ser.c revision 1.12 1 1.1 mw /*
2 1.1 mw * Copyright (c) 1982, 1986, 1990 The Regents of the University of California.
3 1.1 mw * All rights reserved.
4 1.1 mw *
5 1.1 mw * Redistribution and use in source and binary forms, with or without
6 1.1 mw * modification, are permitted provided that the following conditions
7 1.1 mw * are met:
8 1.1 mw * 1. Redistributions of source code must retain the above copyright
9 1.1 mw * notice, this list of conditions and the following disclaimer.
10 1.1 mw * 2. Redistributions in binary form must reproduce the above copyright
11 1.1 mw * notice, this list of conditions and the following disclaimer in the
12 1.1 mw * documentation and/or other materials provided with the distribution.
13 1.1 mw * 3. All advertising materials mentioning features or use of this software
14 1.1 mw * must display the following acknowledgement:
15 1.1 mw * This product includes software developed by the University of
16 1.1 mw * California, Berkeley and its contributors.
17 1.1 mw * 4. Neither the name of the University nor the names of its contributors
18 1.1 mw * may be used to endorse or promote products derived from this software
19 1.1 mw * without specific prior written permission.
20 1.1 mw *
21 1.1 mw * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
22 1.1 mw * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
23 1.1 mw * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
24 1.1 mw * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
25 1.1 mw * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
26 1.1 mw * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
27 1.1 mw * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
28 1.1 mw * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
29 1.1 mw * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
30 1.1 mw * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
31 1.1 mw * SUCH DAMAGE.
32 1.1 mw *
33 1.4 mw * @(#)ser.c 7.12 (Berkeley) 6/27/91
34 1.12 chopps * $Id: ser.c,v 1.12 1994/03/28 06:16:21 chopps Exp $
35 1.1 mw */
36 1.1 mw
37 1.1 mw #include "ser.h"
38 1.1 mw
39 1.1 mw #if NSER > 0
40 1.10 chopps #include <sys/param.h>
41 1.10 chopps #include <sys/systm.h>
42 1.10 chopps #include <sys/ioctl.h>
43 1.10 chopps #include <sys/tty.h>
44 1.10 chopps #include <sys/proc.h>
45 1.10 chopps #include <sys/conf.h>
46 1.10 chopps #include <sys/file.h>
47 1.10 chopps #include <sys/malloc.h>
48 1.10 chopps #include <sys/uio.h>
49 1.10 chopps #include <sys/kernel.h>
50 1.10 chopps #include <sys/syslog.h>
51 1.10 chopps
52 1.10 chopps #include <amiga/dev/device.h>
53 1.10 chopps #include <amiga/dev/serreg.h>
54 1.10 chopps #include <machine/cpu.h>
55 1.10 chopps
56 1.10 chopps #include <amiga/amiga/custom.h>
57 1.10 chopps #include <amiga/amiga/cia.h>
58 1.10 chopps #include <amiga/amiga/dlists.h>
59 1.10 chopps #include <amiga/amiga/cc.h>
60 1.1 mw
61 1.1 mw int serprobe();
62 1.1 mw struct driver serdriver = {
63 1.1 mw serprobe, "ser",
64 1.1 mw };
65 1.1 mw
66 1.1 mw int serstart(), serparam(), serintr();
67 1.1 mw int ser_active;
68 1.1 mw int ser_hasfifo;
69 1.1 mw int nser = NSER;
70 1.1 mw #ifdef SERCONSOLE
71 1.1 mw int serconsole = SERCONSOLE;
72 1.1 mw #else
73 1.1 mw int serconsole = -1;
74 1.1 mw #endif
75 1.1 mw int serconsinit;
76 1.1 mw int serdefaultrate = TTYDEF_SPEED;
77 1.1 mw int sermajor;
78 1.1 mw struct serdevice *ser_addr[NSER];
79 1.5 mw struct vbl_node ser_vbl_node[NSER];
80 1.1 mw struct tty ser_cons;
81 1.3 mw struct tty *ser_tty[NSER];
82 1.1 mw
83 1.1 mw struct speedtab serspeedtab[] = {
84 1.1 mw 0, 0,
85 1.1 mw 50, SERBRD(50),
86 1.1 mw 75, SERBRD(75),
87 1.1 mw 110, SERBRD(110),
88 1.1 mw 134, SERBRD(134),
89 1.1 mw 150, SERBRD(150),
90 1.1 mw 200, SERBRD(200),
91 1.1 mw 300, SERBRD(300),
92 1.1 mw 600, SERBRD(600),
93 1.1 mw 1200, SERBRD(1200),
94 1.1 mw 1800, SERBRD(1800),
95 1.1 mw 2400, SERBRD(2400),
96 1.1 mw 4800, SERBRD(4800),
97 1.1 mw 9600, SERBRD(9600),
98 1.1 mw 19200, SERBRD(19200),
99 1.1 mw 38400, SERBRD(38400),
100 1.12 chopps 57600, SERBRD(57600),
101 1.12 chopps 76800, SERBRD(76800),
102 1.1 mw -1, -1
103 1.1 mw };
104 1.1 mw
105 1.1 mw
106 1.1 mw /* since this UART is not particularly bright (nice put), we'll have to do
107 1.1 mw parity stuff on our own. this table contains the 8th bit in 7bit character
108 1.1 mw mode, for even parity. If you want odd parity, flip the bit. (for
109 1.1 mw generation of the table, see genpar.c) */
110 1.1 mw
111 1.1 mw u_char even_parity[] = {
112 1.1 mw 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0,
113 1.1 mw 1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1,
114 1.1 mw 1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1,
115 1.1 mw 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0,
116 1.1 mw 1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1,
117 1.1 mw 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0,
118 1.1 mw 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0,
119 1.1 mw 1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1,
120 1.1 mw };
121 1.1 mw
122 1.1 mw
123 1.1 mw /* since we don't get interrupts for changes on the modem control line,
124 1.1 mw well have to fake them by comparing current settings to the settings
125 1.1 mw we remembered on last invocation. */
126 1.1 mw u_char last_ciab_pra;
127 1.1 mw
128 1.1 mw extern struct tty *constty;
129 1.1 mw #ifdef KGDB
130 1.10 chopps #include <machine/remote-sl.h>
131 1.1 mw
132 1.1 mw extern dev_t kgdb_dev;
133 1.1 mw extern int kgdb_rate;
134 1.1 mw extern int kgdb_debug_init;
135 1.1 mw #endif
136 1.1 mw
137 1.1 mw #ifdef DEBUG
138 1.1 mw long fifoin[17];
139 1.1 mw long fifoout[17];
140 1.1 mw long serintrcount[16];
141 1.1 mw long sermintcount[16];
142 1.1 mw #endif
143 1.1 mw
144 1.5 mw void sermint (register int unit);
145 1.5 mw
146 1.5 mw int
147 1.1 mw serprobe(ad)
148 1.5 mw register struct amiga_device *ad;
149 1.1 mw {
150 1.5 mw register struct serdevice *ser;
151 1.5 mw register int unit;
152 1.5 mw unsigned short ir = custom.intenar;
153 1.5 mw
154 1.5 mw ser = (struct serdevice *) ad->amiga_addr;
155 1.5 mw unit = ad->amiga_unit;
156 1.5 mw if (unit == serconsole)
157 1.5 mw DELAY(100000);
158 1.5 mw
159 1.5 mw ad->amiga_ipl = 2;
160 1.5 mw ser_addr[unit] = ser;
161 1.5 mw ser_active |= 1 << unit;
162 1.6 chopps ser_vbl_node[unit].function = (void (*)(void *))sermint;
163 1.5 mw add_vbl_function (&ser_vbl_node[unit], SER_VBL_PRIORITY, (void *)unit);
164 1.1 mw #ifdef KGDB
165 1.5 mw if (kgdb_dev == makedev(sermajor, unit)) {
166 1.5 mw if (serconsole == unit)
167 1.5 mw kgdb_dev = NODEV; /* can't debug over console port */
168 1.5 mw else {
169 1.5 mw (void) serinit(unit, kgdb_rate);
170 1.5 mw serconsinit = 1; /* don't re-init in serputc */
171 1.5 mw if (kgdb_debug_init) {
172 1.1 mw /*
173 1.5 mw * Print prefix of device name,
174 1.5 mw * let kgdb_connect print the rest.
175 1.1 mw */
176 1.5 mw printf("ser%d: ", unit);
177 1.5 mw kgdb_connect(1);
178 1.5 mw } else
179 1.5 mw printf("ser%d: kgdb enabled\n", unit);
180 1.5 mw }
181 1.5 mw }
182 1.5 mw #endif
183 1.5 mw /*
184 1.5 mw * Need to reset baud rate, etc. of next print so reset serconsinit.
185 1.5 mw */
186 1.5 mw if (unit == serconsole)
187 1.5 mw serconsinit = 0;
188 1.5 mw
189 1.5 mw return (1);
190 1.1 mw }
191 1.1 mw
192 1.1 mw /* ARGSUSED */
193 1.5 mw int
194 1.1 mw #ifdef __STDC__
195 1.1 mw seropen(dev_t dev, int flag, int mode, struct proc *p)
196 1.1 mw #else
197 1.1 mw seropen(dev, flag, mode, p)
198 1.5 mw dev_t dev;
199 1.5 mw int flag, mode;
200 1.5 mw struct proc *p;
201 1.1 mw #endif
202 1.1 mw {
203 1.5 mw register struct tty *tp;
204 1.5 mw register int unit;
205 1.5 mw int error = 0;
206 1.5 mw int s;
207 1.5 mw
208 1.5 mw unit = SERUNIT(dev);
209 1.1 mw
210 1.5 mw if (unit >= NSER || (ser_active & (1 << unit)) == 0)
211 1.5 mw return (ENXIO);
212 1.5 mw if(!ser_tty[unit])
213 1.5 mw {
214 1.5 mw tp = ser_tty[unit] = ttymalloc();
215 1.5 mw /* default values are not optimal for this device, increase
216 1.5 mw buffers */
217 1.5 mw clfree(&tp->t_rawq);
218 1.5 mw clfree(&tp->t_canq);
219 1.5 mw clfree(&tp->t_outq);
220 1.5 mw clalloc(&tp->t_rawq, 8192, 1);
221 1.5 mw clalloc(&tp->t_canq, 8192, 1);
222 1.5 mw clalloc(&tp->t_outq, 8192, 0);
223 1.5 mw }
224 1.5 mw else
225 1.5 mw tp = ser_tty[unit];
226 1.1 mw
227 1.6 chopps tp->t_oproc = (void (*)(struct tty *)) serstart;
228 1.5 mw tp->t_param = serparam;
229 1.5 mw tp->t_dev = dev;
230 1.5 mw
231 1.5 mw if ((tp->t_state & TS_ISOPEN) == 0)
232 1.5 mw {
233 1.5 mw tp->t_state |= TS_WOPEN;
234 1.5 mw ttychars(tp);
235 1.5 mw if (tp->t_ispeed == 0)
236 1.5 mw {
237 1.5 mw tp->t_iflag = TTYDEF_IFLAG | IXOFF; /* XXXXX */
238 1.5 mw tp->t_oflag = TTYDEF_OFLAG;
239 1.1 mw #if 0
240 1.5 mw tp->t_cflag = TTYDEF_CFLAG;
241 1.1 mw #else
242 1.5 mw tp->t_cflag = (CREAD | CS8 | CLOCAL); /* XXXXX */
243 1.1 mw #endif
244 1.5 mw tp->t_lflag = TTYDEF_LFLAG;
245 1.5 mw tp->t_ispeed = tp->t_ospeed = serdefaultrate;
246 1.1 mw }
247 1.5 mw serparam(tp, &tp->t_termios);
248 1.5 mw ttsetwater(tp);
249 1.5 mw }
250 1.5 mw else if (tp->t_state&TS_XCLUDE && p->p_ucred->cr_uid != 0)
251 1.5 mw return (EBUSY);
252 1.5 mw
253 1.5 mw (void) sermctl (dev, TIOCM_DTR | TIOCM_RTS, DMSET);
254 1.5 mw
255 1.5 mw if (DIALOUT(dev) || (sermctl (dev, 0, DMGET) & TIOCM_CD))
256 1.5 mw tp->t_state |= TS_CARR_ON;
257 1.5 mw
258 1.5 mw s = spltty();
259 1.5 mw while ((flag & O_NONBLOCK) == 0
260 1.5 mw && (tp->t_cflag & CLOCAL) == 0
261 1.5 mw && (tp->t_state & TS_CARR_ON) == 0)
262 1.5 mw {
263 1.5 mw tp->t_state |= TS_WOPEN;
264 1.5 mw if (error = ttysleep(tp, (caddr_t)&tp->t_rawq, TTIPRI | PCATCH,
265 1.5 mw ttopen, 0))
266 1.5 mw break;
267 1.5 mw }
268 1.5 mw splx (s);
269 1.5 mw if (error == 0)
270 1.5 mw {
271 1.5 mw /* reset the tty pointer, as there could have been a dialout
272 1.5 mw use of the tty with a dialin open waiting. */
273 1.5 mw tp->t_dev = dev;
274 1.5 mw error = (*linesw[tp->t_line].l_open)(dev, tp);
275 1.5 mw }
276 1.5 mw return (error);
277 1.1 mw }
278 1.1 mw
279 1.1 mw /*ARGSUSED*/
280 1.5 mw int
281 1.1 mw serclose(dev, flag, mode, p)
282 1.5 mw dev_t dev;
283 1.5 mw int flag, mode;
284 1.5 mw struct proc *p;
285 1.5 mw {
286 1.5 mw register struct tty *tp;
287 1.5 mw register struct serdevice *ser;
288 1.5 mw register int unit;
289 1.5 mw
290 1.5 mw unit = SERUNIT(dev);
291 1.5 mw
292 1.5 mw ser = ser_addr[unit];
293 1.5 mw tp = ser_tty[unit];
294 1.5 mw (*linesw[tp->t_line].l_close)(tp, flag);
295 1.5 mw custom.adkcon = ADKCONF_UARTBRK; /* clear break */
296 1.1 mw #ifdef KGDB
297 1.5 mw /* do not disable interrupts if debugging */
298 1.5 mw if (dev != kgdb_dev)
299 1.1 mw #endif
300 1.5 mw custom.intena = INTF_RBF|INTF_TBE; /* clear interrupt enable */
301 1.5 mw custom.intreq = INTF_RBF|INTF_TBE; /* and interrupt request */
302 1.1 mw #if 0
303 1.5 mw /* if the device is closed, it's close, no matter whether we deal with modem
304 1.5 mw control signals nor not. */
305 1.5 mw if (tp->t_cflag&HUPCL || tp->t_state&TS_WOPEN ||
306 1.5 mw (tp->t_state&TS_ISOPEN) == 0)
307 1.1 mw #endif
308 1.5 mw (void) sermctl(dev, 0, DMSET);
309 1.5 mw ttyclose(tp);
310 1.1 mw #if 0
311 1.5 mw if (tp != &ser_cons)
312 1.5 mw {
313 1.5 mw remove_vbl_function (&ser_vbl_node[unit]);
314 1.5 mw ttyfree (tp);
315 1.5 mw ser_tty[unit] = (struct tty *)NULL;
316 1.5 mw }
317 1.3 mw #endif
318 1.5 mw return (0);
319 1.1 mw }
320 1.1 mw
321 1.5 mw int
322 1.1 mw serread(dev, uio, flag)
323 1.5 mw dev_t dev;
324 1.5 mw struct uio *uio;
325 1.1 mw {
326 1.5 mw register struct tty *tp = ser_tty[SERUNIT(dev)];
327 1.5 mw int error;
328 1.3 mw
329 1.5 mw if (! tp)
330 1.5 mw return ENXIO;
331 1.1 mw
332 1.5 mw error = (*linesw[tp->t_line].l_read)(tp, uio, flag);
333 1.5 mw
334 1.5 mw return error;
335 1.1 mw }
336 1.1 mw
337 1.5 mw int
338 1.1 mw serwrite(dev, uio, flag)
339 1.5 mw dev_t dev;
340 1.5 mw struct uio *uio;
341 1.1 mw {
342 1.5 mw int unit = SERUNIT(dev);
343 1.5 mw register struct tty *tp = ser_tty[unit];
344 1.1 mw
345 1.5 mw if (! tp)
346 1.5 mw return ENXIO;
347 1.3 mw
348 1.5 mw /*
349 1.5 mw * (XXX) We disallow virtual consoles if the physical console is
350 1.5 mw * a serial port. This is in case there is a display attached that
351 1.5 mw * is not the console. In that situation we don't need/want the X
352 1.5 mw * server taking over the console.
353 1.5 mw */
354 1.5 mw if (constty && unit == serconsole)
355 1.5 mw constty = NULL;
356 1.5 mw return ((*linesw[tp->t_line].l_write)(tp, uio, flag));
357 1.1 mw }
358 1.3 mw
359 1.3 mw
360 1.3 mw /* don't do any processing of data here, so we store the raw code
361 1.5 mw obtained from the uart register. In theory, 110kBaud gives you
362 1.3 mw 11kcps, so 16k buffer should be more than enough, interrupt
363 1.3 mw latency of 1s should never happen, or something is seriously
364 1.3 mw wrong.. */
365 1.5 mw #define SERIBUF_SIZE 16384
366 1.3 mw static u_short serbuf[SERIBUF_SIZE];
367 1.3 mw static u_short *sbrpt = serbuf;
368 1.3 mw static u_short *sbwpt = serbuf;
369 1.3 mw
370 1.3 mw
371 1.3 mw /* this is a replacement for the lack of a hardware fifo. 32k should be
372 1.3 mw enough (there's only one unit anyway, so this is not going to
373 1.3 mw accumulate). */
374 1.3 mw void
375 1.3 mw ser_fastint ()
376 1.3 mw {
377 1.3 mw /* we're at RBE-level, which is higher than VBL-level which is used
378 1.3 mw to periodically transmit contents of this buffer up one layer,
379 1.3 mw so no spl-raising is necessary. */
380 1.3 mw
381 1.3 mw register u_short ints, code;
382 1.3 mw
383 1.3 mw ints = custom.intreqr & INTF_RBF;
384 1.3 mw if (! ints)
385 1.3 mw return;
386 1.3 mw
387 1.3 mw /* clear interrupt */
388 1.3 mw custom.intreq = ints;
389 1.3 mw /* this register contains both data and status bits! */
390 1.3 mw code = custom.serdatr;
391 1.3 mw
392 1.3 mw /* should really not happen, but you never know.. buffer
393 1.3 mw overflow. */
394 1.3 mw if (sbwpt + 1 == sbrpt
395 1.3 mw || (sbwpt == serbuf + SERIBUF_SIZE - 1 && sbrpt == serbuf))
396 1.3 mw {
397 1.3 mw log (LOG_WARNING, "ser_fastint: buffer overflow!");
398 1.3 mw return;
399 1.3 mw }
400 1.3 mw
401 1.3 mw *sbwpt++ = code;
402 1.3 mw if (sbwpt == serbuf + SERIBUF_SIZE)
403 1.3 mw sbwpt = serbuf;
404 1.3 mw }
405 1.3 mw
406 1.3 mw
407 1.3 mw int
408 1.5 mw serintr (unit)
409 1.5 mw register int unit;
410 1.1 mw {
411 1.5 mw register struct serdevice *ser;
412 1.5 mw int s1, s2;
413 1.1 mw
414 1.5 mw ser = ser_addr[unit];
415 1.1 mw
416 1.5 mw /* make sure we're not interrupted by another
417 1.5 mw vbl, but allow level5 ints */
418 1.5 mw s1 = spltty();
419 1.1 mw
420 1.5 mw /* ok, pass along any acumulated information .. */
421 1.5 mw while (sbrpt != sbwpt)
422 1.5 mw {
423 1.5 mw /* no collision with ser_fastint() */
424 1.5 mw sereint (unit, *sbrpt, ser);
425 1.5 mw /* lock against ser_fastint() */
426 1.5 mw s2 = spl5();
427 1.5 mw {
428 1.5 mw sbrpt++;
429 1.5 mw if (sbrpt == serbuf + SERIBUF_SIZE)
430 1.5 mw sbrpt = serbuf;
431 1.5 mw }
432 1.5 mw splx (s2);
433 1.5 mw }
434 1.5 mw
435 1.5 mw splx (s1);
436 1.1 mw
437 1.3 mw #if 0
438 1.3 mw /* add the code below if you really need it */
439 1.1 mw {
440 1.1 mw /*
441 1.1 mw * Process a received byte. Inline for speed...
442 1.1 mw */
443 1.1 mw #ifdef KGDB
444 1.1 mw #define RCVBYTE() \
445 1.1 mw ch = code & 0xff; \
446 1.1 mw if ((tp->t_state & TS_ISOPEN) == 0) { \
447 1.1 mw if (ch == FRAME_END && \
448 1.1 mw kgdb_dev == makedev(sermajor, unit)) \
449 1.1 mw kgdb_connect(0); /* trap into kgdb */ \
450 1.1 mw }
451 1.1 mw #else
452 1.1 mw #define RCVBYTE()
453 1.1 mw #endif
454 1.1 mw RCVBYTE();
455 1.1 mw /* sereint does the receive-processing */
456 1.1 mw sereint (unit, code, ser);
457 1.1 mw }
458 1.3 mw #endif
459 1.1 mw }
460 1.1 mw
461 1.5 mw int
462 1.1 mw sereint(unit, stat, ser)
463 1.5 mw register int unit, stat;
464 1.5 mw register struct serdevice *ser;
465 1.1 mw {
466 1.5 mw register struct tty *tp;
467 1.5 mw register int c;
468 1.5 mw register u_char ch;
469 1.1 mw
470 1.5 mw tp = ser_tty[unit];
471 1.5 mw if ((tp->t_state & TS_ISOPEN) == 0)
472 1.5 mw {
473 1.1 mw #ifdef KGDB
474 1.5 mw /* we don't care about parity errors */
475 1.5 mw if (kgdb_dev == makedev(sermajor, unit) && c == FRAME_END)
476 1.5 mw kgdb_connect(0); /* trap into kgdb */
477 1.1 mw #endif
478 1.5 mw return;
479 1.5 mw }
480 1.1 mw
481 1.5 mw ch = stat & 0xff;
482 1.5 mw c = ch;
483 1.5 mw /* all databits 0 including stop indicate break condition */
484 1.5 mw if (!(stat & 0x1ff))
485 1.5 mw c |= TTY_FE;
486 1.5 mw
487 1.5 mw /* if parity checking enabled, check parity */
488 1.5 mw else if ((tp->t_cflag & PARENB) &&
489 1.5 mw (((ch >> 7) + even_parity[ch & 0x7f] + !!(tp->t_cflag & PARODD)) & 1))
490 1.5 mw c |= TTY_PE;
491 1.5 mw
492 1.5 mw if (stat & SERDATRF_OVRUN)
493 1.5 mw log(LOG_WARNING, "ser%d: silo overflow\n", unit);
494 1.5 mw
495 1.5 mw (*linesw[tp->t_line].l_rint)(c, tp);
496 1.1 mw }
497 1.1 mw
498 1.3 mw /* this interrupt is periodically invoked in the vertical blank
499 1.3 mw interrupt. It's used to keep track of the modem control lines
500 1.3 mw and (new with the fast_int code) to move accumulated data
501 1.3 mw up into the tty layer. */
502 1.3 mw void
503 1.5 mw sermint (register int unit)
504 1.1 mw {
505 1.5 mw register struct tty *tp;
506 1.5 mw register u_char stat, last, istat;
507 1.5 mw register struct serdevice *ser;
508 1.5 mw
509 1.5 mw tp = ser_tty[unit];
510 1.5 mw if (!tp)
511 1.5 mw return;
512 1.3 mw
513 1.5 mw if ((tp->t_state & (TS_ISOPEN|TS_WOPEN)) == 0)
514 1.5 mw {
515 1.5 mw sbrpt = sbwpt = serbuf;
516 1.5 mw return;
517 1.5 mw }
518 1.5 mw
519 1.5 mw /* first empty buffer */
520 1.5 mw serintr (unit);
521 1.5 mw
522 1.5 mw stat = ciab.pra;
523 1.5 mw last = last_ciab_pra;
524 1.5 mw last_ciab_pra = stat;
525 1.1 mw
526 1.5 mw /* check whether any interesting signal changed state */
527 1.5 mw istat = stat ^ last;
528 1.1 mw
529 1.5 mw if ((istat & CIAB_PRA_CD) && DIALIN(tp->t_dev))
530 1.5 mw {
531 1.5 mw if (ISDCD (stat))
532 1.5 mw (*linesw[tp->t_line].l_modem)(tp, 1);
533 1.5 mw else if ((*linesw[tp->t_line].l_modem)(tp, 0) == 0)
534 1.5 mw {
535 1.5 mw CLRDTR (stat);
536 1.5 mw CLRRTS (stat);
537 1.5 mw ciab.pra = stat;
538 1.5 mw last_ciab_pra = stat;
539 1.5 mw }
540 1.5 mw }
541 1.5 mw if ((istat & CIAB_PRA_CTS) && (tp->t_state & TS_ISOPEN) &&
542 1.5 mw (tp->t_cflag & CRTSCTS))
543 1.5 mw {
544 1.5 mw #if 0
545 1.5 mw /* the line is up and we want to do rts/cts flow control */
546 1.5 mw if (ISCTS (stat))
547 1.5 mw {
548 1.5 mw tp->t_state &=~ TS_TTSTOP;
549 1.5 mw ttstart(tp);
550 1.5 mw /* cause tbe-int if we were stuck there */
551 1.5 mw custom.intreq = INTF_SETCLR | INTF_TBE;
552 1.5 mw }
553 1.5 mw else
554 1.5 mw tp->t_state |= TS_TTSTOP;
555 1.5 mw #else
556 1.5 mw /* do this on hardware level, not with tty driver */
557 1.5 mw if (ISCTS (stat))
558 1.5 mw {
559 1.5 mw tp->t_state &= ~TS_TTSTOP;
560 1.5 mw /* cause TBE interrupt */
561 1.5 mw custom.intreq = INTF_SETCLR | INTF_TBE;
562 1.5 mw }
563 1.5 mw #endif
564 1.5 mw }
565 1.1 mw }
566 1.1 mw
567 1.5 mw int
568 1.8 chopps serioctl(dev, cmd, data, flag, p)
569 1.8 chopps dev_t dev;
570 1.8 chopps caddr_t data;
571 1.8 chopps struct proc *p;
572 1.1 mw {
573 1.5 mw register struct tty *tp;
574 1.5 mw register int unit = SERUNIT(dev);
575 1.5 mw register struct serdevice *ser;
576 1.5 mw register int error;
577 1.5 mw
578 1.5 mw tp = ser_tty[unit];
579 1.5 mw if (! tp)
580 1.5 mw return ENXIO;
581 1.5 mw
582 1.8 chopps error = (*linesw[tp->t_line].l_ioctl)(tp, cmd, data, flag, p);
583 1.5 mw if (error >= 0)
584 1.5 mw return (error);
585 1.5 mw
586 1.8 chopps error = ttioctl(tp, cmd, data, flag, p);
587 1.5 mw if (error >= 0)
588 1.5 mw return (error);
589 1.5 mw
590 1.5 mw ser = ser_addr[unit];
591 1.5 mw switch (cmd)
592 1.5 mw {
593 1.5 mw case TIOCSBRK:
594 1.5 mw custom.adkcon = ADKCONF_SETCLR | ADKCONF_UARTBRK;
595 1.5 mw break;
596 1.5 mw
597 1.5 mw case TIOCCBRK:
598 1.5 mw custom.adkcon = ADKCONF_UARTBRK;
599 1.5 mw break;
600 1.5 mw
601 1.5 mw case TIOCSDTR:
602 1.5 mw (void) sermctl(dev, TIOCM_DTR | TIOCM_RTS, DMBIS);
603 1.5 mw break;
604 1.5 mw
605 1.5 mw case TIOCCDTR:
606 1.5 mw (void) sermctl(dev, TIOCM_DTR | TIOCM_RTS, DMBIC);
607 1.5 mw break;
608 1.5 mw
609 1.5 mw case TIOCMSET:
610 1.5 mw (void) sermctl(dev, *(int *)data, DMSET);
611 1.5 mw break;
612 1.5 mw
613 1.5 mw case TIOCMBIS:
614 1.5 mw (void) sermctl(dev, *(int *)data, DMBIS);
615 1.5 mw break;
616 1.5 mw
617 1.5 mw case TIOCMBIC:
618 1.5 mw (void) sermctl(dev, *(int *)data, DMBIC);
619 1.5 mw break;
620 1.5 mw
621 1.5 mw case TIOCMGET:
622 1.5 mw *(int *)data = sermctl(dev, 0, DMGET);
623 1.5 mw break;
624 1.5 mw
625 1.5 mw default:
626 1.5 mw return (ENOTTY);
627 1.5 mw }
628 1.1 mw
629 1.5 mw return (0);
630 1.1 mw }
631 1.1 mw
632 1.5 mw int
633 1.1 mw serparam(tp, t)
634 1.5 mw register struct tty *tp;
635 1.5 mw register struct termios *t;
636 1.1 mw {
637 1.5 mw register struct serdevice *ser;
638 1.5 mw register int cfcr, cflag = t->c_cflag;
639 1.5 mw int unit = SERUNIT(tp->t_dev);
640 1.5 mw int ospeed = ttspeedtab(t->c_ospeed, serspeedtab);
641 1.5 mw
642 1.5 mw /* check requested parameters */
643 1.5 mw if (ospeed < 0 || (t->c_ispeed && t->c_ispeed != t->c_ospeed))
644 1.5 mw return (EINVAL);
645 1.5 mw
646 1.5 mw /* and copy to tty */
647 1.5 mw tp->t_ispeed = t->c_ispeed;
648 1.5 mw tp->t_ospeed = t->c_ospeed;
649 1.5 mw tp->t_cflag = cflag;
650 1.5 mw
651 1.5 mw custom.intena = INTF_SETCLR | INTF_RBF | INTF_TBE;
652 1.5 mw last_ciab_pra = ciab.pra;
653 1.5 mw
654 1.5 mw if (ospeed == 0)
655 1.5 mw {
656 1.5 mw (void) sermctl(tp->t_dev, 0, DMSET); /* hang up line */
657 1.5 mw return (0);
658 1.5 mw }
659 1.5 mw else
660 1.5 mw {
661 1.5 mw /* make sure any previous hangup is undone, ie.
662 1.5 mw reenable DTR. */
663 1.5 mw (void) sermctl (tp->t_dev, TIOCM_DTR | TIOCM_RTS, DMSET);
664 1.5 mw }
665 1.5 mw /* set the baud rate */
666 1.5 mw custom.serper = (0<<15) | ospeed; /* select 8 bit mode (instead of 9 bit) */
667 1.5 mw
668 1.5 mw return (0);
669 1.1 mw }
670 1.3 mw
671 1.3 mw
672 1.3 mw static void
673 1.3 mw ser_putchar (tp, c)
674 1.3 mw struct tty *tp;
675 1.3 mw unsigned short c;
676 1.3 mw {
677 1.3 mw /* handle truncation of character if necessary */
678 1.3 mw if ((tp->t_cflag & CSIZE) == CS7)
679 1.3 mw c &= 0x7f;
680 1.3 mw
681 1.3 mw /* handle parity if necessary (forces CS7) */
682 1.3 mw if (tp->t_cflag & PARENB)
683 1.3 mw {
684 1.5 mw c &= 0x7f;
685 1.5 mw if (even_parity[c])
686 1.3 mw c |= 0x80;
687 1.3 mw if (tp->t_cflag & PARODD)
688 1.3 mw c ^= 0x80;
689 1.3 mw }
690 1.3 mw
691 1.3 mw /* add stop bit(s) */
692 1.3 mw if (tp->t_cflag & CSTOPB)
693 1.3 mw c |= 0x300;
694 1.3 mw else
695 1.3 mw c |= 0x100;
696 1.3 mw
697 1.3 mw custom.serdat = c;
698 1.3 mw }
699 1.3 mw
700 1.3 mw
701 1.5 mw #define SEROBUF_SIZE 32
702 1.3 mw static u_char ser_outbuf[SEROBUF_SIZE];
703 1.3 mw static u_char *sob_ptr=ser_outbuf, *sob_end=ser_outbuf;
704 1.3 mw void
705 1.3 mw ser_outintr ()
706 1.3 mw {
707 1.3 mw struct tty *tp = ser_tty[0]; /* hmmmmm */
708 1.3 mw unsigned short c;
709 1.5 mw int s = spltty ();
710 1.3 mw
711 1.3 mw if (! tp)
712 1.5 mw goto out;
713 1.3 mw
714 1.3 mw if (! (custom.intreqr & INTF_TBE))
715 1.5 mw goto out;
716 1.3 mw
717 1.3 mw /* clear interrupt */
718 1.3 mw custom.intreq = INTF_TBE;
719 1.3 mw
720 1.3 mw if (sob_ptr == sob_end)
721 1.3 mw {
722 1.5 mw tp->t_state &= ~(TS_BUSY|TS_FLUSH);
723 1.5 mw if (tp->t_line)
724 1.5 mw (*linesw[tp->t_line].l_start)(tp);
725 1.5 mw else
726 1.5 mw serstart (tp);
727 1.5 mw
728 1.5 mw goto out;
729 1.3 mw }
730 1.3 mw
731 1.5 mw /* do hardware flow control here. if the CTS line goes down, don't
732 1.5 mw transmit anything. That way, we'll be restarted by the periodic
733 1.5 mw interrupt when CTS comes back up. */
734 1.5 mw if (ISCTS (ciab.pra))
735 1.5 mw ser_putchar (tp, *sob_ptr++);
736 1.5 mw out:
737 1.5 mw splx (s);
738 1.3 mw }
739 1.1 mw
740 1.5 mw int
741 1.1 mw serstart(tp)
742 1.5 mw register struct tty *tp;
743 1.1 mw {
744 1.5 mw register int cc, s;
745 1.5 mw int unit;
746 1.5 mw register struct serdevice *ser;
747 1.5 mw int hiwat = 0;
748 1.5 mw
749 1.5 mw if (! (tp->t_state & TS_ISOPEN))
750 1.5 mw return;
751 1.5 mw
752 1.5 mw unit = SERUNIT(tp->t_dev);
753 1.5 mw ser = ser_addr[unit];
754 1.5 mw
755 1.5 mw s = spltty();
756 1.5 mw if (tp->t_state & (TS_TIMEOUT|TS_TTSTOP))
757 1.5 mw goto out;
758 1.5 mw
759 1.5 mw cc = tp->t_outq.c_cc;
760 1.5 mw if (cc <= tp->t_lowat)
761 1.5 mw {
762 1.5 mw if (tp->t_state & TS_ASLEEP)
763 1.5 mw {
764 1.5 mw tp->t_state &= ~TS_ASLEEP;
765 1.6 chopps wakeup((caddr_t)&tp->t_outq);
766 1.3 mw }
767 1.5 mw selwakeup(&tp->t_wsel);
768 1.5 mw }
769 1.5 mw
770 1.5 mw if (! cc || (tp->t_state & TS_BUSY))
771 1.5 mw goto out;
772 1.5 mw
773 1.5 mw /* we only do bulk transfers if using CTSRTS flow control,
774 1.5 mw not for (probably sloooow) ixon/ixoff devices. */
775 1.5 mw if (! (tp->t_cflag & CRTSCTS))
776 1.5 mw cc = 1;
777 1.5 mw
778 1.5 mw /*
779 1.5 mw * Limit the amount of output we do in one burst
780 1.5 mw * to prevent hogging the CPU.
781 1.5 mw */
782 1.5 mw if (cc > SEROBUF_SIZE)
783 1.5 mw {
784 1.5 mw hiwat++;
785 1.5 mw cc = SEROBUF_SIZE;
786 1.5 mw }
787 1.5 mw cc = q_to_b (&tp->t_outq, ser_outbuf, cc);
788 1.5 mw if (cc > 0)
789 1.5 mw {
790 1.5 mw tp->t_state |= TS_BUSY;
791 1.5 mw
792 1.5 mw sob_ptr = ser_outbuf;
793 1.5 mw sob_end = ser_outbuf + cc;
794 1.5 mw /* get first character out, then have tbe-interrupts blow out
795 1.5 mw further characters, until buffer is empty, and TS_BUSY
796 1.5 mw gets cleared. */
797 1.5 mw ser_putchar (tp, *sob_ptr++);
798 1.5 mw }
799 1.1 mw
800 1.5 mw out:
801 1.5 mw splx(s);
802 1.1 mw }
803 1.1 mw
804 1.1 mw /*
805 1.1 mw * Stop output on a line.
806 1.1 mw */
807 1.1 mw /*ARGSUSED*/
808 1.5 mw int
809 1.1 mw serstop(tp, flag)
810 1.5 mw register struct tty *tp;
811 1.1 mw {
812 1.5 mw register int s;
813 1.1 mw
814 1.5 mw s = spltty();
815 1.5 mw if (tp->t_state & TS_BUSY)
816 1.5 mw {
817 1.5 mw if ((tp->t_state & TS_TTSTOP) == 0)
818 1.5 mw tp->t_state |= TS_FLUSH;
819 1.5 mw }
820 1.5 mw splx(s);
821 1.1 mw }
822 1.1 mw
823 1.5 mw int
824 1.1 mw sermctl(dev, bits, how)
825 1.5 mw dev_t dev;
826 1.5 mw int bits, how;
827 1.1 mw {
828 1.5 mw register struct serdevice *ser;
829 1.5 mw register int unit;
830 1.5 mw u_char ub;
831 1.5 mw int s;
832 1.1 mw
833 1.5 mw unit = SERUNIT(dev);
834 1.5 mw ser = ser_addr[unit];
835 1.1 mw
836 1.5 mw /* convert TIOCM* mask into CIA mask (which is really low-active!!) */
837 1.5 mw if (how != DMGET)
838 1.5 mw {
839 1.5 mw ub = 0;
840 1.5 mw if (bits & TIOCM_DTR) ub |= CIAB_PRA_DTR;
841 1.5 mw if (bits & TIOCM_RTS) ub |= CIAB_PRA_RTS;
842 1.5 mw if (bits & TIOCM_CTS) ub |= CIAB_PRA_CTS;
843 1.5 mw if (bits & TIOCM_CD) ub |= CIAB_PRA_CD;
844 1.5 mw if (bits & TIOCM_RI) ub |= CIAB_PRA_SEL; /* collision with /dev/par ! */
845 1.5 mw if (bits & TIOCM_DSR) ub |= CIAB_PRA_DSR;
846 1.5 mw }
847 1.1 mw
848 1.1 mw
849 1.5 mw s = spltty();
850 1.5 mw switch (how)
851 1.5 mw {
852 1.5 mw case DMSET:
853 1.5 mw /* invert and set */
854 1.5 mw ciab.pra = ~ub;
855 1.5 mw break;
856 1.5 mw
857 1.5 mw case DMBIC:
858 1.5 mw ciab.pra |= ub;
859 1.5 mw ub = ~ciab.pra;
860 1.5 mw break;
861 1.5 mw
862 1.5 mw case DMBIS:
863 1.5 mw ciab.pra &= ~ub;
864 1.5 mw ub = ~ciab.pra;
865 1.5 mw break;
866 1.5 mw
867 1.5 mw case DMGET:
868 1.5 mw ub = ~ciab.pra;
869 1.5 mw break;
870 1.5 mw }
871 1.5 mw (void) splx(s);
872 1.5 mw
873 1.5 mw bits = 0;
874 1.5 mw if (ub & CIAB_PRA_DTR) bits |= TIOCM_DTR;
875 1.5 mw if (ub & CIAB_PRA_RTS) bits |= TIOCM_RTS;
876 1.5 mw if (ub & CIAB_PRA_CTS) bits |= TIOCM_CTS;
877 1.5 mw if (ub & CIAB_PRA_CD) bits |= TIOCM_CD;
878 1.5 mw if (ub & CIAB_PRA_SEL) bits |= TIOCM_RI;
879 1.5 mw if (ub & CIAB_PRA_DSR) bits |= TIOCM_DSR;
880 1.5 mw
881 1.5 mw return bits;
882 1.1 mw }
883 1.1 mw
884 1.1 mw /*
885 1.1 mw * Following are all routines needed for SER to act as console
886 1.1 mw */
887 1.11 chopps #include <dev/cons.h>
888 1.1 mw
889 1.1 mw sercnprobe(cp)
890 1.1 mw struct consdev *cp;
891 1.1 mw {
892 1.5 mw int unit = CONUNIT;
893 1.5 mw /* locate the major number */
894 1.5 mw for (sermajor = 0; sermajor < nchrdev; sermajor++)
895 1.5 mw if (cdevsw[sermajor].d_open == seropen)
896 1.5 mw break;
897 1.1 mw
898 1.5 mw /* XXX: ick */
899 1.5 mw unit = CONUNIT;
900 1.1 mw
901 1.5 mw /* initialize required fields */
902 1.5 mw cp->cn_dev = makedev(sermajor, unit);
903 1.5 mw cp->cn_pri = CN_NORMAL;
904 1.5 mw
905 1.5 mw /*
906 1.5 mw * If serconsole is initialized, raise our priority.
907 1.5 mw */
908 1.5 mw if (serconsole == unit)
909 1.5 mw cp->cn_pri = CN_REMOTE;
910 1.1 mw #ifdef KGDB
911 1.5 mw if (major(kgdb_dev) == 1) /* XXX */
912 1.5 mw kgdb_dev = makedev(sermajor, minor(kgdb_dev));
913 1.1 mw #endif
914 1.1 mw }
915 1.1 mw
916 1.1 mw sercninit(cp)
917 1.1 mw struct consdev *cp;
918 1.1 mw {
919 1.5 mw int unit = SERUNIT(cp->cn_dev);
920 1.1 mw
921 1.5 mw serinit(unit, serdefaultrate);
922 1.5 mw serconsole = unit;
923 1.5 mw serconsinit = 1;
924 1.1 mw }
925 1.1 mw
926 1.1 mw serinit(unit, rate)
927 1.1 mw int unit, rate;
928 1.1 mw {
929 1.5 mw int s;
930 1.1 mw
931 1.1 mw #ifdef lint
932 1.5 mw stat = unit; if (stat) return;
933 1.1 mw #endif
934 1.5 mw s = splhigh();
935 1.5 mw /* might want to fiddle with the CIA later ??? */
936 1.5 mw custom.serper = ttspeedtab(rate, serspeedtab);
937 1.5 mw splx(s);
938 1.1 mw }
939 1.1 mw
940 1.1 mw sercngetc(dev)
941 1.1 mw {
942 1.5 mw u_short stat;
943 1.5 mw int c, s;
944 1.1 mw
945 1.1 mw #ifdef lint
946 1.5 mw stat = dev; if (stat) return (0);
947 1.1 mw #endif
948 1.5 mw s = splhigh();
949 1.5 mw while (!((stat = custom.serdatr & 0xffff) & SERDATRF_RBF))
950 1.5 mw ;
951 1.5 mw c = stat & 0xff;
952 1.5 mw /* clear interrupt */
953 1.5 mw custom.intreq = INTF_RBF;
954 1.5 mw splx(s);
955 1.5 mw return (c);
956 1.1 mw }
957 1.1 mw
958 1.1 mw /*
959 1.1 mw * Console kernel output character routine.
960 1.1 mw */
961 1.1 mw sercnputc(dev, c)
962 1.5 mw dev_t dev;
963 1.5 mw register int c;
964 1.1 mw {
965 1.5 mw register int timo;
966 1.5 mw short stat;
967 1.5 mw int s = splhigh();
968 1.1 mw
969 1.1 mw #ifdef lint
970 1.5 mw stat = dev; if (stat) return;
971 1.1 mw #endif
972 1.5 mw if (serconsinit == 0)
973 1.5 mw {
974 1.5 mw (void) serinit(SERUNIT(dev), serdefaultrate);
975 1.5 mw serconsinit = 1;
976 1.5 mw }
977 1.5 mw
978 1.5 mw /* wait for any pending transmission to finish */
979 1.5 mw timo = 50000;
980 1.5 mw while (! (custom.serdatr & SERDATRF_TBE) && --timo)
981 1.5 mw ;
982 1.5 mw
983 1.5 mw custom.serdat = (c&0xff) | 0x100;
984 1.5 mw /* wait for this transmission to complete */
985 1.5 mw timo = 1500000;
986 1.5 mw while (! (custom.serdatr & SERDATRF_TBE) && --timo)
987 1.5 mw ;
988 1.5 mw
989 1.5 mw /* wait for the device (my vt100..) to process the data, since
990 1.5 mw we don't do flow-control with cnputc */
991 1.5 mw for (timo = 0; timo < 30000; timo++) ;
992 1.5 mw
993 1.5 mw /* clear any interrupts generated by this transmission */
994 1.5 mw custom.intreq = INTF_TBE;
995 1.5 mw splx(s);
996 1.1 mw }
997 1.1 mw
998 1.1 mw
999 1.1 mw serspit(c)
1000 1.5 mw int c;
1001 1.1 mw {
1002 1.6 chopps register struct Custom *cu asm("a2") = (struct Custom *)CUSTOMbase;
1003 1.5 mw register int timo asm("d2");
1004 1.5 mw extern int cold;
1005 1.5 mw int s;
1006 1.5 mw
1007 1.5 mw if (c == 10)
1008 1.5 mw serspit (13);
1009 1.5 mw
1010 1.5 mw s = splhigh();
1011 1.5 mw
1012 1.5 mw /* wait for any pending transmission to finish */
1013 1.5 mw timo = 500000;
1014 1.5 mw while (! (cu->serdatr & (SERDATRF_TBE|SERDATRF_TSRE)) && --timo)
1015 1.5 mw ;
1016 1.5 mw cu->serdat = (c&0xff) | 0x100;
1017 1.5 mw /* wait for this transmission to complete */
1018 1.5 mw timo = 15000000;
1019 1.5 mw while (! (cu->serdatr & SERDATRF_TBE) && --timo)
1020 1.5 mw ;
1021 1.5 mw /* clear any interrupts generated by this transmission */
1022 1.5 mw cu->intreq = INTF_TBE;
1023 1.5 mw
1024 1.5 mw for (timo = 0; timo < 30000; timo++) ;
1025 1.5 mw
1026 1.5 mw splx (s);
1027 1.1 mw }
1028 1.1 mw
1029 1.3 mw serspits(cp)
1030 1.3 mw char *cp;
1031 1.3 mw {
1032 1.3 mw while (*cp)
1033 1.3 mw serspit(*cp++);
1034 1.3 mw }
1035 1.3 mw
1036 1.1 mw int
1037 1.1 mw serselect(dev, rw, p)
1038 1.5 mw dev_t dev;
1039 1.5 mw int rw;
1040 1.5 mw struct proc *p;
1041 1.5 mw {
1042 1.5 mw register struct tty *tp = ser_tty[SERUNIT(dev)];
1043 1.5 mw int nread;
1044 1.5 mw int s = spltty();
1045 1.5 mw struct proc *selp;
1046 1.5 mw
1047 1.5 mw switch (rw)
1048 1.5 mw {
1049 1.5 mw case FREAD:
1050 1.5 mw nread = ttnread(tp);
1051 1.5 mw if (nread > 0 || ((tp->t_cflag&CLOCAL) == 0
1052 1.5 mw && (tp->t_state&TS_CARR_ON) == 0))
1053 1.5 mw goto win;
1054 1.5 mw selrecord(p, &tp->t_rsel);
1055 1.5 mw break;
1056 1.5 mw
1057 1.5 mw case FWRITE:
1058 1.5 mw if (tp->t_outq.c_cc <= tp->t_lowat)
1059 1.5 mw goto win;
1060 1.5 mw selrecord(p, &tp->t_wsel);
1061 1.5 mw break;
1062 1.5 mw }
1063 1.5 mw splx(s);
1064 1.5 mw return (0);
1065 1.5 mw
1066 1.5 mw win:
1067 1.5 mw splx(s);
1068 1.5 mw return (1);
1069 1.1 mw }
1070 1.1 mw
1071 1.1 mw #endif
1072