vmparam.h revision 1.3 1 1.1 mw /*
2 1.1 mw * Copyright (c) 1988 University of Utah.
3 1.1 mw * Copyright (c) 1982, 1986, 1990 The Regents of the University of California.
4 1.1 mw * All rights reserved.
5 1.1 mw *
6 1.1 mw * This code is derived from software contributed to Berkeley by
7 1.1 mw * the Systems Programming Group of the University of Utah Computer
8 1.1 mw * Science Department.
9 1.1 mw *
10 1.1 mw * Redistribution and use in source and binary forms, with or without
11 1.1 mw * modification, are permitted provided that the following conditions
12 1.1 mw * are met:
13 1.1 mw * 1. Redistributions of source code must retain the above copyright
14 1.1 mw * notice, this list of conditions and the following disclaimer.
15 1.1 mw * 2. Redistributions in binary form must reproduce the above copyright
16 1.1 mw * notice, this list of conditions and the following disclaimer in the
17 1.1 mw * documentation and/or other materials provided with the distribution.
18 1.1 mw * 3. All advertising materials mentioning features or use of this software
19 1.1 mw * must display the following acknowledgement:
20 1.1 mw * This product includes software developed by the University of
21 1.1 mw * California, Berkeley and its contributors.
22 1.1 mw * 4. Neither the name of the University nor the names of its contributors
23 1.1 mw * may be used to endorse or promote products derived from this software
24 1.1 mw * without specific prior written permission.
25 1.1 mw *
26 1.1 mw * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
27 1.1 mw * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
28 1.1 mw * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
29 1.1 mw * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
30 1.1 mw * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
31 1.1 mw * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
32 1.1 mw * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
33 1.1 mw * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
34 1.1 mw * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
35 1.1 mw * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
36 1.1 mw * SUCH DAMAGE.
37 1.1 mw *
38 1.3 mw * from: Utah $Hdr: vmparam.h 1.16 91/01/18$
39 1.3 mw *
40 1.3 mw * @(#)vmparam.h 7.3 (Berkeley) 5/7/91
41 1.1 mw */
42 1.1 mw
43 1.1 mw /*
44 1.1 mw * Machine dependent constants for HP300
45 1.1 mw */
46 1.1 mw /*
47 1.1 mw * USRTEXT is the start of the user text/data space, while USRSTACK
48 1.1 mw * is the top (end) of the user stack. LOWPAGES and HIGHPAGES are
49 1.1 mw * the number of pages from the beginning of the P0 region to the
50 1.1 mw * beginning of the text and from the beginning of the P1 region to the
51 1.1 mw * beginning of the stack respectively.
52 1.1 mw *
53 1.1 mw * These are a mixture of i386, sun3 and hp settings..
54 1.1 mw */
55 1.1 mw
56 1.1 mw /* Sun settings. Still hope, that I might get sun3 binaries to work... */
57 1.1 mw #define USRTEXT 0x2000
58 1.1 mw #define USRSTACK 0x0F000000
59 1.1 mw #define LOWPAGES btoc(USRTEXT)
60 1.1 mw #define HIGHPAGES 0
61 1.1 mw
62 1.1 mw /*
63 1.1 mw * Virtual memory related constants, all in bytes
64 1.1 mw */
65 1.1 mw
66 1.1 mw #if 0
67 1.1 mw /* these are the sun3 parameters, but they obviously confuse our memory
68 1.1 mw allocator (because data and stack segments overlap). So for now,
69 1.1 mw limit both data and stack to 32M each, this should be fairly enough
70 1.1 mw for the start, and if not, we'll take another look at how to tell
71 1.1 mw the vm-system that it's ok if stack and data potentially overlap,
72 1.1 mw as long as they don't in reality.. */
73 1.1 mw
74 1.1 mw #ifndef MAXTSIZ
75 1.1 mw #define MAXTSIZ (6*1024*1024) /* max text size */
76 1.1 mw #endif
77 1.1 mw #ifndef DFLDSIZ
78 1.1 mw #define DFLDSIZ USRSTACK /* initial data size limit */
79 1.1 mw #endif
80 1.1 mw #ifndef MAXDSIZ
81 1.1 mw #define MAXDSIZ USRSTACK /* max data size */
82 1.1 mw #endif
83 1.1 mw #ifndef DFLSSIZ
84 1.1 mw #define DFLSSIZ (2*1024*1024) /* initial stack size limit */
85 1.1 mw #endif
86 1.1 mw #ifndef MAXSSIZ
87 1.1 mw #define MAXSSIZ MAXDSIZ /* max stack size */
88 1.1 mw #endif
89 1.1 mw
90 1.1 mw #else
91 1.1 mw
92 1.1 mw #ifndef MAXTSIZ
93 1.1 mw #define MAXTSIZ (6*1024*1024) /* max text size */
94 1.1 mw #endif
95 1.1 mw #ifndef DFLDSIZ
96 1.1 mw #define DFLDSIZ (32*1024*1024) /* initial data size limit */
97 1.1 mw #endif
98 1.1 mw #ifndef MAXDSIZ
99 1.1 mw #define MAXDSIZ (32*1024*1024) /* max data size */
100 1.1 mw #endif
101 1.1 mw #ifndef DFLSSIZ
102 1.1 mw #define DFLSSIZ (2*1024*1024) /* initial stack size limit */
103 1.1 mw #endif
104 1.1 mw #ifndef MAXSSIZ
105 1.1 mw #define MAXSSIZ MAXDSIZ /* max stack size */
106 1.1 mw #endif
107 1.1 mw
108 1.1 mw #endif
109 1.1 mw
110 1.1 mw /*
111 1.1 mw * Default sizes of swap allocation chunks (see dmap.h).
112 1.1 mw * The actual values may be changed in vminit() based on MAXDSIZ.
113 1.1 mw * With MAXDSIZ of 16Mb and NDMAP of 38, dmmax will be 1024.
114 1.1 mw * DMMIN should be at least ctod(1) so that vtod() works.
115 1.1 mw * vminit() insures this.
116 1.1 mw */
117 1.1 mw #define DMMIN 32 /* smallest swap allocation */
118 1.1 mw #define DMMAX NBPG /* largest potential swap allocation */
119 1.1 mw
120 1.1 mw /*
121 1.1 mw * Sizes of the system and user portions of the system page table.
122 1.1 mw */
123 1.1 mw /* SYSPTSIZE IS SILLY; IT SHOULD BE COMPUTED AT BOOT TIME */
124 1.1 mw #define SYSPTSIZE (1 * NPTEPG) /* 16mb */
125 1.1 mw #define USRPTSIZE (1 * NPTEPG) /* 16mb */
126 1.1 mw
127 1.1 mw /*
128 1.1 mw * PTEs for mapping user space into the kernel for phyio operations.
129 1.1 mw * One page is enough to handle 16Mb of simultaneous raw IO operations.
130 1.1 mw */
131 1.1 mw #ifndef USRIOSIZE
132 1.1 mw #define USRIOSIZE (1 * NPTEPG) /* 16mb */
133 1.1 mw #endif
134 1.1 mw
135 1.1 mw /*
136 1.1 mw * PTEs for system V style shared memory.
137 1.1 mw * This is basically slop for kmempt which we actually allocate (malloc) from.
138 1.1 mw */
139 1.1 mw #ifndef SHMMAXPGS
140 1.1 mw #define SHMMAXPGS (1 * NPTEPG) /* 16mb */
141 1.1 mw #endif
142 1.1 mw
143 1.1 mw /*
144 1.1 mw * Boundary at which to place first MAPMEM segment if not explicitly
145 1.1 mw * specified. Should be a power of two. This allows some slop for
146 1.1 mw * the data segment to grow underneath the first mapped segment.
147 1.1 mw */
148 1.1 mw /* XXXX probably too low !?!? */
149 1.1 mw #define MMSEG 0x200000
150 1.1 mw
151 1.1 mw /*
152 1.1 mw * The size of the clock loop.
153 1.1 mw */
154 1.1 mw #define LOOPPAGES (maxfree - firstfree)
155 1.1 mw
156 1.1 mw /*
157 1.1 mw * The time for a process to be blocked before being very swappable.
158 1.1 mw * This is a number of seconds which the system takes as being a non-trivial
159 1.1 mw * amount of real time. You probably shouldn't change this;
160 1.1 mw * it is used in subtle ways (fractions and multiples of it are, that is, like
161 1.1 mw * half of a ``long time'', almost a long time, etc.)
162 1.1 mw * It is related to human patience and other factors which don't really
163 1.1 mw * change over time.
164 1.1 mw */
165 1.1 mw #define MAXSLP 20
166 1.1 mw
167 1.1 mw /*
168 1.1 mw * A swapped in process is given a small amount of core without being bothered
169 1.1 mw * by the page replacement algorithm. Basically this says that if you are
170 1.1 mw * swapped in you deserve some resources. We protect the last SAFERSS
171 1.1 mw * pages against paging and will just swap you out rather than paging you.
172 1.1 mw * Note that each process has at least UPAGES+CLSIZE pages which are not
173 1.1 mw * paged anyways (this is currently 8+2=10 pages or 5k bytes), so this
174 1.1 mw * number just means a swapped in process is given around 25k bytes.
175 1.1 mw * Just for fun: current memory prices are 4600$ a megabyte on VAX (4/22/81),
176 1.1 mw * so we loan each swapped in process memory worth 100$, or just admit
177 1.1 mw * that we don't consider it worthwhile and swap it out to disk which costs
178 1.1 mw * $30/mb or about $0.75.
179 1.1 mw */
180 1.1 mw #define SAFERSS 4 /* nominal ``small'' resident set size
181 1.1 mw protected against replacement */
182 1.1 mw
183 1.1 mw /*
184 1.1 mw * DISKRPM is used to estimate the number of paging i/o operations
185 1.1 mw * which one can expect from a single disk controller.
186 1.1 mw */
187 1.1 mw #define DISKRPM 60
188 1.1 mw
189 1.1 mw /*
190 1.1 mw * Klustering constants. Klustering is the gathering
191 1.1 mw * of pages together for pagein/pageout, while clustering
192 1.1 mw * is the treatment of hardware page size as though it were
193 1.1 mw * larger than it really is.
194 1.1 mw *
195 1.1 mw * KLMAX gives maximum cluster size in CLSIZE page (cluster-page)
196 1.1 mw * units. Note that ctod(KLMAX*CLSIZE) must be <= DMMIN in dmap.h.
197 1.1 mw * ctob(KLMAX) should also be less than MAXPHYS (in vm_swp.c)
198 1.1 mw * unless you like "big push" panics.
199 1.1 mw */
200 1.1 mw
201 1.1 mw #define KLMAX (4/CLSIZE)
202 1.1 mw #define KLSEQL (2/CLSIZE) /* in klust if vadvise(VA_SEQL) */
203 1.1 mw #define KLIN (4/CLSIZE) /* default data/stack in klust */
204 1.1 mw #define KLTXT (4/CLSIZE) /* default text in klust */
205 1.1 mw #define KLOUT (4/CLSIZE)
206 1.1 mw
207 1.1 mw /*
208 1.1 mw * KLSDIST is the advance or retard of the fifo reclaim for sequential
209 1.1 mw * processes data space.
210 1.1 mw */
211 1.1 mw #define KLSDIST 3 /* klusters advance/retard for seq. fifo */
212 1.1 mw
213 1.1 mw /*
214 1.1 mw * Paging thresholds (see vm_sched.c).
215 1.1 mw * Strategy of 1/19/85:
216 1.1 mw * lotsfree is 512k bytes, but at most 1/4 of memory
217 1.1 mw * desfree is 200k bytes, but at most 1/8 of memory
218 1.1 mw * minfree is 64k bytes, but at most 1/2 of desfree
219 1.1 mw */
220 1.1 mw #define LOTSFREE (512 * 1024)
221 1.1 mw #define LOTSFREEFRACT 4
222 1.1 mw #define DESFREE (200 * 1024)
223 1.1 mw #define DESFREEFRACT 8
224 1.1 mw #define MINFREE (64 * 1024)
225 1.1 mw #define MINFREEFRACT 2
226 1.1 mw
227 1.1 mw /*
228 1.1 mw * There are two clock hands, initially separated by HANDSPREAD bytes
229 1.1 mw * (but at most all of user memory). The amount of time to reclaim
230 1.1 mw * a page once the pageout process examines it increases with this
231 1.1 mw * distance and decreases as the scan rate rises.
232 1.1 mw */
233 1.1 mw #define HANDSPREAD (2 * 1024 * 1024)
234 1.1 mw
235 1.1 mw /*
236 1.1 mw * The number of times per second to recompute the desired paging rate
237 1.1 mw * and poke the pagedaemon.
238 1.1 mw */
239 1.1 mw #define RATETOSCHEDPAGING 4
240 1.1 mw
241 1.1 mw /*
242 1.1 mw * Believed threshold (in megabytes) for which interleaved
243 1.1 mw * swapping area is desirable.
244 1.1 mw */
245 1.1 mw #define LOTSOFMEM 2
246 1.1 mw
247 1.1 mw #define mapin(pte, v, pfnum, prot) \
248 1.1 mw (*(u_int *)(pte) = ((pfnum) << PGSHIFT) | (prot), TBIS((caddr_t)(v)))
249 1.1 mw
250 1.1 mw /*
251 1.1 mw * Mach derived constants
252 1.1 mw */
253 1.1 mw
254 1.1 mw /* user/kernel map constants */
255 1.1 mw #define VM_MIN_ADDRESS ((vm_offset_t)0)
256 1.1 mw #define VM_MAXUSER_ADDRESS ((vm_offset_t)(0-(UPAGES*NBPG)))
257 1.1 mw #define VM_MAX_ADDRESS ((vm_offset_t)(0-(UPAGES*NBPG)))
258 1.1 mw #define VM_MIN_KERNEL_ADDRESS ((vm_offset_t)0)
259 1.1 mw #define VM_MAX_KERNEL_ADDRESS ((vm_offset_t)(0-NBPG))
260 1.1 mw
261 1.1 mw /* virtual sizes (bytes) for various kernel submaps */
262 1.1 mw #define VM_MBUF_SIZE (NMBCLUSTERS*MCLBYTES)
263 1.1 mw #define VM_KMEM_SIZE (NKMEMCLUSTERS*CLBYTES)
264 1.1 mw #define VM_PHYS_SIZE (USRIOSIZE*CLBYTES)
265 1.1 mw
266 1.1 mw /* # of kernel PT pages (initial only, can grow dynamically) */
267 1.1 mw #define VM_KERNEL_PT_PAGES ((vm_size_t)1) /* XXX: SYSPTSIZE */
268 1.1 mw
269 1.1 mw /* pcb base */
270 1.1 mw #define pcbb(p) ((u_int)(p)->p_addr)
271