bus_dma.c revision 1.101 1 /* $NetBSD: bus_dma.c,v 1.101 2017/12/29 08:58:57 skrll Exp $ */
2
3 /*-
4 * Copyright (c) 1996, 1997, 1998 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Jason R. Thorpe of the Numerical Aerospace Simulation Facility,
9 * NASA Ames Research Center.
10 *
11 * Redistribution and use in source and binary forms, with or without
12 * modification, are permitted provided that the following conditions
13 * are met:
14 * 1. Redistributions of source code must retain the above copyright
15 * notice, this list of conditions and the following disclaimer.
16 * 2. Redistributions in binary form must reproduce the above copyright
17 * notice, this list of conditions and the following disclaimer in the
18 * documentation and/or other materials provided with the distribution.
19 *
20 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
21 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
22 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
23 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
24 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
25 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
26 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
27 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
28 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
29 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
30 * POSSIBILITY OF SUCH DAMAGE.
31 */
32
33 #define _ARM32_BUS_DMA_PRIVATE
34
35 #include "opt_arm_bus_space.h"
36
37 #include <sys/cdefs.h>
38 __KERNEL_RCSID(0, "$NetBSD: bus_dma.c,v 1.101 2017/12/29 08:58:57 skrll Exp $");
39
40 #include <sys/param.h>
41 #include <sys/systm.h>
42 #include <sys/kernel.h>
43 #include <sys/proc.h>
44 #include <sys/buf.h>
45 #include <sys/bus.h>
46 #include <sys/cpu.h>
47 #include <sys/reboot.h>
48 #include <sys/conf.h>
49 #include <sys/file.h>
50 #include <sys/kmem.h>
51 #include <sys/mbuf.h>
52 #include <sys/vnode.h>
53 #include <sys/device.h>
54
55 #include <uvm/uvm.h>
56
57 #include <arm/cpufunc.h>
58
59 #ifdef __HAVE_MM_MD_DIRECT_MAPPED_PHYS
60 #include <dev/mm.h>
61 #endif
62
63 #ifdef BUSDMA_COUNTERS
64 static struct evcnt bus_dma_creates =
65 EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL, "busdma", "creates");
66 static struct evcnt bus_dma_bounced_creates =
67 EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL, "busdma", "bounced creates");
68 static struct evcnt bus_dma_loads =
69 EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL, "busdma", "loads");
70 static struct evcnt bus_dma_bounced_loads =
71 EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL, "busdma", "bounced loads");
72 static struct evcnt bus_dma_coherent_loads =
73 EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL, "busdma", "coherent loads");
74 static struct evcnt bus_dma_read_bounces =
75 EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL, "busdma", "read bounces");
76 static struct evcnt bus_dma_write_bounces =
77 EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL, "busdma", "write bounces");
78 static struct evcnt bus_dma_bounced_unloads =
79 EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL, "busdma", "bounced unloads");
80 static struct evcnt bus_dma_unloads =
81 EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL, "busdma", "unloads");
82 static struct evcnt bus_dma_bounced_destroys =
83 EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL, "busdma", "bounced destroys");
84 static struct evcnt bus_dma_destroys =
85 EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL, "busdma", "destroys");
86 static struct evcnt bus_dma_sync_prereadwrite =
87 EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL, "busdma", "sync prereadwrite");
88 static struct evcnt bus_dma_sync_preread_begin =
89 EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL, "busdma", "sync preread begin");
90 static struct evcnt bus_dma_sync_preread =
91 EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL, "busdma", "sync preread");
92 static struct evcnt bus_dma_sync_preread_tail =
93 EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL, "busdma", "sync preread tail");
94 static struct evcnt bus_dma_sync_prewrite =
95 EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL, "busdma", "sync prewrite");
96 static struct evcnt bus_dma_sync_postread =
97 EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL, "busdma", "sync postread");
98 static struct evcnt bus_dma_sync_postreadwrite =
99 EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL, "busdma", "sync postreadwrite");
100 static struct evcnt bus_dma_sync_postwrite =
101 EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL, "busdma", "sync postwrite");
102
103 EVCNT_ATTACH_STATIC(bus_dma_creates);
104 EVCNT_ATTACH_STATIC(bus_dma_bounced_creates);
105 EVCNT_ATTACH_STATIC(bus_dma_loads);
106 EVCNT_ATTACH_STATIC(bus_dma_bounced_loads);
107 EVCNT_ATTACH_STATIC(bus_dma_coherent_loads);
108 EVCNT_ATTACH_STATIC(bus_dma_read_bounces);
109 EVCNT_ATTACH_STATIC(bus_dma_write_bounces);
110 EVCNT_ATTACH_STATIC(bus_dma_unloads);
111 EVCNT_ATTACH_STATIC(bus_dma_bounced_unloads);
112 EVCNT_ATTACH_STATIC(bus_dma_destroys);
113 EVCNT_ATTACH_STATIC(bus_dma_bounced_destroys);
114 EVCNT_ATTACH_STATIC(bus_dma_sync_prereadwrite);
115 EVCNT_ATTACH_STATIC(bus_dma_sync_preread_begin);
116 EVCNT_ATTACH_STATIC(bus_dma_sync_preread);
117 EVCNT_ATTACH_STATIC(bus_dma_sync_preread_tail);
118 EVCNT_ATTACH_STATIC(bus_dma_sync_prewrite);
119 EVCNT_ATTACH_STATIC(bus_dma_sync_postread);
120 EVCNT_ATTACH_STATIC(bus_dma_sync_postreadwrite);
121 EVCNT_ATTACH_STATIC(bus_dma_sync_postwrite);
122
123 #define STAT_INCR(x) (bus_dma_ ## x.ev_count++)
124 #else
125 #define STAT_INCR(x) /*(bus_dma_ ## x.ev_count++)*/
126 #endif
127
128 int _bus_dmamap_load_buffer(bus_dma_tag_t, bus_dmamap_t, void *,
129 bus_size_t, struct vmspace *, int);
130 static struct arm32_dma_range *
131 _bus_dma_paddr_inrange(struct arm32_dma_range *, int, paddr_t);
132
133 /*
134 * Check to see if the specified page is in an allowed DMA range.
135 */
136 inline struct arm32_dma_range *
137 _bus_dma_paddr_inrange(struct arm32_dma_range *ranges, int nranges,
138 bus_addr_t curaddr)
139 {
140 struct arm32_dma_range *dr;
141 int i;
142
143 for (i = 0, dr = ranges; i < nranges; i++, dr++) {
144 if (curaddr >= dr->dr_sysbase &&
145 curaddr < (dr->dr_sysbase + dr->dr_len))
146 return dr;
147 }
148
149 return NULL;
150 }
151
152 /*
153 * Check to see if the specified busaddr is in an allowed DMA range.
154 */
155 static inline paddr_t
156 _bus_dma_busaddr_to_paddr(bus_dma_tag_t t, bus_addr_t curaddr)
157 {
158 struct arm32_dma_range *dr;
159 u_int i;
160
161 if (t->_nranges == 0)
162 return curaddr;
163
164 for (i = 0, dr = t->_ranges; i < t->_nranges; i++, dr++) {
165 if (dr->dr_busbase <= curaddr
166 && curaddr < dr->dr_busbase + dr->dr_len)
167 return curaddr - dr->dr_busbase + dr->dr_sysbase;
168 }
169 panic("%s: curaddr %#lx not in range", __func__, curaddr);
170 }
171
172 /*
173 * Common function to load the specified physical address into the
174 * DMA map, coalescing segments and boundary checking as necessary.
175 */
176 static int
177 _bus_dmamap_load_paddr(bus_dma_tag_t t, bus_dmamap_t map,
178 bus_addr_t paddr, bus_size_t size, bool coherent)
179 {
180 bus_dma_segment_t * const segs = map->dm_segs;
181 int nseg = map->dm_nsegs;
182 bus_addr_t lastaddr;
183 bus_addr_t bmask = ~(map->_dm_boundary - 1);
184 bus_addr_t curaddr;
185 bus_size_t sgsize;
186 uint32_t _ds_flags = coherent ? _BUS_DMAMAP_COHERENT : 0;
187
188 if (nseg > 0)
189 lastaddr = segs[nseg - 1].ds_addr + segs[nseg - 1].ds_len;
190 else
191 lastaddr = 0xdead;
192
193 again:
194 sgsize = size;
195
196 /* Make sure we're in an allowed DMA range. */
197 if (t->_ranges != NULL) {
198 /* XXX cache last result? */
199 const struct arm32_dma_range * const dr =
200 _bus_dma_paddr_inrange(t->_ranges, t->_nranges, paddr);
201 if (dr == NULL)
202 return EINVAL;
203
204 /*
205 * If this region is coherent, mark the segment as coherent.
206 */
207 _ds_flags |= dr->dr_flags & _BUS_DMAMAP_COHERENT;
208
209 /*
210 * In a valid DMA range. Translate the physical
211 * memory address to an address in the DMA window.
212 */
213 curaddr = (paddr - dr->dr_sysbase) + dr->dr_busbase;
214 #if 0
215 printf("%p: %#lx: range %#lx/%#lx/%#lx/%#x: %#x <-- %#lx\n",
216 t, paddr, dr->dr_sysbase, dr->dr_busbase,
217 dr->dr_len, dr->dr_flags, _ds_flags, curaddr);
218 #endif
219 } else
220 curaddr = paddr;
221
222 /*
223 * Make sure we don't cross any boundaries.
224 */
225 if (map->_dm_boundary > 0) {
226 bus_addr_t baddr; /* next boundary address */
227
228 baddr = (curaddr + map->_dm_boundary) & bmask;
229 if (sgsize > (baddr - curaddr))
230 sgsize = (baddr - curaddr);
231 }
232
233 /*
234 * Insert chunk into a segment, coalescing with the
235 * previous segment if possible.
236 */
237 if (nseg > 0 && curaddr == lastaddr &&
238 segs[nseg - 1].ds_len + sgsize <= map->dm_maxsegsz &&
239 ((segs[nseg - 1]._ds_flags ^ _ds_flags) & _BUS_DMAMAP_COHERENT) == 0 &&
240 (map->_dm_boundary == 0 ||
241 (segs[nseg - 1].ds_addr & bmask) == (curaddr & bmask))) {
242 /* coalesce */
243 segs[nseg - 1].ds_len += sgsize;
244 } else if (nseg >= map->_dm_segcnt) {
245 return EFBIG;
246 } else {
247 /* new segment */
248 segs[nseg].ds_addr = curaddr;
249 segs[nseg].ds_len = sgsize;
250 segs[nseg]._ds_flags = _ds_flags;
251 nseg++;
252 }
253
254 lastaddr = curaddr + sgsize;
255
256 paddr += sgsize;
257 size -= sgsize;
258 if (size > 0)
259 goto again;
260
261 map->_dm_flags &= (_ds_flags & _BUS_DMAMAP_COHERENT);
262 map->dm_nsegs = nseg;
263 return 0;
264 }
265
266 #ifdef _ARM32_NEED_BUS_DMA_BOUNCE
267 static int _bus_dma_alloc_bouncebuf(bus_dma_tag_t t, bus_dmamap_t map,
268 bus_size_t size, int flags);
269 static void _bus_dma_free_bouncebuf(bus_dma_tag_t t, bus_dmamap_t map);
270 static int _bus_dma_uiomove(void *buf, struct uio *uio, size_t n,
271 int direction);
272
273 static int
274 _bus_dma_load_bouncebuf(bus_dma_tag_t t, bus_dmamap_t map, void *buf,
275 size_t buflen, int buftype, int flags)
276 {
277 struct arm32_bus_dma_cookie * const cookie = map->_dm_cookie;
278 struct vmspace * const vm = vmspace_kernel();
279 int error;
280
281 KASSERT(cookie != NULL);
282 KASSERT(cookie->id_flags & _BUS_DMA_MIGHT_NEED_BOUNCE);
283
284 /*
285 * Allocate bounce pages, if necessary.
286 */
287 if ((cookie->id_flags & _BUS_DMA_HAS_BOUNCE) == 0) {
288 error = _bus_dma_alloc_bouncebuf(t, map, buflen, flags);
289 if (error)
290 return error;
291 }
292
293 /*
294 * Cache a pointer to the caller's buffer and load the DMA map
295 * with the bounce buffer.
296 */
297 cookie->id_origbuf = buf;
298 cookie->id_origbuflen = buflen;
299 error = _bus_dmamap_load_buffer(t, map, cookie->id_bouncebuf,
300 buflen, vm, flags);
301 if (error)
302 return error;
303
304 STAT_INCR(bounced_loads);
305 map->dm_mapsize = buflen;
306 map->_dm_vmspace = vm;
307 map->_dm_buftype = buftype;
308
309 /* ...so _bus_dmamap_sync() knows we're bouncing */
310 map->_dm_flags |= _BUS_DMAMAP_IS_BOUNCING;
311 cookie->id_flags |= _BUS_DMA_IS_BOUNCING;
312 return 0;
313 }
314 #endif /* _ARM32_NEED_BUS_DMA_BOUNCE */
315
316 /*
317 * Common function for DMA map creation. May be called by bus-specific
318 * DMA map creation functions.
319 */
320 int
321 _bus_dmamap_create(bus_dma_tag_t t, bus_size_t size, int nsegments,
322 bus_size_t maxsegsz, bus_size_t boundary, int flags, bus_dmamap_t *dmamp)
323 {
324 struct arm32_bus_dmamap *map;
325 void *mapstore;
326
327 #ifdef DEBUG_DMA
328 printf("dmamap_create: t=%p size=%lx nseg=%x msegsz=%lx boundary=%lx flags=%x\n",
329 t, size, nsegments, maxsegsz, boundary, flags);
330 #endif /* DEBUG_DMA */
331
332 /*
333 * Allocate and initialize the DMA map. The end of the map
334 * is a variable-sized array of segments, so we allocate enough
335 * room for them in one shot.
336 *
337 * Note we don't preserve the WAITOK or NOWAIT flags. Preservation
338 * of ALLOCNOW notifies others that we've reserved these resources,
339 * and they are not to be freed.
340 *
341 * The bus_dmamap_t includes one bus_dma_segment_t, hence
342 * the (nsegments - 1).
343 */
344 const size_t mapsize = sizeof(struct arm32_bus_dmamap) +
345 (sizeof(bus_dma_segment_t) * (nsegments - 1));
346 const int zallocflags = (flags & BUS_DMA_NOWAIT) ? KM_NOSLEEP : KM_SLEEP;
347 if ((mapstore = kmem_intr_zalloc(mapsize, zallocflags)) == NULL)
348 return ENOMEM;
349
350 map = (struct arm32_bus_dmamap *)mapstore;
351 map->_dm_size = size;
352 map->_dm_segcnt = nsegments;
353 map->_dm_maxmaxsegsz = maxsegsz;
354 map->_dm_boundary = boundary;
355 map->_dm_flags = flags & ~(BUS_DMA_WAITOK|BUS_DMA_NOWAIT);
356 map->_dm_origbuf = NULL;
357 map->_dm_buftype = _BUS_DMA_BUFTYPE_INVALID;
358 map->_dm_vmspace = vmspace_kernel();
359 map->_dm_cookie = NULL;
360 map->dm_maxsegsz = maxsegsz;
361 map->dm_mapsize = 0; /* no valid mappings */
362 map->dm_nsegs = 0;
363
364 #ifdef _ARM32_NEED_BUS_DMA_BOUNCE
365 struct arm32_bus_dma_cookie *cookie;
366 int cookieflags;
367 void *cookiestore;
368 int error;
369
370 cookieflags = 0;
371
372 if (t->_may_bounce != NULL) {
373 error = (*t->_may_bounce)(t, map, flags, &cookieflags);
374 if (error != 0)
375 goto out;
376 }
377
378 if (t->_ranges != NULL)
379 cookieflags |= _BUS_DMA_MIGHT_NEED_BOUNCE;
380
381 if ((cookieflags & _BUS_DMA_MIGHT_NEED_BOUNCE) == 0) {
382 STAT_INCR(creates);
383 *dmamp = map;
384 return 0;
385 }
386
387 const size_t cookiesize = sizeof(struct arm32_bus_dma_cookie) +
388 (sizeof(bus_dma_segment_t) * map->_dm_segcnt);
389
390 /*
391 * Allocate our cookie.
392 */
393 if ((cookiestore = kmem_intr_zalloc(cookiesize, zallocflags)) == NULL) {
394 error = ENOMEM;
395 goto out;
396 }
397 cookie = (struct arm32_bus_dma_cookie *)cookiestore;
398 cookie->id_flags = cookieflags;
399 map->_dm_cookie = cookie;
400 STAT_INCR(bounced_creates);
401
402 error = _bus_dma_alloc_bouncebuf(t, map, size, flags);
403 out:
404 if (error)
405 _bus_dmamap_destroy(t, map);
406 else
407 *dmamp = map;
408 #else
409 *dmamp = map;
410 STAT_INCR(creates);
411 #endif /* _ARM32_NEED_BUS_DMA_BOUNCE */
412 #ifdef DEBUG_DMA
413 printf("dmamap_create:map=%p\n", map);
414 #endif /* DEBUG_DMA */
415 return 0;
416 }
417
418 /*
419 * Common function for DMA map destruction. May be called by bus-specific
420 * DMA map destruction functions.
421 */
422 void
423 _bus_dmamap_destroy(bus_dma_tag_t t, bus_dmamap_t map)
424 {
425
426 #ifdef DEBUG_DMA
427 printf("dmamap_destroy: t=%p map=%p\n", t, map);
428 #endif /* DEBUG_DMA */
429 #ifdef _ARM32_NEED_BUS_DMA_BOUNCE
430 struct arm32_bus_dma_cookie *cookie = map->_dm_cookie;
431
432 /*
433 * Free any bounce pages this map might hold.
434 */
435 if (cookie != NULL) {
436 const size_t cookiesize = sizeof(struct arm32_bus_dma_cookie) +
437 (sizeof(bus_dma_segment_t) * map->_dm_segcnt);
438
439 if (cookie->id_flags & _BUS_DMA_IS_BOUNCING)
440 STAT_INCR(bounced_unloads);
441 map->dm_nsegs = 0;
442 if (cookie->id_flags & _BUS_DMA_HAS_BOUNCE)
443 _bus_dma_free_bouncebuf(t, map);
444 STAT_INCR(bounced_destroys);
445 kmem_intr_free(cookie, cookiesize);
446 } else
447 #endif
448 STAT_INCR(destroys);
449
450 if (map->dm_nsegs > 0)
451 STAT_INCR(unloads);
452
453 const size_t mapsize = sizeof(struct arm32_bus_dmamap) +
454 (sizeof(bus_dma_segment_t) * (map->_dm_segcnt - 1));
455 kmem_intr_free(map, mapsize);
456 }
457
458 /*
459 * Common function for loading a DMA map with a linear buffer. May
460 * be called by bus-specific DMA map load functions.
461 */
462 int
463 _bus_dmamap_load(bus_dma_tag_t t, bus_dmamap_t map, void *buf,
464 bus_size_t buflen, struct proc *p, int flags)
465 {
466 struct vmspace *vm;
467 int error;
468
469 #ifdef DEBUG_DMA
470 printf("dmamap_load: t=%p map=%p buf=%p len=%lx p=%p f=%d\n",
471 t, map, buf, buflen, p, flags);
472 #endif /* DEBUG_DMA */
473
474 if (map->dm_nsegs > 0) {
475 #ifdef _ARM32_NEED_BUS_DMA_BOUNCE
476 struct arm32_bus_dma_cookie *cookie = map->_dm_cookie;
477 if (cookie != NULL) {
478 if (cookie->id_flags & _BUS_DMA_IS_BOUNCING) {
479 STAT_INCR(bounced_unloads);
480 cookie->id_flags &= ~_BUS_DMA_IS_BOUNCING;
481 map->_dm_flags &= ~_BUS_DMAMAP_IS_BOUNCING;
482 }
483 } else
484 #endif
485 STAT_INCR(unloads);
486 }
487
488 /*
489 * Make sure that on error condition we return "no valid mappings".
490 */
491 map->dm_mapsize = 0;
492 map->dm_nsegs = 0;
493 map->_dm_buftype = _BUS_DMA_BUFTYPE_INVALID;
494 KASSERTMSG(map->dm_maxsegsz <= map->_dm_maxmaxsegsz,
495 "dm_maxsegsz %lu _dm_maxmaxsegsz %lu",
496 map->dm_maxsegsz, map->_dm_maxmaxsegsz);
497
498 if (buflen > map->_dm_size)
499 return EINVAL;
500
501 if (p != NULL) {
502 vm = p->p_vmspace;
503 } else {
504 vm = vmspace_kernel();
505 }
506
507 /* _bus_dmamap_load_buffer() clears this if we're not... */
508 map->_dm_flags |= _BUS_DMAMAP_COHERENT;
509
510 error = _bus_dmamap_load_buffer(t, map, buf, buflen, vm, flags);
511 if (error == 0) {
512 map->dm_mapsize = buflen;
513 map->_dm_vmspace = vm;
514 map->_dm_origbuf = buf;
515 map->_dm_buftype = _BUS_DMA_BUFTYPE_LINEAR;
516 if (map->_dm_flags & _BUS_DMAMAP_COHERENT) {
517 STAT_INCR(coherent_loads);
518 } else {
519 STAT_INCR(loads);
520 }
521 return 0;
522 }
523 #ifdef _ARM32_NEED_BUS_DMA_BOUNCE
524 struct arm32_bus_dma_cookie * const cookie = map->_dm_cookie;
525 if (cookie != NULL && (cookie->id_flags & _BUS_DMA_MIGHT_NEED_BOUNCE)) {
526 error = _bus_dma_load_bouncebuf(t, map, buf, buflen,
527 _BUS_DMA_BUFTYPE_LINEAR, flags);
528 }
529 #endif
530 return error;
531 }
532
533 /*
534 * Like _bus_dmamap_load(), but for mbufs.
535 */
536 int
537 _bus_dmamap_load_mbuf(bus_dma_tag_t t, bus_dmamap_t map, struct mbuf *m0,
538 int flags)
539 {
540 int error;
541 struct mbuf *m;
542
543 #ifdef DEBUG_DMA
544 printf("dmamap_load_mbuf: t=%p map=%p m0=%p f=%d\n",
545 t, map, m0, flags);
546 #endif /* DEBUG_DMA */
547
548 if (map->dm_nsegs > 0) {
549 #ifdef _ARM32_NEED_BUS_DMA_BOUNCE
550 struct arm32_bus_dma_cookie *cookie = map->_dm_cookie;
551 if (cookie != NULL) {
552 if (cookie->id_flags & _BUS_DMA_IS_BOUNCING) {
553 STAT_INCR(bounced_unloads);
554 cookie->id_flags &= ~_BUS_DMA_IS_BOUNCING;
555 map->_dm_flags &= ~_BUS_DMAMAP_IS_BOUNCING;
556 }
557 } else
558 #endif
559 STAT_INCR(unloads);
560 }
561
562 /*
563 * Make sure that on error condition we return "no valid mappings."
564 */
565 map->dm_mapsize = 0;
566 map->dm_nsegs = 0;
567 map->_dm_buftype = _BUS_DMA_BUFTYPE_INVALID;
568 KASSERTMSG(map->dm_maxsegsz <= map->_dm_maxmaxsegsz,
569 "dm_maxsegsz %lu _dm_maxmaxsegsz %lu",
570 map->dm_maxsegsz, map->_dm_maxmaxsegsz);
571
572 KASSERT(m0->m_flags & M_PKTHDR);
573
574 if (m0->m_pkthdr.len > map->_dm_size)
575 return EINVAL;
576
577 /* _bus_dmamap_load_paddr() clears this if we're not... */
578 map->_dm_flags |= _BUS_DMAMAP_COHERENT;
579
580 error = 0;
581 for (m = m0; m != NULL && error == 0; m = m->m_next) {
582 int offset;
583 int remainbytes;
584 const struct vm_page * const *pgs;
585 paddr_t paddr;
586 int size;
587
588 if (m->m_len == 0)
589 continue;
590 /*
591 * Don't allow reads in read-only mbufs.
592 */
593 if (M_ROMAP(m) && (flags & BUS_DMA_READ)) {
594 error = EFAULT;
595 break;
596 }
597 switch (m->m_flags & (M_EXT|M_CLUSTER|M_EXT_PAGES)) {
598 case M_EXT|M_CLUSTER:
599 /* XXX KDASSERT */
600 KASSERT(m->m_ext.ext_paddr != M_PADDR_INVALID);
601 paddr = m->m_ext.ext_paddr +
602 (m->m_data - m->m_ext.ext_buf);
603 size = m->m_len;
604 error = _bus_dmamap_load_paddr(t, map, paddr, size,
605 false);
606 break;
607
608 case M_EXT|M_EXT_PAGES:
609 KASSERT(m->m_ext.ext_buf <= m->m_data);
610 KASSERT(m->m_data <=
611 m->m_ext.ext_buf + m->m_ext.ext_size);
612
613 offset = (vaddr_t)m->m_data -
614 trunc_page((vaddr_t)m->m_ext.ext_buf);
615 remainbytes = m->m_len;
616
617 /* skip uninteresting pages */
618 pgs = (const struct vm_page * const *)
619 m->m_ext.ext_pgs + (offset >> PAGE_SHIFT);
620
621 offset &= PAGE_MASK; /* offset in the first page */
622
623 /* load each page */
624 while (remainbytes > 0) {
625 const struct vm_page *pg;
626
627 size = MIN(remainbytes, PAGE_SIZE - offset);
628
629 pg = *pgs++;
630 KASSERT(pg);
631 paddr = VM_PAGE_TO_PHYS(pg) + offset;
632
633 error = _bus_dmamap_load_paddr(t, map,
634 paddr, size, false);
635 if (error)
636 break;
637 offset = 0;
638 remainbytes -= size;
639 }
640 break;
641
642 case 0:
643 paddr = m->m_paddr + M_BUFOFFSET(m) +
644 (m->m_data - M_BUFADDR(m));
645 size = m->m_len;
646 error = _bus_dmamap_load_paddr(t, map, paddr, size,
647 false);
648 break;
649
650 default:
651 error = _bus_dmamap_load_buffer(t, map, m->m_data,
652 m->m_len, vmspace_kernel(), flags);
653 }
654 }
655 if (error == 0) {
656 map->dm_mapsize = m0->m_pkthdr.len;
657 map->_dm_origbuf = m0;
658 map->_dm_buftype = _BUS_DMA_BUFTYPE_MBUF;
659 map->_dm_vmspace = vmspace_kernel(); /* always kernel */
660 if (map->_dm_flags & _BUS_DMAMAP_COHERENT) {
661 STAT_INCR(coherent_loads);
662 } else {
663 STAT_INCR(loads);
664 }
665 return 0;
666 }
667 #ifdef _ARM32_NEED_BUS_DMA_BOUNCE
668 struct arm32_bus_dma_cookie * const cookie = map->_dm_cookie;
669 if (cookie != NULL && (cookie->id_flags & _BUS_DMA_MIGHT_NEED_BOUNCE)) {
670 error = _bus_dma_load_bouncebuf(t, map, m0, m0->m_pkthdr.len,
671 _BUS_DMA_BUFTYPE_MBUF, flags);
672 }
673 #endif
674 return error;
675 }
676
677 /*
678 * Like _bus_dmamap_load(), but for uios.
679 */
680 int
681 _bus_dmamap_load_uio(bus_dma_tag_t t, bus_dmamap_t map, struct uio *uio,
682 int flags)
683 {
684 int i, error;
685 bus_size_t minlen, resid;
686 struct iovec *iov;
687 void *addr;
688
689 /*
690 * Make sure that on error condition we return "no valid mappings."
691 */
692 map->dm_mapsize = 0;
693 map->dm_nsegs = 0;
694 KASSERTMSG(map->dm_maxsegsz <= map->_dm_maxmaxsegsz,
695 "dm_maxsegsz %lu _dm_maxmaxsegsz %lu",
696 map->dm_maxsegsz, map->_dm_maxmaxsegsz);
697
698 resid = uio->uio_resid;
699 iov = uio->uio_iov;
700
701 /* _bus_dmamap_load_buffer() clears this if we're not... */
702 map->_dm_flags |= _BUS_DMAMAP_COHERENT;
703
704 error = 0;
705 for (i = 0; i < uio->uio_iovcnt && resid != 0 && error == 0; i++) {
706 /*
707 * Now at the first iovec to load. Load each iovec
708 * until we have exhausted the residual count.
709 */
710 minlen = resid < iov[i].iov_len ? resid : iov[i].iov_len;
711 addr = (void *)iov[i].iov_base;
712
713 error = _bus_dmamap_load_buffer(t, map, addr, minlen,
714 uio->uio_vmspace, flags);
715
716 resid -= minlen;
717 }
718 if (error == 0) {
719 map->dm_mapsize = uio->uio_resid;
720 map->_dm_origbuf = uio;
721 map->_dm_buftype = _BUS_DMA_BUFTYPE_UIO;
722 map->_dm_vmspace = uio->uio_vmspace;
723 if (map->_dm_flags & _BUS_DMAMAP_COHERENT) {
724 STAT_INCR(coherent_loads);
725 } else {
726 STAT_INCR(loads);
727 }
728 }
729 return error;
730 }
731
732 /*
733 * Like _bus_dmamap_load(), but for raw memory allocated with
734 * bus_dmamem_alloc().
735 */
736 int
737 _bus_dmamap_load_raw(bus_dma_tag_t t, bus_dmamap_t map,
738 bus_dma_segment_t *segs, int nsegs, bus_size_t size0, int flags)
739 {
740
741 bus_size_t size;
742 int i, error = 0;
743
744 /*
745 * Make sure that on error conditions we return "no valid mappings."
746 */
747 map->dm_mapsize = 0;
748 map->dm_nsegs = 0;
749 KASSERT(map->dm_maxsegsz <= map->_dm_maxmaxsegsz);
750
751 if (size0 > map->_dm_size)
752 return EINVAL;
753
754 for (i = 0, size = size0; i < nsegs && size > 0; i++) {
755 bus_dma_segment_t *ds = &segs[i];
756 bus_size_t sgsize;
757
758 sgsize = MIN(ds->ds_len, size);
759 if (sgsize == 0)
760 continue;
761 error = _bus_dmamap_load_paddr(t, map, ds->ds_addr,
762 sgsize, false);
763 if (error != 0)
764 break;
765 size -= sgsize;
766 }
767
768 if (error != 0) {
769 map->dm_mapsize = 0;
770 map->dm_nsegs = 0;
771 return error;
772 }
773
774 /* XXX TBD bounce */
775
776 map->dm_mapsize = size0;
777 return 0;
778 }
779
780 /*
781 * Common function for unloading a DMA map. May be called by
782 * bus-specific DMA map unload functions.
783 */
784 void
785 _bus_dmamap_unload(bus_dma_tag_t t, bus_dmamap_t map)
786 {
787
788 #ifdef DEBUG_DMA
789 printf("dmamap_unload: t=%p map=%p\n", t, map);
790 #endif /* DEBUG_DMA */
791
792 /*
793 * No resources to free; just mark the mappings as
794 * invalid.
795 */
796 map->dm_mapsize = 0;
797 map->dm_nsegs = 0;
798 map->_dm_origbuf = NULL;
799 map->_dm_buftype = _BUS_DMA_BUFTYPE_INVALID;
800 map->_dm_vmspace = NULL;
801 }
802
803 static void
804 _bus_dmamap_sync_segment(vaddr_t va, paddr_t pa, vsize_t len, int ops, bool readonly_p)
805 {
806 KASSERTMSG((va & PAGE_MASK) == (pa & PAGE_MASK),
807 "va %#lx pa %#lx", va, pa);
808 #if 0
809 printf("sync_segment: va=%#lx pa=%#lx len=%#lx ops=%#x ro=%d\n",
810 va, pa, len, ops, readonly_p);
811 #endif
812
813 switch (ops) {
814 case BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE:
815 #ifdef ARM_MMU_EXTENDED
816 (void)readonly_p;
817 #else
818 if (!readonly_p) {
819 #endif
820 STAT_INCR(sync_prereadwrite);
821 cpu_dcache_wbinv_range(va, len);
822 cpu_sdcache_wbinv_range(va, pa, len);
823 break;
824 #ifndef ARM_MMU_EXTENDED
825 }
826 /* FALLTHROUGH */
827 #endif
828
829 case BUS_DMASYNC_PREREAD: {
830 const size_t line_size = arm_dcache_align;
831 const size_t line_mask = arm_dcache_align_mask;
832 vsize_t misalignment = va & line_mask;
833 if (misalignment) {
834 va -= misalignment;
835 pa -= misalignment;
836 len += misalignment;
837 STAT_INCR(sync_preread_begin);
838 cpu_dcache_wbinv_range(va, line_size);
839 cpu_sdcache_wbinv_range(va, pa, line_size);
840 if (len <= line_size)
841 break;
842 va += line_size;
843 pa += line_size;
844 len -= line_size;
845 }
846 misalignment = len & line_mask;
847 len -= misalignment;
848 if (len > 0) {
849 STAT_INCR(sync_preread);
850 cpu_dcache_inv_range(va, len);
851 cpu_sdcache_inv_range(va, pa, len);
852 }
853 if (misalignment) {
854 va += len;
855 pa += len;
856 STAT_INCR(sync_preread_tail);
857 cpu_dcache_wbinv_range(va, line_size);
858 cpu_sdcache_wbinv_range(va, pa, line_size);
859 }
860 break;
861 }
862
863 case BUS_DMASYNC_PREWRITE:
864 STAT_INCR(sync_prewrite);
865 cpu_dcache_wb_range(va, len);
866 cpu_sdcache_wb_range(va, pa, len);
867 break;
868
869 #ifdef CPU_CORTEX
870 /*
871 * Cortex CPUs can do speculative loads so we need to clean the cache
872 * after a DMA read to deal with any speculatively loaded cache lines.
873 * Since these can't be dirty, we can just invalidate them and don't
874 * have to worry about having to write back their contents.
875 */
876 case BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE:
877 STAT_INCR(sync_postreadwrite);
878 arm_dmb();
879 cpu_dcache_inv_range(va, len);
880 cpu_sdcache_inv_range(va, pa, len);
881 break;
882 case BUS_DMASYNC_POSTREAD:
883 STAT_INCR(sync_postread);
884 arm_dmb();
885 cpu_dcache_inv_range(va, len);
886 cpu_sdcache_inv_range(va, pa, len);
887 break;
888 #endif
889 }
890 }
891
892 static inline void
893 _bus_dmamap_sync_linear(bus_dma_tag_t t, bus_dmamap_t map, bus_addr_t offset,
894 bus_size_t len, int ops)
895 {
896 bus_dma_segment_t *ds = map->dm_segs;
897 vaddr_t va = (vaddr_t) map->_dm_origbuf;
898 #ifdef _ARM32_NEED_BUS_DMA_BOUNCE
899 if (map->_dm_flags & _BUS_DMAMAP_IS_BOUNCING) {
900 struct arm32_bus_dma_cookie * const cookie = map->_dm_cookie;
901 va = (vaddr_t) cookie->id_bouncebuf;
902 }
903 #endif
904
905 while (len > 0) {
906 while (offset >= ds->ds_len) {
907 offset -= ds->ds_len;
908 va += ds->ds_len;
909 ds++;
910 }
911
912 paddr_t pa = _bus_dma_busaddr_to_paddr(t, ds->ds_addr + offset);
913 size_t seglen = min(len, ds->ds_len - offset);
914
915 if ((ds->_ds_flags & _BUS_DMAMAP_COHERENT) == 0)
916 _bus_dmamap_sync_segment(va + offset, pa, seglen, ops,
917 false);
918
919 offset += seglen;
920 len -= seglen;
921 }
922 }
923
924 static inline void
925 _bus_dmamap_sync_mbuf(bus_dma_tag_t t, bus_dmamap_t map, bus_size_t offset,
926 bus_size_t len, int ops)
927 {
928 bus_dma_segment_t *ds = map->dm_segs;
929 struct mbuf *m = map->_dm_origbuf;
930 bus_size_t voff = offset;
931 bus_size_t ds_off = offset;
932
933 while (len > 0) {
934 /* Find the current dma segment */
935 while (ds_off >= ds->ds_len) {
936 ds_off -= ds->ds_len;
937 ds++;
938 }
939 /* Find the current mbuf. */
940 while (voff >= m->m_len) {
941 voff -= m->m_len;
942 m = m->m_next;
943 }
944
945 /*
946 * Now at the first mbuf to sync; nail each one until
947 * we have exhausted the length.
948 */
949 vsize_t seglen = min(len, min(m->m_len - voff, ds->ds_len - ds_off));
950 vaddr_t va = mtod(m, vaddr_t) + voff;
951 paddr_t pa = _bus_dma_busaddr_to_paddr(t, ds->ds_addr + ds_off);
952
953 /*
954 * We can save a lot of work here if we know the mapping
955 * is read-only at the MMU and we aren't using the armv6+
956 * MMU:
957 *
958 * If a mapping is read-only, no dirty cache blocks will
959 * exist for it. If a writable mapping was made read-only,
960 * we know any dirty cache lines for the range will have
961 * been cleaned for us already. Therefore, if the upper
962 * layer can tell us we have a read-only mapping, we can
963 * skip all cache cleaning.
964 *
965 * NOTE: This only works if we know the pmap cleans pages
966 * before making a read-write -> read-only transition. If
967 * this ever becomes non-true (e.g. Physically Indexed
968 * cache), this will have to be revisited.
969 */
970
971 if ((ds->_ds_flags & _BUS_DMAMAP_COHERENT) == 0) {
972 /*
973 * If we are doing preread (DMAing into the mbuf),
974 * this mbuf better not be readonly,
975 */
976 KASSERT(!(ops & BUS_DMASYNC_PREREAD) || !M_ROMAP(m));
977 _bus_dmamap_sync_segment(va, pa, seglen, ops,
978 M_ROMAP(m));
979 }
980 voff += seglen;
981 ds_off += seglen;
982 len -= seglen;
983 }
984 }
985
986 static inline void
987 _bus_dmamap_sync_uio(bus_dma_tag_t t, bus_dmamap_t map, bus_addr_t offset,
988 bus_size_t len, int ops)
989 {
990 bus_dma_segment_t *ds = map->dm_segs;
991 struct uio *uio = map->_dm_origbuf;
992 struct iovec *iov = uio->uio_iov;
993 bus_size_t voff = offset;
994 bus_size_t ds_off = offset;
995
996 while (len > 0) {
997 /* Find the current dma segment */
998 while (ds_off >= ds->ds_len) {
999 ds_off -= ds->ds_len;
1000 ds++;
1001 }
1002
1003 /* Find the current iovec. */
1004 while (voff >= iov->iov_len) {
1005 voff -= iov->iov_len;
1006 iov++;
1007 }
1008
1009 /*
1010 * Now at the first iovec to sync; nail each one until
1011 * we have exhausted the length.
1012 */
1013 vsize_t seglen = min(len, min(iov->iov_len - voff, ds->ds_len - ds_off));
1014 vaddr_t va = (vaddr_t) iov->iov_base + voff;
1015 paddr_t pa = _bus_dma_busaddr_to_paddr(t, ds->ds_addr + ds_off);
1016
1017 if ((ds->_ds_flags & _BUS_DMAMAP_COHERENT) == 0)
1018 _bus_dmamap_sync_segment(va, pa, seglen, ops, false);
1019
1020 voff += seglen;
1021 ds_off += seglen;
1022 len -= seglen;
1023 }
1024 }
1025
1026 /*
1027 * Common function for DMA map synchronization. May be called
1028 * by bus-specific DMA map synchronization functions.
1029 *
1030 * This version works for the Virtually Indexed Virtually Tagged
1031 * cache found on 32-bit ARM processors.
1032 *
1033 * XXX Should have separate versions for write-through vs.
1034 * XXX write-back caches. We currently assume write-back
1035 * XXX here, which is not as efficient as it could be for
1036 * XXX the write-through case.
1037 */
1038 void
1039 _bus_dmamap_sync(bus_dma_tag_t t, bus_dmamap_t map, bus_addr_t offset,
1040 bus_size_t len, int ops)
1041 {
1042 #ifdef DEBUG_DMA
1043 printf("dmamap_sync: t=%p map=%p offset=%lx len=%lx ops=%x\n",
1044 t, map, offset, len, ops);
1045 #endif /* DEBUG_DMA */
1046
1047 /*
1048 * Mixing of PRE and POST operations is not allowed.
1049 */
1050 if ((ops & (BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE)) != 0 &&
1051 (ops & (BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE)) != 0)
1052 panic("_bus_dmamap_sync: mix PRE and POST");
1053
1054 KASSERTMSG(offset < map->dm_mapsize,
1055 "offset %lu mapsize %lu",
1056 offset, map->dm_mapsize);
1057 KASSERTMSG(len > 0 && offset + len <= map->dm_mapsize,
1058 "len %lu offset %lu mapsize %lu",
1059 len, offset, map->dm_mapsize);
1060
1061 /*
1062 * For a virtually-indexed write-back cache, we need
1063 * to do the following things:
1064 *
1065 * PREREAD -- Invalidate the D-cache. We do this
1066 * here in case a write-back is required by the back-end.
1067 *
1068 * PREWRITE -- Write-back the D-cache. Note that if
1069 * we are doing a PREREAD|PREWRITE, we can collapse
1070 * the whole thing into a single Wb-Inv.
1071 *
1072 * POSTREAD -- Re-invalidate the D-cache in case speculative
1073 * memory accesses caused cachelines to become valid with now
1074 * invalid data.
1075 *
1076 * POSTWRITE -- Nothing.
1077 */
1078 #ifdef _ARM32_NEED_BUS_DMA_BOUNCE
1079 const bool bouncing = (map->_dm_flags & _BUS_DMAMAP_IS_BOUNCING);
1080 #else
1081 const bool bouncing = false;
1082 #endif
1083
1084 const int pre_ops = ops & (BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1085 #ifdef CPU_CORTEX
1086 const int post_ops = ops & (BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1087 #else
1088 const int post_ops = 0;
1089 #endif
1090 if (!bouncing) {
1091 if (pre_ops == 0 && post_ops == BUS_DMASYNC_POSTWRITE) {
1092 STAT_INCR(sync_postwrite);
1093 return;
1094 } else if (pre_ops == 0 && post_ops == 0) {
1095 return;
1096 }
1097 }
1098 KASSERTMSG(bouncing || pre_ops != 0 || (post_ops & BUS_DMASYNC_POSTREAD),
1099 "pre_ops %#x post_ops %#x", pre_ops, post_ops);
1100 #ifdef _ARM32_NEED_BUS_DMA_BOUNCE
1101 if (bouncing && (ops & BUS_DMASYNC_PREWRITE)) {
1102 struct arm32_bus_dma_cookie * const cookie = map->_dm_cookie;
1103 STAT_INCR(write_bounces);
1104 char * const dataptr = (char *)cookie->id_bouncebuf + offset;
1105 /*
1106 * Copy the caller's buffer to the bounce buffer.
1107 */
1108 switch (map->_dm_buftype) {
1109 case _BUS_DMA_BUFTYPE_LINEAR:
1110 memcpy(dataptr, cookie->id_origlinearbuf + offset, len);
1111 break;
1112 case _BUS_DMA_BUFTYPE_MBUF:
1113 m_copydata(cookie->id_origmbuf, offset, len, dataptr);
1114 break;
1115 case _BUS_DMA_BUFTYPE_UIO:
1116 _bus_dma_uiomove(dataptr, cookie->id_origuio, len, UIO_WRITE);
1117 break;
1118 #ifdef DIAGNOSTIC
1119 case _BUS_DMA_BUFTYPE_RAW:
1120 panic("_bus_dmamap_sync(pre): _BUS_DMA_BUFTYPE_RAW");
1121 break;
1122
1123 case _BUS_DMA_BUFTYPE_INVALID:
1124 panic("_bus_dmamap_sync(pre): _BUS_DMA_BUFTYPE_INVALID");
1125 break;
1126
1127 default:
1128 panic("_bus_dmamap_sync(pre): map %p: unknown buffer type %d\n",
1129 map, map->_dm_buftype);
1130 break;
1131 #endif /* DIAGNOSTIC */
1132 }
1133 }
1134 #endif /* _ARM32_NEED_BUS_DMA_BOUNCE */
1135
1136 /* Skip cache frobbing if mapping was COHERENT. */
1137 if (!bouncing && (map->_dm_flags & _BUS_DMAMAP_COHERENT)) {
1138 /* Drain the write buffer. */
1139 if (pre_ops & BUS_DMASYNC_PREWRITE)
1140 cpu_drain_writebuf();
1141 return;
1142 }
1143
1144 #ifdef _ARM32_NEED_BUS_DMA_BOUNCE
1145 if (bouncing && ((map->_dm_flags & _BUS_DMAMAP_COHERENT) || pre_ops == 0)) {
1146 goto bounce_it;
1147 }
1148 #endif /* _ARM32_NEED_BUS_DMA_BOUNCE */
1149
1150 #ifndef ARM_MMU_EXTENDED
1151 /*
1152 * If the mapping belongs to a non-kernel vmspace, and the
1153 * vmspace has not been active since the last time a full
1154 * cache flush was performed, we don't need to do anything.
1155 */
1156 if (__predict_false(!VMSPACE_IS_KERNEL_P(map->_dm_vmspace) &&
1157 vm_map_pmap(&map->_dm_vmspace->vm_map)->pm_cstate.cs_cache_d == 0))
1158 return;
1159 #endif
1160
1161 int buftype = map->_dm_buftype;
1162 #ifdef _ARM32_NEED_BUS_DMA_BOUNCE
1163 if (bouncing) {
1164 buftype = _BUS_DMA_BUFTYPE_LINEAR;
1165 }
1166 #endif
1167
1168 switch (buftype) {
1169 case _BUS_DMA_BUFTYPE_LINEAR:
1170 _bus_dmamap_sync_linear(t, map, offset, len, ops);
1171 break;
1172
1173 case _BUS_DMA_BUFTYPE_MBUF:
1174 _bus_dmamap_sync_mbuf(t, map, offset, len, ops);
1175 break;
1176
1177 case _BUS_DMA_BUFTYPE_UIO:
1178 _bus_dmamap_sync_uio(t, map, offset, len, ops);
1179 break;
1180
1181 case _BUS_DMA_BUFTYPE_RAW:
1182 panic("_bus_dmamap_sync: _BUS_DMA_BUFTYPE_RAW");
1183 break;
1184
1185 case _BUS_DMA_BUFTYPE_INVALID:
1186 panic("_bus_dmamap_sync: _BUS_DMA_BUFTYPE_INVALID");
1187 break;
1188
1189 default:
1190 panic("_bus_dmamap_sync: map %p: unknown buffer type %d\n",
1191 map, map->_dm_buftype);
1192 }
1193
1194 /* Drain the write buffer. */
1195 cpu_drain_writebuf();
1196
1197 #ifdef _ARM32_NEED_BUS_DMA_BOUNCE
1198 bounce_it:
1199 if (!bouncing || (ops & BUS_DMASYNC_POSTREAD) == 0)
1200 return;
1201
1202 struct arm32_bus_dma_cookie * const cookie = map->_dm_cookie;
1203 char * const dataptr = (char *)cookie->id_bouncebuf + offset;
1204 STAT_INCR(read_bounces);
1205 /*
1206 * Copy the bounce buffer to the caller's buffer.
1207 */
1208 switch (map->_dm_buftype) {
1209 case _BUS_DMA_BUFTYPE_LINEAR:
1210 memcpy(cookie->id_origlinearbuf + offset, dataptr, len);
1211 break;
1212
1213 case _BUS_DMA_BUFTYPE_MBUF:
1214 m_copyback(cookie->id_origmbuf, offset, len, dataptr);
1215 break;
1216
1217 case _BUS_DMA_BUFTYPE_UIO:
1218 _bus_dma_uiomove(dataptr, cookie->id_origuio, len, UIO_READ);
1219 break;
1220 #ifdef DIAGNOSTIC
1221 case _BUS_DMA_BUFTYPE_RAW:
1222 panic("_bus_dmamap_sync(post): _BUS_DMA_BUFTYPE_RAW");
1223 break;
1224
1225 case _BUS_DMA_BUFTYPE_INVALID:
1226 panic("_bus_dmamap_sync(post): _BUS_DMA_BUFTYPE_INVALID");
1227 break;
1228
1229 default:
1230 panic("_bus_dmamap_sync(post): map %p: unknown buffer type %d\n",
1231 map, map->_dm_buftype);
1232 break;
1233 #endif
1234 }
1235 #endif /* _ARM32_NEED_BUS_DMA_BOUNCE */
1236 }
1237
1238 /*
1239 * Common function for DMA-safe memory allocation. May be called
1240 * by bus-specific DMA memory allocation functions.
1241 */
1242
1243 extern paddr_t physical_start;
1244 extern paddr_t physical_end;
1245
1246 int
1247 _bus_dmamem_alloc(bus_dma_tag_t t, bus_size_t size, bus_size_t alignment,
1248 bus_size_t boundary, bus_dma_segment_t *segs, int nsegs, int *rsegs,
1249 int flags)
1250 {
1251 struct arm32_dma_range *dr;
1252 int error, i;
1253
1254 #ifdef DEBUG_DMA
1255 printf("dmamem_alloc t=%p size=%lx align=%lx boundary=%lx "
1256 "segs=%p nsegs=%x rsegs=%p flags=%x\n", t, size, alignment,
1257 boundary, segs, nsegs, rsegs, flags);
1258 #endif
1259
1260 if ((dr = t->_ranges) != NULL) {
1261 error = ENOMEM;
1262 for (i = 0; i < t->_nranges; i++, dr++) {
1263 if (dr->dr_len == 0
1264 || (dr->dr_flags & _BUS_DMAMAP_NOALLOC))
1265 continue;
1266 error = _bus_dmamem_alloc_range(t, size, alignment,
1267 boundary, segs, nsegs, rsegs, flags,
1268 trunc_page(dr->dr_sysbase),
1269 trunc_page(dr->dr_sysbase + dr->dr_len));
1270 if (error == 0)
1271 break;
1272 }
1273 } else {
1274 error = _bus_dmamem_alloc_range(t, size, alignment, boundary,
1275 segs, nsegs, rsegs, flags, trunc_page(physical_start),
1276 trunc_page(physical_end));
1277 }
1278
1279 #ifdef DEBUG_DMA
1280 printf("dmamem_alloc: =%d\n", error);
1281 #endif
1282
1283 return error;
1284 }
1285
1286 /*
1287 * Common function for freeing DMA-safe memory. May be called by
1288 * bus-specific DMA memory free functions.
1289 */
1290 void
1291 _bus_dmamem_free(bus_dma_tag_t t, bus_dma_segment_t *segs, int nsegs)
1292 {
1293 struct vm_page *m;
1294 bus_addr_t addr;
1295 struct pglist mlist;
1296 int curseg;
1297
1298 #ifdef DEBUG_DMA
1299 printf("dmamem_free: t=%p segs=%p nsegs=%x\n", t, segs, nsegs);
1300 #endif /* DEBUG_DMA */
1301
1302 /*
1303 * Build a list of pages to free back to the VM system.
1304 */
1305 TAILQ_INIT(&mlist);
1306 for (curseg = 0; curseg < nsegs; curseg++) {
1307 for (addr = segs[curseg].ds_addr;
1308 addr < (segs[curseg].ds_addr + segs[curseg].ds_len);
1309 addr += PAGE_SIZE) {
1310 m = PHYS_TO_VM_PAGE(addr);
1311 TAILQ_INSERT_TAIL(&mlist, m, pageq.queue);
1312 }
1313 }
1314 uvm_pglistfree(&mlist);
1315 }
1316
1317 /*
1318 * Common function for mapping DMA-safe memory. May be called by
1319 * bus-specific DMA memory map functions.
1320 */
1321 int
1322 _bus_dmamem_map(bus_dma_tag_t t, bus_dma_segment_t *segs, int nsegs,
1323 size_t size, void **kvap, int flags)
1324 {
1325 vaddr_t va;
1326 paddr_t pa;
1327 int curseg;
1328 const uvm_flag_t kmflags = UVM_KMF_VAONLY
1329 | ((flags & BUS_DMA_NOWAIT) != 0 ? UVM_KMF_NOWAIT : 0);
1330 vsize_t align = 0;
1331
1332 #ifdef DEBUG_DMA
1333 printf("dmamem_map: t=%p segs=%p nsegs=%x size=%lx flags=%x\n", t,
1334 segs, nsegs, (unsigned long)size, flags);
1335 #endif /* DEBUG_DMA */
1336
1337 #ifdef PMAP_MAP_POOLPAGE
1338 /*
1339 * If all of memory is mapped, and we are mapping a single physically
1340 * contiguous area then this area is already mapped. Let's see if we
1341 * avoid having a separate mapping for it.
1342 */
1343 if (nsegs == 1) {
1344 /*
1345 * If this is a non-COHERENT mapping, then the existing kernel
1346 * mapping is already compatible with it.
1347 */
1348 bool direct_mapable = (flags & BUS_DMA_COHERENT) == 0;
1349 pa = segs[0].ds_addr;
1350
1351 /*
1352 * This is a COHERENT mapping which, unless this address is in
1353 * a COHERENT dma range, will not be compatible.
1354 */
1355 if (t->_ranges != NULL) {
1356 const struct arm32_dma_range * const dr =
1357 _bus_dma_paddr_inrange(t->_ranges, t->_nranges, pa);
1358 if (dr != NULL
1359 && (dr->dr_flags & _BUS_DMAMAP_COHERENT)) {
1360 direct_mapable = true;
1361 }
1362 }
1363
1364 #ifdef PMAP_NEED_ALLOC_POOLPAGE
1365 /*
1366 * The page can only be direct mapped if was allocated out
1367 * of the arm poolpage vm freelist.
1368 */
1369 uvm_physseg_t upm = uvm_physseg_find(atop(pa), NULL);
1370 KASSERT(uvm_physseg_valid_p(upm));
1371 if (direct_mapable) {
1372 direct_mapable =
1373 (arm_poolpage_vmfreelist == uvm_physseg_get_free_list(upm));
1374 }
1375 #endif
1376
1377 if (direct_mapable) {
1378 *kvap = (void *)PMAP_MAP_POOLPAGE(pa);
1379 #ifdef DEBUG_DMA
1380 printf("dmamem_map: =%p\n", *kvap);
1381 #endif /* DEBUG_DMA */
1382 return 0;
1383 }
1384 }
1385 #endif
1386
1387 size = round_page(size);
1388 if (__predict_true(size > L2_L_SIZE)) {
1389 #if (ARM_MMU_V6 + ARM_MMU_V7) > 0
1390 if (size >= L1_SS_SIZE)
1391 align = L1_SS_SIZE;
1392 else
1393 #endif
1394 if (size >= L1_S_SIZE)
1395 align = L1_S_SIZE;
1396 else
1397 align = L2_L_SIZE;
1398 }
1399
1400 va = uvm_km_alloc(kernel_map, size, align, kmflags);
1401 if (__predict_false(va == 0 && align > 0)) {
1402 align = 0;
1403 va = uvm_km_alloc(kernel_map, size, 0, kmflags);
1404 }
1405
1406 if (va == 0)
1407 return ENOMEM;
1408
1409 *kvap = (void *)va;
1410
1411 for (curseg = 0; curseg < nsegs; curseg++) {
1412 for (pa = segs[curseg].ds_addr;
1413 pa < (segs[curseg].ds_addr + segs[curseg].ds_len);
1414 pa += PAGE_SIZE, va += PAGE_SIZE, size -= PAGE_SIZE) {
1415 bool uncached = (flags & BUS_DMA_COHERENT);
1416 #ifdef DEBUG_DMA
1417 printf("wiring p%lx to v%lx", pa, va);
1418 #endif /* DEBUG_DMA */
1419 if (size == 0)
1420 panic("_bus_dmamem_map: size botch");
1421
1422 const struct arm32_dma_range * const dr =
1423 _bus_dma_paddr_inrange(t->_ranges, t->_nranges, pa);
1424 /*
1425 * If this dma region is coherent then there is
1426 * no need for an uncached mapping.
1427 */
1428 if (dr != NULL
1429 && (dr->dr_flags & _BUS_DMAMAP_COHERENT)) {
1430 uncached = false;
1431 }
1432
1433 pmap_kenter_pa(va, pa, VM_PROT_READ | VM_PROT_WRITE,
1434 PMAP_WIRED | (uncached ? PMAP_NOCACHE : 0));
1435 }
1436 }
1437 pmap_update(pmap_kernel());
1438 #ifdef DEBUG_DMA
1439 printf("dmamem_map: =%p\n", *kvap);
1440 #endif /* DEBUG_DMA */
1441 return 0;
1442 }
1443
1444 /*
1445 * Common function for unmapping DMA-safe memory. May be called by
1446 * bus-specific DMA memory unmapping functions.
1447 */
1448 void
1449 _bus_dmamem_unmap(bus_dma_tag_t t, void *kva, size_t size)
1450 {
1451
1452 #ifdef DEBUG_DMA
1453 printf("dmamem_unmap: t=%p kva=%p size=%zx\n", t, kva, size);
1454 #endif /* DEBUG_DMA */
1455 KASSERTMSG(((uintptr_t)kva & PAGE_MASK) == 0,
1456 "kva %p (%#"PRIxPTR")", kva, ((uintptr_t)kva & PAGE_MASK));
1457
1458 #ifdef __HAVE_MM_MD_DIRECT_MAPPED_PHYS
1459 /*
1460 * Check to see if this used direct mapped memory. Get its physical
1461 * address and try to map it. If the resultant matches the kva, then
1462 * it was and so we can just return since we have nothing to free up.
1463 */
1464 paddr_t pa;
1465 vaddr_t va;
1466 (void)pmap_extract(pmap_kernel(), (vaddr_t)kva, &pa);
1467 if (mm_md_direct_mapped_phys(pa, &va) && va == (vaddr_t)kva)
1468 return;
1469 #endif
1470
1471 size = round_page(size);
1472 pmap_kremove((vaddr_t)kva, size);
1473 pmap_update(pmap_kernel());
1474 uvm_km_free(kernel_map, (vaddr_t)kva, size, UVM_KMF_VAONLY);
1475 }
1476
1477 /*
1478 * Common functin for mmap(2)'ing DMA-safe memory. May be called by
1479 * bus-specific DMA mmap(2)'ing functions.
1480 */
1481 paddr_t
1482 _bus_dmamem_mmap(bus_dma_tag_t t, bus_dma_segment_t *segs, int nsegs,
1483 off_t off, int prot, int flags)
1484 {
1485 paddr_t map_flags;
1486 int i;
1487
1488 for (i = 0; i < nsegs; i++) {
1489 KASSERTMSG((off & PAGE_MASK) == 0,
1490 "off %#qx (%#x)", off, (int)off & PAGE_MASK);
1491 KASSERTMSG((segs[i].ds_addr & PAGE_MASK) == 0,
1492 "ds_addr %#lx (%#x)", segs[i].ds_addr,
1493 (int)segs[i].ds_addr & PAGE_MASK);
1494 KASSERTMSG((segs[i].ds_len & PAGE_MASK) == 0,
1495 "ds_len %#lx (%#x)", segs[i].ds_addr,
1496 (int)segs[i].ds_addr & PAGE_MASK);
1497 if (off >= segs[i].ds_len) {
1498 off -= segs[i].ds_len;
1499 continue;
1500 }
1501
1502 map_flags = 0;
1503 if (flags & BUS_DMA_PREFETCHABLE)
1504 map_flags |= ARM32_MMAP_WRITECOMBINE;
1505
1506 return arm_btop((u_long)segs[i].ds_addr + off) | map_flags;
1507
1508 }
1509
1510 /* Page not found. */
1511 return -1;
1512 }
1513
1514 /**********************************************************************
1515 * DMA utility functions
1516 **********************************************************************/
1517
1518 /*
1519 * Utility function to load a linear buffer. lastaddrp holds state
1520 * between invocations (for multiple-buffer loads). segp contains
1521 * the starting segment on entrace, and the ending segment on exit.
1522 * first indicates if this is the first invocation of this function.
1523 */
1524 int
1525 _bus_dmamap_load_buffer(bus_dma_tag_t t, bus_dmamap_t map, void *buf,
1526 bus_size_t buflen, struct vmspace *vm, int flags)
1527 {
1528 bus_size_t sgsize;
1529 bus_addr_t curaddr;
1530 vaddr_t vaddr = (vaddr_t)buf;
1531 int error;
1532 pmap_t pmap;
1533
1534 #ifdef DEBUG_DMA
1535 printf("_bus_dmamem_load_buffer(buf=%p, len=%lx, flags=%d)\n",
1536 buf, buflen, flags);
1537 #endif /* DEBUG_DMA */
1538
1539 pmap = vm_map_pmap(&vm->vm_map);
1540
1541 while (buflen > 0) {
1542 /*
1543 * Get the physical address for this segment.
1544 *
1545 * XXX Doesn't support checking for coherent mappings
1546 * XXX in user address space.
1547 */
1548 bool coherent;
1549 if (__predict_true(pmap == pmap_kernel())) {
1550 pd_entry_t *pde;
1551 pt_entry_t *ptep;
1552 (void) pmap_get_pde_pte(pmap, vaddr, &pde, &ptep);
1553 if (__predict_false(pmap_pde_section(pde))) {
1554 paddr_t s_frame = L1_S_FRAME;
1555 paddr_t s_offset = L1_S_OFFSET;
1556 #if (ARM_MMU_V6 + ARM_MMU_V7) > 0
1557 if (__predict_false(pmap_pde_supersection(pde))) {
1558 s_frame = L1_SS_FRAME;
1559 s_offset = L1_SS_OFFSET;
1560 }
1561 #endif
1562 curaddr = (*pde & s_frame) | (vaddr & s_offset);
1563 coherent = (*pde & L1_S_CACHE_MASK) == 0;
1564 } else {
1565 pt_entry_t pte = *ptep;
1566 KDASSERTMSG((pte & L2_TYPE_MASK) != L2_TYPE_INV,
1567 "va=%#"PRIxVADDR" pde=%#x ptep=%p pte=%#x",
1568 vaddr, *pde, ptep, pte);
1569 if (__predict_false((pte & L2_TYPE_MASK)
1570 == L2_TYPE_L)) {
1571 curaddr = (pte & L2_L_FRAME) |
1572 (vaddr & L2_L_OFFSET);
1573 coherent = (pte & L2_L_CACHE_MASK) == 0;
1574 } else {
1575 curaddr = (pte & ~PAGE_MASK) |
1576 (vaddr & PAGE_MASK);
1577 coherent = (pte & L2_S_CACHE_MASK) == 0;
1578 }
1579 }
1580 } else {
1581 (void) pmap_extract(pmap, vaddr, &curaddr);
1582 coherent = false;
1583 }
1584 KASSERTMSG((vaddr & PAGE_MASK) == (curaddr & PAGE_MASK),
1585 "va %#lx curaddr %#lx", vaddr, curaddr);
1586
1587 /*
1588 * Compute the segment size, and adjust counts.
1589 */
1590 sgsize = PAGE_SIZE - ((u_long)vaddr & PGOFSET);
1591 if (buflen < sgsize)
1592 sgsize = buflen;
1593
1594 error = _bus_dmamap_load_paddr(t, map, curaddr, sgsize,
1595 coherent);
1596 if (error)
1597 return error;
1598
1599 vaddr += sgsize;
1600 buflen -= sgsize;
1601 }
1602
1603 return 0;
1604 }
1605
1606 /*
1607 * Allocate physical memory from the given physical address range.
1608 * Called by DMA-safe memory allocation methods.
1609 */
1610 int
1611 _bus_dmamem_alloc_range(bus_dma_tag_t t, bus_size_t size, bus_size_t alignment,
1612 bus_size_t boundary, bus_dma_segment_t *segs, int nsegs, int *rsegs,
1613 int flags, paddr_t low, paddr_t high)
1614 {
1615 paddr_t curaddr, lastaddr;
1616 struct vm_page *m;
1617 struct pglist mlist;
1618 int curseg, error;
1619
1620 KASSERTMSG(boundary == 0 || (boundary & (boundary - 1)) == 0,
1621 "invalid boundary %#lx", boundary);
1622
1623 #ifdef DEBUG_DMA
1624 printf("alloc_range: t=%p size=%lx align=%lx boundary=%lx segs=%p nsegs=%x rsegs=%p flags=%x lo=%lx hi=%lx\n",
1625 t, size, alignment, boundary, segs, nsegs, rsegs, flags, low, high);
1626 #endif /* DEBUG_DMA */
1627
1628 /* Always round the size. */
1629 size = round_page(size);
1630
1631 /*
1632 * We accept boundaries < size, splitting in multiple segments
1633 * if needed. uvm_pglistalloc does not, so compute an appropriate
1634 * boundary: next power of 2 >= size
1635 */
1636 bus_size_t uboundary = boundary;
1637 if (uboundary <= PAGE_SIZE) {
1638 uboundary = 0;
1639 } else {
1640 while (uboundary < size) {
1641 uboundary <<= 1;
1642 }
1643 }
1644
1645 /*
1646 * Allocate pages from the VM system.
1647 */
1648 error = uvm_pglistalloc(size, low, high, alignment, uboundary,
1649 &mlist, nsegs, (flags & BUS_DMA_NOWAIT) == 0);
1650 if (error)
1651 return error;
1652
1653 /*
1654 * Compute the location, size, and number of segments actually
1655 * returned by the VM code.
1656 */
1657 m = TAILQ_FIRST(&mlist);
1658 curseg = 0;
1659 lastaddr = segs[curseg].ds_addr = VM_PAGE_TO_PHYS(m);
1660 segs[curseg].ds_len = PAGE_SIZE;
1661 #ifdef DEBUG_DMA
1662 printf("alloc: page %lx\n", lastaddr);
1663 #endif /* DEBUG_DMA */
1664 m = TAILQ_NEXT(m, pageq.queue);
1665
1666 for (; m != NULL; m = TAILQ_NEXT(m, pageq.queue)) {
1667 curaddr = VM_PAGE_TO_PHYS(m);
1668 KASSERTMSG(low <= curaddr && curaddr < high,
1669 "uvm_pglistalloc returned non-sensicaladdress %#lx "
1670 "(low=%#lx, high=%#lx\n", curaddr, low, high);
1671 #ifdef DEBUG_DMA
1672 printf("alloc: page %lx\n", curaddr);
1673 #endif /* DEBUG_DMA */
1674 if (curaddr == lastaddr + PAGE_SIZE
1675 && (lastaddr & boundary) == (curaddr & boundary))
1676 segs[curseg].ds_len += PAGE_SIZE;
1677 else {
1678 curseg++;
1679 if (curseg >= nsegs) {
1680 uvm_pglistfree(&mlist);
1681 return EFBIG;
1682 }
1683 segs[curseg].ds_addr = curaddr;
1684 segs[curseg].ds_len = PAGE_SIZE;
1685 }
1686 lastaddr = curaddr;
1687 }
1688
1689 *rsegs = curseg + 1;
1690
1691 return 0;
1692 }
1693
1694 /*
1695 * Check if a memory region intersects with a DMA range, and return the
1696 * page-rounded intersection if it does.
1697 */
1698 int
1699 arm32_dma_range_intersect(struct arm32_dma_range *ranges, int nranges,
1700 paddr_t pa, psize_t size, paddr_t *pap, psize_t *sizep)
1701 {
1702 struct arm32_dma_range *dr;
1703 int i;
1704
1705 if (ranges == NULL)
1706 return 0;
1707
1708 for (i = 0, dr = ranges; i < nranges; i++, dr++) {
1709 if (dr->dr_sysbase <= pa &&
1710 pa < (dr->dr_sysbase + dr->dr_len)) {
1711 /*
1712 * Beginning of region intersects with this range.
1713 */
1714 *pap = trunc_page(pa);
1715 *sizep = round_page(min(pa + size,
1716 dr->dr_sysbase + dr->dr_len) - pa);
1717 return 1;
1718 }
1719 if (pa < dr->dr_sysbase && dr->dr_sysbase < (pa + size)) {
1720 /*
1721 * End of region intersects with this range.
1722 */
1723 *pap = trunc_page(dr->dr_sysbase);
1724 *sizep = round_page(min((pa + size) - dr->dr_sysbase,
1725 dr->dr_len));
1726 return 1;
1727 }
1728 }
1729
1730 /* No intersection found. */
1731 return 0;
1732 }
1733
1734 #ifdef _ARM32_NEED_BUS_DMA_BOUNCE
1735 static int
1736 _bus_dma_alloc_bouncebuf(bus_dma_tag_t t, bus_dmamap_t map,
1737 bus_size_t size, int flags)
1738 {
1739 struct arm32_bus_dma_cookie *cookie = map->_dm_cookie;
1740 int error = 0;
1741
1742 KASSERT(cookie != NULL);
1743
1744 cookie->id_bouncebuflen = round_page(size);
1745 error = _bus_dmamem_alloc(t, cookie->id_bouncebuflen,
1746 PAGE_SIZE, map->_dm_boundary, cookie->id_bouncesegs,
1747 map->_dm_segcnt, &cookie->id_nbouncesegs, flags);
1748 if (error == 0) {
1749 error = _bus_dmamem_map(t, cookie->id_bouncesegs,
1750 cookie->id_nbouncesegs, cookie->id_bouncebuflen,
1751 (void **)&cookie->id_bouncebuf, flags);
1752 if (error) {
1753 _bus_dmamem_free(t, cookie->id_bouncesegs,
1754 cookie->id_nbouncesegs);
1755 cookie->id_bouncebuflen = 0;
1756 cookie->id_nbouncesegs = 0;
1757 } else {
1758 cookie->id_flags |= _BUS_DMA_HAS_BOUNCE;
1759 }
1760 } else {
1761 cookie->id_bouncebuflen = 0;
1762 cookie->id_nbouncesegs = 0;
1763 }
1764
1765 return error;
1766 }
1767
1768 static void
1769 _bus_dma_free_bouncebuf(bus_dma_tag_t t, bus_dmamap_t map)
1770 {
1771 struct arm32_bus_dma_cookie *cookie = map->_dm_cookie;
1772
1773 KASSERT(cookie != NULL);
1774
1775 _bus_dmamem_unmap(t, cookie->id_bouncebuf, cookie->id_bouncebuflen);
1776 _bus_dmamem_free(t, cookie->id_bouncesegs, cookie->id_nbouncesegs);
1777 cookie->id_bouncebuflen = 0;
1778 cookie->id_nbouncesegs = 0;
1779 cookie->id_flags &= ~_BUS_DMA_HAS_BOUNCE;
1780 }
1781
1782 /*
1783 * This function does the same as uiomove, but takes an explicit
1784 * direction, and does not update the uio structure.
1785 */
1786 static int
1787 _bus_dma_uiomove(void *buf, struct uio *uio, size_t n, int direction)
1788 {
1789 struct iovec *iov;
1790 int error;
1791 struct vmspace *vm;
1792 char *cp;
1793 size_t resid, cnt;
1794 int i;
1795
1796 iov = uio->uio_iov;
1797 vm = uio->uio_vmspace;
1798 cp = buf;
1799 resid = n;
1800
1801 for (i = 0; i < uio->uio_iovcnt && resid > 0; i++) {
1802 iov = &uio->uio_iov[i];
1803 if (iov->iov_len == 0)
1804 continue;
1805 cnt = MIN(resid, iov->iov_len);
1806
1807 if (!VMSPACE_IS_KERNEL_P(vm) &&
1808 (curlwp->l_cpu->ci_schedstate.spc_flags & SPCF_SHOULDYIELD)
1809 != 0) {
1810 preempt();
1811 }
1812 if (direction == UIO_READ) {
1813 error = copyout_vmspace(vm, cp, iov->iov_base, cnt);
1814 } else {
1815 error = copyin_vmspace(vm, iov->iov_base, cp, cnt);
1816 }
1817 if (error)
1818 return error;
1819 cp += cnt;
1820 resid -= cnt;
1821 }
1822 return 0;
1823 }
1824 #endif /* _ARM32_NEED_BUS_DMA_BOUNCE */
1825
1826 int
1827 _bus_dmatag_subregion(bus_dma_tag_t tag, bus_addr_t min_addr,
1828 bus_addr_t max_addr, bus_dma_tag_t *newtag, int flags)
1829 {
1830
1831 #ifdef _ARM32_NEED_BUS_DMA_BOUNCE
1832 struct arm32_dma_range *dr;
1833 bool subset = false;
1834 size_t nranges = 0;
1835 size_t i;
1836 for (i = 0, dr = tag->_ranges; i < tag->_nranges; i++, dr++) {
1837 if (dr->dr_sysbase <= min_addr
1838 && max_addr <= dr->dr_sysbase + dr->dr_len - 1) {
1839 subset = true;
1840 }
1841 if (min_addr <= dr->dr_sysbase + dr->dr_len
1842 && max_addr >= dr->dr_sysbase) {
1843 nranges++;
1844 }
1845 }
1846 if (subset) {
1847 *newtag = tag;
1848 /* if the tag must be freed, add a reference */
1849 if (tag->_tag_needs_free)
1850 (tag->_tag_needs_free)++;
1851 return 0;
1852 }
1853 if (nranges == 0) {
1854 nranges = 1;
1855 }
1856
1857 const size_t tagsize = sizeof(*tag) + nranges * sizeof(*dr);
1858 if ((*newtag = kmem_intr_zalloc(tagsize,
1859 (flags & BUS_DMA_NOWAIT) ? KM_NOSLEEP : KM_SLEEP)) == NULL)
1860 return ENOMEM;
1861
1862 dr = (void *)(*newtag + 1);
1863 **newtag = *tag;
1864 (*newtag)->_tag_needs_free = 1;
1865 (*newtag)->_ranges = dr;
1866 (*newtag)->_nranges = nranges;
1867
1868 if (tag->_ranges == NULL) {
1869 dr->dr_sysbase = min_addr;
1870 dr->dr_busbase = min_addr;
1871 dr->dr_len = max_addr + 1 - min_addr;
1872 } else {
1873 for (i = 0; i < nranges; i++) {
1874 if (min_addr > dr->dr_sysbase + dr->dr_len
1875 || max_addr < dr->dr_sysbase)
1876 continue;
1877 dr[0] = tag->_ranges[i];
1878 if (dr->dr_sysbase < min_addr) {
1879 psize_t diff = min_addr - dr->dr_sysbase;
1880 dr->dr_busbase += diff;
1881 dr->dr_len -= diff;
1882 dr->dr_sysbase += diff;
1883 }
1884 if (max_addr != 0xffffffff
1885 && max_addr + 1 < dr->dr_sysbase + dr->dr_len) {
1886 dr->dr_len = max_addr + 1 - dr->dr_sysbase;
1887 }
1888 dr++;
1889 }
1890 }
1891
1892 return 0;
1893 #else
1894 return EOPNOTSUPP;
1895 #endif /* _ARM32_NEED_BUS_DMA_BOUNCE */
1896 }
1897
1898 void
1899 _bus_dmatag_destroy(bus_dma_tag_t tag)
1900 {
1901 #ifdef _ARM32_NEED_BUS_DMA_BOUNCE
1902 switch (tag->_tag_needs_free) {
1903 case 0:
1904 break; /* not allocated with kmem */
1905 case 1: {
1906 const size_t tagsize = sizeof(*tag)
1907 + tag->_nranges * sizeof(*tag->_ranges);
1908 kmem_intr_free(tag, tagsize); /* last reference to tag */
1909 break;
1910 }
1911 default:
1912 (tag->_tag_needs_free)--; /* one less reference */
1913 }
1914 #endif
1915 }
1916