Home | History | Annotate | Line # | Download | only in include
vmparam.h revision 1.4
      1  1.1  mw /*
      2  1.1  mw  * Copyright (c) 1988 University of Utah.
      3  1.1  mw  * Copyright (c) 1982, 1986, 1990 The Regents of the University of California.
      4  1.1  mw  * All rights reserved.
      5  1.1  mw  *
      6  1.1  mw  * This code is derived from software contributed to Berkeley by
      7  1.1  mw  * the Systems Programming Group of the University of Utah Computer
      8  1.1  mw  * Science Department.
      9  1.1  mw  *
     10  1.1  mw  * Redistribution and use in source and binary forms, with or without
     11  1.1  mw  * modification, are permitted provided that the following conditions
     12  1.1  mw  * are met:
     13  1.1  mw  * 1. Redistributions of source code must retain the above copyright
     14  1.1  mw  *    notice, this list of conditions and the following disclaimer.
     15  1.1  mw  * 2. Redistributions in binary form must reproduce the above copyright
     16  1.1  mw  *    notice, this list of conditions and the following disclaimer in the
     17  1.1  mw  *    documentation and/or other materials provided with the distribution.
     18  1.1  mw  * 3. All advertising materials mentioning features or use of this software
     19  1.1  mw  *    must display the following acknowledgement:
     20  1.1  mw  *	This product includes software developed by the University of
     21  1.1  mw  *	California, Berkeley and its contributors.
     22  1.1  mw  * 4. Neither the name of the University nor the names of its contributors
     23  1.1  mw  *    may be used to endorse or promote products derived from this software
     24  1.1  mw  *    without specific prior written permission.
     25  1.1  mw  *
     26  1.1  mw  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     27  1.1  mw  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     28  1.1  mw  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     29  1.1  mw  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     30  1.1  mw  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     31  1.1  mw  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     32  1.1  mw  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     33  1.1  mw  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     34  1.1  mw  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     35  1.1  mw  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     36  1.1  mw  * SUCH DAMAGE.
     37  1.1  mw  *
     38  1.3  mw  * from: Utah $Hdr: vmparam.h 1.16 91/01/18$
     39  1.3  mw  *
     40  1.3  mw  *	@(#)vmparam.h	7.3 (Berkeley) 5/7/91
     41  1.1  mw  */
     42  1.1  mw 
     43  1.4  mw 
     44  1.4  mw #include <machine/pte.h>
     45  1.4  mw 
     46  1.1  mw /*
     47  1.1  mw  * Machine dependent constants for HP300
     48  1.1  mw  */
     49  1.1  mw /*
     50  1.1  mw  * USRTEXT is the start of the user text/data space, while USRSTACK
     51  1.1  mw  * is the top (end) of the user stack.  LOWPAGES and HIGHPAGES are
     52  1.1  mw  * the number of pages from the beginning of the P0 region to the
     53  1.1  mw  * beginning of the text and from the beginning of the P1 region to the
     54  1.1  mw  * beginning of the stack respectively.
     55  1.1  mw  *
     56  1.1  mw  * These are a mixture of i386, sun3 and hp settings..
     57  1.1  mw  */
     58  1.1  mw 
     59  1.1  mw /* Sun settings. Still hope, that I might get sun3 binaries to work... */
     60  1.1  mw #define	USRTEXT		0x2000
     61  1.1  mw #define	USRSTACK	0x0F000000
     62  1.1  mw #define	LOWPAGES	btoc(USRTEXT)
     63  1.1  mw #define	HIGHPAGES	0
     64  1.1  mw 
     65  1.1  mw /*
     66  1.1  mw  * Virtual memory related constants, all in bytes
     67  1.1  mw  */
     68  1.1  mw 
     69  1.1  mw #if 0
     70  1.1  mw /* these are the sun3 parameters, but they obviously confuse our memory
     71  1.1  mw    allocator (because data and stack segments overlap). So for now,
     72  1.1  mw    limit both data and stack to 32M each, this should be fairly enough
     73  1.1  mw    for the start, and if not, we'll take another look at how to tell
     74  1.1  mw    the vm-system that it's ok if stack and data potentially overlap,
     75  1.1  mw    as long as they don't in reality.. */
     76  1.1  mw 
     77  1.1  mw #ifndef MAXTSIZ
     78  1.1  mw #define	MAXTSIZ		(6*1024*1024)		/* max text size */
     79  1.1  mw #endif
     80  1.1  mw #ifndef DFLDSIZ
     81  1.1  mw #define	DFLDSIZ		USRSTACK		/* initial data size limit */
     82  1.1  mw #endif
     83  1.1  mw #ifndef MAXDSIZ
     84  1.1  mw #define	MAXDSIZ		USRSTACK		/* max data size */
     85  1.1  mw #endif
     86  1.1  mw #ifndef	DFLSSIZ
     87  1.1  mw #define	DFLSSIZ		(2*1024*1024)		/* initial stack size limit */
     88  1.1  mw #endif
     89  1.1  mw #ifndef	MAXSSIZ
     90  1.1  mw #define	MAXSSIZ		MAXDSIZ			/* max stack size */
     91  1.1  mw #endif
     92  1.1  mw 
     93  1.1  mw #else
     94  1.1  mw 
     95  1.1  mw #ifndef MAXTSIZ
     96  1.1  mw #define	MAXTSIZ		(6*1024*1024)		/* max text size */
     97  1.1  mw #endif
     98  1.1  mw #ifndef DFLDSIZ
     99  1.1  mw #define	DFLDSIZ		(32*1024*1024)		/* initial data size limit */
    100  1.1  mw #endif
    101  1.1  mw #ifndef MAXDSIZ
    102  1.1  mw #define	MAXDSIZ		(32*1024*1024)		/* max data size */
    103  1.1  mw #endif
    104  1.1  mw #ifndef	DFLSSIZ
    105  1.1  mw #define	DFLSSIZ		(2*1024*1024)		/* initial stack size limit */
    106  1.1  mw #endif
    107  1.1  mw #ifndef	MAXSSIZ
    108  1.1  mw #define	MAXSSIZ		MAXDSIZ			/* max stack size */
    109  1.1  mw #endif
    110  1.1  mw 
    111  1.1  mw #endif
    112  1.1  mw 
    113  1.1  mw /*
    114  1.1  mw  * Default sizes of swap allocation chunks (see dmap.h).
    115  1.1  mw  * The actual values may be changed in vminit() based on MAXDSIZ.
    116  1.1  mw  * With MAXDSIZ of 16Mb and NDMAP of 38, dmmax will be 1024.
    117  1.1  mw  * DMMIN should be at least ctod(1) so that vtod() works.
    118  1.1  mw  * vminit() insures this.
    119  1.1  mw  */
    120  1.1  mw #define	DMMIN	32			/* smallest swap allocation */
    121  1.1  mw #define	DMMAX	NBPG			/* largest potential swap allocation */
    122  1.1  mw 
    123  1.1  mw /*
    124  1.1  mw  * Sizes of the system and user portions of the system page table.
    125  1.1  mw  */
    126  1.1  mw /* SYSPTSIZE IS SILLY; IT SHOULD BE COMPUTED AT BOOT TIME */
    127  1.1  mw #define	SYSPTSIZE	(1 * NPTEPG)	/* 16mb */
    128  1.1  mw #define	USRPTSIZE 	(1 * NPTEPG)	/* 16mb */
    129  1.1  mw 
    130  1.1  mw /*
    131  1.1  mw  * PTEs for mapping user space into the kernel for phyio operations.
    132  1.1  mw  * One page is enough to handle 16Mb of simultaneous raw IO operations.
    133  1.1  mw  */
    134  1.1  mw #ifndef USRIOSIZE
    135  1.1  mw #define USRIOSIZE	(1 * NPTEPG)	/* 16mb */
    136  1.1  mw #endif
    137  1.1  mw 
    138  1.1  mw /*
    139  1.1  mw  * PTEs for system V style shared memory.
    140  1.1  mw  * This is basically slop for kmempt which we actually allocate (malloc) from.
    141  1.1  mw  */
    142  1.1  mw #ifndef SHMMAXPGS
    143  1.1  mw #define SHMMAXPGS	(1 * NPTEPG)	/* 16mb */
    144  1.1  mw #endif
    145  1.1  mw 
    146  1.1  mw /*
    147  1.1  mw  * Boundary at which to place first MAPMEM segment if not explicitly
    148  1.1  mw  * specified.  Should be a power of two.  This allows some slop for
    149  1.1  mw  * the data segment to grow underneath the first mapped segment.
    150  1.1  mw  */
    151  1.1  mw /* XXXX probably too low !?!? */
    152  1.1  mw #define MMSEG		0x200000
    153  1.1  mw 
    154  1.1  mw /*
    155  1.1  mw  * The size of the clock loop.
    156  1.1  mw  */
    157  1.1  mw #define	LOOPPAGES	(maxfree - firstfree)
    158  1.1  mw 
    159  1.1  mw /*
    160  1.1  mw  * The time for a process to be blocked before being very swappable.
    161  1.1  mw  * This is a number of seconds which the system takes as being a non-trivial
    162  1.1  mw  * amount of real time.  You probably shouldn't change this;
    163  1.1  mw  * it is used in subtle ways (fractions and multiples of it are, that is, like
    164  1.1  mw  * half of a ``long time'', almost a long time, etc.)
    165  1.1  mw  * It is related to human patience and other factors which don't really
    166  1.1  mw  * change over time.
    167  1.1  mw  */
    168  1.1  mw #define	MAXSLP 		20
    169  1.1  mw 
    170  1.1  mw /*
    171  1.1  mw  * A swapped in process is given a small amount of core without being bothered
    172  1.1  mw  * by the page replacement algorithm.  Basically this says that if you are
    173  1.1  mw  * swapped in you deserve some resources.  We protect the last SAFERSS
    174  1.1  mw  * pages against paging and will just swap you out rather than paging you.
    175  1.1  mw  * Note that each process has at least UPAGES+CLSIZE pages which are not
    176  1.1  mw  * paged anyways (this is currently 8+2=10 pages or 5k bytes), so this
    177  1.1  mw  * number just means a swapped in process is given around 25k bytes.
    178  1.1  mw  * Just for fun: current memory prices are 4600$ a megabyte on VAX (4/22/81),
    179  1.1  mw  * so we loan each swapped in process memory worth 100$, or just admit
    180  1.1  mw  * that we don't consider it worthwhile and swap it out to disk which costs
    181  1.1  mw  * $30/mb or about $0.75.
    182  1.1  mw  */
    183  1.1  mw #define	SAFERSS		4		/* nominal ``small'' resident set size
    184  1.1  mw 					   protected against replacement */
    185  1.1  mw 
    186  1.1  mw /*
    187  1.1  mw  * DISKRPM is used to estimate the number of paging i/o operations
    188  1.1  mw  * which one can expect from a single disk controller.
    189  1.1  mw  */
    190  1.1  mw #define	DISKRPM		60
    191  1.1  mw 
    192  1.1  mw /*
    193  1.1  mw  * Klustering constants.  Klustering is the gathering
    194  1.1  mw  * of pages together for pagein/pageout, while clustering
    195  1.1  mw  * is the treatment of hardware page size as though it were
    196  1.1  mw  * larger than it really is.
    197  1.1  mw  *
    198  1.1  mw  * KLMAX gives maximum cluster size in CLSIZE page (cluster-page)
    199  1.1  mw  * units.  Note that ctod(KLMAX*CLSIZE) must be <= DMMIN in dmap.h.
    200  1.1  mw  * ctob(KLMAX) should also be less than MAXPHYS (in vm_swp.c)
    201  1.1  mw  * unless you like "big push" panics.
    202  1.1  mw  */
    203  1.1  mw 
    204  1.1  mw #define	KLMAX	(4/CLSIZE)
    205  1.1  mw #define	KLSEQL	(2/CLSIZE)		/* in klust if vadvise(VA_SEQL) */
    206  1.1  mw #define	KLIN	(4/CLSIZE)		/* default data/stack in klust */
    207  1.1  mw #define	KLTXT	(4/CLSIZE)		/* default text in klust */
    208  1.1  mw #define	KLOUT	(4/CLSIZE)
    209  1.1  mw 
    210  1.1  mw /*
    211  1.1  mw  * KLSDIST is the advance or retard of the fifo reclaim for sequential
    212  1.1  mw  * processes data space.
    213  1.1  mw  */
    214  1.1  mw #define	KLSDIST	3		/* klusters advance/retard for seq. fifo */
    215  1.1  mw 
    216  1.1  mw /*
    217  1.1  mw  * Paging thresholds (see vm_sched.c).
    218  1.1  mw  * Strategy of 1/19/85:
    219  1.1  mw  *	lotsfree is 512k bytes, but at most 1/4 of memory
    220  1.1  mw  *	desfree is 200k bytes, but at most 1/8 of memory
    221  1.1  mw  *	minfree is 64k bytes, but at most 1/2 of desfree
    222  1.1  mw  */
    223  1.1  mw #define	LOTSFREE	(512 * 1024)
    224  1.1  mw #define	LOTSFREEFRACT	4
    225  1.1  mw #define	DESFREE		(200 * 1024)
    226  1.1  mw #define	DESFREEFRACT	8
    227  1.1  mw #define	MINFREE		(64 * 1024)
    228  1.1  mw #define	MINFREEFRACT	2
    229  1.1  mw 
    230  1.1  mw /*
    231  1.1  mw  * There are two clock hands, initially separated by HANDSPREAD bytes
    232  1.1  mw  * (but at most all of user memory).  The amount of time to reclaim
    233  1.1  mw  * a page once the pageout process examines it increases with this
    234  1.1  mw  * distance and decreases as the scan rate rises.
    235  1.1  mw  */
    236  1.1  mw #define	HANDSPREAD	(2 * 1024 * 1024)
    237  1.1  mw 
    238  1.1  mw /*
    239  1.1  mw  * The number of times per second to recompute the desired paging rate
    240  1.1  mw  * and poke the pagedaemon.
    241  1.1  mw  */
    242  1.1  mw #define	RATETOSCHEDPAGING	4
    243  1.1  mw 
    244  1.1  mw /*
    245  1.1  mw  * Believed threshold (in megabytes) for which interleaved
    246  1.1  mw  * swapping area is desirable.
    247  1.1  mw  */
    248  1.1  mw #define	LOTSOFMEM	2
    249  1.1  mw 
    250  1.1  mw #define	mapin(pte, v, pfnum, prot) \
    251  1.1  mw 	(*(u_int *)(pte) = ((pfnum) << PGSHIFT) | (prot), TBIS((caddr_t)(v)))
    252  1.1  mw 
    253  1.1  mw /*
    254  1.1  mw  * Mach derived constants
    255  1.1  mw  */
    256  1.1  mw 
    257  1.1  mw /* user/kernel map constants */
    258  1.1  mw #define VM_MIN_ADDRESS		((vm_offset_t)0)
    259  1.1  mw #define VM_MAXUSER_ADDRESS	((vm_offset_t)(0-(UPAGES*NBPG)))
    260  1.1  mw #define VM_MAX_ADDRESS		((vm_offset_t)(0-(UPAGES*NBPG)))
    261  1.1  mw #define VM_MIN_KERNEL_ADDRESS	((vm_offset_t)0)
    262  1.1  mw #define VM_MAX_KERNEL_ADDRESS	((vm_offset_t)(0-NBPG))
    263  1.1  mw 
    264  1.1  mw /* virtual sizes (bytes) for various kernel submaps */
    265  1.1  mw #define VM_MBUF_SIZE		(NMBCLUSTERS*MCLBYTES)
    266  1.1  mw #define VM_KMEM_SIZE		(NKMEMCLUSTERS*CLBYTES)
    267  1.1  mw #define VM_PHYS_SIZE		(USRIOSIZE*CLBYTES)
    268  1.1  mw 
    269  1.1  mw /* # of kernel PT pages (initial only, can grow dynamically) */
    270  1.1  mw #define VM_KERNEL_PT_PAGES	((vm_size_t)1)		/* XXX: SYSPTSIZE */
    271  1.1  mw 
    272  1.1  mw /* pcb base */
    273  1.1  mw #define	pcbb(p)		((u_int)(p)->p_addr)
    274