ite_rt.c revision 1.1 1 #include "ite.h"
2 #if NITE > 0
3
4 #include "param.h"
5 #include "conf.h"
6 #include "proc.h"
7 #include "ioctl.h"
8 #include "tty.h"
9 #include "systm.h"
10
11 #include "itevar.h"
12
13 #include "machine/cpu.h"
14
15 /* XXX */
16 #include "grfioctl.h"
17 #include "grfvar.h"
18 #include "grf_rtreg.h"
19
20 void retina_init(struct ite_softc *ip)
21 {
22 struct MonDef *md;
23
24 if (ip->grf == 0)
25 ip->grf = &grf_softc[ip - ite_softc];
26
27 ip->priv = ip->grf->g_display.gd_regaddr;
28 md = (struct MonDef *) ip->priv;
29
30 ip->cols = md->TX;
31 ip->rows = md->TY;
32 }
33
34
35 void retina_cursor(struct ite_softc *ip, int flag)
36 {
37 volatile u_char *ba = ip->grf->g_regkva;
38
39 if (flag == ERASE_CURSOR)
40 {
41 /* disable cursor */
42 WCrt (ba, CRT_ID_CURSOR_START, RCrt (ba, CRT_ID_CURSOR_START) | 0x20);
43 }
44 else
45 {
46 int pos = ip->curx + ip->cury * ip->cols;
47
48 /* make sure to enable cursor */
49 WCrt (ba, CRT_ID_CURSOR_START, RCrt (ba, CRT_ID_CURSOR_START) & ~0x20);
50
51 /* and position it */
52 WCrt (ba, CRT_ID_CURSOR_LOC_HIGH, (u_char) (pos >> 8));
53 WCrt (ba, CRT_ID_CURSOR_LOC_LOW, (u_char) pos);
54
55 ip->cursorx = ip->curx;
56 ip->cursory = ip->cury;
57 }
58 }
59
60
61
62 static void screen_up (struct ite_softc *ip, int top, int bottom, int lines)
63 {
64 volatile u_char * ba = ip->grf->g_regkva;
65 volatile u_char * fb = ip->grf->g_fbkva;
66 const struct MonDef * md = (struct MonDef *) ip->priv;
67
68 /* do some bounds-checking here.. */
69 if (top >= bottom)
70 return;
71
72 if (top + lines >= bottom)
73 {
74 retina_clear (ip, top, 0, bottom - top, ip->cols);
75 return;
76 }
77
78
79 /* the trick here is to use a feature of the NCR chip. It can
80 optimize data access in various read/write modes. One of
81 the modes is able to read/write from/to different zones.
82
83 Thus, by setting the read-offset to lineN, and the write-offset
84 to line0, we just cause read/write cycles for all characters
85 up to the last line, and have the chip transfer the data. The
86 `addqb' are the cheapest way to cause read/write cycles (DONT
87 use `tas' on the Amiga!), their results are completely ignored
88 by the NCR chip, it just replicates what it just read. */
89
90 /* write to primary, read from secondary */
91 WSeq (ba, SEQ_ID_EXTENDED_MEM_ENA, (RSeq(ba, SEQ_ID_EXTENDED_MEM_ENA) & 0x1f) | 0 );
92 /* clear extended chain4 mode */
93 WSeq (ba, SEQ_ID_EXT_VIDEO_ADDR, RSeq(ba, SEQ_ID_EXT_VIDEO_ADDR) & ~0x02);
94
95 /* set write mode 1, "[...] data in the read latches is written
96 to memory during CPU memory write cycles. [...]" */
97 WGfx (ba, GCT_ID_GRAPHICS_MODE, (RGfx(ba, GCT_ID_GRAPHICS_MODE) & 0xfc) | 1);
98
99 {
100 /* write to line TOP */
101 long toploc = top * (md->TX / 16);
102 WSeq (ba, SEQ_ID_PRIM_HOST_OFF_LO, ((unsigned char)toploc));
103 WSeq (ba, SEQ_ID_PRIM_HOST_OFF_HI, ((unsigned char)(toploc >> 8)));
104 }
105 {
106 /* read from line TOP + LINES */
107 long fromloc = (top+lines) * (md->TX / 16);
108 WSeq (ba, SEQ_ID_SEC_HOST_OFF_LO, ((unsigned char)fromloc)) ;
109 WSeq (ba, SEQ_ID_SEC_HOST_OFF_HI, ((unsigned char)(fromloc >> 8))) ;
110 }
111 {
112 unsigned char * p = (unsigned char *) fb;
113 /* transfer all characters but LINES lines, unroll by 16 */
114 short x = (1 + bottom - (top + lines)) * (md->TX / 16) - 1;
115 do {
116 asm volatile("addqb #1,%0@+" : "=a" (p) : "0" (p));
117 asm volatile("addqb #1,%0@+" : "=a" (p) : "0" (p));
118 asm volatile("addqb #1,%0@+" : "=a" (p) : "0" (p));
119 asm volatile("addqb #1,%0@+" : "=a" (p) : "0" (p));
120 asm volatile("addqb #1,%0@+" : "=a" (p) : "0" (p));
121 asm volatile("addqb #1,%0@+" : "=a" (p) : "0" (p));
122 asm volatile("addqb #1,%0@+" : "=a" (p) : "0" (p));
123 asm volatile("addqb #1,%0@+" : "=a" (p) : "0" (p));
124 asm volatile("addqb #1,%0@+" : "=a" (p) : "0" (p));
125 asm volatile("addqb #1,%0@+" : "=a" (p) : "0" (p));
126 asm volatile("addqb #1,%0@+" : "=a" (p) : "0" (p));
127 asm volatile("addqb #1,%0@+" : "=a" (p) : "0" (p));
128 asm volatile("addqb #1,%0@+" : "=a" (p) : "0" (p));
129 asm volatile("addqb #1,%0@+" : "=a" (p) : "0" (p));
130 asm volatile("addqb #1,%0@+" : "=a" (p) : "0" (p));
131 asm volatile("addqb #1,%0@+" : "=a" (p) : "0" (p));
132 } while (x--);
133 }
134
135 /* reset to default values */
136 WSeq (ba, SEQ_ID_SEC_HOST_OFF_HI, 0);
137 WSeq (ba, SEQ_ID_SEC_HOST_OFF_LO, 0);
138 WSeq (ba, SEQ_ID_PRIM_HOST_OFF_HI, 0);
139 WSeq (ba, SEQ_ID_PRIM_HOST_OFF_LO, 0);
140 /* write mode 0 */
141 WGfx (ba, GCT_ID_GRAPHICS_MODE, (RGfx(ba, GCT_ID_GRAPHICS_MODE) & 0xfc) | 0);
142 /* extended chain4 enable */
143 WSeq (ba, SEQ_ID_EXT_VIDEO_ADDR , RSeq(ba, SEQ_ID_EXT_VIDEO_ADDR) | 0x02);
144 /* read/write to primary on A0, secondary on B0 */
145 WSeq (ba, SEQ_ID_EXTENDED_MEM_ENA, (RSeq(ba, SEQ_ID_EXTENDED_MEM_ENA) & 0x1f) | 0x40 );
146
147
148 /* fill the free lines with spaces */
149
150 { /* feed latches with value */
151 unsigned short * f = (unsigned short *) fb;
152
153 f += (1 + bottom - lines) * md->TX * 2;
154 *f = 0x2010;
155 {
156 volatile unsigned short dummy = *((volatile unsigned short *)f);
157 }
158 }
159
160 /* clear extended chain4 mode */
161 WSeq (ba, SEQ_ID_EXT_VIDEO_ADDR, RSeq(ba, SEQ_ID_EXT_VIDEO_ADDR) & ~0x02);
162 /* set write mode 1, "[...] data in the read latches is written
163 to memory during CPU memory write cycles. [...]" */
164 WGfx (ba, GCT_ID_GRAPHICS_MODE, (RGfx(ba, GCT_ID_GRAPHICS_MODE) & 0xfc) | 1);
165
166 {
167 unsigned long * p = (unsigned long *) fb;
168 short x = (lines * (md->TX/16)) - 1;
169 const unsigned long dummyval = 0;
170
171 p += (1 + bottom - lines) * (md->TX/4);
172
173 do {
174 *p++ = dummyval;
175 *p++ = dummyval;
176 *p++ = dummyval;
177 *p++ = dummyval;
178 } while (x--);
179 }
180
181 /* write mode 0 */
182 WGfx (ba, GCT_ID_GRAPHICS_MODE, (RGfx(ba, GCT_ID_GRAPHICS_MODE) & 0xfc) | 0);
183 /* extended chain4 enable */
184 WSeq (ba, SEQ_ID_EXT_VIDEO_ADDR , RSeq(ba, SEQ_ID_EXT_VIDEO_ADDR) | 0x02);
185
186 };
187
188 static void screen_down (struct ite_softc *ip, int top, int bottom, int lines)
189 {
190 volatile u_char * ba = ip->grf->g_regkva;
191 volatile u_char * fb = ip->grf->g_fbkva;
192 const struct MonDef * md = (struct MonDef *) ip->priv;
193
194 /* do some bounds-checking here.. */
195 if (top >= bottom)
196 return;
197
198 if (top + lines >= bottom)
199 {
200 retina_clear (ip, top, 0, bottom - top, ip->cols);
201 return;
202 }
203
204 /* see screen_up() for explanation of chip-tricks */
205
206 /* write to primary, read from secondary */
207 WSeq (ba, SEQ_ID_EXTENDED_MEM_ENA, (RSeq(ba, SEQ_ID_EXTENDED_MEM_ENA) & 0x1f) | 0 );
208 /* clear extended chain4 mode */
209 WSeq (ba, SEQ_ID_EXT_VIDEO_ADDR, RSeq(ba, SEQ_ID_EXT_VIDEO_ADDR) & ~0x02);
210
211 /* set write mode 1, "[...] data in the read latches is written
212 to memory during CPU memory write cycles. [...]" */
213 WGfx (ba, GCT_ID_GRAPHICS_MODE, (RGfx(ba, GCT_ID_GRAPHICS_MODE) & 0xfc) | 1);
214
215 {
216 /* write to line TOP + LINES */
217 long toloc = (top + lines) * (md->TX / 16);
218 WSeq (ba, SEQ_ID_PRIM_HOST_OFF_LO, ((unsigned char)toloc));
219 WSeq (ba, SEQ_ID_PRIM_HOST_OFF_HI, ((unsigned char)(toloc >> 8)));
220 }
221 {
222 /* read from line TOP */
223 long fromloc = top * (md->TX / 16);
224 WSeq (ba, SEQ_ID_SEC_HOST_OFF_LO, ((unsigned char)fromloc));
225 WSeq (ba, SEQ_ID_SEC_HOST_OFF_HI, ((unsigned char)(fromloc >> 8))) ;
226 }
227
228 {
229 unsigned char * p = (unsigned char *) fb;
230 short x = (1 + bottom - (top + lines)) * (md->TX / 16) - 1;
231 p += (1 + bottom - (top + lines)) * md->TX;
232 do {
233 asm volatile("addqb #1,%0@-" : "=a" (p) : "0" (p));
234 asm volatile("addqb #1,%0@-" : "=a" (p) : "0" (p));
235 asm volatile("addqb #1,%0@-" : "=a" (p) : "0" (p));
236 asm volatile("addqb #1,%0@-" : "=a" (p) : "0" (p));
237 asm volatile("addqb #1,%0@-" : "=a" (p) : "0" (p));
238 asm volatile("addqb #1,%0@-" : "=a" (p) : "0" (p));
239 asm volatile("addqb #1,%0@-" : "=a" (p) : "0" (p));
240 asm volatile("addqb #1,%0@-" : "=a" (p) : "0" (p));
241 asm volatile("addqb #1,%0@-" : "=a" (p) : "0" (p));
242 asm volatile("addqb #1,%0@-" : "=a" (p) : "0" (p));
243 asm volatile("addqb #1,%0@-" : "=a" (p) : "0" (p));
244 asm volatile("addqb #1,%0@-" : "=a" (p) : "0" (p));
245 asm volatile("addqb #1,%0@-" : "=a" (p) : "0" (p));
246 asm volatile("addqb #1,%0@-" : "=a" (p) : "0" (p));
247 asm volatile("addqb #1,%0@-" : "=a" (p) : "0" (p));
248 asm volatile("addqb #1,%0@-" : "=a" (p) : "0" (p));
249 } while (x--);
250 }
251
252 WSeq (ba, SEQ_ID_PRIM_HOST_OFF_HI, 0);
253 WSeq (ba, SEQ_ID_PRIM_HOST_OFF_LO, 0);
254 WSeq (ba, SEQ_ID_SEC_HOST_OFF_HI, 0);
255 WSeq (ba, SEQ_ID_SEC_HOST_OFF_LO, 0);
256
257 /* write mode 0 */
258 WGfx (ba, GCT_ID_GRAPHICS_MODE, (RGfx(ba, GCT_ID_GRAPHICS_MODE) & 0xfc) | 0);
259 /* extended chain4 enable */
260 WSeq (ba, SEQ_ID_EXT_VIDEO_ADDR , RSeq(ba, SEQ_ID_EXT_VIDEO_ADDR) | 0x02);
261 /* read/write to primary on A0, secondary on B0 */
262 WSeq (ba, SEQ_ID_EXTENDED_MEM_ENA, (RSeq(ba, SEQ_ID_EXTENDED_MEM_ENA) & 0x1f) | 0x40 );
263
264 /* fill the free lines with spaces */
265
266 { /* feed latches with value */
267 unsigned short * f = (unsigned short *) fb;
268
269 f += top * md->TX * 2;
270 *f = 0x2010;
271 {
272 volatile unsigned short dummy = *((volatile unsigned short *)f);
273 }
274 }
275
276 /* clear extended chain4 mode */
277 WSeq (ba, SEQ_ID_EXT_VIDEO_ADDR, RSeq(ba, SEQ_ID_EXT_VIDEO_ADDR) & ~0x02);
278 /* set write mode 1, "[...] data in the read latches is written
279 to memory during CPU memory write cycles. [...]" */
280 WGfx (ba, GCT_ID_GRAPHICS_MODE, (RGfx(ba, GCT_ID_GRAPHICS_MODE) & 0xfc) | 1);
281
282 {
283 unsigned long * p = (unsigned long *) fb;
284 short x = (lines * (md->TX/16)) - 1;
285 const unsigned long dummyval = 0;
286
287 p += top * (md->TX/4);
288
289 do {
290 *p++ = dummyval;
291 *p++ = dummyval;
292 *p++ = dummyval;
293 *p++ = dummyval;
294 } while (x--);
295 }
296
297 /* write mode 0 */
298 WGfx (ba, GCT_ID_GRAPHICS_MODE, (RGfx(ba, GCT_ID_GRAPHICS_MODE) & 0xfc) | 0);
299 /* extended chain4 enable */
300 WSeq (ba, SEQ_ID_EXT_VIDEO_ADDR , RSeq(ba, SEQ_ID_EXT_VIDEO_ADDR) | 0x02);
301
302 };
303
304 void retina_deinit(struct ite_softc *ip)
305 {
306 ip->flags &= ~ITE_INITED;
307 }
308
309
310 void retina_putc(struct ite_softc *ip, int c, int dy, int dx, int mode)
311 {
312 volatile u_char * ba = ip->grf->g_regkva;
313 volatile u_char * fb = ip->grf->g_fbkva;
314 register u_char attr;
315
316 attr = (mode & ATTR_INV) ? 0x21 : 0x10;
317 if (mode & ATTR_UL) attr = 0x01; /* ???????? */
318 if (mode & ATTR_BOLD) attr |= 0x08;
319 if (mode & ATTR_BLINK) attr |= 0x80;
320
321 fb += 4 * (dy * ip->cols + dx);
322 *fb++ = c; *fb = attr;
323 }
324
325 void retina_clear(struct ite_softc *ip, int sy, int sx, int h, int w)
326 {
327 volatile u_char * ba = ip->grf->g_regkva;
328 u_short * fb = (u_short *) ip->grf->g_fbkva;
329 short x;
330 const u_short fillval = 0x2010;
331 /* could probably be optimized just like the scrolling functions !! */
332 fb += 2 * (sy * ip->cols + sx);
333 while (h--)
334 {
335 for (x = 2 * (w - 1); x >= 0; x -= 2)
336 fb[x] = fillval;
337 fb += 2 * ip->cols;
338 }
339 }
340
341 void retina_scroll(struct ite_softc *ip, int sy, int sx, int count, int dir)
342 {
343 volatile u_char * ba = ip->grf->g_regkva;
344 u_long * fb = (u_short *) ip->grf->g_fbkva;
345 register int height, dy, i;
346
347 retina_cursor(ip, ERASE_CURSOR);
348
349 if (dir == SCROLL_UP)
350 {
351 screen_up (ip, sy - count, ip->bottom_margin, count);
352 /* bcopy (fb + sy * ip->cols, fb + (sy - count) * ip->cols, 4 * (ip->bottom_margin - sy + 1) * ip->cols); */
353 /* retina_clear (ip, ip->bottom_margin + 1 - count, 0, count, ip->cols); */
354 }
355 else if (dir == SCROLL_DOWN)
356 {
357 screen_down (ip, sy, ip->bottom_margin, count);
358 /* bcopy (fb + sy * ip->cols, fb + (sy + count) * ip->cols, 4 * (ip->bottom_margin - sy - count + 1) * ip->cols); */
359 /* retina_clear (ip, sy, 0, count, ip->cols); */
360 }
361 else if (dir == SCROLL_RIGHT)
362 {
363 bcopy (fb + sx + sy * ip->cols, fb + sx + sy * ip->cols + count, 4 * (ip->cols - (sx + count)));
364 retina_clear (ip, sy, sx, 1, count);
365 }
366 else
367 {
368 bcopy (fb + sx + sy * ip->cols, fb + sx - count + sy * ip->cols, 4 * (ip->cols - sx));
369 retina_clear (ip, sy, ip->cols - count, 1, count);
370 }
371 }
372
373 #endif
374
375
376
377