Home | History | Annotate | Line # | Download | only in arm32
bus_dma.c revision 1.101
      1 /*	$NetBSD: bus_dma.c,v 1.101 2017/12/29 08:58:57 skrll Exp $	*/
      2 
      3 /*-
      4  * Copyright (c) 1996, 1997, 1998 The NetBSD Foundation, Inc.
      5  * All rights reserved.
      6  *
      7  * This code is derived from software contributed to The NetBSD Foundation
      8  * by Jason R. Thorpe of the Numerical Aerospace Simulation Facility,
      9  * NASA Ames Research Center.
     10  *
     11  * Redistribution and use in source and binary forms, with or without
     12  * modification, are permitted provided that the following conditions
     13  * are met:
     14  * 1. Redistributions of source code must retain the above copyright
     15  *    notice, this list of conditions and the following disclaimer.
     16  * 2. Redistributions in binary form must reproduce the above copyright
     17  *    notice, this list of conditions and the following disclaimer in the
     18  *    documentation and/or other materials provided with the distribution.
     19  *
     20  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     21  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     22  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     23  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     24  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     25  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     26  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     27  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     28  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     29  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     30  * POSSIBILITY OF SUCH DAMAGE.
     31  */
     32 
     33 #define _ARM32_BUS_DMA_PRIVATE
     34 
     35 #include "opt_arm_bus_space.h"
     36 
     37 #include <sys/cdefs.h>
     38 __KERNEL_RCSID(0, "$NetBSD: bus_dma.c,v 1.101 2017/12/29 08:58:57 skrll Exp $");
     39 
     40 #include <sys/param.h>
     41 #include <sys/systm.h>
     42 #include <sys/kernel.h>
     43 #include <sys/proc.h>
     44 #include <sys/buf.h>
     45 #include <sys/bus.h>
     46 #include <sys/cpu.h>
     47 #include <sys/reboot.h>
     48 #include <sys/conf.h>
     49 #include <sys/file.h>
     50 #include <sys/kmem.h>
     51 #include <sys/mbuf.h>
     52 #include <sys/vnode.h>
     53 #include <sys/device.h>
     54 
     55 #include <uvm/uvm.h>
     56 
     57 #include <arm/cpufunc.h>
     58 
     59 #ifdef __HAVE_MM_MD_DIRECT_MAPPED_PHYS
     60 #include <dev/mm.h>
     61 #endif
     62 
     63 #ifdef BUSDMA_COUNTERS
     64 static struct evcnt bus_dma_creates =
     65 	EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL, "busdma", "creates");
     66 static struct evcnt bus_dma_bounced_creates =
     67 	EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL, "busdma", "bounced creates");
     68 static struct evcnt bus_dma_loads =
     69 	EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL, "busdma", "loads");
     70 static struct evcnt bus_dma_bounced_loads =
     71 	EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL, "busdma", "bounced loads");
     72 static struct evcnt bus_dma_coherent_loads =
     73 	EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL, "busdma", "coherent loads");
     74 static struct evcnt bus_dma_read_bounces =
     75 	EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL, "busdma", "read bounces");
     76 static struct evcnt bus_dma_write_bounces =
     77 	EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL, "busdma", "write bounces");
     78 static struct evcnt bus_dma_bounced_unloads =
     79 	EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL, "busdma", "bounced unloads");
     80 static struct evcnt bus_dma_unloads =
     81 	EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL, "busdma", "unloads");
     82 static struct evcnt bus_dma_bounced_destroys =
     83 	EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL, "busdma", "bounced destroys");
     84 static struct evcnt bus_dma_destroys =
     85 	EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL, "busdma", "destroys");
     86 static struct evcnt bus_dma_sync_prereadwrite =
     87 	EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL, "busdma", "sync prereadwrite");
     88 static struct evcnt bus_dma_sync_preread_begin =
     89 	EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL, "busdma", "sync preread begin");
     90 static struct evcnt bus_dma_sync_preread =
     91 	EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL, "busdma", "sync preread");
     92 static struct evcnt bus_dma_sync_preread_tail =
     93 	EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL, "busdma", "sync preread tail");
     94 static struct evcnt bus_dma_sync_prewrite =
     95 	EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL, "busdma", "sync prewrite");
     96 static struct evcnt bus_dma_sync_postread =
     97 	EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL, "busdma", "sync postread");
     98 static struct evcnt bus_dma_sync_postreadwrite =
     99 	EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL, "busdma", "sync postreadwrite");
    100 static struct evcnt bus_dma_sync_postwrite =
    101 	EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL, "busdma", "sync postwrite");
    102 
    103 EVCNT_ATTACH_STATIC(bus_dma_creates);
    104 EVCNT_ATTACH_STATIC(bus_dma_bounced_creates);
    105 EVCNT_ATTACH_STATIC(bus_dma_loads);
    106 EVCNT_ATTACH_STATIC(bus_dma_bounced_loads);
    107 EVCNT_ATTACH_STATIC(bus_dma_coherent_loads);
    108 EVCNT_ATTACH_STATIC(bus_dma_read_bounces);
    109 EVCNT_ATTACH_STATIC(bus_dma_write_bounces);
    110 EVCNT_ATTACH_STATIC(bus_dma_unloads);
    111 EVCNT_ATTACH_STATIC(bus_dma_bounced_unloads);
    112 EVCNT_ATTACH_STATIC(bus_dma_destroys);
    113 EVCNT_ATTACH_STATIC(bus_dma_bounced_destroys);
    114 EVCNT_ATTACH_STATIC(bus_dma_sync_prereadwrite);
    115 EVCNT_ATTACH_STATIC(bus_dma_sync_preread_begin);
    116 EVCNT_ATTACH_STATIC(bus_dma_sync_preread);
    117 EVCNT_ATTACH_STATIC(bus_dma_sync_preread_tail);
    118 EVCNT_ATTACH_STATIC(bus_dma_sync_prewrite);
    119 EVCNT_ATTACH_STATIC(bus_dma_sync_postread);
    120 EVCNT_ATTACH_STATIC(bus_dma_sync_postreadwrite);
    121 EVCNT_ATTACH_STATIC(bus_dma_sync_postwrite);
    122 
    123 #define	STAT_INCR(x)	(bus_dma_ ## x.ev_count++)
    124 #else
    125 #define	STAT_INCR(x)	/*(bus_dma_ ## x.ev_count++)*/
    126 #endif
    127 
    128 int	_bus_dmamap_load_buffer(bus_dma_tag_t, bus_dmamap_t, void *,
    129 	    bus_size_t, struct vmspace *, int);
    130 static struct arm32_dma_range *
    131 	_bus_dma_paddr_inrange(struct arm32_dma_range *, int, paddr_t);
    132 
    133 /*
    134  * Check to see if the specified page is in an allowed DMA range.
    135  */
    136 inline struct arm32_dma_range *
    137 _bus_dma_paddr_inrange(struct arm32_dma_range *ranges, int nranges,
    138     bus_addr_t curaddr)
    139 {
    140 	struct arm32_dma_range *dr;
    141 	int i;
    142 
    143 	for (i = 0, dr = ranges; i < nranges; i++, dr++) {
    144 		if (curaddr >= dr->dr_sysbase &&
    145 		    curaddr < (dr->dr_sysbase + dr->dr_len))
    146 			return dr;
    147 	}
    148 
    149 	return NULL;
    150 }
    151 
    152 /*
    153  * Check to see if the specified busaddr is in an allowed DMA range.
    154  */
    155 static inline paddr_t
    156 _bus_dma_busaddr_to_paddr(bus_dma_tag_t t, bus_addr_t curaddr)
    157 {
    158 	struct arm32_dma_range *dr;
    159 	u_int i;
    160 
    161 	if (t->_nranges == 0)
    162 		return curaddr;
    163 
    164 	for (i = 0, dr = t->_ranges; i < t->_nranges; i++, dr++) {
    165 		if (dr->dr_busbase <= curaddr
    166 		    && curaddr < dr->dr_busbase + dr->dr_len)
    167 			return curaddr - dr->dr_busbase + dr->dr_sysbase;
    168 	}
    169 	panic("%s: curaddr %#lx not in range", __func__, curaddr);
    170 }
    171 
    172 /*
    173  * Common function to load the specified physical address into the
    174  * DMA map, coalescing segments and boundary checking as necessary.
    175  */
    176 static int
    177 _bus_dmamap_load_paddr(bus_dma_tag_t t, bus_dmamap_t map,
    178     bus_addr_t paddr, bus_size_t size, bool coherent)
    179 {
    180 	bus_dma_segment_t * const segs = map->dm_segs;
    181 	int nseg = map->dm_nsegs;
    182 	bus_addr_t lastaddr;
    183 	bus_addr_t bmask = ~(map->_dm_boundary - 1);
    184 	bus_addr_t curaddr;
    185 	bus_size_t sgsize;
    186 	uint32_t _ds_flags = coherent ? _BUS_DMAMAP_COHERENT : 0;
    187 
    188 	if (nseg > 0)
    189 		lastaddr = segs[nseg - 1].ds_addr + segs[nseg - 1].ds_len;
    190 	else
    191 		lastaddr = 0xdead;
    192 
    193  again:
    194 	sgsize = size;
    195 
    196 	/* Make sure we're in an allowed DMA range. */
    197 	if (t->_ranges != NULL) {
    198 		/* XXX cache last result? */
    199 		const struct arm32_dma_range * const dr =
    200 		    _bus_dma_paddr_inrange(t->_ranges, t->_nranges, paddr);
    201 		if (dr == NULL)
    202 			return EINVAL;
    203 
    204 		/*
    205 		 * If this region is coherent, mark the segment as coherent.
    206 		 */
    207 		_ds_flags |= dr->dr_flags & _BUS_DMAMAP_COHERENT;
    208 
    209 		/*
    210 		 * In a valid DMA range.  Translate the physical
    211 		 * memory address to an address in the DMA window.
    212 		 */
    213 		curaddr = (paddr - dr->dr_sysbase) + dr->dr_busbase;
    214 #if 0
    215 		printf("%p: %#lx: range %#lx/%#lx/%#lx/%#x: %#x <-- %#lx\n",
    216 		    t, paddr, dr->dr_sysbase, dr->dr_busbase,
    217 		    dr->dr_len, dr->dr_flags, _ds_flags, curaddr);
    218 #endif
    219 	} else
    220 		curaddr = paddr;
    221 
    222 	/*
    223 	 * Make sure we don't cross any boundaries.
    224 	 */
    225 	if (map->_dm_boundary > 0) {
    226 		bus_addr_t baddr;	/* next boundary address */
    227 
    228 		baddr = (curaddr + map->_dm_boundary) & bmask;
    229 		if (sgsize > (baddr - curaddr))
    230 			sgsize = (baddr - curaddr);
    231 	}
    232 
    233 	/*
    234 	 * Insert chunk into a segment, coalescing with the
    235 	 * previous segment if possible.
    236 	 */
    237 	if (nseg > 0 && curaddr == lastaddr &&
    238 	    segs[nseg - 1].ds_len + sgsize <= map->dm_maxsegsz &&
    239 	    ((segs[nseg - 1]._ds_flags ^ _ds_flags) & _BUS_DMAMAP_COHERENT) == 0 &&
    240 	    (map->_dm_boundary == 0 ||
    241 	     (segs[nseg - 1].ds_addr & bmask) == (curaddr & bmask))) {
    242 	     	/* coalesce */
    243 		segs[nseg - 1].ds_len += sgsize;
    244 	} else if (nseg >= map->_dm_segcnt) {
    245 		return EFBIG;
    246 	} else {
    247 		/* new segment */
    248 		segs[nseg].ds_addr = curaddr;
    249 		segs[nseg].ds_len = sgsize;
    250 		segs[nseg]._ds_flags = _ds_flags;
    251 		nseg++;
    252 	}
    253 
    254 	lastaddr = curaddr + sgsize;
    255 
    256 	paddr += sgsize;
    257 	size -= sgsize;
    258 	if (size > 0)
    259 		goto again;
    260 
    261 	map->_dm_flags &= (_ds_flags & _BUS_DMAMAP_COHERENT);
    262 	map->dm_nsegs = nseg;
    263 	return 0;
    264 }
    265 
    266 #ifdef _ARM32_NEED_BUS_DMA_BOUNCE
    267 static int _bus_dma_alloc_bouncebuf(bus_dma_tag_t t, bus_dmamap_t map,
    268 	    bus_size_t size, int flags);
    269 static void _bus_dma_free_bouncebuf(bus_dma_tag_t t, bus_dmamap_t map);
    270 static int _bus_dma_uiomove(void *buf, struct uio *uio, size_t n,
    271 	    int direction);
    272 
    273 static int
    274 _bus_dma_load_bouncebuf(bus_dma_tag_t t, bus_dmamap_t map, void *buf,
    275 	size_t buflen, int buftype, int flags)
    276 {
    277 	struct arm32_bus_dma_cookie * const cookie = map->_dm_cookie;
    278 	struct vmspace * const vm = vmspace_kernel();
    279 	int error;
    280 
    281 	KASSERT(cookie != NULL);
    282 	KASSERT(cookie->id_flags & _BUS_DMA_MIGHT_NEED_BOUNCE);
    283 
    284 	/*
    285 	 * Allocate bounce pages, if necessary.
    286 	 */
    287 	if ((cookie->id_flags & _BUS_DMA_HAS_BOUNCE) == 0) {
    288 		error = _bus_dma_alloc_bouncebuf(t, map, buflen, flags);
    289 		if (error)
    290 			return error;
    291 	}
    292 
    293 	/*
    294 	 * Cache a pointer to the caller's buffer and load the DMA map
    295 	 * with the bounce buffer.
    296 	 */
    297 	cookie->id_origbuf = buf;
    298 	cookie->id_origbuflen = buflen;
    299 	error = _bus_dmamap_load_buffer(t, map, cookie->id_bouncebuf,
    300 	    buflen, vm, flags);
    301 	if (error)
    302 		return error;
    303 
    304 	STAT_INCR(bounced_loads);
    305 	map->dm_mapsize = buflen;
    306 	map->_dm_vmspace = vm;
    307 	map->_dm_buftype = buftype;
    308 
    309 	/* ...so _bus_dmamap_sync() knows we're bouncing */
    310 	map->_dm_flags |= _BUS_DMAMAP_IS_BOUNCING;
    311 	cookie->id_flags |= _BUS_DMA_IS_BOUNCING;
    312 	return 0;
    313 }
    314 #endif /* _ARM32_NEED_BUS_DMA_BOUNCE */
    315 
    316 /*
    317  * Common function for DMA map creation.  May be called by bus-specific
    318  * DMA map creation functions.
    319  */
    320 int
    321 _bus_dmamap_create(bus_dma_tag_t t, bus_size_t size, int nsegments,
    322     bus_size_t maxsegsz, bus_size_t boundary, int flags, bus_dmamap_t *dmamp)
    323 {
    324 	struct arm32_bus_dmamap *map;
    325 	void *mapstore;
    326 
    327 #ifdef DEBUG_DMA
    328 	printf("dmamap_create: t=%p size=%lx nseg=%x msegsz=%lx boundary=%lx flags=%x\n",
    329 	    t, size, nsegments, maxsegsz, boundary, flags);
    330 #endif	/* DEBUG_DMA */
    331 
    332 	/*
    333 	 * Allocate and initialize the DMA map.  The end of the map
    334 	 * is a variable-sized array of segments, so we allocate enough
    335 	 * room for them in one shot.
    336 	 *
    337 	 * Note we don't preserve the WAITOK or NOWAIT flags.  Preservation
    338 	 * of ALLOCNOW notifies others that we've reserved these resources,
    339 	 * and they are not to be freed.
    340 	 *
    341 	 * The bus_dmamap_t includes one bus_dma_segment_t, hence
    342 	 * the (nsegments - 1).
    343 	 */
    344 	const size_t mapsize = sizeof(struct arm32_bus_dmamap) +
    345 	    (sizeof(bus_dma_segment_t) * (nsegments - 1));
    346 	const int zallocflags = (flags & BUS_DMA_NOWAIT) ? KM_NOSLEEP : KM_SLEEP;
    347 	if ((mapstore = kmem_intr_zalloc(mapsize, zallocflags)) == NULL)
    348 		return ENOMEM;
    349 
    350 	map = (struct arm32_bus_dmamap *)mapstore;
    351 	map->_dm_size = size;
    352 	map->_dm_segcnt = nsegments;
    353 	map->_dm_maxmaxsegsz = maxsegsz;
    354 	map->_dm_boundary = boundary;
    355 	map->_dm_flags = flags & ~(BUS_DMA_WAITOK|BUS_DMA_NOWAIT);
    356 	map->_dm_origbuf = NULL;
    357 	map->_dm_buftype = _BUS_DMA_BUFTYPE_INVALID;
    358 	map->_dm_vmspace = vmspace_kernel();
    359 	map->_dm_cookie = NULL;
    360 	map->dm_maxsegsz = maxsegsz;
    361 	map->dm_mapsize = 0;		/* no valid mappings */
    362 	map->dm_nsegs = 0;
    363 
    364 #ifdef _ARM32_NEED_BUS_DMA_BOUNCE
    365 	struct arm32_bus_dma_cookie *cookie;
    366 	int cookieflags;
    367 	void *cookiestore;
    368 	int error;
    369 
    370 	cookieflags = 0;
    371 
    372 	if (t->_may_bounce != NULL) {
    373 		error = (*t->_may_bounce)(t, map, flags, &cookieflags);
    374 		if (error != 0)
    375 			goto out;
    376 	}
    377 
    378 	if (t->_ranges != NULL)
    379 		cookieflags |= _BUS_DMA_MIGHT_NEED_BOUNCE;
    380 
    381 	if ((cookieflags & _BUS_DMA_MIGHT_NEED_BOUNCE) == 0) {
    382 		STAT_INCR(creates);
    383 		*dmamp = map;
    384 		return 0;
    385 	}
    386 
    387 	const size_t cookiesize = sizeof(struct arm32_bus_dma_cookie) +
    388 	    (sizeof(bus_dma_segment_t) * map->_dm_segcnt);
    389 
    390 	/*
    391 	 * Allocate our cookie.
    392 	 */
    393 	if ((cookiestore = kmem_intr_zalloc(cookiesize, zallocflags)) == NULL) {
    394 		error = ENOMEM;
    395 		goto out;
    396 	}
    397 	cookie = (struct arm32_bus_dma_cookie *)cookiestore;
    398 	cookie->id_flags = cookieflags;
    399 	map->_dm_cookie = cookie;
    400 	STAT_INCR(bounced_creates);
    401 
    402 	error = _bus_dma_alloc_bouncebuf(t, map, size, flags);
    403  out:
    404 	if (error)
    405 		_bus_dmamap_destroy(t, map);
    406 	else
    407 		*dmamp = map;
    408 #else
    409 	*dmamp = map;
    410 	STAT_INCR(creates);
    411 #endif /* _ARM32_NEED_BUS_DMA_BOUNCE */
    412 #ifdef DEBUG_DMA
    413 	printf("dmamap_create:map=%p\n", map);
    414 #endif	/* DEBUG_DMA */
    415 	return 0;
    416 }
    417 
    418 /*
    419  * Common function for DMA map destruction.  May be called by bus-specific
    420  * DMA map destruction functions.
    421  */
    422 void
    423 _bus_dmamap_destroy(bus_dma_tag_t t, bus_dmamap_t map)
    424 {
    425 
    426 #ifdef DEBUG_DMA
    427 	printf("dmamap_destroy: t=%p map=%p\n", t, map);
    428 #endif	/* DEBUG_DMA */
    429 #ifdef _ARM32_NEED_BUS_DMA_BOUNCE
    430 	struct arm32_bus_dma_cookie *cookie = map->_dm_cookie;
    431 
    432 	/*
    433 	 * Free any bounce pages this map might hold.
    434 	 */
    435 	if (cookie != NULL) {
    436 		const size_t cookiesize = sizeof(struct arm32_bus_dma_cookie) +
    437 		    (sizeof(bus_dma_segment_t) * map->_dm_segcnt);
    438 
    439 		if (cookie->id_flags & _BUS_DMA_IS_BOUNCING)
    440 			STAT_INCR(bounced_unloads);
    441 		map->dm_nsegs = 0;
    442 		if (cookie->id_flags & _BUS_DMA_HAS_BOUNCE)
    443 			_bus_dma_free_bouncebuf(t, map);
    444 		STAT_INCR(bounced_destroys);
    445 		kmem_intr_free(cookie, cookiesize);
    446 	} else
    447 #endif
    448 	STAT_INCR(destroys);
    449 
    450 	if (map->dm_nsegs > 0)
    451 		STAT_INCR(unloads);
    452 
    453 	const size_t mapsize = sizeof(struct arm32_bus_dmamap) +
    454 	    (sizeof(bus_dma_segment_t) * (map->_dm_segcnt - 1));
    455 	kmem_intr_free(map, mapsize);
    456 }
    457 
    458 /*
    459  * Common function for loading a DMA map with a linear buffer.  May
    460  * be called by bus-specific DMA map load functions.
    461  */
    462 int
    463 _bus_dmamap_load(bus_dma_tag_t t, bus_dmamap_t map, void *buf,
    464     bus_size_t buflen, struct proc *p, int flags)
    465 {
    466 	struct vmspace *vm;
    467 	int error;
    468 
    469 #ifdef DEBUG_DMA
    470 	printf("dmamap_load: t=%p map=%p buf=%p len=%lx p=%p f=%d\n",
    471 	    t, map, buf, buflen, p, flags);
    472 #endif	/* DEBUG_DMA */
    473 
    474 	if (map->dm_nsegs > 0) {
    475 #ifdef _ARM32_NEED_BUS_DMA_BOUNCE
    476 		struct arm32_bus_dma_cookie *cookie = map->_dm_cookie;
    477 		if (cookie != NULL) {
    478 			if (cookie->id_flags & _BUS_DMA_IS_BOUNCING) {
    479 				STAT_INCR(bounced_unloads);
    480 				cookie->id_flags &= ~_BUS_DMA_IS_BOUNCING;
    481 				map->_dm_flags &= ~_BUS_DMAMAP_IS_BOUNCING;
    482 			}
    483 		} else
    484 #endif
    485 		STAT_INCR(unloads);
    486 	}
    487 
    488 	/*
    489 	 * Make sure that on error condition we return "no valid mappings".
    490 	 */
    491 	map->dm_mapsize = 0;
    492 	map->dm_nsegs = 0;
    493 	map->_dm_buftype = _BUS_DMA_BUFTYPE_INVALID;
    494 	KASSERTMSG(map->dm_maxsegsz <= map->_dm_maxmaxsegsz,
    495 	    "dm_maxsegsz %lu _dm_maxmaxsegsz %lu",
    496 	    map->dm_maxsegsz, map->_dm_maxmaxsegsz);
    497 
    498 	if (buflen > map->_dm_size)
    499 		return EINVAL;
    500 
    501 	if (p != NULL) {
    502 		vm = p->p_vmspace;
    503 	} else {
    504 		vm = vmspace_kernel();
    505 	}
    506 
    507 	/* _bus_dmamap_load_buffer() clears this if we're not... */
    508 	map->_dm_flags |= _BUS_DMAMAP_COHERENT;
    509 
    510 	error = _bus_dmamap_load_buffer(t, map, buf, buflen, vm, flags);
    511 	if (error == 0) {
    512 		map->dm_mapsize = buflen;
    513 		map->_dm_vmspace = vm;
    514 		map->_dm_origbuf = buf;
    515 		map->_dm_buftype = _BUS_DMA_BUFTYPE_LINEAR;
    516 		if (map->_dm_flags & _BUS_DMAMAP_COHERENT) {
    517 			STAT_INCR(coherent_loads);
    518 		} else {
    519 			STAT_INCR(loads);
    520 		}
    521 		return 0;
    522 	}
    523 #ifdef _ARM32_NEED_BUS_DMA_BOUNCE
    524 	struct arm32_bus_dma_cookie * const cookie = map->_dm_cookie;
    525 	if (cookie != NULL && (cookie->id_flags & _BUS_DMA_MIGHT_NEED_BOUNCE)) {
    526 		error = _bus_dma_load_bouncebuf(t, map, buf, buflen,
    527 		    _BUS_DMA_BUFTYPE_LINEAR, flags);
    528 	}
    529 #endif
    530 	return error;
    531 }
    532 
    533 /*
    534  * Like _bus_dmamap_load(), but for mbufs.
    535  */
    536 int
    537 _bus_dmamap_load_mbuf(bus_dma_tag_t t, bus_dmamap_t map, struct mbuf *m0,
    538     int flags)
    539 {
    540 	int error;
    541 	struct mbuf *m;
    542 
    543 #ifdef DEBUG_DMA
    544 	printf("dmamap_load_mbuf: t=%p map=%p m0=%p f=%d\n",
    545 	    t, map, m0, flags);
    546 #endif	/* DEBUG_DMA */
    547 
    548 	if (map->dm_nsegs > 0) {
    549 #ifdef _ARM32_NEED_BUS_DMA_BOUNCE
    550 		struct arm32_bus_dma_cookie *cookie = map->_dm_cookie;
    551 		if (cookie != NULL) {
    552 			if (cookie->id_flags & _BUS_DMA_IS_BOUNCING) {
    553 				STAT_INCR(bounced_unloads);
    554 				cookie->id_flags &= ~_BUS_DMA_IS_BOUNCING;
    555 				map->_dm_flags &= ~_BUS_DMAMAP_IS_BOUNCING;
    556 			}
    557 		} else
    558 #endif
    559 		STAT_INCR(unloads);
    560 	}
    561 
    562 	/*
    563 	 * Make sure that on error condition we return "no valid mappings."
    564 	 */
    565 	map->dm_mapsize = 0;
    566 	map->dm_nsegs = 0;
    567 	map->_dm_buftype = _BUS_DMA_BUFTYPE_INVALID;
    568 	KASSERTMSG(map->dm_maxsegsz <= map->_dm_maxmaxsegsz,
    569 	    "dm_maxsegsz %lu _dm_maxmaxsegsz %lu",
    570 	    map->dm_maxsegsz, map->_dm_maxmaxsegsz);
    571 
    572 	KASSERT(m0->m_flags & M_PKTHDR);
    573 
    574 	if (m0->m_pkthdr.len > map->_dm_size)
    575 		return EINVAL;
    576 
    577 	/* _bus_dmamap_load_paddr() clears this if we're not... */
    578 	map->_dm_flags |= _BUS_DMAMAP_COHERENT;
    579 
    580 	error = 0;
    581 	for (m = m0; m != NULL && error == 0; m = m->m_next) {
    582 		int offset;
    583 		int remainbytes;
    584 		const struct vm_page * const *pgs;
    585 		paddr_t paddr;
    586 		int size;
    587 
    588 		if (m->m_len == 0)
    589 			continue;
    590 		/*
    591 		 * Don't allow reads in read-only mbufs.
    592 		 */
    593 		if (M_ROMAP(m) && (flags & BUS_DMA_READ)) {
    594 			error = EFAULT;
    595 			break;
    596 		}
    597 		switch (m->m_flags & (M_EXT|M_CLUSTER|M_EXT_PAGES)) {
    598 		case M_EXT|M_CLUSTER:
    599 			/* XXX KDASSERT */
    600 			KASSERT(m->m_ext.ext_paddr != M_PADDR_INVALID);
    601 			paddr = m->m_ext.ext_paddr +
    602 			    (m->m_data - m->m_ext.ext_buf);
    603 			size = m->m_len;
    604 			error = _bus_dmamap_load_paddr(t, map, paddr, size,
    605 			    false);
    606 			break;
    607 
    608 		case M_EXT|M_EXT_PAGES:
    609 			KASSERT(m->m_ext.ext_buf <= m->m_data);
    610 			KASSERT(m->m_data <=
    611 			    m->m_ext.ext_buf + m->m_ext.ext_size);
    612 
    613 			offset = (vaddr_t)m->m_data -
    614 			    trunc_page((vaddr_t)m->m_ext.ext_buf);
    615 			remainbytes = m->m_len;
    616 
    617 			/* skip uninteresting pages */
    618 			pgs = (const struct vm_page * const *)
    619 			    m->m_ext.ext_pgs + (offset >> PAGE_SHIFT);
    620 
    621 			offset &= PAGE_MASK;	/* offset in the first page */
    622 
    623 			/* load each page */
    624 			while (remainbytes > 0) {
    625 				const struct vm_page *pg;
    626 
    627 				size = MIN(remainbytes, PAGE_SIZE - offset);
    628 
    629 				pg = *pgs++;
    630 				KASSERT(pg);
    631 				paddr = VM_PAGE_TO_PHYS(pg) + offset;
    632 
    633 				error = _bus_dmamap_load_paddr(t, map,
    634 				    paddr, size, false);
    635 				if (error)
    636 					break;
    637 				offset = 0;
    638 				remainbytes -= size;
    639 			}
    640 			break;
    641 
    642 		case 0:
    643 			paddr = m->m_paddr + M_BUFOFFSET(m) +
    644 			    (m->m_data - M_BUFADDR(m));
    645 			size = m->m_len;
    646 			error = _bus_dmamap_load_paddr(t, map, paddr, size,
    647 			    false);
    648 			break;
    649 
    650 		default:
    651 			error = _bus_dmamap_load_buffer(t, map, m->m_data,
    652 			    m->m_len, vmspace_kernel(), flags);
    653 		}
    654 	}
    655 	if (error == 0) {
    656 		map->dm_mapsize = m0->m_pkthdr.len;
    657 		map->_dm_origbuf = m0;
    658 		map->_dm_buftype = _BUS_DMA_BUFTYPE_MBUF;
    659 		map->_dm_vmspace = vmspace_kernel();	/* always kernel */
    660 		if (map->_dm_flags & _BUS_DMAMAP_COHERENT) {
    661 			STAT_INCR(coherent_loads);
    662 		} else {
    663 			STAT_INCR(loads);
    664 		}
    665 		return 0;
    666 	}
    667 #ifdef _ARM32_NEED_BUS_DMA_BOUNCE
    668 	struct arm32_bus_dma_cookie * const cookie = map->_dm_cookie;
    669 	if (cookie != NULL && (cookie->id_flags & _BUS_DMA_MIGHT_NEED_BOUNCE)) {
    670 		error = _bus_dma_load_bouncebuf(t, map, m0, m0->m_pkthdr.len,
    671 		    _BUS_DMA_BUFTYPE_MBUF, flags);
    672 	}
    673 #endif
    674 	return error;
    675 }
    676 
    677 /*
    678  * Like _bus_dmamap_load(), but for uios.
    679  */
    680 int
    681 _bus_dmamap_load_uio(bus_dma_tag_t t, bus_dmamap_t map, struct uio *uio,
    682     int flags)
    683 {
    684 	int i, error;
    685 	bus_size_t minlen, resid;
    686 	struct iovec *iov;
    687 	void *addr;
    688 
    689 	/*
    690 	 * Make sure that on error condition we return "no valid mappings."
    691 	 */
    692 	map->dm_mapsize = 0;
    693 	map->dm_nsegs = 0;
    694 	KASSERTMSG(map->dm_maxsegsz <= map->_dm_maxmaxsegsz,
    695 	    "dm_maxsegsz %lu _dm_maxmaxsegsz %lu",
    696 	    map->dm_maxsegsz, map->_dm_maxmaxsegsz);
    697 
    698 	resid = uio->uio_resid;
    699 	iov = uio->uio_iov;
    700 
    701 	/* _bus_dmamap_load_buffer() clears this if we're not... */
    702 	map->_dm_flags |= _BUS_DMAMAP_COHERENT;
    703 
    704 	error = 0;
    705 	for (i = 0; i < uio->uio_iovcnt && resid != 0 && error == 0; i++) {
    706 		/*
    707 		 * Now at the first iovec to load.  Load each iovec
    708 		 * until we have exhausted the residual count.
    709 		 */
    710 		minlen = resid < iov[i].iov_len ? resid : iov[i].iov_len;
    711 		addr = (void *)iov[i].iov_base;
    712 
    713 		error = _bus_dmamap_load_buffer(t, map, addr, minlen,
    714 		    uio->uio_vmspace, flags);
    715 
    716 		resid -= minlen;
    717 	}
    718 	if (error == 0) {
    719 		map->dm_mapsize = uio->uio_resid;
    720 		map->_dm_origbuf = uio;
    721 		map->_dm_buftype = _BUS_DMA_BUFTYPE_UIO;
    722 		map->_dm_vmspace = uio->uio_vmspace;
    723 		if (map->_dm_flags & _BUS_DMAMAP_COHERENT) {
    724 			STAT_INCR(coherent_loads);
    725 		} else {
    726 			STAT_INCR(loads);
    727 		}
    728 	}
    729 	return error;
    730 }
    731 
    732 /*
    733  * Like _bus_dmamap_load(), but for raw memory allocated with
    734  * bus_dmamem_alloc().
    735  */
    736 int
    737 _bus_dmamap_load_raw(bus_dma_tag_t t, bus_dmamap_t map,
    738     bus_dma_segment_t *segs, int nsegs, bus_size_t size0, int flags)
    739 {
    740 
    741 	bus_size_t size;
    742 	int i, error = 0;
    743 
    744 	/*
    745 	 * Make sure that on error conditions we return "no valid mappings."
    746 	 */
    747 	map->dm_mapsize = 0;
    748 	map->dm_nsegs = 0;
    749 	KASSERT(map->dm_maxsegsz <= map->_dm_maxmaxsegsz);
    750 
    751 	if (size0 > map->_dm_size)
    752 		return EINVAL;
    753 
    754 	for (i = 0, size = size0; i < nsegs && size > 0; i++) {
    755 		bus_dma_segment_t *ds = &segs[i];
    756 		bus_size_t sgsize;
    757 
    758 		sgsize = MIN(ds->ds_len, size);
    759 		if (sgsize == 0)
    760 			continue;
    761 		error = _bus_dmamap_load_paddr(t, map, ds->ds_addr,
    762 		    sgsize, false);
    763 		if (error != 0)
    764 			break;
    765 		size -= sgsize;
    766 	}
    767 
    768 	if (error != 0) {
    769 		map->dm_mapsize = 0;
    770 		map->dm_nsegs = 0;
    771 		return error;
    772 	}
    773 
    774 	/* XXX TBD bounce */
    775 
    776 	map->dm_mapsize = size0;
    777 	return 0;
    778 }
    779 
    780 /*
    781  * Common function for unloading a DMA map.  May be called by
    782  * bus-specific DMA map unload functions.
    783  */
    784 void
    785 _bus_dmamap_unload(bus_dma_tag_t t, bus_dmamap_t map)
    786 {
    787 
    788 #ifdef DEBUG_DMA
    789 	printf("dmamap_unload: t=%p map=%p\n", t, map);
    790 #endif	/* DEBUG_DMA */
    791 
    792 	/*
    793 	 * No resources to free; just mark the mappings as
    794 	 * invalid.
    795 	 */
    796 	map->dm_mapsize = 0;
    797 	map->dm_nsegs = 0;
    798 	map->_dm_origbuf = NULL;
    799 	map->_dm_buftype = _BUS_DMA_BUFTYPE_INVALID;
    800 	map->_dm_vmspace = NULL;
    801 }
    802 
    803 static void
    804 _bus_dmamap_sync_segment(vaddr_t va, paddr_t pa, vsize_t len, int ops, bool readonly_p)
    805 {
    806 	KASSERTMSG((va & PAGE_MASK) == (pa & PAGE_MASK),
    807 	    "va %#lx pa %#lx", va, pa);
    808 #if 0
    809 	printf("sync_segment: va=%#lx pa=%#lx len=%#lx ops=%#x ro=%d\n",
    810 	    va, pa, len, ops, readonly_p);
    811 #endif
    812 
    813 	switch (ops) {
    814 	case BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE:
    815 #ifdef ARM_MMU_EXTENDED
    816 		(void)readonly_p;
    817 #else
    818 		if (!readonly_p) {
    819 #endif
    820 			STAT_INCR(sync_prereadwrite);
    821 			cpu_dcache_wbinv_range(va, len);
    822 			cpu_sdcache_wbinv_range(va, pa, len);
    823 			break;
    824 #ifndef ARM_MMU_EXTENDED
    825 		}
    826 		/* FALLTHROUGH */
    827 #endif
    828 
    829 	case BUS_DMASYNC_PREREAD: {
    830 		const size_t line_size = arm_dcache_align;
    831 		const size_t line_mask = arm_dcache_align_mask;
    832 		vsize_t misalignment = va & line_mask;
    833 		if (misalignment) {
    834 			va -= misalignment;
    835 			pa -= misalignment;
    836 			len += misalignment;
    837 			STAT_INCR(sync_preread_begin);
    838 			cpu_dcache_wbinv_range(va, line_size);
    839 			cpu_sdcache_wbinv_range(va, pa, line_size);
    840 			if (len <= line_size)
    841 				break;
    842 			va += line_size;
    843 			pa += line_size;
    844 			len -= line_size;
    845 		}
    846 		misalignment = len & line_mask;
    847 		len -= misalignment;
    848 		if (len > 0) {
    849 			STAT_INCR(sync_preread);
    850 			cpu_dcache_inv_range(va, len);
    851 			cpu_sdcache_inv_range(va, pa, len);
    852 		}
    853 		if (misalignment) {
    854 			va += len;
    855 			pa += len;
    856 			STAT_INCR(sync_preread_tail);
    857 			cpu_dcache_wbinv_range(va, line_size);
    858 			cpu_sdcache_wbinv_range(va, pa, line_size);
    859 		}
    860 		break;
    861 	}
    862 
    863 	case BUS_DMASYNC_PREWRITE:
    864 		STAT_INCR(sync_prewrite);
    865 		cpu_dcache_wb_range(va, len);
    866 		cpu_sdcache_wb_range(va, pa, len);
    867 		break;
    868 
    869 #ifdef CPU_CORTEX
    870 	/*
    871 	 * Cortex CPUs can do speculative loads so we need to clean the cache
    872 	 * after a DMA read to deal with any speculatively loaded cache lines.
    873 	 * Since these can't be dirty, we can just invalidate them and don't
    874 	 * have to worry about having to write back their contents.
    875 	 */
    876 	case BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE:
    877 		STAT_INCR(sync_postreadwrite);
    878 		arm_dmb();
    879 		cpu_dcache_inv_range(va, len);
    880 		cpu_sdcache_inv_range(va, pa, len);
    881 		break;
    882 	case BUS_DMASYNC_POSTREAD:
    883 		STAT_INCR(sync_postread);
    884 		arm_dmb();
    885 		cpu_dcache_inv_range(va, len);
    886 		cpu_sdcache_inv_range(va, pa, len);
    887 		break;
    888 #endif
    889 	}
    890 }
    891 
    892 static inline void
    893 _bus_dmamap_sync_linear(bus_dma_tag_t t, bus_dmamap_t map, bus_addr_t offset,
    894     bus_size_t len, int ops)
    895 {
    896 	bus_dma_segment_t *ds = map->dm_segs;
    897 	vaddr_t va = (vaddr_t) map->_dm_origbuf;
    898 #ifdef _ARM32_NEED_BUS_DMA_BOUNCE
    899 	if (map->_dm_flags & _BUS_DMAMAP_IS_BOUNCING) {
    900 		struct arm32_bus_dma_cookie * const cookie = map->_dm_cookie;
    901 		va = (vaddr_t) cookie->id_bouncebuf;
    902 	}
    903 #endif
    904 
    905 	while (len > 0) {
    906 		while (offset >= ds->ds_len) {
    907 			offset -= ds->ds_len;
    908 			va += ds->ds_len;
    909 			ds++;
    910 		}
    911 
    912 		paddr_t pa = _bus_dma_busaddr_to_paddr(t, ds->ds_addr + offset);
    913 		size_t seglen = min(len, ds->ds_len - offset);
    914 
    915 		if ((ds->_ds_flags & _BUS_DMAMAP_COHERENT) == 0)
    916 			_bus_dmamap_sync_segment(va + offset, pa, seglen, ops,
    917 			    false);
    918 
    919 		offset += seglen;
    920 		len -= seglen;
    921 	}
    922 }
    923 
    924 static inline void
    925 _bus_dmamap_sync_mbuf(bus_dma_tag_t t, bus_dmamap_t map, bus_size_t offset,
    926     bus_size_t len, int ops)
    927 {
    928 	bus_dma_segment_t *ds = map->dm_segs;
    929 	struct mbuf *m = map->_dm_origbuf;
    930 	bus_size_t voff = offset;
    931 	bus_size_t ds_off = offset;
    932 
    933 	while (len > 0) {
    934 		/* Find the current dma segment */
    935 		while (ds_off >= ds->ds_len) {
    936 			ds_off -= ds->ds_len;
    937 			ds++;
    938 		}
    939 		/* Find the current mbuf. */
    940 		while (voff >= m->m_len) {
    941 			voff -= m->m_len;
    942 			m = m->m_next;
    943 		}
    944 
    945 		/*
    946 		 * Now at the first mbuf to sync; nail each one until
    947 		 * we have exhausted the length.
    948 		 */
    949 		vsize_t seglen = min(len, min(m->m_len - voff, ds->ds_len - ds_off));
    950 		vaddr_t va = mtod(m, vaddr_t) + voff;
    951 		paddr_t pa = _bus_dma_busaddr_to_paddr(t, ds->ds_addr + ds_off);
    952 
    953 		/*
    954 		 * We can save a lot of work here if we know the mapping
    955 		 * is read-only at the MMU and we aren't using the armv6+
    956 		 * MMU:
    957 		 *
    958 		 * If a mapping is read-only, no dirty cache blocks will
    959 		 * exist for it.  If a writable mapping was made read-only,
    960 		 * we know any dirty cache lines for the range will have
    961 		 * been cleaned for us already.  Therefore, if the upper
    962 		 * layer can tell us we have a read-only mapping, we can
    963 		 * skip all cache cleaning.
    964 		 *
    965 		 * NOTE: This only works if we know the pmap cleans pages
    966 		 * before making a read-write -> read-only transition.  If
    967 		 * this ever becomes non-true (e.g. Physically Indexed
    968 		 * cache), this will have to be revisited.
    969 		 */
    970 
    971 		if ((ds->_ds_flags & _BUS_DMAMAP_COHERENT) == 0) {
    972 			/*
    973 			 * If we are doing preread (DMAing into the mbuf),
    974 			 * this mbuf better not be readonly,
    975 			 */
    976 			KASSERT(!(ops & BUS_DMASYNC_PREREAD) || !M_ROMAP(m));
    977 			_bus_dmamap_sync_segment(va, pa, seglen, ops,
    978 			    M_ROMAP(m));
    979 		}
    980 		voff += seglen;
    981 		ds_off += seglen;
    982 		len -= seglen;
    983 	}
    984 }
    985 
    986 static inline void
    987 _bus_dmamap_sync_uio(bus_dma_tag_t t, bus_dmamap_t map, bus_addr_t offset,
    988     bus_size_t len, int ops)
    989 {
    990 	bus_dma_segment_t *ds = map->dm_segs;
    991 	struct uio *uio = map->_dm_origbuf;
    992 	struct iovec *iov = uio->uio_iov;
    993 	bus_size_t voff = offset;
    994 	bus_size_t ds_off = offset;
    995 
    996 	while (len > 0) {
    997 		/* Find the current dma segment */
    998 		while (ds_off >= ds->ds_len) {
    999 			ds_off -= ds->ds_len;
   1000 			ds++;
   1001 		}
   1002 
   1003 		/* Find the current iovec. */
   1004 		while (voff >= iov->iov_len) {
   1005 			voff -= iov->iov_len;
   1006 			iov++;
   1007 		}
   1008 
   1009 		/*
   1010 		 * Now at the first iovec to sync; nail each one until
   1011 		 * we have exhausted the length.
   1012 		 */
   1013 		vsize_t seglen = min(len, min(iov->iov_len - voff, ds->ds_len - ds_off));
   1014 		vaddr_t va = (vaddr_t) iov->iov_base + voff;
   1015 		paddr_t pa = _bus_dma_busaddr_to_paddr(t, ds->ds_addr + ds_off);
   1016 
   1017 		if ((ds->_ds_flags & _BUS_DMAMAP_COHERENT) == 0)
   1018 			_bus_dmamap_sync_segment(va, pa, seglen, ops, false);
   1019 
   1020 		voff += seglen;
   1021 		ds_off += seglen;
   1022 		len -= seglen;
   1023 	}
   1024 }
   1025 
   1026 /*
   1027  * Common function for DMA map synchronization.  May be called
   1028  * by bus-specific DMA map synchronization functions.
   1029  *
   1030  * This version works for the Virtually Indexed Virtually Tagged
   1031  * cache found on 32-bit ARM processors.
   1032  *
   1033  * XXX Should have separate versions for write-through vs.
   1034  * XXX write-back caches.  We currently assume write-back
   1035  * XXX here, which is not as efficient as it could be for
   1036  * XXX the write-through case.
   1037  */
   1038 void
   1039 _bus_dmamap_sync(bus_dma_tag_t t, bus_dmamap_t map, bus_addr_t offset,
   1040     bus_size_t len, int ops)
   1041 {
   1042 #ifdef DEBUG_DMA
   1043 	printf("dmamap_sync: t=%p map=%p offset=%lx len=%lx ops=%x\n",
   1044 	    t, map, offset, len, ops);
   1045 #endif	/* DEBUG_DMA */
   1046 
   1047 	/*
   1048 	 * Mixing of PRE and POST operations is not allowed.
   1049 	 */
   1050 	if ((ops & (BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE)) != 0 &&
   1051 	    (ops & (BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE)) != 0)
   1052 		panic("_bus_dmamap_sync: mix PRE and POST");
   1053 
   1054 	KASSERTMSG(offset < map->dm_mapsize,
   1055 	    "offset %lu mapsize %lu",
   1056 	    offset, map->dm_mapsize);
   1057 	KASSERTMSG(len > 0 && offset + len <= map->dm_mapsize,
   1058 	    "len %lu offset %lu mapsize %lu",
   1059 	    len, offset, map->dm_mapsize);
   1060 
   1061 	/*
   1062 	 * For a virtually-indexed write-back cache, we need
   1063 	 * to do the following things:
   1064 	 *
   1065 	 *	PREREAD -- Invalidate the D-cache.  We do this
   1066 	 *	here in case a write-back is required by the back-end.
   1067 	 *
   1068 	 *	PREWRITE -- Write-back the D-cache.  Note that if
   1069 	 *	we are doing a PREREAD|PREWRITE, we can collapse
   1070 	 *	the whole thing into a single Wb-Inv.
   1071 	 *
   1072 	 *	POSTREAD -- Re-invalidate the D-cache in case speculative
   1073 	 *	memory accesses caused cachelines to become valid with now
   1074 	 *	invalid data.
   1075 	 *
   1076 	 *	POSTWRITE -- Nothing.
   1077 	 */
   1078 #ifdef _ARM32_NEED_BUS_DMA_BOUNCE
   1079 	const bool bouncing = (map->_dm_flags & _BUS_DMAMAP_IS_BOUNCING);
   1080 #else
   1081 	const bool bouncing = false;
   1082 #endif
   1083 
   1084 	const int pre_ops = ops & (BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
   1085 #ifdef CPU_CORTEX
   1086 	const int post_ops = ops & (BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
   1087 #else
   1088 	const int post_ops = 0;
   1089 #endif
   1090 	if (!bouncing) {
   1091 		if (pre_ops == 0 && post_ops == BUS_DMASYNC_POSTWRITE) {
   1092 			STAT_INCR(sync_postwrite);
   1093 			return;
   1094 		} else if (pre_ops == 0 && post_ops == 0) {
   1095 			return;
   1096 		}
   1097 	}
   1098 	KASSERTMSG(bouncing || pre_ops != 0 || (post_ops & BUS_DMASYNC_POSTREAD),
   1099 	    "pre_ops %#x post_ops %#x", pre_ops, post_ops);
   1100 #ifdef _ARM32_NEED_BUS_DMA_BOUNCE
   1101 	if (bouncing && (ops & BUS_DMASYNC_PREWRITE)) {
   1102 		struct arm32_bus_dma_cookie * const cookie = map->_dm_cookie;
   1103 		STAT_INCR(write_bounces);
   1104 		char * const dataptr = (char *)cookie->id_bouncebuf + offset;
   1105 		/*
   1106 		 * Copy the caller's buffer to the bounce buffer.
   1107 		 */
   1108 		switch (map->_dm_buftype) {
   1109 		case _BUS_DMA_BUFTYPE_LINEAR:
   1110 			memcpy(dataptr, cookie->id_origlinearbuf + offset, len);
   1111 			break;
   1112 		case _BUS_DMA_BUFTYPE_MBUF:
   1113 			m_copydata(cookie->id_origmbuf, offset, len, dataptr);
   1114 			break;
   1115 		case _BUS_DMA_BUFTYPE_UIO:
   1116 			_bus_dma_uiomove(dataptr, cookie->id_origuio, len, UIO_WRITE);
   1117 			break;
   1118 #ifdef DIAGNOSTIC
   1119 		case _BUS_DMA_BUFTYPE_RAW:
   1120 			panic("_bus_dmamap_sync(pre): _BUS_DMA_BUFTYPE_RAW");
   1121 			break;
   1122 
   1123 		case _BUS_DMA_BUFTYPE_INVALID:
   1124 			panic("_bus_dmamap_sync(pre): _BUS_DMA_BUFTYPE_INVALID");
   1125 			break;
   1126 
   1127 		default:
   1128 			panic("_bus_dmamap_sync(pre): map %p: unknown buffer type %d\n",
   1129 			    map, map->_dm_buftype);
   1130 			break;
   1131 #endif /* DIAGNOSTIC */
   1132 		}
   1133 	}
   1134 #endif /* _ARM32_NEED_BUS_DMA_BOUNCE */
   1135 
   1136 	/* Skip cache frobbing if mapping was COHERENT. */
   1137 	if (!bouncing && (map->_dm_flags & _BUS_DMAMAP_COHERENT)) {
   1138 		/* Drain the write buffer. */
   1139 		if (pre_ops & BUS_DMASYNC_PREWRITE)
   1140 			cpu_drain_writebuf();
   1141 		return;
   1142 	}
   1143 
   1144 #ifdef _ARM32_NEED_BUS_DMA_BOUNCE
   1145 	if (bouncing && ((map->_dm_flags & _BUS_DMAMAP_COHERENT) || pre_ops == 0)) {
   1146 		goto bounce_it;
   1147 	}
   1148 #endif /* _ARM32_NEED_BUS_DMA_BOUNCE */
   1149 
   1150 #ifndef ARM_MMU_EXTENDED
   1151 	/*
   1152 	 * If the mapping belongs to a non-kernel vmspace, and the
   1153 	 * vmspace has not been active since the last time a full
   1154 	 * cache flush was performed, we don't need to do anything.
   1155 	 */
   1156 	if (__predict_false(!VMSPACE_IS_KERNEL_P(map->_dm_vmspace) &&
   1157 	    vm_map_pmap(&map->_dm_vmspace->vm_map)->pm_cstate.cs_cache_d == 0))
   1158 		return;
   1159 #endif
   1160 
   1161 	int buftype = map->_dm_buftype;
   1162 #ifdef _ARM32_NEED_BUS_DMA_BOUNCE
   1163 	if (bouncing) {
   1164 		buftype = _BUS_DMA_BUFTYPE_LINEAR;
   1165 	}
   1166 #endif
   1167 
   1168 	switch (buftype) {
   1169 	case _BUS_DMA_BUFTYPE_LINEAR:
   1170 		_bus_dmamap_sync_linear(t, map, offset, len, ops);
   1171 		break;
   1172 
   1173 	case _BUS_DMA_BUFTYPE_MBUF:
   1174 		_bus_dmamap_sync_mbuf(t, map, offset, len, ops);
   1175 		break;
   1176 
   1177 	case _BUS_DMA_BUFTYPE_UIO:
   1178 		_bus_dmamap_sync_uio(t, map, offset, len, ops);
   1179 		break;
   1180 
   1181 	case _BUS_DMA_BUFTYPE_RAW:
   1182 		panic("_bus_dmamap_sync: _BUS_DMA_BUFTYPE_RAW");
   1183 		break;
   1184 
   1185 	case _BUS_DMA_BUFTYPE_INVALID:
   1186 		panic("_bus_dmamap_sync: _BUS_DMA_BUFTYPE_INVALID");
   1187 		break;
   1188 
   1189 	default:
   1190 		panic("_bus_dmamap_sync: map %p: unknown buffer type %d\n",
   1191 		    map, map->_dm_buftype);
   1192 	}
   1193 
   1194 	/* Drain the write buffer. */
   1195 	cpu_drain_writebuf();
   1196 
   1197 #ifdef _ARM32_NEED_BUS_DMA_BOUNCE
   1198   bounce_it:
   1199 	if (!bouncing || (ops & BUS_DMASYNC_POSTREAD) == 0)
   1200 		return;
   1201 
   1202 	struct arm32_bus_dma_cookie * const cookie = map->_dm_cookie;
   1203 	char * const dataptr = (char *)cookie->id_bouncebuf + offset;
   1204 	STAT_INCR(read_bounces);
   1205 	/*
   1206 	 * Copy the bounce buffer to the caller's buffer.
   1207 	 */
   1208 	switch (map->_dm_buftype) {
   1209 	case _BUS_DMA_BUFTYPE_LINEAR:
   1210 		memcpy(cookie->id_origlinearbuf + offset, dataptr, len);
   1211 		break;
   1212 
   1213 	case _BUS_DMA_BUFTYPE_MBUF:
   1214 		m_copyback(cookie->id_origmbuf, offset, len, dataptr);
   1215 		break;
   1216 
   1217 	case _BUS_DMA_BUFTYPE_UIO:
   1218 		_bus_dma_uiomove(dataptr, cookie->id_origuio, len, UIO_READ);
   1219 		break;
   1220 #ifdef DIAGNOSTIC
   1221 	case _BUS_DMA_BUFTYPE_RAW:
   1222 		panic("_bus_dmamap_sync(post): _BUS_DMA_BUFTYPE_RAW");
   1223 		break;
   1224 
   1225 	case _BUS_DMA_BUFTYPE_INVALID:
   1226 		panic("_bus_dmamap_sync(post): _BUS_DMA_BUFTYPE_INVALID");
   1227 		break;
   1228 
   1229 	default:
   1230 		panic("_bus_dmamap_sync(post): map %p: unknown buffer type %d\n",
   1231 		    map, map->_dm_buftype);
   1232 		break;
   1233 #endif
   1234 	}
   1235 #endif /* _ARM32_NEED_BUS_DMA_BOUNCE */
   1236 }
   1237 
   1238 /*
   1239  * Common function for DMA-safe memory allocation.  May be called
   1240  * by bus-specific DMA memory allocation functions.
   1241  */
   1242 
   1243 extern paddr_t physical_start;
   1244 extern paddr_t physical_end;
   1245 
   1246 int
   1247 _bus_dmamem_alloc(bus_dma_tag_t t, bus_size_t size, bus_size_t alignment,
   1248     bus_size_t boundary, bus_dma_segment_t *segs, int nsegs, int *rsegs,
   1249     int flags)
   1250 {
   1251 	struct arm32_dma_range *dr;
   1252 	int error, i;
   1253 
   1254 #ifdef DEBUG_DMA
   1255 	printf("dmamem_alloc t=%p size=%lx align=%lx boundary=%lx "
   1256 	    "segs=%p nsegs=%x rsegs=%p flags=%x\n", t, size, alignment,
   1257 	    boundary, segs, nsegs, rsegs, flags);
   1258 #endif
   1259 
   1260 	if ((dr = t->_ranges) != NULL) {
   1261 		error = ENOMEM;
   1262 		for (i = 0; i < t->_nranges; i++, dr++) {
   1263 			if (dr->dr_len == 0
   1264 			    || (dr->dr_flags & _BUS_DMAMAP_NOALLOC))
   1265 				continue;
   1266 			error = _bus_dmamem_alloc_range(t, size, alignment,
   1267 			    boundary, segs, nsegs, rsegs, flags,
   1268 			    trunc_page(dr->dr_sysbase),
   1269 			    trunc_page(dr->dr_sysbase + dr->dr_len));
   1270 			if (error == 0)
   1271 				break;
   1272 		}
   1273 	} else {
   1274 		error = _bus_dmamem_alloc_range(t, size, alignment, boundary,
   1275 		    segs, nsegs, rsegs, flags, trunc_page(physical_start),
   1276 		    trunc_page(physical_end));
   1277 	}
   1278 
   1279 #ifdef DEBUG_DMA
   1280 	printf("dmamem_alloc: =%d\n", error);
   1281 #endif
   1282 
   1283 	return error;
   1284 }
   1285 
   1286 /*
   1287  * Common function for freeing DMA-safe memory.  May be called by
   1288  * bus-specific DMA memory free functions.
   1289  */
   1290 void
   1291 _bus_dmamem_free(bus_dma_tag_t t, bus_dma_segment_t *segs, int nsegs)
   1292 {
   1293 	struct vm_page *m;
   1294 	bus_addr_t addr;
   1295 	struct pglist mlist;
   1296 	int curseg;
   1297 
   1298 #ifdef DEBUG_DMA
   1299 	printf("dmamem_free: t=%p segs=%p nsegs=%x\n", t, segs, nsegs);
   1300 #endif	/* DEBUG_DMA */
   1301 
   1302 	/*
   1303 	 * Build a list of pages to free back to the VM system.
   1304 	 */
   1305 	TAILQ_INIT(&mlist);
   1306 	for (curseg = 0; curseg < nsegs; curseg++) {
   1307 		for (addr = segs[curseg].ds_addr;
   1308 		    addr < (segs[curseg].ds_addr + segs[curseg].ds_len);
   1309 		    addr += PAGE_SIZE) {
   1310 			m = PHYS_TO_VM_PAGE(addr);
   1311 			TAILQ_INSERT_TAIL(&mlist, m, pageq.queue);
   1312 		}
   1313 	}
   1314 	uvm_pglistfree(&mlist);
   1315 }
   1316 
   1317 /*
   1318  * Common function for mapping DMA-safe memory.  May be called by
   1319  * bus-specific DMA memory map functions.
   1320  */
   1321 int
   1322 _bus_dmamem_map(bus_dma_tag_t t, bus_dma_segment_t *segs, int nsegs,
   1323     size_t size, void **kvap, int flags)
   1324 {
   1325 	vaddr_t va;
   1326 	paddr_t pa;
   1327 	int curseg;
   1328 	const uvm_flag_t kmflags = UVM_KMF_VAONLY
   1329 	    | ((flags & BUS_DMA_NOWAIT) != 0 ? UVM_KMF_NOWAIT : 0);
   1330 	vsize_t align = 0;
   1331 
   1332 #ifdef DEBUG_DMA
   1333 	printf("dmamem_map: t=%p segs=%p nsegs=%x size=%lx flags=%x\n", t,
   1334 	    segs, nsegs, (unsigned long)size, flags);
   1335 #endif	/* DEBUG_DMA */
   1336 
   1337 #ifdef PMAP_MAP_POOLPAGE
   1338 	/*
   1339 	 * If all of memory is mapped, and we are mapping a single physically
   1340 	 * contiguous area then this area is already mapped.  Let's see if we
   1341 	 * avoid having a separate mapping for it.
   1342 	 */
   1343 	if (nsegs == 1) {
   1344 		/*
   1345 		 * If this is a non-COHERENT mapping, then the existing kernel
   1346 		 * mapping is already compatible with it.
   1347 		 */
   1348 		bool direct_mapable = (flags & BUS_DMA_COHERENT) == 0;
   1349 		pa = segs[0].ds_addr;
   1350 
   1351 		/*
   1352 		 * This is a COHERENT mapping which, unless this address is in
   1353 		 * a COHERENT dma range, will not be compatible.
   1354 		 */
   1355 		if (t->_ranges != NULL) {
   1356 			const struct arm32_dma_range * const dr =
   1357 			    _bus_dma_paddr_inrange(t->_ranges, t->_nranges, pa);
   1358 			if (dr != NULL
   1359 			    && (dr->dr_flags & _BUS_DMAMAP_COHERENT)) {
   1360 				direct_mapable = true;
   1361 			}
   1362 		}
   1363 
   1364 #ifdef PMAP_NEED_ALLOC_POOLPAGE
   1365 		/*
   1366 		 * The page can only be direct mapped if was allocated out
   1367 		 * of the arm poolpage vm freelist.
   1368 		 */
   1369 		uvm_physseg_t upm = uvm_physseg_find(atop(pa), NULL);
   1370 		KASSERT(uvm_physseg_valid_p(upm));
   1371 		if (direct_mapable) {
   1372 			direct_mapable =
   1373 			    (arm_poolpage_vmfreelist == uvm_physseg_get_free_list(upm));
   1374 		}
   1375 #endif
   1376 
   1377 		if (direct_mapable) {
   1378 			*kvap = (void *)PMAP_MAP_POOLPAGE(pa);
   1379 #ifdef DEBUG_DMA
   1380 			printf("dmamem_map: =%p\n", *kvap);
   1381 #endif	/* DEBUG_DMA */
   1382 			return 0;
   1383 		}
   1384 	}
   1385 #endif
   1386 
   1387 	size = round_page(size);
   1388 	if (__predict_true(size > L2_L_SIZE)) {
   1389 #if (ARM_MMU_V6 + ARM_MMU_V7) > 0
   1390 		if (size >= L1_SS_SIZE)
   1391 			align = L1_SS_SIZE;
   1392 		else
   1393 #endif
   1394 		if (size >= L1_S_SIZE)
   1395 			align = L1_S_SIZE;
   1396 		else
   1397 			align = L2_L_SIZE;
   1398 	}
   1399 
   1400 	va = uvm_km_alloc(kernel_map, size, align, kmflags);
   1401 	if (__predict_false(va == 0 && align > 0)) {
   1402 		align = 0;
   1403 		va = uvm_km_alloc(kernel_map, size, 0, kmflags);
   1404 	}
   1405 
   1406 	if (va == 0)
   1407 		return ENOMEM;
   1408 
   1409 	*kvap = (void *)va;
   1410 
   1411 	for (curseg = 0; curseg < nsegs; curseg++) {
   1412 		for (pa = segs[curseg].ds_addr;
   1413 		    pa < (segs[curseg].ds_addr + segs[curseg].ds_len);
   1414 		    pa += PAGE_SIZE, va += PAGE_SIZE, size -= PAGE_SIZE) {
   1415 			bool uncached = (flags & BUS_DMA_COHERENT);
   1416 #ifdef DEBUG_DMA
   1417 			printf("wiring p%lx to v%lx", pa, va);
   1418 #endif	/* DEBUG_DMA */
   1419 			if (size == 0)
   1420 				panic("_bus_dmamem_map: size botch");
   1421 
   1422 			const struct arm32_dma_range * const dr =
   1423 			    _bus_dma_paddr_inrange(t->_ranges, t->_nranges, pa);
   1424 			/*
   1425 			 * If this dma region is coherent then there is
   1426 			 * no need for an uncached mapping.
   1427 			 */
   1428 			if (dr != NULL
   1429 			    && (dr->dr_flags & _BUS_DMAMAP_COHERENT)) {
   1430 				uncached = false;
   1431 			}
   1432 
   1433 			pmap_kenter_pa(va, pa, VM_PROT_READ | VM_PROT_WRITE,
   1434 			    PMAP_WIRED | (uncached ? PMAP_NOCACHE : 0));
   1435 		}
   1436 	}
   1437 	pmap_update(pmap_kernel());
   1438 #ifdef DEBUG_DMA
   1439 	printf("dmamem_map: =%p\n", *kvap);
   1440 #endif	/* DEBUG_DMA */
   1441 	return 0;
   1442 }
   1443 
   1444 /*
   1445  * Common function for unmapping DMA-safe memory.  May be called by
   1446  * bus-specific DMA memory unmapping functions.
   1447  */
   1448 void
   1449 _bus_dmamem_unmap(bus_dma_tag_t t, void *kva, size_t size)
   1450 {
   1451 
   1452 #ifdef DEBUG_DMA
   1453 	printf("dmamem_unmap: t=%p kva=%p size=%zx\n", t, kva, size);
   1454 #endif	/* DEBUG_DMA */
   1455 	KASSERTMSG(((uintptr_t)kva & PAGE_MASK) == 0,
   1456 	    "kva %p (%#"PRIxPTR")", kva, ((uintptr_t)kva & PAGE_MASK));
   1457 
   1458 #ifdef __HAVE_MM_MD_DIRECT_MAPPED_PHYS
   1459 	/*
   1460 	 * Check to see if this used direct mapped memory.  Get its physical
   1461 	 * address and try to map it.  If the resultant matches the kva, then
   1462 	 * it was and so we can just return since we have nothing to free up.
   1463 	 */
   1464 	paddr_t pa;
   1465 	vaddr_t va;
   1466 	(void)pmap_extract(pmap_kernel(), (vaddr_t)kva, &pa);
   1467 	if (mm_md_direct_mapped_phys(pa, &va) && va == (vaddr_t)kva)
   1468 		return;
   1469 #endif
   1470 
   1471 	size = round_page(size);
   1472 	pmap_kremove((vaddr_t)kva, size);
   1473 	pmap_update(pmap_kernel());
   1474 	uvm_km_free(kernel_map, (vaddr_t)kva, size, UVM_KMF_VAONLY);
   1475 }
   1476 
   1477 /*
   1478  * Common functin for mmap(2)'ing DMA-safe memory.  May be called by
   1479  * bus-specific DMA mmap(2)'ing functions.
   1480  */
   1481 paddr_t
   1482 _bus_dmamem_mmap(bus_dma_tag_t t, bus_dma_segment_t *segs, int nsegs,
   1483     off_t off, int prot, int flags)
   1484 {
   1485 	paddr_t map_flags;
   1486 	int i;
   1487 
   1488 	for (i = 0; i < nsegs; i++) {
   1489 		KASSERTMSG((off & PAGE_MASK) == 0,
   1490 		    "off %#qx (%#x)", off, (int)off & PAGE_MASK);
   1491 		KASSERTMSG((segs[i].ds_addr & PAGE_MASK) == 0,
   1492 		    "ds_addr %#lx (%#x)", segs[i].ds_addr,
   1493 		    (int)segs[i].ds_addr & PAGE_MASK);
   1494 		KASSERTMSG((segs[i].ds_len & PAGE_MASK) == 0,
   1495 		    "ds_len %#lx (%#x)", segs[i].ds_addr,
   1496 		    (int)segs[i].ds_addr & PAGE_MASK);
   1497 		if (off >= segs[i].ds_len) {
   1498 			off -= segs[i].ds_len;
   1499 			continue;
   1500 		}
   1501 
   1502 		map_flags = 0;
   1503 		if (flags & BUS_DMA_PREFETCHABLE)
   1504 			map_flags |= ARM32_MMAP_WRITECOMBINE;
   1505 
   1506 		return arm_btop((u_long)segs[i].ds_addr + off) | map_flags;
   1507 
   1508 	}
   1509 
   1510 	/* Page not found. */
   1511 	return -1;
   1512 }
   1513 
   1514 /**********************************************************************
   1515  * DMA utility functions
   1516  **********************************************************************/
   1517 
   1518 /*
   1519  * Utility function to load a linear buffer.  lastaddrp holds state
   1520  * between invocations (for multiple-buffer loads).  segp contains
   1521  * the starting segment on entrace, and the ending segment on exit.
   1522  * first indicates if this is the first invocation of this function.
   1523  */
   1524 int
   1525 _bus_dmamap_load_buffer(bus_dma_tag_t t, bus_dmamap_t map, void *buf,
   1526     bus_size_t buflen, struct vmspace *vm, int flags)
   1527 {
   1528 	bus_size_t sgsize;
   1529 	bus_addr_t curaddr;
   1530 	vaddr_t vaddr = (vaddr_t)buf;
   1531 	int error;
   1532 	pmap_t pmap;
   1533 
   1534 #ifdef DEBUG_DMA
   1535 	printf("_bus_dmamem_load_buffer(buf=%p, len=%lx, flags=%d)\n",
   1536 	    buf, buflen, flags);
   1537 #endif	/* DEBUG_DMA */
   1538 
   1539 	pmap = vm_map_pmap(&vm->vm_map);
   1540 
   1541 	while (buflen > 0) {
   1542 		/*
   1543 		 * Get the physical address for this segment.
   1544 		 *
   1545 		 * XXX Doesn't support checking for coherent mappings
   1546 		 * XXX in user address space.
   1547 		 */
   1548 		bool coherent;
   1549 		if (__predict_true(pmap == pmap_kernel())) {
   1550 			pd_entry_t *pde;
   1551 			pt_entry_t *ptep;
   1552 			(void) pmap_get_pde_pte(pmap, vaddr, &pde, &ptep);
   1553 			if (__predict_false(pmap_pde_section(pde))) {
   1554 				paddr_t s_frame = L1_S_FRAME;
   1555 				paddr_t s_offset = L1_S_OFFSET;
   1556 #if (ARM_MMU_V6 + ARM_MMU_V7) > 0
   1557 				if (__predict_false(pmap_pde_supersection(pde))) {
   1558 					s_frame = L1_SS_FRAME;
   1559 					s_offset = L1_SS_OFFSET;
   1560 				}
   1561 #endif
   1562 				curaddr = (*pde & s_frame) | (vaddr & s_offset);
   1563 				coherent = (*pde & L1_S_CACHE_MASK) == 0;
   1564 			} else {
   1565 				pt_entry_t pte = *ptep;
   1566 				KDASSERTMSG((pte & L2_TYPE_MASK) != L2_TYPE_INV,
   1567 				    "va=%#"PRIxVADDR" pde=%#x ptep=%p pte=%#x",
   1568 				    vaddr, *pde, ptep, pte);
   1569 				if (__predict_false((pte & L2_TYPE_MASK)
   1570 						    == L2_TYPE_L)) {
   1571 					curaddr = (pte & L2_L_FRAME) |
   1572 					    (vaddr & L2_L_OFFSET);
   1573 					coherent = (pte & L2_L_CACHE_MASK) == 0;
   1574 				} else {
   1575 					curaddr = (pte & ~PAGE_MASK) |
   1576 					    (vaddr & PAGE_MASK);
   1577 					coherent = (pte & L2_S_CACHE_MASK) == 0;
   1578 				}
   1579 			}
   1580 		} else {
   1581 			(void) pmap_extract(pmap, vaddr, &curaddr);
   1582 			coherent = false;
   1583 		}
   1584 		KASSERTMSG((vaddr & PAGE_MASK) == (curaddr & PAGE_MASK),
   1585 		    "va %#lx curaddr %#lx", vaddr, curaddr);
   1586 
   1587 		/*
   1588 		 * Compute the segment size, and adjust counts.
   1589 		 */
   1590 		sgsize = PAGE_SIZE - ((u_long)vaddr & PGOFSET);
   1591 		if (buflen < sgsize)
   1592 			sgsize = buflen;
   1593 
   1594 		error = _bus_dmamap_load_paddr(t, map, curaddr, sgsize,
   1595 		    coherent);
   1596 		if (error)
   1597 			return error;
   1598 
   1599 		vaddr += sgsize;
   1600 		buflen -= sgsize;
   1601 	}
   1602 
   1603 	return 0;
   1604 }
   1605 
   1606 /*
   1607  * Allocate physical memory from the given physical address range.
   1608  * Called by DMA-safe memory allocation methods.
   1609  */
   1610 int
   1611 _bus_dmamem_alloc_range(bus_dma_tag_t t, bus_size_t size, bus_size_t alignment,
   1612     bus_size_t boundary, bus_dma_segment_t *segs, int nsegs, int *rsegs,
   1613     int flags, paddr_t low, paddr_t high)
   1614 {
   1615 	paddr_t curaddr, lastaddr;
   1616 	struct vm_page *m;
   1617 	struct pglist mlist;
   1618 	int curseg, error;
   1619 
   1620 	KASSERTMSG(boundary == 0 || (boundary & (boundary - 1)) == 0,
   1621 	    "invalid boundary %#lx", boundary);
   1622 
   1623 #ifdef DEBUG_DMA
   1624 	printf("alloc_range: t=%p size=%lx align=%lx boundary=%lx segs=%p nsegs=%x rsegs=%p flags=%x lo=%lx hi=%lx\n",
   1625 	    t, size, alignment, boundary, segs, nsegs, rsegs, flags, low, high);
   1626 #endif	/* DEBUG_DMA */
   1627 
   1628 	/* Always round the size. */
   1629 	size = round_page(size);
   1630 
   1631 	/*
   1632 	 * We accept boundaries < size, splitting in multiple segments
   1633 	 * if needed. uvm_pglistalloc does not, so compute an appropriate
   1634 	 * boundary: next power of 2 >= size
   1635 	 */
   1636 	bus_size_t uboundary = boundary;
   1637 	if (uboundary <= PAGE_SIZE) {
   1638 		uboundary = 0;
   1639 	} else {
   1640 		while (uboundary < size) {
   1641 			uboundary <<= 1;
   1642 		}
   1643 	}
   1644 
   1645 	/*
   1646 	 * Allocate pages from the VM system.
   1647 	 */
   1648 	error = uvm_pglistalloc(size, low, high, alignment, uboundary,
   1649 	    &mlist, nsegs, (flags & BUS_DMA_NOWAIT) == 0);
   1650 	if (error)
   1651 		return error;
   1652 
   1653 	/*
   1654 	 * Compute the location, size, and number of segments actually
   1655 	 * returned by the VM code.
   1656 	 */
   1657 	m = TAILQ_FIRST(&mlist);
   1658 	curseg = 0;
   1659 	lastaddr = segs[curseg].ds_addr = VM_PAGE_TO_PHYS(m);
   1660 	segs[curseg].ds_len = PAGE_SIZE;
   1661 #ifdef DEBUG_DMA
   1662 		printf("alloc: page %lx\n", lastaddr);
   1663 #endif	/* DEBUG_DMA */
   1664 	m = TAILQ_NEXT(m, pageq.queue);
   1665 
   1666 	for (; m != NULL; m = TAILQ_NEXT(m, pageq.queue)) {
   1667 		curaddr = VM_PAGE_TO_PHYS(m);
   1668 		KASSERTMSG(low <= curaddr && curaddr < high,
   1669 		    "uvm_pglistalloc returned non-sensicaladdress %#lx "
   1670 		    "(low=%#lx, high=%#lx\n", curaddr, low, high);
   1671 #ifdef DEBUG_DMA
   1672 		printf("alloc: page %lx\n", curaddr);
   1673 #endif	/* DEBUG_DMA */
   1674 		if (curaddr == lastaddr + PAGE_SIZE
   1675 		    && (lastaddr & boundary) == (curaddr & boundary))
   1676 			segs[curseg].ds_len += PAGE_SIZE;
   1677 		else {
   1678 			curseg++;
   1679 			if (curseg >= nsegs) {
   1680 				uvm_pglistfree(&mlist);
   1681 				return EFBIG;
   1682 			}
   1683 			segs[curseg].ds_addr = curaddr;
   1684 			segs[curseg].ds_len = PAGE_SIZE;
   1685 		}
   1686 		lastaddr = curaddr;
   1687 	}
   1688 
   1689 	*rsegs = curseg + 1;
   1690 
   1691 	return 0;
   1692 }
   1693 
   1694 /*
   1695  * Check if a memory region intersects with a DMA range, and return the
   1696  * page-rounded intersection if it does.
   1697  */
   1698 int
   1699 arm32_dma_range_intersect(struct arm32_dma_range *ranges, int nranges,
   1700     paddr_t pa, psize_t size, paddr_t *pap, psize_t *sizep)
   1701 {
   1702 	struct arm32_dma_range *dr;
   1703 	int i;
   1704 
   1705 	if (ranges == NULL)
   1706 		return 0;
   1707 
   1708 	for (i = 0, dr = ranges; i < nranges; i++, dr++) {
   1709 		if (dr->dr_sysbase <= pa &&
   1710 		    pa < (dr->dr_sysbase + dr->dr_len)) {
   1711 			/*
   1712 			 * Beginning of region intersects with this range.
   1713 			 */
   1714 			*pap = trunc_page(pa);
   1715 			*sizep = round_page(min(pa + size,
   1716 			    dr->dr_sysbase + dr->dr_len) - pa);
   1717 			return 1;
   1718 		}
   1719 		if (pa < dr->dr_sysbase && dr->dr_sysbase < (pa + size)) {
   1720 			/*
   1721 			 * End of region intersects with this range.
   1722 			 */
   1723 			*pap = trunc_page(dr->dr_sysbase);
   1724 			*sizep = round_page(min((pa + size) - dr->dr_sysbase,
   1725 			    dr->dr_len));
   1726 			return 1;
   1727 		}
   1728 	}
   1729 
   1730 	/* No intersection found. */
   1731 	return 0;
   1732 }
   1733 
   1734 #ifdef _ARM32_NEED_BUS_DMA_BOUNCE
   1735 static int
   1736 _bus_dma_alloc_bouncebuf(bus_dma_tag_t t, bus_dmamap_t map,
   1737     bus_size_t size, int flags)
   1738 {
   1739 	struct arm32_bus_dma_cookie *cookie = map->_dm_cookie;
   1740 	int error = 0;
   1741 
   1742 	KASSERT(cookie != NULL);
   1743 
   1744 	cookie->id_bouncebuflen = round_page(size);
   1745 	error = _bus_dmamem_alloc(t, cookie->id_bouncebuflen,
   1746 	    PAGE_SIZE, map->_dm_boundary, cookie->id_bouncesegs,
   1747 	    map->_dm_segcnt, &cookie->id_nbouncesegs, flags);
   1748 	if (error == 0) {
   1749 		error = _bus_dmamem_map(t, cookie->id_bouncesegs,
   1750 		    cookie->id_nbouncesegs, cookie->id_bouncebuflen,
   1751 		    (void **)&cookie->id_bouncebuf, flags);
   1752 		if (error) {
   1753 			_bus_dmamem_free(t, cookie->id_bouncesegs,
   1754 			    cookie->id_nbouncesegs);
   1755 			cookie->id_bouncebuflen = 0;
   1756 			cookie->id_nbouncesegs = 0;
   1757 		} else {
   1758 			cookie->id_flags |= _BUS_DMA_HAS_BOUNCE;
   1759 		}
   1760 	} else {
   1761 		cookie->id_bouncebuflen = 0;
   1762 		cookie->id_nbouncesegs = 0;
   1763 	}
   1764 
   1765 	return error;
   1766 }
   1767 
   1768 static void
   1769 _bus_dma_free_bouncebuf(bus_dma_tag_t t, bus_dmamap_t map)
   1770 {
   1771 	struct arm32_bus_dma_cookie *cookie = map->_dm_cookie;
   1772 
   1773 	KASSERT(cookie != NULL);
   1774 
   1775 	_bus_dmamem_unmap(t, cookie->id_bouncebuf, cookie->id_bouncebuflen);
   1776 	_bus_dmamem_free(t, cookie->id_bouncesegs, cookie->id_nbouncesegs);
   1777 	cookie->id_bouncebuflen = 0;
   1778 	cookie->id_nbouncesegs = 0;
   1779 	cookie->id_flags &= ~_BUS_DMA_HAS_BOUNCE;
   1780 }
   1781 
   1782 /*
   1783  * This function does the same as uiomove, but takes an explicit
   1784  * direction, and does not update the uio structure.
   1785  */
   1786 static int
   1787 _bus_dma_uiomove(void *buf, struct uio *uio, size_t n, int direction)
   1788 {
   1789 	struct iovec *iov;
   1790 	int error;
   1791 	struct vmspace *vm;
   1792 	char *cp;
   1793 	size_t resid, cnt;
   1794 	int i;
   1795 
   1796 	iov = uio->uio_iov;
   1797 	vm = uio->uio_vmspace;
   1798 	cp = buf;
   1799 	resid = n;
   1800 
   1801 	for (i = 0; i < uio->uio_iovcnt && resid > 0; i++) {
   1802 		iov = &uio->uio_iov[i];
   1803 		if (iov->iov_len == 0)
   1804 			continue;
   1805 		cnt = MIN(resid, iov->iov_len);
   1806 
   1807 		if (!VMSPACE_IS_KERNEL_P(vm) &&
   1808 		    (curlwp->l_cpu->ci_schedstate.spc_flags & SPCF_SHOULDYIELD)
   1809 		    != 0) {
   1810 			preempt();
   1811 		}
   1812 		if (direction == UIO_READ) {
   1813 			error = copyout_vmspace(vm, cp, iov->iov_base, cnt);
   1814 		} else {
   1815 			error = copyin_vmspace(vm, iov->iov_base, cp, cnt);
   1816 		}
   1817 		if (error)
   1818 			return error;
   1819 		cp += cnt;
   1820 		resid -= cnt;
   1821 	}
   1822 	return 0;
   1823 }
   1824 #endif /* _ARM32_NEED_BUS_DMA_BOUNCE */
   1825 
   1826 int
   1827 _bus_dmatag_subregion(bus_dma_tag_t tag, bus_addr_t min_addr,
   1828     bus_addr_t max_addr, bus_dma_tag_t *newtag, int flags)
   1829 {
   1830 
   1831 #ifdef _ARM32_NEED_BUS_DMA_BOUNCE
   1832 	struct arm32_dma_range *dr;
   1833 	bool subset = false;
   1834 	size_t nranges = 0;
   1835 	size_t i;
   1836 	for (i = 0, dr = tag->_ranges; i < tag->_nranges; i++, dr++) {
   1837 		if (dr->dr_sysbase <= min_addr
   1838 		    && max_addr <= dr->dr_sysbase + dr->dr_len - 1) {
   1839 			subset = true;
   1840 		}
   1841 		if (min_addr <= dr->dr_sysbase + dr->dr_len
   1842 		    && max_addr >= dr->dr_sysbase) {
   1843 			nranges++;
   1844 		}
   1845 	}
   1846 	if (subset) {
   1847 		*newtag = tag;
   1848 		/* if the tag must be freed, add a reference */
   1849 		if (tag->_tag_needs_free)
   1850 			(tag->_tag_needs_free)++;
   1851 		return 0;
   1852 	}
   1853 	if (nranges == 0) {
   1854 		nranges = 1;
   1855 	}
   1856 
   1857 	const size_t tagsize = sizeof(*tag) + nranges * sizeof(*dr);
   1858 	if ((*newtag = kmem_intr_zalloc(tagsize,
   1859 	    (flags & BUS_DMA_NOWAIT) ? KM_NOSLEEP : KM_SLEEP)) == NULL)
   1860 		return ENOMEM;
   1861 
   1862 	dr = (void *)(*newtag + 1);
   1863 	**newtag = *tag;
   1864 	(*newtag)->_tag_needs_free = 1;
   1865 	(*newtag)->_ranges = dr;
   1866 	(*newtag)->_nranges = nranges;
   1867 
   1868 	if (tag->_ranges == NULL) {
   1869 		dr->dr_sysbase = min_addr;
   1870 		dr->dr_busbase = min_addr;
   1871 		dr->dr_len = max_addr + 1 - min_addr;
   1872 	} else {
   1873 		for (i = 0; i < nranges; i++) {
   1874 			if (min_addr > dr->dr_sysbase + dr->dr_len
   1875 			    || max_addr < dr->dr_sysbase)
   1876 				continue;
   1877 			dr[0] = tag->_ranges[i];
   1878 			if (dr->dr_sysbase < min_addr) {
   1879 				psize_t diff = min_addr - dr->dr_sysbase;
   1880 				dr->dr_busbase += diff;
   1881 				dr->dr_len -= diff;
   1882 				dr->dr_sysbase += diff;
   1883 			}
   1884 			if (max_addr != 0xffffffff
   1885 			    && max_addr + 1 < dr->dr_sysbase + dr->dr_len) {
   1886 				dr->dr_len = max_addr + 1 - dr->dr_sysbase;
   1887 			}
   1888 			dr++;
   1889 		}
   1890 	}
   1891 
   1892 	return 0;
   1893 #else
   1894 	return EOPNOTSUPP;
   1895 #endif /* _ARM32_NEED_BUS_DMA_BOUNCE */
   1896 }
   1897 
   1898 void
   1899 _bus_dmatag_destroy(bus_dma_tag_t tag)
   1900 {
   1901 #ifdef _ARM32_NEED_BUS_DMA_BOUNCE
   1902 	switch (tag->_tag_needs_free) {
   1903 	case 0:
   1904 		break;				/* not allocated with kmem */
   1905 	case 1: {
   1906 		const size_t tagsize = sizeof(*tag)
   1907 		    + tag->_nranges * sizeof(*tag->_ranges);
   1908 		kmem_intr_free(tag, tagsize);	/* last reference to tag */
   1909 		break;
   1910 	}
   1911 	default:
   1912 		(tag->_tag_needs_free)--;	/* one less reference */
   1913 	}
   1914 #endif
   1915 }
   1916