bus_dma.c revision 1.104 1 /* $NetBSD: bus_dma.c,v 1.104 2018/03/03 18:11:25 skrll Exp $ */
2
3 /*-
4 * Copyright (c) 1996, 1997, 1998 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Jason R. Thorpe of the Numerical Aerospace Simulation Facility,
9 * NASA Ames Research Center.
10 *
11 * Redistribution and use in source and binary forms, with or without
12 * modification, are permitted provided that the following conditions
13 * are met:
14 * 1. Redistributions of source code must retain the above copyright
15 * notice, this list of conditions and the following disclaimer.
16 * 2. Redistributions in binary form must reproduce the above copyright
17 * notice, this list of conditions and the following disclaimer in the
18 * documentation and/or other materials provided with the distribution.
19 *
20 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
21 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
22 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
23 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
24 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
25 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
26 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
27 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
28 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
29 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
30 * POSSIBILITY OF SUCH DAMAGE.
31 */
32
33 #define _ARM32_BUS_DMA_PRIVATE
34
35 #include "opt_arm_bus_space.h"
36
37 #include <sys/cdefs.h>
38 __KERNEL_RCSID(0, "$NetBSD: bus_dma.c,v 1.104 2018/03/03 18:11:25 skrll Exp $");
39
40 #include <sys/param.h>
41 #include <sys/bus.h>
42 #include <sys/cpu.h>
43 #include <sys/kmem.h>
44 #include <sys/mbuf.h>
45
46 #include <uvm/uvm.h>
47
48 #include <arm/cpufunc.h>
49
50 #ifdef __HAVE_MM_MD_DIRECT_MAPPED_PHYS
51 #include <dev/mm.h>
52 #endif
53
54 #ifdef BUSDMA_COUNTERS
55 static struct evcnt bus_dma_creates =
56 EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL, "busdma", "creates");
57 static struct evcnt bus_dma_bounced_creates =
58 EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL, "busdma", "bounced creates");
59 static struct evcnt bus_dma_loads =
60 EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL, "busdma", "loads");
61 static struct evcnt bus_dma_bounced_loads =
62 EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL, "busdma", "bounced loads");
63 static struct evcnt bus_dma_coherent_loads =
64 EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL, "busdma", "coherent loads");
65 static struct evcnt bus_dma_read_bounces =
66 EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL, "busdma", "read bounces");
67 static struct evcnt bus_dma_write_bounces =
68 EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL, "busdma", "write bounces");
69 static struct evcnt bus_dma_bounced_unloads =
70 EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL, "busdma", "bounced unloads");
71 static struct evcnt bus_dma_unloads =
72 EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL, "busdma", "unloads");
73 static struct evcnt bus_dma_bounced_destroys =
74 EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL, "busdma", "bounced destroys");
75 static struct evcnt bus_dma_destroys =
76 EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL, "busdma", "destroys");
77 static struct evcnt bus_dma_sync_prereadwrite =
78 EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL, "busdma", "sync prereadwrite");
79 static struct evcnt bus_dma_sync_preread_begin =
80 EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL, "busdma", "sync preread begin");
81 static struct evcnt bus_dma_sync_preread =
82 EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL, "busdma", "sync preread");
83 static struct evcnt bus_dma_sync_preread_tail =
84 EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL, "busdma", "sync preread tail");
85 static struct evcnt bus_dma_sync_prewrite =
86 EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL, "busdma", "sync prewrite");
87 static struct evcnt bus_dma_sync_postread =
88 EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL, "busdma", "sync postread");
89 static struct evcnt bus_dma_sync_postreadwrite =
90 EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL, "busdma", "sync postreadwrite");
91 static struct evcnt bus_dma_sync_postwrite =
92 EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL, "busdma", "sync postwrite");
93
94 EVCNT_ATTACH_STATIC(bus_dma_creates);
95 EVCNT_ATTACH_STATIC(bus_dma_bounced_creates);
96 EVCNT_ATTACH_STATIC(bus_dma_loads);
97 EVCNT_ATTACH_STATIC(bus_dma_bounced_loads);
98 EVCNT_ATTACH_STATIC(bus_dma_coherent_loads);
99 EVCNT_ATTACH_STATIC(bus_dma_read_bounces);
100 EVCNT_ATTACH_STATIC(bus_dma_write_bounces);
101 EVCNT_ATTACH_STATIC(bus_dma_unloads);
102 EVCNT_ATTACH_STATIC(bus_dma_bounced_unloads);
103 EVCNT_ATTACH_STATIC(bus_dma_destroys);
104 EVCNT_ATTACH_STATIC(bus_dma_bounced_destroys);
105 EVCNT_ATTACH_STATIC(bus_dma_sync_prereadwrite);
106 EVCNT_ATTACH_STATIC(bus_dma_sync_preread_begin);
107 EVCNT_ATTACH_STATIC(bus_dma_sync_preread);
108 EVCNT_ATTACH_STATIC(bus_dma_sync_preread_tail);
109 EVCNT_ATTACH_STATIC(bus_dma_sync_prewrite);
110 EVCNT_ATTACH_STATIC(bus_dma_sync_postread);
111 EVCNT_ATTACH_STATIC(bus_dma_sync_postreadwrite);
112 EVCNT_ATTACH_STATIC(bus_dma_sync_postwrite);
113
114 #define STAT_INCR(x) (bus_dma_ ## x.ev_count++)
115 #else
116 #define STAT_INCR(x) /*(bus_dma_ ## x.ev_count++)*/
117 #endif
118
119 int _bus_dmamap_load_buffer(bus_dma_tag_t, bus_dmamap_t, void *,
120 bus_size_t, struct vmspace *, int);
121 static struct arm32_dma_range *
122 _bus_dma_paddr_inrange(struct arm32_dma_range *, int, paddr_t);
123
124 /*
125 * Check to see if the specified page is in an allowed DMA range.
126 */
127 inline struct arm32_dma_range *
128 _bus_dma_paddr_inrange(struct arm32_dma_range *ranges, int nranges,
129 bus_addr_t curaddr)
130 {
131 struct arm32_dma_range *dr;
132 int i;
133
134 for (i = 0, dr = ranges; i < nranges; i++, dr++) {
135 if (curaddr >= dr->dr_sysbase &&
136 curaddr < (dr->dr_sysbase + dr->dr_len))
137 return dr;
138 }
139
140 return NULL;
141 }
142
143 /*
144 * Check to see if the specified busaddr is in an allowed DMA range.
145 */
146 static inline paddr_t
147 _bus_dma_busaddr_to_paddr(bus_dma_tag_t t, bus_addr_t curaddr)
148 {
149 struct arm32_dma_range *dr;
150 u_int i;
151
152 if (t->_nranges == 0)
153 return curaddr;
154
155 for (i = 0, dr = t->_ranges; i < t->_nranges; i++, dr++) {
156 if (dr->dr_busbase <= curaddr
157 && curaddr < dr->dr_busbase + dr->dr_len)
158 return curaddr - dr->dr_busbase + dr->dr_sysbase;
159 }
160 panic("%s: curaddr %#lx not in range", __func__, curaddr);
161 }
162
163 /*
164 * Common function to load the specified physical address into the
165 * DMA map, coalescing segments and boundary checking as necessary.
166 */
167 static int
168 _bus_dmamap_load_paddr(bus_dma_tag_t t, bus_dmamap_t map,
169 bus_addr_t paddr, bus_size_t size, bool coherent)
170 {
171 bus_dma_segment_t * const segs = map->dm_segs;
172 int nseg = map->dm_nsegs;
173 bus_addr_t lastaddr;
174 bus_addr_t bmask = ~(map->_dm_boundary - 1);
175 bus_addr_t curaddr;
176 bus_size_t sgsize;
177 uint32_t _ds_flags = coherent ? _BUS_DMAMAP_COHERENT : 0;
178
179 if (nseg > 0)
180 lastaddr = segs[nseg - 1].ds_addr + segs[nseg - 1].ds_len;
181 else
182 lastaddr = 0xdead;
183
184 again:
185 sgsize = size;
186
187 /* Make sure we're in an allowed DMA range. */
188 if (t->_ranges != NULL) {
189 /* XXX cache last result? */
190 const struct arm32_dma_range * const dr =
191 _bus_dma_paddr_inrange(t->_ranges, t->_nranges, paddr);
192 if (dr == NULL)
193 return EINVAL;
194
195 /*
196 * If this region is coherent, mark the segment as coherent.
197 */
198 _ds_flags |= dr->dr_flags & _BUS_DMAMAP_COHERENT;
199
200 /*
201 * In a valid DMA range. Translate the physical
202 * memory address to an address in the DMA window.
203 */
204 curaddr = (paddr - dr->dr_sysbase) + dr->dr_busbase;
205 #if 0
206 printf("%p: %#lx: range %#lx/%#lx/%#lx/%#x: %#x <-- %#lx\n",
207 t, paddr, dr->dr_sysbase, dr->dr_busbase,
208 dr->dr_len, dr->dr_flags, _ds_flags, curaddr);
209 #endif
210 } else
211 curaddr = paddr;
212
213 /*
214 * Make sure we don't cross any boundaries.
215 */
216 if (map->_dm_boundary > 0) {
217 bus_addr_t baddr; /* next boundary address */
218
219 baddr = (curaddr + map->_dm_boundary) & bmask;
220 if (sgsize > (baddr - curaddr))
221 sgsize = (baddr - curaddr);
222 }
223
224 /*
225 * Insert chunk into a segment, coalescing with the
226 * previous segment if possible.
227 */
228 if (nseg > 0 && curaddr == lastaddr &&
229 segs[nseg - 1].ds_len + sgsize <= map->dm_maxsegsz &&
230 ((segs[nseg - 1]._ds_flags ^ _ds_flags) & _BUS_DMAMAP_COHERENT) == 0 &&
231 (map->_dm_boundary == 0 ||
232 (segs[nseg - 1].ds_addr & bmask) == (curaddr & bmask))) {
233 /* coalesce */
234 segs[nseg - 1].ds_len += sgsize;
235 } else if (nseg >= map->_dm_segcnt) {
236 return EFBIG;
237 } else {
238 /* new segment */
239 segs[nseg].ds_addr = curaddr;
240 segs[nseg].ds_len = sgsize;
241 segs[nseg]._ds_flags = _ds_flags;
242 nseg++;
243 }
244
245 lastaddr = curaddr + sgsize;
246
247 paddr += sgsize;
248 size -= sgsize;
249 if (size > 0)
250 goto again;
251
252 map->_dm_flags &= (_ds_flags & _BUS_DMAMAP_COHERENT);
253 map->dm_nsegs = nseg;
254 return 0;
255 }
256
257 #ifdef _ARM32_NEED_BUS_DMA_BOUNCE
258 static int _bus_dma_alloc_bouncebuf(bus_dma_tag_t t, bus_dmamap_t map,
259 bus_size_t size, int flags);
260 static void _bus_dma_free_bouncebuf(bus_dma_tag_t t, bus_dmamap_t map);
261 static int _bus_dma_uiomove(void *buf, struct uio *uio, size_t n,
262 int direction);
263
264 static int
265 _bus_dma_load_bouncebuf(bus_dma_tag_t t, bus_dmamap_t map, void *buf,
266 size_t buflen, int buftype, int flags)
267 {
268 struct arm32_bus_dma_cookie * const cookie = map->_dm_cookie;
269 struct vmspace * const vm = vmspace_kernel();
270 int error;
271
272 KASSERT(cookie != NULL);
273 KASSERT(cookie->id_flags & _BUS_DMA_MIGHT_NEED_BOUNCE);
274
275 /*
276 * Allocate bounce pages, if necessary.
277 */
278 if ((cookie->id_flags & _BUS_DMA_HAS_BOUNCE) == 0) {
279 error = _bus_dma_alloc_bouncebuf(t, map, buflen, flags);
280 if (error)
281 return error;
282 }
283
284 /*
285 * Cache a pointer to the caller's buffer and load the DMA map
286 * with the bounce buffer.
287 */
288 cookie->id_origbuf = buf;
289 cookie->id_origbuflen = buflen;
290 error = _bus_dmamap_load_buffer(t, map, cookie->id_bouncebuf,
291 buflen, vm, flags);
292 if (error)
293 return error;
294
295 STAT_INCR(bounced_loads);
296 map->dm_mapsize = buflen;
297 map->_dm_vmspace = vm;
298 map->_dm_buftype = buftype;
299
300 /* ...so _bus_dmamap_sync() knows we're bouncing */
301 map->_dm_flags |= _BUS_DMAMAP_IS_BOUNCING;
302 cookie->id_flags |= _BUS_DMA_IS_BOUNCING;
303 return 0;
304 }
305 #endif /* _ARM32_NEED_BUS_DMA_BOUNCE */
306
307 /*
308 * Common function for DMA map creation. May be called by bus-specific
309 * DMA map creation functions.
310 */
311 int
312 _bus_dmamap_create(bus_dma_tag_t t, bus_size_t size, int nsegments,
313 bus_size_t maxsegsz, bus_size_t boundary, int flags, bus_dmamap_t *dmamp)
314 {
315 struct arm32_bus_dmamap *map;
316 void *mapstore;
317
318 #ifdef DEBUG_DMA
319 printf("dmamap_create: t=%p size=%lx nseg=%x msegsz=%lx boundary=%lx"
320 " flags=%x\n", t, size, nsegments, maxsegsz, boundary, flags);
321 #endif /* DEBUG_DMA */
322
323 /*
324 * Allocate and initialize the DMA map. The end of the map
325 * is a variable-sized array of segments, so we allocate enough
326 * room for them in one shot.
327 *
328 * Note we don't preserve the WAITOK or NOWAIT flags. Preservation
329 * of ALLOCNOW notifies others that we've reserved these resources,
330 * and they are not to be freed.
331 *
332 * The bus_dmamap_t includes one bus_dma_segment_t, hence
333 * the (nsegments - 1).
334 */
335 const size_t mapsize = sizeof(struct arm32_bus_dmamap) +
336 (sizeof(bus_dma_segment_t) * (nsegments - 1));
337 const int zallocflags = (flags & BUS_DMA_NOWAIT) ? KM_NOSLEEP : KM_SLEEP;
338 if ((mapstore = kmem_intr_zalloc(mapsize, zallocflags)) == NULL)
339 return ENOMEM;
340
341 map = (struct arm32_bus_dmamap *)mapstore;
342 map->_dm_size = size;
343 map->_dm_segcnt = nsegments;
344 map->_dm_maxmaxsegsz = maxsegsz;
345 map->_dm_boundary = boundary;
346 map->_dm_flags = flags & ~(BUS_DMA_WAITOK|BUS_DMA_NOWAIT);
347 map->_dm_origbuf = NULL;
348 map->_dm_buftype = _BUS_DMA_BUFTYPE_INVALID;
349 map->_dm_vmspace = vmspace_kernel();
350 map->_dm_cookie = NULL;
351 map->dm_maxsegsz = maxsegsz;
352 map->dm_mapsize = 0; /* no valid mappings */
353 map->dm_nsegs = 0;
354
355 #ifdef _ARM32_NEED_BUS_DMA_BOUNCE
356 struct arm32_bus_dma_cookie *cookie;
357 int cookieflags;
358 void *cookiestore;
359 int error;
360
361 cookieflags = 0;
362
363 if (t->_may_bounce != NULL) {
364 error = (*t->_may_bounce)(t, map, flags, &cookieflags);
365 if (error != 0)
366 goto out;
367 }
368
369 if (t->_ranges != NULL)
370 cookieflags |= _BUS_DMA_MIGHT_NEED_BOUNCE;
371
372 if ((cookieflags & _BUS_DMA_MIGHT_NEED_BOUNCE) == 0) {
373 STAT_INCR(creates);
374 *dmamp = map;
375 return 0;
376 }
377
378 const size_t cookiesize = sizeof(struct arm32_bus_dma_cookie) +
379 (sizeof(bus_dma_segment_t) * map->_dm_segcnt);
380
381 /*
382 * Allocate our cookie.
383 */
384 if ((cookiestore = kmem_intr_zalloc(cookiesize, zallocflags)) == NULL) {
385 error = ENOMEM;
386 goto out;
387 }
388 cookie = (struct arm32_bus_dma_cookie *)cookiestore;
389 cookie->id_flags = cookieflags;
390 map->_dm_cookie = cookie;
391 STAT_INCR(bounced_creates);
392
393 error = _bus_dma_alloc_bouncebuf(t, map, size, flags);
394 out:
395 if (error)
396 _bus_dmamap_destroy(t, map);
397 else
398 *dmamp = map;
399 #else
400 *dmamp = map;
401 STAT_INCR(creates);
402 #endif /* _ARM32_NEED_BUS_DMA_BOUNCE */
403 #ifdef DEBUG_DMA
404 printf("dmamap_create:map=%p\n", map);
405 #endif /* DEBUG_DMA */
406 return 0;
407 }
408
409 /*
410 * Common function for DMA map destruction. May be called by bus-specific
411 * DMA map destruction functions.
412 */
413 void
414 _bus_dmamap_destroy(bus_dma_tag_t t, bus_dmamap_t map)
415 {
416
417 #ifdef DEBUG_DMA
418 printf("dmamap_destroy: t=%p map=%p\n", t, map);
419 #endif /* DEBUG_DMA */
420 #ifdef _ARM32_NEED_BUS_DMA_BOUNCE
421 struct arm32_bus_dma_cookie *cookie = map->_dm_cookie;
422
423 /*
424 * Free any bounce pages this map might hold.
425 */
426 if (cookie != NULL) {
427 const size_t cookiesize = sizeof(struct arm32_bus_dma_cookie) +
428 (sizeof(bus_dma_segment_t) * map->_dm_segcnt);
429
430 if (cookie->id_flags & _BUS_DMA_IS_BOUNCING)
431 STAT_INCR(bounced_unloads);
432 map->dm_nsegs = 0;
433 if (cookie->id_flags & _BUS_DMA_HAS_BOUNCE)
434 _bus_dma_free_bouncebuf(t, map);
435 STAT_INCR(bounced_destroys);
436 kmem_intr_free(cookie, cookiesize);
437 } else
438 #endif
439 STAT_INCR(destroys);
440
441 if (map->dm_nsegs > 0)
442 STAT_INCR(unloads);
443
444 const size_t mapsize = sizeof(struct arm32_bus_dmamap) +
445 (sizeof(bus_dma_segment_t) * (map->_dm_segcnt - 1));
446 kmem_intr_free(map, mapsize);
447 }
448
449 /*
450 * Common function for loading a DMA map with a linear buffer. May
451 * be called by bus-specific DMA map load functions.
452 */
453 int
454 _bus_dmamap_load(bus_dma_tag_t t, bus_dmamap_t map, void *buf,
455 bus_size_t buflen, struct proc *p, int flags)
456 {
457 struct vmspace *vm;
458 int error;
459
460 #ifdef DEBUG_DMA
461 printf("dmamap_load: t=%p map=%p buf=%p len=%lx p=%p f=%d\n",
462 t, map, buf, buflen, p, flags);
463 #endif /* DEBUG_DMA */
464
465 if (map->dm_nsegs > 0) {
466 #ifdef _ARM32_NEED_BUS_DMA_BOUNCE
467 struct arm32_bus_dma_cookie *cookie = map->_dm_cookie;
468 if (cookie != NULL) {
469 if (cookie->id_flags & _BUS_DMA_IS_BOUNCING) {
470 STAT_INCR(bounced_unloads);
471 cookie->id_flags &= ~_BUS_DMA_IS_BOUNCING;
472 map->_dm_flags &= ~_BUS_DMAMAP_IS_BOUNCING;
473 }
474 } else
475 #endif
476 STAT_INCR(unloads);
477 }
478
479 /*
480 * Make sure that on error condition we return "no valid mappings".
481 */
482 map->dm_mapsize = 0;
483 map->dm_nsegs = 0;
484 map->_dm_buftype = _BUS_DMA_BUFTYPE_INVALID;
485 KASSERTMSG(map->dm_maxsegsz <= map->_dm_maxmaxsegsz,
486 "dm_maxsegsz %lu _dm_maxmaxsegsz %lu",
487 map->dm_maxsegsz, map->_dm_maxmaxsegsz);
488
489 if (buflen > map->_dm_size)
490 return EINVAL;
491
492 if (p != NULL) {
493 vm = p->p_vmspace;
494 } else {
495 vm = vmspace_kernel();
496 }
497
498 /* _bus_dmamap_load_buffer() clears this if we're not... */
499 map->_dm_flags |= _BUS_DMAMAP_COHERENT;
500
501 error = _bus_dmamap_load_buffer(t, map, buf, buflen, vm, flags);
502 if (error == 0) {
503 map->dm_mapsize = buflen;
504 map->_dm_vmspace = vm;
505 map->_dm_origbuf = buf;
506 map->_dm_buftype = _BUS_DMA_BUFTYPE_LINEAR;
507 if (map->_dm_flags & _BUS_DMAMAP_COHERENT) {
508 STAT_INCR(coherent_loads);
509 } else {
510 STAT_INCR(loads);
511 }
512 return 0;
513 }
514 #ifdef _ARM32_NEED_BUS_DMA_BOUNCE
515 struct arm32_bus_dma_cookie * const cookie = map->_dm_cookie;
516 if (cookie != NULL && (cookie->id_flags & _BUS_DMA_MIGHT_NEED_BOUNCE)) {
517 error = _bus_dma_load_bouncebuf(t, map, buf, buflen,
518 _BUS_DMA_BUFTYPE_LINEAR, flags);
519 }
520 #endif
521 return error;
522 }
523
524 /*
525 * Like _bus_dmamap_load(), but for mbufs.
526 */
527 int
528 _bus_dmamap_load_mbuf(bus_dma_tag_t t, bus_dmamap_t map, struct mbuf *m0,
529 int flags)
530 {
531 int error;
532 struct mbuf *m;
533
534 #ifdef DEBUG_DMA
535 printf("dmamap_load_mbuf: t=%p map=%p m0=%p f=%d\n",
536 t, map, m0, flags);
537 #endif /* DEBUG_DMA */
538
539 if (map->dm_nsegs > 0) {
540 #ifdef _ARM32_NEED_BUS_DMA_BOUNCE
541 struct arm32_bus_dma_cookie *cookie = map->_dm_cookie;
542 if (cookie != NULL) {
543 if (cookie->id_flags & _BUS_DMA_IS_BOUNCING) {
544 STAT_INCR(bounced_unloads);
545 cookie->id_flags &= ~_BUS_DMA_IS_BOUNCING;
546 map->_dm_flags &= ~_BUS_DMAMAP_IS_BOUNCING;
547 }
548 } else
549 #endif
550 STAT_INCR(unloads);
551 }
552
553 /*
554 * Make sure that on error condition we return "no valid mappings."
555 */
556 map->dm_mapsize = 0;
557 map->dm_nsegs = 0;
558 map->_dm_buftype = _BUS_DMA_BUFTYPE_INVALID;
559 KASSERTMSG(map->dm_maxsegsz <= map->_dm_maxmaxsegsz,
560 "dm_maxsegsz %lu _dm_maxmaxsegsz %lu",
561 map->dm_maxsegsz, map->_dm_maxmaxsegsz);
562
563 KASSERT(m0->m_flags & M_PKTHDR);
564
565 if (m0->m_pkthdr.len > map->_dm_size)
566 return EINVAL;
567
568 /* _bus_dmamap_load_paddr() clears this if we're not... */
569 map->_dm_flags |= _BUS_DMAMAP_COHERENT;
570
571 error = 0;
572 for (m = m0; m != NULL && error == 0; m = m->m_next) {
573 int offset;
574 int remainbytes;
575 const struct vm_page * const *pgs;
576 paddr_t paddr;
577 int size;
578
579 if (m->m_len == 0)
580 continue;
581 /*
582 * Don't allow reads in read-only mbufs.
583 */
584 if (M_ROMAP(m) && (flags & BUS_DMA_READ)) {
585 error = EFAULT;
586 break;
587 }
588 switch (m->m_flags & (M_EXT|M_CLUSTER|M_EXT_PAGES)) {
589 case M_EXT|M_CLUSTER:
590 /* XXX KDASSERT */
591 KASSERT(m->m_ext.ext_paddr != M_PADDR_INVALID);
592 paddr = m->m_ext.ext_paddr +
593 (m->m_data - m->m_ext.ext_buf);
594 size = m->m_len;
595 error = _bus_dmamap_load_paddr(t, map, paddr, size,
596 false);
597 break;
598
599 case M_EXT|M_EXT_PAGES:
600 KASSERT(m->m_ext.ext_buf <= m->m_data);
601 KASSERT(m->m_data <=
602 m->m_ext.ext_buf + m->m_ext.ext_size);
603
604 offset = (vaddr_t)m->m_data -
605 trunc_page((vaddr_t)m->m_ext.ext_buf);
606 remainbytes = m->m_len;
607
608 /* skip uninteresting pages */
609 pgs = (const struct vm_page * const *)
610 m->m_ext.ext_pgs + (offset >> PAGE_SHIFT);
611
612 offset &= PAGE_MASK; /* offset in the first page */
613
614 /* load each page */
615 while (remainbytes > 0) {
616 const struct vm_page *pg;
617
618 size = MIN(remainbytes, PAGE_SIZE - offset);
619
620 pg = *pgs++;
621 KASSERT(pg);
622 paddr = VM_PAGE_TO_PHYS(pg) + offset;
623
624 error = _bus_dmamap_load_paddr(t, map,
625 paddr, size, false);
626 if (error)
627 break;
628 offset = 0;
629 remainbytes -= size;
630 }
631 break;
632
633 case 0:
634 paddr = m->m_paddr + M_BUFOFFSET(m) +
635 (m->m_data - M_BUFADDR(m));
636 size = m->m_len;
637 error = _bus_dmamap_load_paddr(t, map, paddr, size,
638 false);
639 break;
640
641 default:
642 error = _bus_dmamap_load_buffer(t, map, m->m_data,
643 m->m_len, vmspace_kernel(), flags);
644 }
645 }
646 if (error == 0) {
647 map->dm_mapsize = m0->m_pkthdr.len;
648 map->_dm_origbuf = m0;
649 map->_dm_buftype = _BUS_DMA_BUFTYPE_MBUF;
650 map->_dm_vmspace = vmspace_kernel(); /* always kernel */
651 if (map->_dm_flags & _BUS_DMAMAP_COHERENT) {
652 STAT_INCR(coherent_loads);
653 } else {
654 STAT_INCR(loads);
655 }
656 return 0;
657 }
658 #ifdef _ARM32_NEED_BUS_DMA_BOUNCE
659 struct arm32_bus_dma_cookie * const cookie = map->_dm_cookie;
660 if (cookie != NULL && (cookie->id_flags & _BUS_DMA_MIGHT_NEED_BOUNCE)) {
661 error = _bus_dma_load_bouncebuf(t, map, m0, m0->m_pkthdr.len,
662 _BUS_DMA_BUFTYPE_MBUF, flags);
663 }
664 #endif
665 return error;
666 }
667
668 /*
669 * Like _bus_dmamap_load(), but for uios.
670 */
671 int
672 _bus_dmamap_load_uio(bus_dma_tag_t t, bus_dmamap_t map, struct uio *uio,
673 int flags)
674 {
675 int i, error;
676 bus_size_t minlen, resid;
677 struct iovec *iov;
678 void *addr;
679
680 /*
681 * Make sure that on error condition we return "no valid mappings."
682 */
683 map->dm_mapsize = 0;
684 map->dm_nsegs = 0;
685 KASSERTMSG(map->dm_maxsegsz <= map->_dm_maxmaxsegsz,
686 "dm_maxsegsz %lu _dm_maxmaxsegsz %lu",
687 map->dm_maxsegsz, map->_dm_maxmaxsegsz);
688
689 resid = uio->uio_resid;
690 iov = uio->uio_iov;
691
692 /* _bus_dmamap_load_buffer() clears this if we're not... */
693 map->_dm_flags |= _BUS_DMAMAP_COHERENT;
694
695 error = 0;
696 for (i = 0; i < uio->uio_iovcnt && resid != 0 && error == 0; i++) {
697 /*
698 * Now at the first iovec to load. Load each iovec
699 * until we have exhausted the residual count.
700 */
701 minlen = resid < iov[i].iov_len ? resid : iov[i].iov_len;
702 addr = (void *)iov[i].iov_base;
703
704 error = _bus_dmamap_load_buffer(t, map, addr, minlen,
705 uio->uio_vmspace, flags);
706
707 resid -= minlen;
708 }
709 if (error == 0) {
710 map->dm_mapsize = uio->uio_resid;
711 map->_dm_origbuf = uio;
712 map->_dm_buftype = _BUS_DMA_BUFTYPE_UIO;
713 map->_dm_vmspace = uio->uio_vmspace;
714 if (map->_dm_flags & _BUS_DMAMAP_COHERENT) {
715 STAT_INCR(coherent_loads);
716 } else {
717 STAT_INCR(loads);
718 }
719 }
720 return error;
721 }
722
723 /*
724 * Like _bus_dmamap_load(), but for raw memory allocated with
725 * bus_dmamem_alloc().
726 */
727 int
728 _bus_dmamap_load_raw(bus_dma_tag_t t, bus_dmamap_t map,
729 bus_dma_segment_t *segs, int nsegs, bus_size_t size0, int flags)
730 {
731
732 bus_size_t size;
733 int i, error = 0;
734
735 /*
736 * Make sure that on error conditions we return "no valid mappings."
737 */
738 map->dm_mapsize = 0;
739 map->dm_nsegs = 0;
740 KASSERT(map->dm_maxsegsz <= map->_dm_maxmaxsegsz);
741
742 if (size0 > map->_dm_size)
743 return EINVAL;
744
745 for (i = 0, size = size0; i < nsegs && size > 0; i++) {
746 bus_dma_segment_t *ds = &segs[i];
747 bus_size_t sgsize;
748
749 sgsize = MIN(ds->ds_len, size);
750 if (sgsize == 0)
751 continue;
752 error = _bus_dmamap_load_paddr(t, map, ds->ds_addr,
753 sgsize, false);
754 if (error != 0)
755 break;
756 size -= sgsize;
757 }
758
759 if (error != 0) {
760 map->dm_mapsize = 0;
761 map->dm_nsegs = 0;
762 return error;
763 }
764
765 /* XXX TBD bounce */
766
767 map->dm_mapsize = size0;
768 return 0;
769 }
770
771 /*
772 * Common function for unloading a DMA map. May be called by
773 * bus-specific DMA map unload functions.
774 */
775 void
776 _bus_dmamap_unload(bus_dma_tag_t t, bus_dmamap_t map)
777 {
778
779 #ifdef DEBUG_DMA
780 printf("dmamap_unload: t=%p map=%p\n", t, map);
781 #endif /* DEBUG_DMA */
782
783 /*
784 * No resources to free; just mark the mappings as
785 * invalid.
786 */
787 map->dm_mapsize = 0;
788 map->dm_nsegs = 0;
789 map->_dm_origbuf = NULL;
790 map->_dm_buftype = _BUS_DMA_BUFTYPE_INVALID;
791 map->_dm_vmspace = NULL;
792 }
793
794 static void
795 _bus_dmamap_sync_segment(vaddr_t va, paddr_t pa, vsize_t len, int ops,
796 bool readonly_p)
797 {
798 KASSERTMSG((va & PAGE_MASK) == (pa & PAGE_MASK),
799 "va %#lx pa %#lx", va, pa);
800 #if 0
801 printf("sync_segment: va=%#lx pa=%#lx len=%#lx ops=%#x ro=%d\n",
802 va, pa, len, ops, readonly_p);
803 #endif
804
805 switch (ops) {
806 case BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE:
807 #ifdef ARM_MMU_EXTENDED
808 (void)readonly_p;
809 #else
810 if (!readonly_p) {
811 #endif
812 STAT_INCR(sync_prereadwrite);
813 cpu_dcache_wbinv_range(va, len);
814 cpu_sdcache_wbinv_range(va, pa, len);
815 break;
816 #ifndef ARM_MMU_EXTENDED
817 }
818 /* FALLTHROUGH */
819 #endif
820
821 case BUS_DMASYNC_PREREAD: {
822 const size_t line_size = arm_dcache_align;
823 const size_t line_mask = arm_dcache_align_mask;
824 vsize_t misalignment = va & line_mask;
825 if (misalignment) {
826 va -= misalignment;
827 pa -= misalignment;
828 len += misalignment;
829 STAT_INCR(sync_preread_begin);
830 cpu_dcache_wbinv_range(va, line_size);
831 cpu_sdcache_wbinv_range(va, pa, line_size);
832 if (len <= line_size)
833 break;
834 va += line_size;
835 pa += line_size;
836 len -= line_size;
837 }
838 misalignment = len & line_mask;
839 len -= misalignment;
840 if (len > 0) {
841 STAT_INCR(sync_preread);
842 cpu_dcache_inv_range(va, len);
843 cpu_sdcache_inv_range(va, pa, len);
844 }
845 if (misalignment) {
846 va += len;
847 pa += len;
848 STAT_INCR(sync_preread_tail);
849 cpu_dcache_wbinv_range(va, line_size);
850 cpu_sdcache_wbinv_range(va, pa, line_size);
851 }
852 break;
853 }
854
855 case BUS_DMASYNC_PREWRITE:
856 STAT_INCR(sync_prewrite);
857 cpu_dcache_wb_range(va, len);
858 cpu_sdcache_wb_range(va, pa, len);
859 break;
860
861 #ifdef CPU_CORTEX
862 /*
863 * Cortex CPUs can do speculative loads so we need to clean the cache
864 * after a DMA read to deal with any speculatively loaded cache lines.
865 * Since these can't be dirty, we can just invalidate them and don't
866 * have to worry about having to write back their contents.
867 */
868 case BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE:
869 STAT_INCR(sync_postreadwrite);
870 cpu_dcache_inv_range(va, len);
871 cpu_sdcache_inv_range(va, pa, len);
872 break;
873 case BUS_DMASYNC_POSTREAD:
874 STAT_INCR(sync_postread);
875 cpu_dcache_inv_range(va, len);
876 cpu_sdcache_inv_range(va, pa, len);
877 break;
878 #endif
879 }
880 }
881
882 static inline void
883 _bus_dmamap_sync_linear(bus_dma_tag_t t, bus_dmamap_t map, bus_addr_t offset,
884 bus_size_t len, int ops)
885 {
886 bus_dma_segment_t *ds = map->dm_segs;
887 vaddr_t va = (vaddr_t) map->_dm_origbuf;
888 #ifdef _ARM32_NEED_BUS_DMA_BOUNCE
889 if (map->_dm_flags & _BUS_DMAMAP_IS_BOUNCING) {
890 struct arm32_bus_dma_cookie * const cookie = map->_dm_cookie;
891 va = (vaddr_t) cookie->id_bouncebuf;
892 }
893 #endif
894
895 while (len > 0) {
896 while (offset >= ds->ds_len) {
897 offset -= ds->ds_len;
898 va += ds->ds_len;
899 ds++;
900 }
901
902 paddr_t pa = _bus_dma_busaddr_to_paddr(t, ds->ds_addr + offset);
903 size_t seglen = min(len, ds->ds_len - offset);
904
905 if ((ds->_ds_flags & _BUS_DMAMAP_COHERENT) == 0)
906 _bus_dmamap_sync_segment(va + offset, pa, seglen, ops,
907 false);
908
909 offset += seglen;
910 len -= seglen;
911 }
912 }
913
914 static inline void
915 _bus_dmamap_sync_mbuf(bus_dma_tag_t t, bus_dmamap_t map, bus_size_t offset,
916 bus_size_t len, int ops)
917 {
918 bus_dma_segment_t *ds = map->dm_segs;
919 struct mbuf *m = map->_dm_origbuf;
920 bus_size_t voff = offset;
921 bus_size_t ds_off = offset;
922
923 while (len > 0) {
924 /* Find the current dma segment */
925 while (ds_off >= ds->ds_len) {
926 ds_off -= ds->ds_len;
927 ds++;
928 }
929 /* Find the current mbuf. */
930 while (voff >= m->m_len) {
931 voff -= m->m_len;
932 m = m->m_next;
933 }
934
935 /*
936 * Now at the first mbuf to sync; nail each one until
937 * we have exhausted the length.
938 */
939 vsize_t seglen = min(len, min(m->m_len - voff, ds->ds_len - ds_off));
940 vaddr_t va = mtod(m, vaddr_t) + voff;
941 paddr_t pa = _bus_dma_busaddr_to_paddr(t, ds->ds_addr + ds_off);
942
943 /*
944 * We can save a lot of work here if we know the mapping
945 * is read-only at the MMU and we aren't using the armv6+
946 * MMU:
947 *
948 * If a mapping is read-only, no dirty cache blocks will
949 * exist for it. If a writable mapping was made read-only,
950 * we know any dirty cache lines for the range will have
951 * been cleaned for us already. Therefore, if the upper
952 * layer can tell us we have a read-only mapping, we can
953 * skip all cache cleaning.
954 *
955 * NOTE: This only works if we know the pmap cleans pages
956 * before making a read-write -> read-only transition. If
957 * this ever becomes non-true (e.g. Physically Indexed
958 * cache), this will have to be revisited.
959 */
960
961 if ((ds->_ds_flags & _BUS_DMAMAP_COHERENT) == 0) {
962 /*
963 * If we are doing preread (DMAing into the mbuf),
964 * this mbuf better not be readonly,
965 */
966 KASSERT(!(ops & BUS_DMASYNC_PREREAD) || !M_ROMAP(m));
967 _bus_dmamap_sync_segment(va, pa, seglen, ops,
968 M_ROMAP(m));
969 }
970 voff += seglen;
971 ds_off += seglen;
972 len -= seglen;
973 }
974 }
975
976 static inline void
977 _bus_dmamap_sync_uio(bus_dma_tag_t t, bus_dmamap_t map, bus_addr_t offset,
978 bus_size_t len, int ops)
979 {
980 bus_dma_segment_t *ds = map->dm_segs;
981 struct uio *uio = map->_dm_origbuf;
982 struct iovec *iov = uio->uio_iov;
983 bus_size_t voff = offset;
984 bus_size_t ds_off = offset;
985
986 while (len > 0) {
987 /* Find the current dma segment */
988 while (ds_off >= ds->ds_len) {
989 ds_off -= ds->ds_len;
990 ds++;
991 }
992
993 /* Find the current iovec. */
994 while (voff >= iov->iov_len) {
995 voff -= iov->iov_len;
996 iov++;
997 }
998
999 /*
1000 * Now at the first iovec to sync; nail each one until
1001 * we have exhausted the length.
1002 */
1003 vsize_t seglen = min(len, min(iov->iov_len - voff, ds->ds_len - ds_off));
1004 vaddr_t va = (vaddr_t) iov->iov_base + voff;
1005 paddr_t pa = _bus_dma_busaddr_to_paddr(t, ds->ds_addr + ds_off);
1006
1007 if ((ds->_ds_flags & _BUS_DMAMAP_COHERENT) == 0)
1008 _bus_dmamap_sync_segment(va, pa, seglen, ops, false);
1009
1010 voff += seglen;
1011 ds_off += seglen;
1012 len -= seglen;
1013 }
1014 }
1015
1016 /*
1017 * Common function for DMA map synchronization. May be called
1018 * by bus-specific DMA map synchronization functions.
1019 *
1020 * This version works for the Virtually Indexed Virtually Tagged
1021 * cache found on 32-bit ARM processors.
1022 *
1023 * XXX Should have separate versions for write-through vs.
1024 * XXX write-back caches. We currently assume write-back
1025 * XXX here, which is not as efficient as it could be for
1026 * XXX the write-through case.
1027 */
1028 void
1029 _bus_dmamap_sync(bus_dma_tag_t t, bus_dmamap_t map, bus_addr_t offset,
1030 bus_size_t len, int ops)
1031 {
1032 #ifdef DEBUG_DMA
1033 printf("dmamap_sync: t=%p map=%p offset=%lx len=%lx ops=%x\n",
1034 t, map, offset, len, ops);
1035 #endif /* DEBUG_DMA */
1036
1037 /*
1038 * Mixing of PRE and POST operations is not allowed.
1039 */
1040 if ((ops & (BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE)) != 0 &&
1041 (ops & (BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE)) != 0)
1042 panic("_bus_dmamap_sync: mix PRE and POST");
1043
1044 KASSERTMSG(offset < map->dm_mapsize,
1045 "offset %lu mapsize %lu",
1046 offset, map->dm_mapsize);
1047 KASSERTMSG(len > 0 && offset + len <= map->dm_mapsize,
1048 "len %lu offset %lu mapsize %lu",
1049 len, offset, map->dm_mapsize);
1050
1051 /*
1052 * For a virtually-indexed write-back cache, we need
1053 * to do the following things:
1054 *
1055 * PREREAD -- Invalidate the D-cache. We do this
1056 * here in case a write-back is required by the back-end.
1057 *
1058 * PREWRITE -- Write-back the D-cache. Note that if
1059 * we are doing a PREREAD|PREWRITE, we can collapse
1060 * the whole thing into a single Wb-Inv.
1061 *
1062 * POSTREAD -- Re-invalidate the D-cache in case speculative
1063 * memory accesses caused cachelines to become valid with now
1064 * invalid data.
1065 *
1066 * POSTWRITE -- Nothing.
1067 */
1068 #ifdef _ARM32_NEED_BUS_DMA_BOUNCE
1069 const bool bouncing = (map->_dm_flags & _BUS_DMAMAP_IS_BOUNCING);
1070 #else
1071 const bool bouncing = false;
1072 #endif
1073
1074 const int pre_ops = ops & (BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1075 #ifdef CPU_CORTEX
1076 const int post_ops = ops & (BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1077 #else
1078 const int post_ops = 0;
1079 #endif
1080 if (!bouncing) {
1081 if (pre_ops == 0 && post_ops == BUS_DMASYNC_POSTWRITE) {
1082 STAT_INCR(sync_postwrite);
1083 return;
1084 } else if (pre_ops == 0 && post_ops == 0) {
1085 return;
1086 }
1087 }
1088 KASSERTMSG(bouncing || pre_ops != 0 || (post_ops & BUS_DMASYNC_POSTREAD),
1089 "pre_ops %#x post_ops %#x", pre_ops, post_ops);
1090 #ifdef _ARM32_NEED_BUS_DMA_BOUNCE
1091 if (bouncing && (ops & BUS_DMASYNC_PREWRITE)) {
1092 struct arm32_bus_dma_cookie * const cookie = map->_dm_cookie;
1093 STAT_INCR(write_bounces);
1094 char * const dataptr = (char *)cookie->id_bouncebuf + offset;
1095 /*
1096 * Copy the caller's buffer to the bounce buffer.
1097 */
1098 switch (map->_dm_buftype) {
1099 case _BUS_DMA_BUFTYPE_LINEAR:
1100 memcpy(dataptr, cookie->id_origlinearbuf + offset, len);
1101 break;
1102 case _BUS_DMA_BUFTYPE_MBUF:
1103 m_copydata(cookie->id_origmbuf, offset, len, dataptr);
1104 break;
1105 case _BUS_DMA_BUFTYPE_UIO:
1106 _bus_dma_uiomove(dataptr, cookie->id_origuio, len, UIO_WRITE);
1107 break;
1108 #ifdef DIAGNOSTIC
1109 case _BUS_DMA_BUFTYPE_RAW:
1110 panic("_bus_dmamap_sync(pre): _BUS_DMA_BUFTYPE_RAW");
1111 break;
1112
1113 case _BUS_DMA_BUFTYPE_INVALID:
1114 panic("_bus_dmamap_sync(pre): _BUS_DMA_BUFTYPE_INVALID");
1115 break;
1116
1117 default:
1118 panic("_bus_dmamap_sync(pre): map %p: unknown buffer type %d\n",
1119 map, map->_dm_buftype);
1120 break;
1121 #endif /* DIAGNOSTIC */
1122 }
1123 }
1124 #endif /* _ARM32_NEED_BUS_DMA_BOUNCE */
1125
1126 /* Skip cache frobbing if mapping was COHERENT. */
1127 if (!bouncing && (map->_dm_flags & _BUS_DMAMAP_COHERENT)) {
1128 /* Drain the write buffer. */
1129 if (pre_ops & BUS_DMASYNC_PREWRITE)
1130 cpu_drain_writebuf();
1131 return;
1132 }
1133
1134 #ifdef _ARM32_NEED_BUS_DMA_BOUNCE
1135 if (bouncing && ((map->_dm_flags & _BUS_DMAMAP_COHERENT) || pre_ops == 0)) {
1136 goto bounce_it;
1137 }
1138 #endif /* _ARM32_NEED_BUS_DMA_BOUNCE */
1139
1140 #ifndef ARM_MMU_EXTENDED
1141 /*
1142 * If the mapping belongs to a non-kernel vmspace, and the
1143 * vmspace has not been active since the last time a full
1144 * cache flush was performed, we don't need to do anything.
1145 */
1146 if (__predict_false(!VMSPACE_IS_KERNEL_P(map->_dm_vmspace) &&
1147 vm_map_pmap(&map->_dm_vmspace->vm_map)->pm_cstate.cs_cache_d == 0))
1148 return;
1149 #endif
1150
1151 int buftype = map->_dm_buftype;
1152 #ifdef _ARM32_NEED_BUS_DMA_BOUNCE
1153 if (bouncing) {
1154 buftype = _BUS_DMA_BUFTYPE_LINEAR;
1155 }
1156 #endif
1157
1158 switch (buftype) {
1159 case _BUS_DMA_BUFTYPE_LINEAR:
1160 _bus_dmamap_sync_linear(t, map, offset, len, ops);
1161 break;
1162
1163 case _BUS_DMA_BUFTYPE_MBUF:
1164 _bus_dmamap_sync_mbuf(t, map, offset, len, ops);
1165 break;
1166
1167 case _BUS_DMA_BUFTYPE_UIO:
1168 _bus_dmamap_sync_uio(t, map, offset, len, ops);
1169 break;
1170
1171 case _BUS_DMA_BUFTYPE_RAW:
1172 panic("_bus_dmamap_sync: _BUS_DMA_BUFTYPE_RAW");
1173 break;
1174
1175 case _BUS_DMA_BUFTYPE_INVALID:
1176 panic("_bus_dmamap_sync: _BUS_DMA_BUFTYPE_INVALID");
1177 break;
1178
1179 default:
1180 panic("_bus_dmamap_sync: map %p: unknown buffer type %d\n",
1181 map, map->_dm_buftype);
1182 }
1183
1184 /* Drain the write buffer. */
1185 cpu_drain_writebuf();
1186
1187 #ifdef _ARM32_NEED_BUS_DMA_BOUNCE
1188 bounce_it:
1189 if (!bouncing || (ops & BUS_DMASYNC_POSTREAD) == 0)
1190 return;
1191
1192 struct arm32_bus_dma_cookie * const cookie = map->_dm_cookie;
1193 char * const dataptr = (char *)cookie->id_bouncebuf + offset;
1194 STAT_INCR(read_bounces);
1195 /*
1196 * Copy the bounce buffer to the caller's buffer.
1197 */
1198 switch (map->_dm_buftype) {
1199 case _BUS_DMA_BUFTYPE_LINEAR:
1200 memcpy(cookie->id_origlinearbuf + offset, dataptr, len);
1201 break;
1202
1203 case _BUS_DMA_BUFTYPE_MBUF:
1204 m_copyback(cookie->id_origmbuf, offset, len, dataptr);
1205 break;
1206
1207 case _BUS_DMA_BUFTYPE_UIO:
1208 _bus_dma_uiomove(dataptr, cookie->id_origuio, len, UIO_READ);
1209 break;
1210 #ifdef DIAGNOSTIC
1211 case _BUS_DMA_BUFTYPE_RAW:
1212 panic("_bus_dmamap_sync(post): _BUS_DMA_BUFTYPE_RAW");
1213 break;
1214
1215 case _BUS_DMA_BUFTYPE_INVALID:
1216 panic("_bus_dmamap_sync(post): _BUS_DMA_BUFTYPE_INVALID");
1217 break;
1218
1219 default:
1220 panic("_bus_dmamap_sync(post): map %p: unknown buffer type %d\n",
1221 map, map->_dm_buftype);
1222 break;
1223 #endif
1224 }
1225 #endif /* _ARM32_NEED_BUS_DMA_BOUNCE */
1226 }
1227
1228 /*
1229 * Common function for DMA-safe memory allocation. May be called
1230 * by bus-specific DMA memory allocation functions.
1231 */
1232
1233 extern paddr_t physical_start;
1234 extern paddr_t physical_end;
1235
1236 int
1237 _bus_dmamem_alloc(bus_dma_tag_t t, bus_size_t size, bus_size_t alignment,
1238 bus_size_t boundary, bus_dma_segment_t *segs, int nsegs, int *rsegs,
1239 int flags)
1240 {
1241 struct arm32_dma_range *dr;
1242 int error, i;
1243
1244 #ifdef DEBUG_DMA
1245 printf("dmamem_alloc t=%p size=%lx align=%lx boundary=%lx "
1246 "segs=%p nsegs=%x rsegs=%p flags=%x\n", t, size, alignment,
1247 boundary, segs, nsegs, rsegs, flags);
1248 #endif
1249
1250 if ((dr = t->_ranges) != NULL) {
1251 error = ENOMEM;
1252 for (i = 0; i < t->_nranges; i++, dr++) {
1253 if (dr->dr_len == 0
1254 || (dr->dr_flags & _BUS_DMAMAP_NOALLOC))
1255 continue;
1256 error = _bus_dmamem_alloc_range(t, size, alignment,
1257 boundary, segs, nsegs, rsegs, flags,
1258 trunc_page(dr->dr_sysbase),
1259 trunc_page(dr->dr_sysbase + dr->dr_len));
1260 if (error == 0)
1261 break;
1262 }
1263 } else {
1264 error = _bus_dmamem_alloc_range(t, size, alignment, boundary,
1265 segs, nsegs, rsegs, flags, trunc_page(physical_start),
1266 trunc_page(physical_end));
1267 }
1268
1269 #ifdef DEBUG_DMA
1270 printf("dmamem_alloc: =%d\n", error);
1271 #endif
1272
1273 return error;
1274 }
1275
1276 /*
1277 * Common function for freeing DMA-safe memory. May be called by
1278 * bus-specific DMA memory free functions.
1279 */
1280 void
1281 _bus_dmamem_free(bus_dma_tag_t t, bus_dma_segment_t *segs, int nsegs)
1282 {
1283 struct vm_page *m;
1284 bus_addr_t addr;
1285 struct pglist mlist;
1286 int curseg;
1287
1288 #ifdef DEBUG_DMA
1289 printf("dmamem_free: t=%p segs=%p nsegs=%x\n", t, segs, nsegs);
1290 #endif /* DEBUG_DMA */
1291
1292 /*
1293 * Build a list of pages to free back to the VM system.
1294 */
1295 TAILQ_INIT(&mlist);
1296 for (curseg = 0; curseg < nsegs; curseg++) {
1297 for (addr = segs[curseg].ds_addr;
1298 addr < (segs[curseg].ds_addr + segs[curseg].ds_len);
1299 addr += PAGE_SIZE) {
1300 m = PHYS_TO_VM_PAGE(addr);
1301 TAILQ_INSERT_TAIL(&mlist, m, pageq.queue);
1302 }
1303 }
1304 uvm_pglistfree(&mlist);
1305 }
1306
1307 /*
1308 * Common function for mapping DMA-safe memory. May be called by
1309 * bus-specific DMA memory map functions.
1310 */
1311 int
1312 _bus_dmamem_map(bus_dma_tag_t t, bus_dma_segment_t *segs, int nsegs,
1313 size_t size, void **kvap, int flags)
1314 {
1315 vaddr_t va;
1316 paddr_t pa;
1317 int curseg;
1318 const uvm_flag_t kmflags = UVM_KMF_VAONLY
1319 | ((flags & BUS_DMA_NOWAIT) != 0 ? UVM_KMF_NOWAIT : 0);
1320 vsize_t align = 0;
1321
1322 #ifdef DEBUG_DMA
1323 printf("dmamem_map: t=%p segs=%p nsegs=%x size=%lx flags=%x\n", t,
1324 segs, nsegs, (unsigned long)size, flags);
1325 #endif /* DEBUG_DMA */
1326
1327 #ifdef PMAP_MAP_POOLPAGE
1328 /*
1329 * If all of memory is mapped, and we are mapping a single physically
1330 * contiguous area then this area is already mapped. Let's see if we
1331 * avoid having a separate mapping for it.
1332 */
1333 if (nsegs == 1) {
1334 /*
1335 * If this is a non-COHERENT mapping, then the existing kernel
1336 * mapping is already compatible with it.
1337 */
1338 bool direct_mapable = (flags & BUS_DMA_COHERENT) == 0;
1339 pa = segs[0].ds_addr;
1340
1341 /*
1342 * This is a COHERENT mapping which, unless this address is in
1343 * a COHERENT dma range, will not be compatible.
1344 */
1345 if (t->_ranges != NULL) {
1346 const struct arm32_dma_range * const dr =
1347 _bus_dma_paddr_inrange(t->_ranges, t->_nranges, pa);
1348 if (dr != NULL
1349 && (dr->dr_flags & _BUS_DMAMAP_COHERENT)) {
1350 direct_mapable = true;
1351 }
1352 }
1353
1354 #ifdef PMAP_NEED_ALLOC_POOLPAGE
1355 /*
1356 * The page can only be direct mapped if was allocated out
1357 * of the arm poolpage vm freelist.
1358 */
1359 uvm_physseg_t upm = uvm_physseg_find(atop(pa), NULL);
1360 KASSERT(uvm_physseg_valid_p(upm));
1361 if (direct_mapable) {
1362 direct_mapable =
1363 (arm_poolpage_vmfreelist == uvm_physseg_get_free_list(upm));
1364 }
1365 #endif
1366
1367 if (direct_mapable) {
1368 *kvap = (void *)PMAP_MAP_POOLPAGE(pa);
1369 #ifdef DEBUG_DMA
1370 printf("dmamem_map: =%p\n", *kvap);
1371 #endif /* DEBUG_DMA */
1372 return 0;
1373 }
1374 }
1375 #endif
1376
1377 size = round_page(size);
1378 if (__predict_true(size > L2_L_SIZE)) {
1379 #if (ARM_MMU_V6 + ARM_MMU_V7) > 0
1380 if (size >= L1_SS_SIZE)
1381 align = L1_SS_SIZE;
1382 else
1383 #endif
1384 if (size >= L1_S_SIZE)
1385 align = L1_S_SIZE;
1386 else
1387 align = L2_L_SIZE;
1388 }
1389
1390 va = uvm_km_alloc(kernel_map, size, align, kmflags);
1391 if (__predict_false(va == 0 && align > 0)) {
1392 align = 0;
1393 va = uvm_km_alloc(kernel_map, size, 0, kmflags);
1394 }
1395
1396 if (va == 0)
1397 return ENOMEM;
1398
1399 *kvap = (void *)va;
1400
1401 for (curseg = 0; curseg < nsegs; curseg++) {
1402 for (pa = segs[curseg].ds_addr;
1403 pa < (segs[curseg].ds_addr + segs[curseg].ds_len);
1404 pa += PAGE_SIZE, va += PAGE_SIZE, size -= PAGE_SIZE) {
1405 bool uncached = (flags & BUS_DMA_COHERENT);
1406 #ifdef DEBUG_DMA
1407 printf("wiring p%lx to v%lx", pa, va);
1408 #endif /* DEBUG_DMA */
1409 if (size == 0)
1410 panic("_bus_dmamem_map: size botch");
1411
1412 const struct arm32_dma_range * const dr =
1413 _bus_dma_paddr_inrange(t->_ranges, t->_nranges, pa);
1414 /*
1415 * If this dma region is coherent then there is
1416 * no need for an uncached mapping.
1417 */
1418 if (dr != NULL
1419 && (dr->dr_flags & _BUS_DMAMAP_COHERENT)) {
1420 uncached = false;
1421 }
1422
1423 pmap_kenter_pa(va, pa, VM_PROT_READ | VM_PROT_WRITE,
1424 PMAP_WIRED | (uncached ? PMAP_NOCACHE : 0));
1425 }
1426 }
1427 pmap_update(pmap_kernel());
1428 #ifdef DEBUG_DMA
1429 printf("dmamem_map: =%p\n", *kvap);
1430 #endif /* DEBUG_DMA */
1431 return 0;
1432 }
1433
1434 /*
1435 * Common function for unmapping DMA-safe memory. May be called by
1436 * bus-specific DMA memory unmapping functions.
1437 */
1438 void
1439 _bus_dmamem_unmap(bus_dma_tag_t t, void *kva, size_t size)
1440 {
1441
1442 #ifdef DEBUG_DMA
1443 printf("dmamem_unmap: t=%p kva=%p size=%zx\n", t, kva, size);
1444 #endif /* DEBUG_DMA */
1445 KASSERTMSG(((uintptr_t)kva & PAGE_MASK) == 0,
1446 "kva %p (%#"PRIxPTR")", kva, ((uintptr_t)kva & PAGE_MASK));
1447
1448 #ifdef __HAVE_MM_MD_DIRECT_MAPPED_PHYS
1449 /*
1450 * Check to see if this used direct mapped memory. Get its physical
1451 * address and try to map it. If the resultant matches the kva, then
1452 * it was and so we can just return since we have nothing to free up.
1453 */
1454 paddr_t pa;
1455 vaddr_t va;
1456 (void)pmap_extract(pmap_kernel(), (vaddr_t)kva, &pa);
1457 if (mm_md_direct_mapped_phys(pa, &va) && va == (vaddr_t)kva)
1458 return;
1459 #endif
1460
1461 size = round_page(size);
1462 pmap_kremove((vaddr_t)kva, size);
1463 pmap_update(pmap_kernel());
1464 uvm_km_free(kernel_map, (vaddr_t)kva, size, UVM_KMF_VAONLY);
1465 }
1466
1467 /*
1468 * Common functin for mmap(2)'ing DMA-safe memory. May be called by
1469 * bus-specific DMA mmap(2)'ing functions.
1470 */
1471 paddr_t
1472 _bus_dmamem_mmap(bus_dma_tag_t t, bus_dma_segment_t *segs, int nsegs,
1473 off_t off, int prot, int flags)
1474 {
1475 paddr_t map_flags;
1476 int i;
1477
1478 for (i = 0; i < nsegs; i++) {
1479 KASSERTMSG((off & PAGE_MASK) == 0,
1480 "off %#qx (%#x)", off, (int)off & PAGE_MASK);
1481 KASSERTMSG((segs[i].ds_addr & PAGE_MASK) == 0,
1482 "ds_addr %#lx (%#x)", segs[i].ds_addr,
1483 (int)segs[i].ds_addr & PAGE_MASK);
1484 KASSERTMSG((segs[i].ds_len & PAGE_MASK) == 0,
1485 "ds_len %#lx (%#x)", segs[i].ds_addr,
1486 (int)segs[i].ds_addr & PAGE_MASK);
1487 if (off >= segs[i].ds_len) {
1488 off -= segs[i].ds_len;
1489 continue;
1490 }
1491
1492 map_flags = 0;
1493 if (flags & BUS_DMA_PREFETCHABLE)
1494 map_flags |= ARM32_MMAP_WRITECOMBINE;
1495
1496 return arm_btop((u_long)segs[i].ds_addr + off) | map_flags;
1497
1498 }
1499
1500 /* Page not found. */
1501 return -1;
1502 }
1503
1504 /**********************************************************************
1505 * DMA utility functions
1506 **********************************************************************/
1507
1508 /*
1509 * Utility function to load a linear buffer. lastaddrp holds state
1510 * between invocations (for multiple-buffer loads). segp contains
1511 * the starting segment on entrace, and the ending segment on exit.
1512 * first indicates if this is the first invocation of this function.
1513 */
1514 int
1515 _bus_dmamap_load_buffer(bus_dma_tag_t t, bus_dmamap_t map, void *buf,
1516 bus_size_t buflen, struct vmspace *vm, int flags)
1517 {
1518 bus_size_t sgsize;
1519 bus_addr_t curaddr;
1520 vaddr_t vaddr = (vaddr_t)buf;
1521 int error;
1522 pmap_t pmap;
1523
1524 #ifdef DEBUG_DMA
1525 printf("_bus_dmamem_load_buffer(buf=%p, len=%lx, flags=%d)\n",
1526 buf, buflen, flags);
1527 #endif /* DEBUG_DMA */
1528
1529 pmap = vm_map_pmap(&vm->vm_map);
1530
1531 while (buflen > 0) {
1532 /*
1533 * Get the physical address for this segment.
1534 *
1535 * XXX Doesn't support checking for coherent mappings
1536 * XXX in user address space.
1537 */
1538 bool coherent;
1539 if (__predict_true(pmap == pmap_kernel())) {
1540 pd_entry_t *pde;
1541 pt_entry_t *ptep;
1542 (void) pmap_get_pde_pte(pmap, vaddr, &pde, &ptep);
1543 if (__predict_false(pmap_pde_section(pde))) {
1544 paddr_t s_frame = L1_S_FRAME;
1545 paddr_t s_offset = L1_S_OFFSET;
1546 #if (ARM_MMU_V6 + ARM_MMU_V7) > 0
1547 if (__predict_false(pmap_pde_supersection(pde))) {
1548 s_frame = L1_SS_FRAME;
1549 s_offset = L1_SS_OFFSET;
1550 }
1551 #endif
1552 curaddr = (*pde & s_frame) | (vaddr & s_offset);
1553 coherent = (*pde & L1_S_CACHE_MASK) == 0;
1554 } else {
1555 pt_entry_t pte = *ptep;
1556 KDASSERTMSG((pte & L2_TYPE_MASK) != L2_TYPE_INV,
1557 "va=%#"PRIxVADDR" pde=%#x ptep=%p pte=%#x",
1558 vaddr, *pde, ptep, pte);
1559 if (__predict_false((pte & L2_TYPE_MASK)
1560 == L2_TYPE_L)) {
1561 curaddr = (pte & L2_L_FRAME) |
1562 (vaddr & L2_L_OFFSET);
1563 coherent = (pte & L2_L_CACHE_MASK) == 0;
1564 } else {
1565 curaddr = (pte & ~PAGE_MASK) |
1566 (vaddr & PAGE_MASK);
1567 coherent = (pte & L2_S_CACHE_MASK) == 0;
1568 }
1569 }
1570 } else {
1571 (void) pmap_extract(pmap, vaddr, &curaddr);
1572 coherent = false;
1573 }
1574 KASSERTMSG((vaddr & PAGE_MASK) == (curaddr & PAGE_MASK),
1575 "va %#lx curaddr %#lx", vaddr, curaddr);
1576
1577 /*
1578 * Compute the segment size, and adjust counts.
1579 */
1580 sgsize = PAGE_SIZE - ((u_long)vaddr & PGOFSET);
1581 if (buflen < sgsize)
1582 sgsize = buflen;
1583
1584 error = _bus_dmamap_load_paddr(t, map, curaddr, sgsize,
1585 coherent);
1586 if (error)
1587 return error;
1588
1589 vaddr += sgsize;
1590 buflen -= sgsize;
1591 }
1592
1593 return 0;
1594 }
1595
1596 /*
1597 * Allocate physical memory from the given physical address range.
1598 * Called by DMA-safe memory allocation methods.
1599 */
1600 int
1601 _bus_dmamem_alloc_range(bus_dma_tag_t t, bus_size_t size, bus_size_t alignment,
1602 bus_size_t boundary, bus_dma_segment_t *segs, int nsegs, int *rsegs,
1603 int flags, paddr_t low, paddr_t high)
1604 {
1605 paddr_t curaddr, lastaddr;
1606 struct vm_page *m;
1607 struct pglist mlist;
1608 int curseg, error;
1609
1610 KASSERTMSG(boundary == 0 || (boundary & (boundary - 1)) == 0,
1611 "invalid boundary %#lx", boundary);
1612
1613 #ifdef DEBUG_DMA
1614 printf("alloc_range: t=%p size=%lx align=%lx boundary=%lx segs=%p nsegs=%x rsegs=%p flags=%x lo=%lx hi=%lx\n",
1615 t, size, alignment, boundary, segs, nsegs, rsegs, flags, low, high);
1616 #endif /* DEBUG_DMA */
1617
1618 /* Always round the size. */
1619 size = round_page(size);
1620
1621 /*
1622 * We accept boundaries < size, splitting in multiple segments
1623 * if needed. uvm_pglistalloc does not, so compute an appropriate
1624 * boundary: next power of 2 >= size
1625 */
1626 bus_size_t uboundary = boundary;
1627 if (uboundary <= PAGE_SIZE) {
1628 uboundary = 0;
1629 } else {
1630 while (uboundary < size) {
1631 uboundary <<= 1;
1632 }
1633 }
1634
1635 /*
1636 * Allocate pages from the VM system.
1637 */
1638 error = uvm_pglistalloc(size, low, high, alignment, uboundary,
1639 &mlist, nsegs, (flags & BUS_DMA_NOWAIT) == 0);
1640 if (error)
1641 return error;
1642
1643 /*
1644 * Compute the location, size, and number of segments actually
1645 * returned by the VM code.
1646 */
1647 m = TAILQ_FIRST(&mlist);
1648 curseg = 0;
1649 lastaddr = segs[curseg].ds_addr = VM_PAGE_TO_PHYS(m);
1650 segs[curseg].ds_len = PAGE_SIZE;
1651 #ifdef DEBUG_DMA
1652 printf("alloc: page %lx\n", lastaddr);
1653 #endif /* DEBUG_DMA */
1654 m = TAILQ_NEXT(m, pageq.queue);
1655
1656 for (; m != NULL; m = TAILQ_NEXT(m, pageq.queue)) {
1657 curaddr = VM_PAGE_TO_PHYS(m);
1658 KASSERTMSG(low <= curaddr && curaddr < high,
1659 "uvm_pglistalloc returned non-sensicaladdress %#lx "
1660 "(low=%#lx, high=%#lx\n", curaddr, low, high);
1661 #ifdef DEBUG_DMA
1662 printf("alloc: page %lx\n", curaddr);
1663 #endif /* DEBUG_DMA */
1664 if (curaddr == lastaddr + PAGE_SIZE
1665 && (lastaddr & boundary) == (curaddr & boundary))
1666 segs[curseg].ds_len += PAGE_SIZE;
1667 else {
1668 curseg++;
1669 if (curseg >= nsegs) {
1670 uvm_pglistfree(&mlist);
1671 return EFBIG;
1672 }
1673 segs[curseg].ds_addr = curaddr;
1674 segs[curseg].ds_len = PAGE_SIZE;
1675 }
1676 lastaddr = curaddr;
1677 }
1678
1679 *rsegs = curseg + 1;
1680
1681 return 0;
1682 }
1683
1684 /*
1685 * Check if a memory region intersects with a DMA range, and return the
1686 * page-rounded intersection if it does.
1687 */
1688 int
1689 arm32_dma_range_intersect(struct arm32_dma_range *ranges, int nranges,
1690 paddr_t pa, psize_t size, paddr_t *pap, psize_t *sizep)
1691 {
1692 struct arm32_dma_range *dr;
1693 int i;
1694
1695 if (ranges == NULL)
1696 return 0;
1697
1698 for (i = 0, dr = ranges; i < nranges; i++, dr++) {
1699 if (dr->dr_sysbase <= pa &&
1700 pa < (dr->dr_sysbase + dr->dr_len)) {
1701 /*
1702 * Beginning of region intersects with this range.
1703 */
1704 *pap = trunc_page(pa);
1705 *sizep = round_page(min(pa + size,
1706 dr->dr_sysbase + dr->dr_len) - pa);
1707 return 1;
1708 }
1709 if (pa < dr->dr_sysbase && dr->dr_sysbase < (pa + size)) {
1710 /*
1711 * End of region intersects with this range.
1712 */
1713 *pap = trunc_page(dr->dr_sysbase);
1714 *sizep = round_page(min((pa + size) - dr->dr_sysbase,
1715 dr->dr_len));
1716 return 1;
1717 }
1718 }
1719
1720 /* No intersection found. */
1721 return 0;
1722 }
1723
1724 #ifdef _ARM32_NEED_BUS_DMA_BOUNCE
1725 static int
1726 _bus_dma_alloc_bouncebuf(bus_dma_tag_t t, bus_dmamap_t map,
1727 bus_size_t size, int flags)
1728 {
1729 struct arm32_bus_dma_cookie *cookie = map->_dm_cookie;
1730 int error = 0;
1731
1732 KASSERT(cookie != NULL);
1733
1734 cookie->id_bouncebuflen = round_page(size);
1735 error = _bus_dmamem_alloc(t, cookie->id_bouncebuflen,
1736 PAGE_SIZE, map->_dm_boundary, cookie->id_bouncesegs,
1737 map->_dm_segcnt, &cookie->id_nbouncesegs, flags);
1738 if (error == 0) {
1739 error = _bus_dmamem_map(t, cookie->id_bouncesegs,
1740 cookie->id_nbouncesegs, cookie->id_bouncebuflen,
1741 (void **)&cookie->id_bouncebuf, flags);
1742 if (error) {
1743 _bus_dmamem_free(t, cookie->id_bouncesegs,
1744 cookie->id_nbouncesegs);
1745 cookie->id_bouncebuflen = 0;
1746 cookie->id_nbouncesegs = 0;
1747 } else {
1748 cookie->id_flags |= _BUS_DMA_HAS_BOUNCE;
1749 }
1750 } else {
1751 cookie->id_bouncebuflen = 0;
1752 cookie->id_nbouncesegs = 0;
1753 }
1754
1755 return error;
1756 }
1757
1758 static void
1759 _bus_dma_free_bouncebuf(bus_dma_tag_t t, bus_dmamap_t map)
1760 {
1761 struct arm32_bus_dma_cookie *cookie = map->_dm_cookie;
1762
1763 KASSERT(cookie != NULL);
1764
1765 _bus_dmamem_unmap(t, cookie->id_bouncebuf, cookie->id_bouncebuflen);
1766 _bus_dmamem_free(t, cookie->id_bouncesegs, cookie->id_nbouncesegs);
1767 cookie->id_bouncebuflen = 0;
1768 cookie->id_nbouncesegs = 0;
1769 cookie->id_flags &= ~_BUS_DMA_HAS_BOUNCE;
1770 }
1771
1772 /*
1773 * This function does the same as uiomove, but takes an explicit
1774 * direction, and does not update the uio structure.
1775 */
1776 static int
1777 _bus_dma_uiomove(void *buf, struct uio *uio, size_t n, int direction)
1778 {
1779 struct iovec *iov;
1780 int error;
1781 struct vmspace *vm;
1782 char *cp;
1783 size_t resid, cnt;
1784 int i;
1785
1786 iov = uio->uio_iov;
1787 vm = uio->uio_vmspace;
1788 cp = buf;
1789 resid = n;
1790
1791 for (i = 0; i < uio->uio_iovcnt && resid > 0; i++) {
1792 iov = &uio->uio_iov[i];
1793 if (iov->iov_len == 0)
1794 continue;
1795 cnt = MIN(resid, iov->iov_len);
1796
1797 if (!VMSPACE_IS_KERNEL_P(vm) &&
1798 (curlwp->l_cpu->ci_schedstate.spc_flags & SPCF_SHOULDYIELD)
1799 != 0) {
1800 preempt();
1801 }
1802 if (direction == UIO_READ) {
1803 error = copyout_vmspace(vm, cp, iov->iov_base, cnt);
1804 } else {
1805 error = copyin_vmspace(vm, iov->iov_base, cp, cnt);
1806 }
1807 if (error)
1808 return error;
1809 cp += cnt;
1810 resid -= cnt;
1811 }
1812 return 0;
1813 }
1814 #endif /* _ARM32_NEED_BUS_DMA_BOUNCE */
1815
1816 int
1817 _bus_dmatag_subregion(bus_dma_tag_t tag, bus_addr_t min_addr,
1818 bus_addr_t max_addr, bus_dma_tag_t *newtag, int flags)
1819 {
1820
1821 #ifdef _ARM32_NEED_BUS_DMA_BOUNCE
1822 struct arm32_dma_range *dr;
1823 bool subset = false;
1824 size_t nranges = 0;
1825 size_t i;
1826 for (i = 0, dr = tag->_ranges; i < tag->_nranges; i++, dr++) {
1827 if (dr->dr_sysbase <= min_addr
1828 && max_addr <= dr->dr_sysbase + dr->dr_len - 1) {
1829 subset = true;
1830 }
1831 if (min_addr <= dr->dr_sysbase + dr->dr_len
1832 && max_addr >= dr->dr_sysbase) {
1833 nranges++;
1834 }
1835 }
1836 if (subset) {
1837 *newtag = tag;
1838 /* if the tag must be freed, add a reference */
1839 if (tag->_tag_needs_free)
1840 (tag->_tag_needs_free)++;
1841 return 0;
1842 }
1843 if (nranges == 0) {
1844 nranges = 1;
1845 }
1846
1847 const size_t tagsize = sizeof(*tag) + nranges * sizeof(*dr);
1848 if ((*newtag = kmem_intr_zalloc(tagsize,
1849 (flags & BUS_DMA_NOWAIT) ? KM_NOSLEEP : KM_SLEEP)) == NULL)
1850 return ENOMEM;
1851
1852 dr = (void *)(*newtag + 1);
1853 **newtag = *tag;
1854 (*newtag)->_tag_needs_free = 1;
1855 (*newtag)->_ranges = dr;
1856 (*newtag)->_nranges = nranges;
1857
1858 if (tag->_ranges == NULL) {
1859 dr->dr_sysbase = min_addr;
1860 dr->dr_busbase = min_addr;
1861 dr->dr_len = max_addr + 1 - min_addr;
1862 } else {
1863 for (i = 0; i < nranges; i++) {
1864 if (min_addr > dr->dr_sysbase + dr->dr_len
1865 || max_addr < dr->dr_sysbase)
1866 continue;
1867 dr[0] = tag->_ranges[i];
1868 if (dr->dr_sysbase < min_addr) {
1869 psize_t diff = min_addr - dr->dr_sysbase;
1870 dr->dr_busbase += diff;
1871 dr->dr_len -= diff;
1872 dr->dr_sysbase += diff;
1873 }
1874 if (max_addr != 0xffffffff
1875 && max_addr + 1 < dr->dr_sysbase + dr->dr_len) {
1876 dr->dr_len = max_addr + 1 - dr->dr_sysbase;
1877 }
1878 dr++;
1879 }
1880 }
1881
1882 return 0;
1883 #else
1884 return EOPNOTSUPP;
1885 #endif /* _ARM32_NEED_BUS_DMA_BOUNCE */
1886 }
1887
1888 void
1889 _bus_dmatag_destroy(bus_dma_tag_t tag)
1890 {
1891 #ifdef _ARM32_NEED_BUS_DMA_BOUNCE
1892 switch (tag->_tag_needs_free) {
1893 case 0:
1894 break; /* not allocated with kmem */
1895 case 1: {
1896 const size_t tagsize = sizeof(*tag)
1897 + tag->_nranges * sizeof(*tag->_ranges);
1898 kmem_intr_free(tag, tagsize); /* last reference to tag */
1899 break;
1900 }
1901 default:
1902 (tag->_tag_needs_free)--; /* one less reference */
1903 }
1904 #endif
1905 }
1906