ_ID_CURSOR_CONTROL) & 0x01;
   1057  1.4      mw   if (info->set & GRFSPRSET_POS)
   1058  1.4      mw     rt_getspritepos (gp, &info->pos);
   1059  1.4      mw   if (info->set & GRFSPRSET_HOT)
   1060  1.4      mw     {
   1061  1.4      mw       info->hot.x = vgar (ba, SEQ_ID_CURSOR_X_INDEX) & 0x1f;
   1062  1.4      mw       info->hot.y = vgar (ba, SEQ_ID_CURSOR_Y_INDEX) & 0x7f;
   1063  1.4      mw     }
   1064  1.4      mw   if (info->set & GRFSPRSET_CMAP)
   1065  1.4      mw     {
   1066  1.4      mw       struct grf_colormap cmap;
   1067  1.4      mw       int index;
   1068  1.4      mw       cmap.index = 0;
   1069  1.4      mw       cmap.count = 256;
   1070  1.4      mw       rt_getcmap (gp, &cmap);
   1071  1.4      mw       index = vgar (ba, SEQ_ID_CURSOR_COLOR0);
   1072  1.4      mw       info->cmap.red[0] = cmap.red[index];
   1073  1.4      mw       info->cmap.green[0] = cmap.green[index];
   1074  1.4      mw       info->cmap.blue[0] = cmap.blue[index];
   1075  1.4      mw       index = vgar (ba, SEQ_ID_CURSOR_COLOR1);
   1076  1.4      mw       info->cmap.red[1] = cmap.red[index];
   1077  1.4      mw       info->cmap.green[1] = cmap.green[index];
   1078  1.4      mw       info->cmap.blue[1] = cmap.blue[index];
   1079  1.4      mw     }
   1080  1.4      mw   if (info->set & GRFSPRSET_SHAPE)
   1081  1.4      mw     {
   1082  1.4      mw       int saved_bank_lo = RSeq (ba, SEQ_ID_PRIM_HOST_OFF_LO);
   1083  1.4      mw       int saved_bank_hi = RSeq (ba, SEQ_ID_PRIM_HOST_OFF_HI);
   1084  1.4      mw       int last_bank = SPRITE_ADDR >> 6;
   1085  1.4      mw       int last_bank_lo = last_bank & 0xff;
   1086  1.4      mw       int last_bank_hi = last_bank >> 8;
   1087  1.4      mw       u_char mask;
   1088  1.4      mw       WSeq (ba, SEQ_ID_PRIM_HOST_OFF_LO, last_bank_lo);
   1089  1.4      mw       WSeq (ba, SEQ_ID_PRIM_HOST_OFF_HI, last_bank_hi);
   1090  1.4      mw       copyout (fb, info->image, 128*4);
   1091  1.4      mw       mask = RSeq (ba, SEQ_ID_CURSOR_PIXELMASK);
   1092  1.4      mw       WSeq (ba, SEQ_ID_PRIM_HOST_OFF_LO, saved_bank_lo);
   1093  1.4      mw       WSeq (ba, SEQ_ID_PRIM_HOST_OFF_HI, saved_bank_hi);
   1094  1.4      mw       copyout (&mask, info->mask, 1);
   1095  1.4      mw       info->size.x = 32; /* ??? */
   1096  1.4      mw       info->size.y = (RSeq (ba, SEQ_ID_CURSOR_CONTROL) & 6) << 4;
   1097  1.4      mw     }
   1098  1.4      mw 
   1099  1.4      mw }
   1100  1.4      mw 
   1101  1.4      mw int
   1102  1.4      mw rt_setspriteinfo (gp, info)
   1103  1.4      mw      struct grf_softc *gp;
   1104  1.4      mw      struct grf_spriteinfo *info;
   1105  1.4      mw {
   1106  1.4      mw   volatile unsigned char *ba, *fb;
   1107  1.4      mw   u_char control;
   1108  1.4      mw 
   1109  1.4      mw   ba = gp->g_regkva;
   1110  1.4      mw   fb = gp->g_fbkva;
   1111  1.4      mw   control = vgar (ba, SEQ_ID_CURSOR_CONTROL);
   1112  1.4      mw   if (info->set & GRFSPRSET_ENABLE)
   1113  1.4      mw     {
   1114  1.4      mw       if (info->enable)
   1115  1.4      mw 	control |= 1;
   1116  1.4      mw       else
   1117  1.4      mw 	control &= ~1;
   1118  1.4      mw       vgaw (ba, SEQ_ID_CURSOR_CONTROL, control);
   1119  1.4      mw     }
   1120  1.4      mw   if (info->set & GRFSPRSET_POS)
   1121  1.4      mw     rt_setspritepos (gp, &info->pos);
   1122  1.4      mw   if (info->set & GRFSPRSET_HOT)
   1123  1.4      mw     {
   1124  1.4      mw       vgaw (ba, SEQ_ID_CURSOR_X_INDEX, info->hot.x & 0x1f);
   1125  1.4      mw       vgaw (ba, SEQ_ID_CURSOR_Y_INDEX, info->hot.y & 0x7f);
   1126  1.4      mw     }
   1127  1.4      mw   if (info->set & GRFSPRSET_CMAP)
   1128  1.4      mw     {
   1129  1.4      mw       /* hey cheat a bit here.. XXX */
   1130  1.4      mw       vgaw (ba, SEQ_ID_CURSOR_COLOR0, 0);
   1131  1.4      mw       vgaw (ba, SEQ_ID_CURSOR_COLOR1, 1);
   1132  1.4      mw     }
   1133  1.4      mw   if (info->set & GRFSPRSET_SHAPE)
   1134  1.4      mw     {
   1135  1.4      mw       int saved_bank_lo = RSeq (ba, SEQ_ID_PRIM_HOST_OFF_LO);
   1136  1.4      mw       int saved_bank_hi = RSeq (ba, SEQ_ID_PRIM_HOST_OFF_HI);
   1137  1.4      mw       int last_bank = SPRITE_ADDR >> 6;
   1138  1.4      mw       int last_bank_lo = last_bank & 0xff;
   1139  1.4      mw       int last_bank_hi = last_bank >> 8;
   1140  1.4      mw       u_char mask;
   1141  1.4      mw       WSeq (ba, SEQ_ID_PRIM_HOST_OFF_LO, last_bank_lo);
   1142  1.4      mw       WSeq (ba, SEQ_ID_PRIM_HOST_OFF_HI, last_bank_hi);
   1143  1.4      mw       copyin (info->image, fb, 128*4);
   1144  1.4      mw       WSeq (ba, SEQ_ID_PRIM_HOST_OFF_LO, saved_bank_lo);
   1145  1.4      mw       WSeq (ba, SEQ_ID_PRIM_HOST_OFF_HI, saved_bank_hi);
   1146  1.4      mw       copyin (info->mask, &mask, 1);
   1147  1.4      mw       WSeq (ba, SEQ_ID_CURSOR_PIXELMASK, mask);
   1148  1.4      mw       /* info->size.x = 32; *//* ??? */
   1149  1.4      mw 
   1150  1.4      mw       info->size.y = (RSeq (ba, SEQ_ID_CURSOR_CONTROL) & 6) << 4;
   1151  1.4      mw       control = (control & ~6) | ((info->size.y >> 4) & 6);
   1152  1.4      mw       vgaw (ba, SEQ_ID_CURSOR_CONTROL, control);
   1153  1.4      mw 
   1154  1.4      mw       /* sick intel bull-addressing.. */
   1155  1.4      mw       WSeq (ba, SEQ_ID_CURSOR_STORE_LO, SPRITE_ADDR & 0x0f);
   1156  1.4      mw       WSeq (ba, SEQ_ID_CURSOR_STORE_HI, 0);
   1157  1.4      mw       WSeq (ba, SEQ_ID_CURSOR_ST_OFF_LO, (SPRITE_ADDR >> 4) & 0xff);
   1158  1.4      mw       WSeq (ba, SEQ_ID_CURSOR_ST_OFF_HI, ((SPRITE_ADDR >> 4) >> 8) & 0xff);
   1159  1.4      mw     }
   1160  1.4      mw 
   1161  1.4      mw   return 0;
   1162  1.4      mw }
   1163  1.4      mw 
   1164  1.4      mw int
   1165  1.4      mw rt_getspritemax (gp, pos)
   1166  1.4      mw      struct grf_softc *gp;
   1167  1.4      mw      struct grf_position *pos;
   1168  1.4      mw {
   1169  1.4      mw   pos->x = 32;
   1170  1.4      mw   pos->y = 128;
   1171  1.4      mw 
   1172  1.4      mw   return 0;
   1173  1.4      mw }
   1174  1.4      mw 
   1175  1.4      mw 
   1176  1.4      mw /*
   1177  1.4      mw  * !!! THIS AREA UNDER CONSTRUCTION !!!
   1178  1.4      mw  */
   1179  1.4      mw 
   1180  1.4      mw int
   1181  1.4      mw rt_bitblt (gp, bb)
   1182  1.4      mw      struct grf_softc *gp;
   1183  1.4      mw      struct grf_bitblt *bb;
   1184  1.4      mw {
   1185  1.4      mw   return EINVAL;
   1186  1.4      mw 
   1187  1.4      mw 
   1188  1.4      mw #if 0
   1189  1.4      mw   volatile unsigned char *ba, *fb;
   1190  1.4      mw   u_char control;
   1191  1.4      mw   u_char saved_bank_lo;
   1192  1.4      mw   u_char saved_bank_hi;
   1193  1.4      mw   u_char src_bank_lo, src_bank_hi;
   1194  1.4      mw   u_char dst_bank_lo, dst_bank_hi;
   1195  1.4      mw   u_long src_offset, dst_offset;
   1196  1.4      mw   u_short src_bank, dst_bank;
   1197  1.4      mw   u_char *srcp, *dstp;
   1198  1.4      mw   short x, y;
   1199  1.4      mw   u_long tot;
   1200  1.4      mw 
   1201  1.4      mw   ba = gp->g_regkva;
   1202  1.4      mw   fb = gp->g_fbkva;
   1203  1.4      mw 
   1204  1.4      mw   saved_bank_lo = RSeq (ba, SEQ_ID_PRIM_HOST_OFF_LO);
   1205  1.4      mw   saved_bank_hi = RSeq (ba, SEQ_ID_PRIM_HOST_OFF_HI);
   1206  1.4      mw 
   1207  1.4      mw   /* for now, only GRFBBcopy is supported, and only for depth 8. No
   1208  1.4      mw      clipping is performed, either... */
   1209  1.4      mw 
   1210  1.4      mw   if (bb->op != GRFBBcopy && gp->g_display.gd_planes != 8)
   1211  1.4      mw     return EINVAL;
   1212  1.4      mw 
   1213  1.4      mw   src_offset = op->src_x + op->src_y * gp->g_display.gd_fbwidth;
   1214  1.4      mw   dst_offset = op->dst_x + op->dst_y * gp->g_display.gd_fbwidth;
   1215  1.4      mw   tot = op->w * op->h;
   1216  1.4      mw 
   1217  1.4      mw   /* set write mode 1, "[...] data in the read latches is written
   1218  1.4      mw      to memory during CPU memory write cycles. [...]" */
   1219  1.4      mw   WGfx (ba, GCT_ID_GRAPHICS_MODE, (RGfx(ba, GCT_ID_GRAPHICS_MODE) & 0xfc) | 1);
   1220  1.4      mw   /* write to primary, read from secondary */
   1221  1.4      mw   WSeq (ba, SEQ_ID_EXTENDED_MEM_ENA, (RSeq(ba, SEQ_ID_EXTENDED_MEM_ENA) & 0x1f) | 0 );
   1222  1.4      mw 
   1223  1.4      mw   if (src_offset < dst_offset)
   1224  1.4      mw     {
   1225  1.4      mw       /* start at end */
   1226  1.4      mw       src_offset += tot;
   1227  1.4      mw       dst_offset += tot;
   1228  1.4      mw     }
   1229  1.4      mw 
   1230  1.4      mw   src_bank_lo = (src_offset >> 6) & 0xff;
   1231  1.4      mw   src_bank_hi = (src_offset >> 14) & 0xff;
   1232  1.4      mw   dst_bank_lo = (dst_offset >> 6) & 0xff;
   1233  1.4      mw   dst_bank_hi = (dst_offset >> 14) & 0xff;
   1234  1.4      mw 
   1235  1.4      mw   while (tot)
   1236  1.4      mw     {
   1237  1.4      mw       WSeq (ba, SEQ_ID_SEC_HOST_OFF_LO, src_bank_lo);
   1238  1.4      mw       WSeq (ba, SEQ_ID_SEC_HOST_OFF_HI, src_bank_hi);
   1239  1.4      mw       WSeq (ba, SEQ_ID_PRIM_HOST_OFF_LO, dst_bank_lo);
   1240  1.4      mw       WSeq (ba, SEQ_ID_PRIM_HOST_OFF_HI, dst_bank_hi);
   1241  1.4      mw 
   1242  1.4      mw       if (src_offset < dst_offset)
   1243  1.4      mw 	{
   1244  1.4      mw 
   1245  1.4      mw 
   1246  1.4      mw 	}
   1247  1.4      mw       else
   1248  1.4      mw 	{
   1249  1.4      mw 
   1250  1.4      mw 	}
   1251  1.4      mw     }
   1252  1.4      mw 
   1253  1.4      mw 
   1254  1.4      mw #endif
   1255  1.4      mw }
   1256  1.4      mw 
   1257  1.1      mw 
   1258  1.1      mw #endif	/* NGRF */
   1259