1 1.25 christos /* $NetBSD: ite_rt.c,v 1.25 2014/01/22 00:25:16 christos Exp $ */ 2 1.5 chopps 3 1.12 chopps /* 4 1.12 chopps * Copyright (c) 1993 Markus Wild 5 1.12 chopps * Copyright (c) 1993 Lutz Vieweg 6 1.12 chopps * All rights reserved. 7 1.12 chopps * 8 1.12 chopps * Redistribution and use in source and binary forms, with or without 9 1.12 chopps * modification, are permitted provided that the following conditions 10 1.12 chopps * are met: 11 1.12 chopps * 1. Redistributions of source code must retain the above copyright 12 1.12 chopps * notice, this list of conditions and the following disclaimer. 13 1.12 chopps * 2. Redistributions in binary form must reproduce the above copyright 14 1.12 chopps * notice, this list of conditions and the following disclaimer in the 15 1.12 chopps * documentation and/or other materials provided with the distribution. 16 1.12 chopps * 3. All advertising materials mentioning features or use of this software 17 1.12 chopps * must display the following acknowledgement: 18 1.12 chopps * This product includes software developed by Lutz Vieweg. 19 1.12 chopps * 4. The name of the author may not be used to endorse or promote products 20 1.12 chopps * derived from this software without specific prior written permission 21 1.12 chopps * 22 1.12 chopps * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR 23 1.12 chopps * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES 24 1.12 chopps * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. 25 1.12 chopps * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, 26 1.12 chopps * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT 27 1.12 chopps * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, 28 1.12 chopps * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 29 1.12 chopps * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 30 1.12 chopps * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF 31 1.12 chopps * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 32 1.12 chopps */ 33 1.18 aymeric 34 1.18 aymeric #include <sys/cdefs.h> 35 1.25 christos __KERNEL_RCSID(0, "$NetBSD: ite_rt.c,v 1.25 2014/01/22 00:25:16 christos Exp $"); 36 1.18 aymeric 37 1.10 chopps #include "grfrt.h" 38 1.10 chopps #if NGRFRT > 0 39 1.10 chopps 40 1.6 chopps #include <sys/param.h> 41 1.6 chopps #include <sys/conf.h> 42 1.6 chopps #include <sys/proc.h> 43 1.9 chopps #include <sys/device.h> 44 1.6 chopps #include <sys/ioctl.h> 45 1.6 chopps #include <sys/tty.h> 46 1.6 chopps #include <sys/systm.h> 47 1.7 chopps #include <dev/cons.h> 48 1.9 chopps #include <machine/cpu.h> 49 1.9 chopps #include <amiga/amiga/device.h> 50 1.6 chopps #include <amiga/dev/itevar.h> 51 1.6 chopps #include <amiga/dev/grfioctl.h> 52 1.6 chopps #include <amiga/dev/grfvar.h> 53 1.6 chopps #include <amiga/dev/grf_rtreg.h> 54 1.7 chopps 55 1.8 chopps int retina_console = 1; 56 1.7 chopps 57 1.17 aymeric void retina_cursor(struct ite_softc *, int); 58 1.17 aymeric void retina_scroll(struct ite_softc *, int, int, int, int); 59 1.17 aymeric void retina_deinit(struct ite_softc *); 60 1.17 aymeric void retina_clear(struct ite_softc *, int, int, int, int); 61 1.17 aymeric void retina_putc(struct ite_softc *, int, int, int, int); 62 1.17 aymeric void retina_init(struct ite_softc *); 63 1.9 chopps 64 1.16 veego #ifdef RETINA_SPEED_HACK 65 1.17 aymeric static void screen_up(struct ite_softc *, int, int, int); 66 1.17 aymeric static void screen_down(struct ite_softc *, int, int, int); 67 1.16 veego #endif 68 1.16 veego 69 1.7 chopps /* 70 1.9 chopps * this function is called from grf_rt to init the grf_softc->g_conpri 71 1.9 chopps * field each time a retina is attached. 72 1.7 chopps */ 73 1.7 chopps int 74 1.17 aymeric grfrt_cnprobe(void) 75 1.7 chopps { 76 1.9 chopps static int done; 77 1.9 chopps int rv; 78 1.9 chopps 79 1.9 chopps if (retina_console && done == 0) 80 1.9 chopps rv = CN_INTERNAL; 81 1.9 chopps else 82 1.9 chopps rv = CN_NORMAL; 83 1.9 chopps done = 1; 84 1.9 chopps return(rv); 85 1.7 chopps } 86 1.1 mw 87 1.17 aymeric /* 88 1.9 chopps * init the required fields in the grf_softc struct for a 89 1.9 chopps * grf to function as an ite. 90 1.9 chopps */ 91 1.9 chopps void 92 1.17 aymeric grfrt_iteinit(struct grf_softc *gp) 93 1.1 mw { 94 1.9 chopps gp->g_iteinit = retina_init; 95 1.9 chopps gp->g_itedeinit = retina_deinit; 96 1.9 chopps gp->g_iteclear = retina_clear; 97 1.9 chopps gp->g_iteputc = retina_putc; 98 1.9 chopps gp->g_itescroll = retina_scroll; 99 1.9 chopps gp->g_itecursor = retina_cursor; 100 1.9 chopps } 101 1.1 mw 102 1.16 veego 103 1.9 chopps void 104 1.17 aymeric retina_init(struct ite_softc *ip) 105 1.9 chopps { 106 1.9 chopps struct MonDef *md; 107 1.1 mw 108 1.9 chopps ip->priv = ip->grf->g_data; 109 1.9 chopps md = (struct MonDef *) ip->priv; 110 1.17 aymeric 111 1.9 chopps ip->cols = md->TX; 112 1.9 chopps ip->rows = md->TY; 113 1.1 mw } 114 1.1 mw 115 1.1 mw 116 1.16 veego void 117 1.17 aymeric retina_cursor(struct ite_softc *ip, int flag) 118 1.1 mw { 119 1.21 christos volatile void *ba = ip->grf->g_regkva; 120 1.17 aymeric 121 1.1 mw if (flag == ERASE_CURSOR) 122 1.1 mw { 123 1.1 mw /* disable cursor */ 124 1.1 mw WCrt (ba, CRT_ID_CURSOR_START, RCrt (ba, CRT_ID_CURSOR_START) | 0x20); 125 1.1 mw } 126 1.1 mw else 127 1.1 mw { 128 1.1 mw int pos = ip->curx + ip->cury * ip->cols; 129 1.1 mw 130 1.1 mw /* make sure to enable cursor */ 131 1.1 mw WCrt (ba, CRT_ID_CURSOR_START, RCrt (ba, CRT_ID_CURSOR_START) & ~0x20); 132 1.1 mw 133 1.1 mw /* and position it */ 134 1.1 mw WCrt (ba, CRT_ID_CURSOR_LOC_HIGH, (u_char) (pos >> 8)); 135 1.1 mw WCrt (ba, CRT_ID_CURSOR_LOC_LOW, (u_char) pos); 136 1.1 mw 137 1.1 mw ip->cursorx = ip->curx; 138 1.1 mw ip->cursory = ip->cury; 139 1.1 mw } 140 1.1 mw } 141 1.1 mw 142 1.1 mw 143 1.1 mw 144 1.16 veego #ifdef RETINA_SPEED_HACK 145 1.16 veego static void 146 1.17 aymeric screen_up(struct ite_softc *ip, int top, int bottom, int lines) 147 1.17 aymeric { 148 1.21 christos volatile void *ba = ip->grf->g_regkva; 149 1.21 christos volatile void *fb = ip->grf->g_fbkva; 150 1.1 mw const struct MonDef * md = (struct MonDef *) ip->priv; 151 1.1 mw 152 1.1 mw /* do some bounds-checking here.. */ 153 1.1 mw if (top >= bottom) 154 1.1 mw return; 155 1.17 aymeric 156 1.1 mw if (top + lines >= bottom) 157 1.1 mw { 158 1.1 mw retina_clear (ip, top, 0, bottom - top, ip->cols); 159 1.1 mw return; 160 1.1 mw } 161 1.1 mw 162 1.1 mw /* the trick here is to use a feature of the NCR chip. It can 163 1.1 mw optimize data access in various read/write modes. One of 164 1.1 mw the modes is able to read/write from/to different zones. 165 1.1 mw 166 1.1 mw Thus, by setting the read-offset to lineN, and the write-offset 167 1.1 mw to line0, we just cause read/write cycles for all characters 168 1.1 mw up to the last line, and have the chip transfer the data. The 169 1.1 mw `addqb' are the cheapest way to cause read/write cycles (DONT 170 1.1 mw use `tas' on the Amiga!), their results are completely ignored 171 1.1 mw by the NCR chip, it just replicates what it just read. */ 172 1.17 aymeric 173 1.1 mw /* write to primary, read from secondary */ 174 1.16 veego WSeq (ba, SEQ_ID_EXTENDED_MEM_ENA, 175 1.17 aymeric (RSeq(ba, SEQ_ID_EXTENDED_MEM_ENA) & 0x1f) | 0 ); 176 1.1 mw /* clear extended chain4 mode */ 177 1.17 aymeric WSeq (ba, SEQ_ID_EXT_VIDEO_ADDR, RSeq(ba, SEQ_ID_EXT_VIDEO_ADDR) & ~0x02); 178 1.17 aymeric 179 1.1 mw /* set write mode 1, "[...] data in the read latches is written 180 1.1 mw to memory during CPU memory write cycles. [...]" */ 181 1.16 veego WGfx (ba, GCT_ID_GRAPHICS_MODE, 182 1.17 aymeric (RGfx(ba, GCT_ID_GRAPHICS_MODE) & 0xfc) | 1); 183 1.17 aymeric 184 1.1 mw { 185 1.17 aymeric /* write to line TOP */ 186 1.1 mw long toploc = top * (md->TX / 16); 187 1.17 aymeric WSeq (ba, SEQ_ID_PRIM_HOST_OFF_LO, ((unsigned char)toploc)); 188 1.17 aymeric WSeq (ba, SEQ_ID_PRIM_HOST_OFF_HI, ((unsigned char)(toploc >> 8))); 189 1.1 mw } 190 1.1 mw { 191 1.1 mw /* read from line TOP + LINES */ 192 1.1 mw long fromloc = (top+lines) * (md->TX / 16); 193 1.17 aymeric WSeq (ba, SEQ_ID_SEC_HOST_OFF_LO, ((unsigned char)fromloc)) ; 194 1.17 aymeric WSeq (ba, SEQ_ID_SEC_HOST_OFF_HI, ((unsigned char)(fromloc >> 8))) ; 195 1.1 mw } 196 1.1 mw { 197 1.21 christos void *p = (void *)fb; 198 1.1 mw /* transfer all characters but LINES lines, unroll by 16 */ 199 1.1 mw short x = (1 + bottom - (top + lines)) * (md->TX / 16) - 1; 200 1.1 mw do { 201 1.20 perry __asm volatile("addqb #1,%0@+" : "=a" (p) : "0" (p)); 202 1.20 perry __asm volatile("addqb #1,%0@+" : "=a" (p) : "0" (p)); 203 1.20 perry __asm volatile("addqb #1,%0@+" : "=a" (p) : "0" (p)); 204 1.20 perry __asm volatile("addqb #1,%0@+" : "=a" (p) : "0" (p)); 205 1.20 perry __asm volatile("addqb #1,%0@+" : "=a" (p) : "0" (p)); 206 1.20 perry __asm volatile("addqb #1,%0@+" : "=a" (p) : "0" (p)); 207 1.20 perry __asm volatile("addqb #1,%0@+" : "=a" (p) : "0" (p)); 208 1.20 perry __asm volatile("addqb #1,%0@+" : "=a" (p) : "0" (p)); 209 1.20 perry __asm volatile("addqb #1,%0@+" : "=a" (p) : "0" (p)); 210 1.20 perry __asm volatile("addqb #1,%0@+" : "=a" (p) : "0" (p)); 211 1.20 perry __asm volatile("addqb #1,%0@+" : "=a" (p) : "0" (p)); 212 1.20 perry __asm volatile("addqb #1,%0@+" : "=a" (p) : "0" (p)); 213 1.20 perry __asm volatile("addqb #1,%0@+" : "=a" (p) : "0" (p)); 214 1.20 perry __asm volatile("addqb #1,%0@+" : "=a" (p) : "0" (p)); 215 1.20 perry __asm volatile("addqb #1,%0@+" : "=a" (p) : "0" (p)); 216 1.20 perry __asm volatile("addqb #1,%0@+" : "=a" (p) : "0" (p)); 217 1.1 mw } while (x--); 218 1.1 mw } 219 1.17 aymeric 220 1.1 mw /* reset to default values */ 221 1.17 aymeric WSeq (ba, SEQ_ID_SEC_HOST_OFF_HI, 0); 222 1.17 aymeric WSeq (ba, SEQ_ID_SEC_HOST_OFF_LO, 0); 223 1.17 aymeric WSeq (ba, SEQ_ID_PRIM_HOST_OFF_HI, 0); 224 1.17 aymeric WSeq (ba, SEQ_ID_PRIM_HOST_OFF_LO, 0); 225 1.1 mw /* write mode 0 */ 226 1.16 veego WGfx (ba, GCT_ID_GRAPHICS_MODE, 227 1.16 veego (RGfx(ba, GCT_ID_GRAPHICS_MODE) & 0xfc) | 0); 228 1.1 mw /* extended chain4 enable */ 229 1.16 veego WSeq (ba, SEQ_ID_EXT_VIDEO_ADDR, 230 1.17 aymeric RSeq(ba, SEQ_ID_EXT_VIDEO_ADDR) | 0x02); 231 1.1 mw /* read/write to primary on A0, secondary on B0 */ 232 1.16 veego WSeq (ba, SEQ_ID_EXTENDED_MEM_ENA, 233 1.16 veego (RSeq(ba, SEQ_ID_EXTENDED_MEM_ENA) & 0x1f) | 0x40); 234 1.16 veego 235 1.16 veego 236 1.1 mw /* fill the free lines with spaces */ 237 1.16 veego 238 1.1 mw { /* feed latches with value */ 239 1.1 mw unsigned short * f = (unsigned short *) fb; 240 1.16 veego 241 1.1 mw f += (1 + bottom - lines) * md->TX * 2; 242 1.1 mw *f = 0x2010; 243 1.1 mw } 244 1.16 veego 245 1.1 mw /* clear extended chain4 mode */ 246 1.17 aymeric WSeq (ba, SEQ_ID_EXT_VIDEO_ADDR, RSeq(ba, SEQ_ID_EXT_VIDEO_ADDR) & ~0x02); 247 1.1 mw /* set write mode 1, "[...] data in the read latches is written 248 1.1 mw to memory during CPU memory write cycles. [...]" */ 249 1.17 aymeric WGfx (ba, GCT_ID_GRAPHICS_MODE, (RGfx(ba, GCT_ID_GRAPHICS_MODE) & 0xfc) | 1); 250 1.16 veego 251 1.1 mw { 252 1.1 mw unsigned long * p = (unsigned long *) fb; 253 1.1 mw short x = (lines * (md->TX/16)) - 1; 254 1.1 mw const unsigned long dummyval = 0; 255 1.16 veego 256 1.1 mw p += (1 + bottom - lines) * (md->TX/4); 257 1.16 veego 258 1.1 mw do { 259 1.1 mw *p++ = dummyval; 260 1.1 mw *p++ = dummyval; 261 1.1 mw *p++ = dummyval; 262 1.1 mw *p++ = dummyval; 263 1.1 mw } while (x--); 264 1.1 mw } 265 1.16 veego 266 1.1 mw /* write mode 0 */ 267 1.1 mw WGfx (ba, GCT_ID_GRAPHICS_MODE, (RGfx(ba, GCT_ID_GRAPHICS_MODE) & 0xfc) | 0); 268 1.1 mw /* extended chain4 enable */ 269 1.17 aymeric WSeq (ba, SEQ_ID_EXT_VIDEO_ADDR , RSeq(ba, SEQ_ID_EXT_VIDEO_ADDR) | 0x02); 270 1.1 mw }; 271 1.1 mw 272 1.16 veego 273 1.16 veego static void 274 1.17 aymeric screen_down(struct ite_softc *ip, int top, int bottom, int lines) 275 1.16 veego { 276 1.21 christos volatile void *ba = ip->grf->g_regkva; 277 1.21 christos volatile void *fb = ip->grf->g_fbkva; 278 1.1 mw const struct MonDef * md = (struct MonDef *) ip->priv; 279 1.1 mw 280 1.1 mw /* do some bounds-checking here.. */ 281 1.1 mw if (top >= bottom) 282 1.1 mw return; 283 1.17 aymeric 284 1.1 mw if (top + lines >= bottom) 285 1.1 mw { 286 1.1 mw retina_clear (ip, top, 0, bottom - top, ip->cols); 287 1.1 mw return; 288 1.1 mw } 289 1.1 mw 290 1.1 mw /* see screen_up() for explanation of chip-tricks */ 291 1.1 mw 292 1.1 mw /* write to primary, read from secondary */ 293 1.16 veego WSeq (ba, SEQ_ID_EXTENDED_MEM_ENA, 294 1.17 aymeric (RSeq(ba, SEQ_ID_EXTENDED_MEM_ENA) & 0x1f) | 0 ); 295 1.1 mw /* clear extended chain4 mode */ 296 1.17 aymeric WSeq (ba, SEQ_ID_EXT_VIDEO_ADDR, RSeq(ba, SEQ_ID_EXT_VIDEO_ADDR) & ~0x02); 297 1.16 veego 298 1.1 mw /* set write mode 1, "[...] data in the read latches is written 299 1.1 mw to memory during CPU memory write cycles. [...]" */ 300 1.17 aymeric WGfx (ba, GCT_ID_GRAPHICS_MODE, (RGfx(ba, GCT_ID_GRAPHICS_MODE) & 0xfc) | 1); 301 1.16 veego 302 1.1 mw { 303 1.17 aymeric /* write to line TOP + LINES */ 304 1.1 mw long toloc = (top + lines) * (md->TX / 16); 305 1.17 aymeric WSeq (ba, SEQ_ID_PRIM_HOST_OFF_LO, ((unsigned char)toloc)); 306 1.17 aymeric WSeq (ba, SEQ_ID_PRIM_HOST_OFF_HI, ((unsigned char)(toloc >> 8))); 307 1.1 mw } 308 1.1 mw { 309 1.1 mw /* read from line TOP */ 310 1.1 mw long fromloc = top * (md->TX / 16); 311 1.17 aymeric WSeq (ba, SEQ_ID_SEC_HOST_OFF_LO, ((unsigned char)fromloc)); 312 1.17 aymeric WSeq (ba, SEQ_ID_SEC_HOST_OFF_HI, ((unsigned char)(fromloc >> 8))) ; 313 1.1 mw } 314 1.16 veego 315 1.1 mw { 316 1.21 christos void *p = (void *)fb; 317 1.1 mw short x = (1 + bottom - (top + lines)) * (md->TX / 16) - 1; 318 1.1 mw p += (1 + bottom - (top + lines)) * md->TX; 319 1.1 mw do { 320 1.20 perry __asm volatile("addqb #1,%0@-" : "=a" (p) : "0" (p)); 321 1.20 perry __asm volatile("addqb #1,%0@-" : "=a" (p) : "0" (p)); 322 1.20 perry __asm volatile("addqb #1,%0@-" : "=a" (p) : "0" (p)); 323 1.20 perry __asm volatile("addqb #1,%0@-" : "=a" (p) : "0" (p)); 324 1.20 perry __asm volatile("addqb #1,%0@-" : "=a" (p) : "0" (p)); 325 1.20 perry __asm volatile("addqb #1,%0@-" : "=a" (p) : "0" (p)); 326 1.20 perry __asm volatile("addqb #1,%0@-" : "=a" (p) : "0" (p)); 327 1.20 perry __asm volatile("addqb #1,%0@-" : "=a" (p) : "0" (p)); 328 1.20 perry __asm volatile("addqb #1,%0@-" : "=a" (p) : "0" (p)); 329 1.20 perry __asm volatile("addqb #1,%0@-" : "=a" (p) : "0" (p)); 330 1.20 perry __asm volatile("addqb #1,%0@-" : "=a" (p) : "0" (p)); 331 1.20 perry __asm volatile("addqb #1,%0@-" : "=a" (p) : "0" (p)); 332 1.20 perry __asm volatile("addqb #1,%0@-" : "=a" (p) : "0" (p)); 333 1.20 perry __asm volatile("addqb #1,%0@-" : "=a" (p) : "0" (p)); 334 1.20 perry __asm volatile("addqb #1,%0@-" : "=a" (p) : "0" (p)); 335 1.20 perry __asm volatile("addqb #1,%0@-" : "=a" (p) : "0" (p)); 336 1.1 mw } while (x--); 337 1.1 mw } 338 1.16 veego 339 1.17 aymeric WSeq (ba, SEQ_ID_PRIM_HOST_OFF_HI, 0); 340 1.17 aymeric WSeq (ba, SEQ_ID_PRIM_HOST_OFF_LO, 0); 341 1.17 aymeric WSeq (ba, SEQ_ID_SEC_HOST_OFF_HI, 0); 342 1.17 aymeric WSeq (ba, SEQ_ID_SEC_HOST_OFF_LO, 0); 343 1.16 veego 344 1.1 mw /* write mode 0 */ 345 1.16 veego WGfx (ba, GCT_ID_GRAPHICS_MODE, 346 1.16 veego (RGfx(ba, GCT_ID_GRAPHICS_MODE) & 0xfc) | 0); 347 1.1 mw /* extended chain4 enable */ 348 1.17 aymeric WSeq (ba, SEQ_ID_EXT_VIDEO_ADDR , RSeq(ba, SEQ_ID_EXT_VIDEO_ADDR) | 0x02); 349 1.1 mw /* read/write to primary on A0, secondary on B0 */ 350 1.16 veego WSeq (ba, SEQ_ID_EXTENDED_MEM_ENA, 351 1.17 aymeric (RSeq(ba, SEQ_ID_EXTENDED_MEM_ENA) & 0x1f) | 0x40 ); 352 1.16 veego 353 1.1 mw /* fill the free lines with spaces */ 354 1.16 veego 355 1.1 mw { /* feed latches with value */ 356 1.1 mw unsigned short * f = (unsigned short *) fb; 357 1.16 veego 358 1.1 mw f += top * md->TX * 2; 359 1.1 mw *f = 0x2010; 360 1.1 mw } 361 1.16 veego 362 1.1 mw /* clear extended chain4 mode */ 363 1.17 aymeric WSeq (ba, SEQ_ID_EXT_VIDEO_ADDR, RSeq(ba, SEQ_ID_EXT_VIDEO_ADDR) & ~0x02); 364 1.1 mw /* set write mode 1, "[...] data in the read latches is written 365 1.1 mw to memory during CPU memory write cycles. [...]" */ 366 1.17 aymeric WGfx (ba, GCT_ID_GRAPHICS_MODE, (RGfx(ba, GCT_ID_GRAPHICS_MODE) & 0xfc) | 1); 367 1.16 veego 368 1.1 mw { 369 1.1 mw unsigned long * p = (unsigned long *) fb; 370 1.1 mw short x = (lines * (md->TX/16)) - 1; 371 1.1 mw const unsigned long dummyval = 0; 372 1.16 veego 373 1.1 mw p += top * (md->TX/4); 374 1.16 veego 375 1.1 mw do { 376 1.1 mw *p++ = dummyval; 377 1.1 mw *p++ = dummyval; 378 1.1 mw *p++ = dummyval; 379 1.1 mw *p++ = dummyval; 380 1.1 mw } while (x--); 381 1.1 mw } 382 1.16 veego 383 1.1 mw /* write mode 0 */ 384 1.1 mw WGfx (ba, GCT_ID_GRAPHICS_MODE, (RGfx(ba, GCT_ID_GRAPHICS_MODE) & 0xfc) | 0); 385 1.1 mw /* extended chain4 enable */ 386 1.17 aymeric WSeq (ba, SEQ_ID_EXT_VIDEO_ADDR , RSeq(ba, SEQ_ID_EXT_VIDEO_ADDR) | 0x02); 387 1.1 mw }; 388 1.16 veego #endif /* RETINA_SPEED_HACK */ 389 1.16 veego 390 1.1 mw 391 1.16 veego void 392 1.17 aymeric retina_deinit(struct ite_softc *ip) 393 1.1 mw { 394 1.16 veego ip->flags &= ~ITE_INITED; 395 1.1 mw } 396 1.1 mw 397 1.1 mw 398 1.16 veego void 399 1.17 aymeric retina_putc(struct ite_softc *ip, int c, int dy, int dx, int mode) 400 1.1 mw { 401 1.22 he volatile char *fb = (volatile char*)ip->grf->g_fbkva; 402 1.1 mw register u_char attr; 403 1.16 veego 404 1.1 mw attr = (mode & ATTR_INV) ? 0x21 : 0x10; 405 1.1 mw if (mode & ATTR_UL) attr = 0x01; /* ???????? */ 406 1.1 mw if (mode & ATTR_BOLD) attr |= 0x08; 407 1.1 mw if (mode & ATTR_BLINK) attr |= 0x80; 408 1.16 veego 409 1.1 mw fb += 4 * (dy * ip->cols + dx); 410 1.1 mw *fb++ = c; *fb = attr; 411 1.1 mw } 412 1.1 mw 413 1.16 veego 414 1.16 veego void 415 1.17 aymeric retina_clear(struct ite_softc *ip, int sy, int sx, int h, int w) 416 1.1 mw { 417 1.22 he volatile u_short * fb = (volatile u_short *) ip->grf->g_fbkva; 418 1.1 mw short x; 419 1.1 mw const u_short fillval = 0x2010; 420 1.16 veego 421 1.1 mw /* could probably be optimized just like the scrolling functions !! */ 422 1.1 mw fb += 2 * (sy * ip->cols + sx); 423 1.1 mw while (h--) 424 1.1 mw { 425 1.1 mw for (x = 2 * (w - 1); x >= 0; x -= 2) 426 1.1 mw fb[x] = fillval; 427 1.1 mw fb += 2 * ip->cols; 428 1.1 mw } 429 1.1 mw } 430 1.1 mw 431 1.16 veego 432 1.13 chopps /* 433 1.13 chopps * RETINA_SPEED_HACK code seems to work on some boards and on others 434 1.13 chopps * it causes text to smear horizontally 435 1.13 chopps */ 436 1.13 chopps void 437 1.17 aymeric retina_scroll(struct ite_softc *ip, int sy, int sx, int count, int dir) 438 1.1 mw { 439 1.13 chopps u_long *fb; 440 1.13 chopps 441 1.22 he fb = (u_long *)__UNVOLATILE(ip->grf->g_fbkva); 442 1.16 veego 443 1.13 chopps retina_cursor(ip, ERASE_CURSOR); 444 1.13 chopps 445 1.13 chopps if (dir == SCROLL_UP) { 446 1.13 chopps #ifdef RETINA_SPEED_HACK 447 1.13 chopps screen_up(ip, sy - count, ip->bottom_margin, count); 448 1.13 chopps #else 449 1.24 cegger memcpy(fb + (sy - count) * ip->cols, fb + sy * ip->cols, 450 1.13 chopps 4 * (ip->bottom_margin - sy + 1) * ip->cols); 451 1.13 chopps retina_clear(ip, ip->bottom_margin + 1 - count, 0, count, 452 1.13 chopps ip->cols); 453 1.13 chopps #endif 454 1.13 chopps } else if (dir == SCROLL_DOWN) { 455 1.13 chopps #ifdef RETINA_SPEED_HACK 456 1.13 chopps screen_down(ip, sy, ip->bottom_margin, count); 457 1.13 chopps #else 458 1.24 cegger memcpy(fb + (sy + count) * ip->cols, fb + sy * ip->cols, 459 1.13 chopps 4 * (ip->bottom_margin - sy - count + 1) * ip->cols); 460 1.13 chopps retina_clear(ip, sy, 0, count, ip->cols); 461 1.14 chopps #endif 462 1.13 chopps } else if (dir == SCROLL_RIGHT) { 463 1.24 cegger memcpy(fb + sx + sy * ip->cols + count, fb + sx + sy * ip->cols, 464 1.13 chopps 4 * (ip->cols - (sx + count))); 465 1.13 chopps retina_clear(ip, sy, sx, 1, count); 466 1.13 chopps } else { 467 1.24 cegger memcpy(fb + sx - count + sy * ip->cols, fb + sx + sy * ip->cols, 468 1.13 chopps 4 * (ip->cols - sx)); 469 1.13 chopps retina_clear(ip, sy, ip->cols - count, 1, count); 470 1.13 chopps } 471 1.13 chopps #ifndef RETINA_SPEED_HACK 472 1.13 chopps retina_cursor(ip, !ERASE_CURSOR); 473 1.13 chopps #endif 474 1.1 mw } 475 1.10 chopps 476 1.10 chopps #endif /* NGRFRT */ 477