Home | History | Annotate | Line # | Download | only in arm32
bus_dma.c revision 1.104
      1 /*	$NetBSD: bus_dma.c,v 1.104 2018/03/03 18:11:25 skrll Exp $	*/
      2 
      3 /*-
      4  * Copyright (c) 1996, 1997, 1998 The NetBSD Foundation, Inc.
      5  * All rights reserved.
      6  *
      7  * This code is derived from software contributed to The NetBSD Foundation
      8  * by Jason R. Thorpe of the Numerical Aerospace Simulation Facility,
      9  * NASA Ames Research Center.
     10  *
     11  * Redistribution and use in source and binary forms, with or without
     12  * modification, are permitted provided that the following conditions
     13  * are met:
     14  * 1. Redistributions of source code must retain the above copyright
     15  *    notice, this list of conditions and the following disclaimer.
     16  * 2. Redistributions in binary form must reproduce the above copyright
     17  *    notice, this list of conditions and the following disclaimer in the
     18  *    documentation and/or other materials provided with the distribution.
     19  *
     20  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     21  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     22  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     23  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     24  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     25  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     26  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     27  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     28  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     29  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     30  * POSSIBILITY OF SUCH DAMAGE.
     31  */
     32 
     33 #define _ARM32_BUS_DMA_PRIVATE
     34 
     35 #include "opt_arm_bus_space.h"
     36 
     37 #include <sys/cdefs.h>
     38 __KERNEL_RCSID(0, "$NetBSD: bus_dma.c,v 1.104 2018/03/03 18:11:25 skrll Exp $");
     39 
     40 #include <sys/param.h>
     41 #include <sys/bus.h>
     42 #include <sys/cpu.h>
     43 #include <sys/kmem.h>
     44 #include <sys/mbuf.h>
     45 
     46 #include <uvm/uvm.h>
     47 
     48 #include <arm/cpufunc.h>
     49 
     50 #ifdef __HAVE_MM_MD_DIRECT_MAPPED_PHYS
     51 #include <dev/mm.h>
     52 #endif
     53 
     54 #ifdef BUSDMA_COUNTERS
     55 static struct evcnt bus_dma_creates =
     56 	EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL, "busdma", "creates");
     57 static struct evcnt bus_dma_bounced_creates =
     58 	EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL, "busdma", "bounced creates");
     59 static struct evcnt bus_dma_loads =
     60 	EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL, "busdma", "loads");
     61 static struct evcnt bus_dma_bounced_loads =
     62 	EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL, "busdma", "bounced loads");
     63 static struct evcnt bus_dma_coherent_loads =
     64 	EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL, "busdma", "coherent loads");
     65 static struct evcnt bus_dma_read_bounces =
     66 	EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL, "busdma", "read bounces");
     67 static struct evcnt bus_dma_write_bounces =
     68 	EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL, "busdma", "write bounces");
     69 static struct evcnt bus_dma_bounced_unloads =
     70 	EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL, "busdma", "bounced unloads");
     71 static struct evcnt bus_dma_unloads =
     72 	EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL, "busdma", "unloads");
     73 static struct evcnt bus_dma_bounced_destroys =
     74 	EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL, "busdma", "bounced destroys");
     75 static struct evcnt bus_dma_destroys =
     76 	EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL, "busdma", "destroys");
     77 static struct evcnt bus_dma_sync_prereadwrite =
     78 	EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL, "busdma", "sync prereadwrite");
     79 static struct evcnt bus_dma_sync_preread_begin =
     80 	EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL, "busdma", "sync preread begin");
     81 static struct evcnt bus_dma_sync_preread =
     82 	EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL, "busdma", "sync preread");
     83 static struct evcnt bus_dma_sync_preread_tail =
     84 	EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL, "busdma", "sync preread tail");
     85 static struct evcnt bus_dma_sync_prewrite =
     86 	EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL, "busdma", "sync prewrite");
     87 static struct evcnt bus_dma_sync_postread =
     88 	EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL, "busdma", "sync postread");
     89 static struct evcnt bus_dma_sync_postreadwrite =
     90 	EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL, "busdma", "sync postreadwrite");
     91 static struct evcnt bus_dma_sync_postwrite =
     92 	EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL, "busdma", "sync postwrite");
     93 
     94 EVCNT_ATTACH_STATIC(bus_dma_creates);
     95 EVCNT_ATTACH_STATIC(bus_dma_bounced_creates);
     96 EVCNT_ATTACH_STATIC(bus_dma_loads);
     97 EVCNT_ATTACH_STATIC(bus_dma_bounced_loads);
     98 EVCNT_ATTACH_STATIC(bus_dma_coherent_loads);
     99 EVCNT_ATTACH_STATIC(bus_dma_read_bounces);
    100 EVCNT_ATTACH_STATIC(bus_dma_write_bounces);
    101 EVCNT_ATTACH_STATIC(bus_dma_unloads);
    102 EVCNT_ATTACH_STATIC(bus_dma_bounced_unloads);
    103 EVCNT_ATTACH_STATIC(bus_dma_destroys);
    104 EVCNT_ATTACH_STATIC(bus_dma_bounced_destroys);
    105 EVCNT_ATTACH_STATIC(bus_dma_sync_prereadwrite);
    106 EVCNT_ATTACH_STATIC(bus_dma_sync_preread_begin);
    107 EVCNT_ATTACH_STATIC(bus_dma_sync_preread);
    108 EVCNT_ATTACH_STATIC(bus_dma_sync_preread_tail);
    109 EVCNT_ATTACH_STATIC(bus_dma_sync_prewrite);
    110 EVCNT_ATTACH_STATIC(bus_dma_sync_postread);
    111 EVCNT_ATTACH_STATIC(bus_dma_sync_postreadwrite);
    112 EVCNT_ATTACH_STATIC(bus_dma_sync_postwrite);
    113 
    114 #define	STAT_INCR(x)	(bus_dma_ ## x.ev_count++)
    115 #else
    116 #define	STAT_INCR(x)	/*(bus_dma_ ## x.ev_count++)*/
    117 #endif
    118 
    119 int	_bus_dmamap_load_buffer(bus_dma_tag_t, bus_dmamap_t, void *,
    120 	    bus_size_t, struct vmspace *, int);
    121 static struct arm32_dma_range *
    122 	_bus_dma_paddr_inrange(struct arm32_dma_range *, int, paddr_t);
    123 
    124 /*
    125  * Check to see if the specified page is in an allowed DMA range.
    126  */
    127 inline struct arm32_dma_range *
    128 _bus_dma_paddr_inrange(struct arm32_dma_range *ranges, int nranges,
    129     bus_addr_t curaddr)
    130 {
    131 	struct arm32_dma_range *dr;
    132 	int i;
    133 
    134 	for (i = 0, dr = ranges; i < nranges; i++, dr++) {
    135 		if (curaddr >= dr->dr_sysbase &&
    136 		    curaddr < (dr->dr_sysbase + dr->dr_len))
    137 			return dr;
    138 	}
    139 
    140 	return NULL;
    141 }
    142 
    143 /*
    144  * Check to see if the specified busaddr is in an allowed DMA range.
    145  */
    146 static inline paddr_t
    147 _bus_dma_busaddr_to_paddr(bus_dma_tag_t t, bus_addr_t curaddr)
    148 {
    149 	struct arm32_dma_range *dr;
    150 	u_int i;
    151 
    152 	if (t->_nranges == 0)
    153 		return curaddr;
    154 
    155 	for (i = 0, dr = t->_ranges; i < t->_nranges; i++, dr++) {
    156 		if (dr->dr_busbase <= curaddr
    157 		    && curaddr < dr->dr_busbase + dr->dr_len)
    158 			return curaddr - dr->dr_busbase + dr->dr_sysbase;
    159 	}
    160 	panic("%s: curaddr %#lx not in range", __func__, curaddr);
    161 }
    162 
    163 /*
    164  * Common function to load the specified physical address into the
    165  * DMA map, coalescing segments and boundary checking as necessary.
    166  */
    167 static int
    168 _bus_dmamap_load_paddr(bus_dma_tag_t t, bus_dmamap_t map,
    169     bus_addr_t paddr, bus_size_t size, bool coherent)
    170 {
    171 	bus_dma_segment_t * const segs = map->dm_segs;
    172 	int nseg = map->dm_nsegs;
    173 	bus_addr_t lastaddr;
    174 	bus_addr_t bmask = ~(map->_dm_boundary - 1);
    175 	bus_addr_t curaddr;
    176 	bus_size_t sgsize;
    177 	uint32_t _ds_flags = coherent ? _BUS_DMAMAP_COHERENT : 0;
    178 
    179 	if (nseg > 0)
    180 		lastaddr = segs[nseg - 1].ds_addr + segs[nseg - 1].ds_len;
    181 	else
    182 		lastaddr = 0xdead;
    183 
    184  again:
    185 	sgsize = size;
    186 
    187 	/* Make sure we're in an allowed DMA range. */
    188 	if (t->_ranges != NULL) {
    189 		/* XXX cache last result? */
    190 		const struct arm32_dma_range * const dr =
    191 		    _bus_dma_paddr_inrange(t->_ranges, t->_nranges, paddr);
    192 		if (dr == NULL)
    193 			return EINVAL;
    194 
    195 		/*
    196 		 * If this region is coherent, mark the segment as coherent.
    197 		 */
    198 		_ds_flags |= dr->dr_flags & _BUS_DMAMAP_COHERENT;
    199 
    200 		/*
    201 		 * In a valid DMA range.  Translate the physical
    202 		 * memory address to an address in the DMA window.
    203 		 */
    204 		curaddr = (paddr - dr->dr_sysbase) + dr->dr_busbase;
    205 #if 0
    206 		printf("%p: %#lx: range %#lx/%#lx/%#lx/%#x: %#x <-- %#lx\n",
    207 		    t, paddr, dr->dr_sysbase, dr->dr_busbase,
    208 		    dr->dr_len, dr->dr_flags, _ds_flags, curaddr);
    209 #endif
    210 	} else
    211 		curaddr = paddr;
    212 
    213 	/*
    214 	 * Make sure we don't cross any boundaries.
    215 	 */
    216 	if (map->_dm_boundary > 0) {
    217 		bus_addr_t baddr;	/* next boundary address */
    218 
    219 		baddr = (curaddr + map->_dm_boundary) & bmask;
    220 		if (sgsize > (baddr - curaddr))
    221 			sgsize = (baddr - curaddr);
    222 	}
    223 
    224 	/*
    225 	 * Insert chunk into a segment, coalescing with the
    226 	 * previous segment if possible.
    227 	 */
    228 	if (nseg > 0 && curaddr == lastaddr &&
    229 	    segs[nseg - 1].ds_len + sgsize <= map->dm_maxsegsz &&
    230 	    ((segs[nseg - 1]._ds_flags ^ _ds_flags) & _BUS_DMAMAP_COHERENT) == 0 &&
    231 	    (map->_dm_boundary == 0 ||
    232 	     (segs[nseg - 1].ds_addr & bmask) == (curaddr & bmask))) {
    233 	     	/* coalesce */
    234 		segs[nseg - 1].ds_len += sgsize;
    235 	} else if (nseg >= map->_dm_segcnt) {
    236 		return EFBIG;
    237 	} else {
    238 		/* new segment */
    239 		segs[nseg].ds_addr = curaddr;
    240 		segs[nseg].ds_len = sgsize;
    241 		segs[nseg]._ds_flags = _ds_flags;
    242 		nseg++;
    243 	}
    244 
    245 	lastaddr = curaddr + sgsize;
    246 
    247 	paddr += sgsize;
    248 	size -= sgsize;
    249 	if (size > 0)
    250 		goto again;
    251 
    252 	map->_dm_flags &= (_ds_flags & _BUS_DMAMAP_COHERENT);
    253 	map->dm_nsegs = nseg;
    254 	return 0;
    255 }
    256 
    257 #ifdef _ARM32_NEED_BUS_DMA_BOUNCE
    258 static int _bus_dma_alloc_bouncebuf(bus_dma_tag_t t, bus_dmamap_t map,
    259 	    bus_size_t size, int flags);
    260 static void _bus_dma_free_bouncebuf(bus_dma_tag_t t, bus_dmamap_t map);
    261 static int _bus_dma_uiomove(void *buf, struct uio *uio, size_t n,
    262 	    int direction);
    263 
    264 static int
    265 _bus_dma_load_bouncebuf(bus_dma_tag_t t, bus_dmamap_t map, void *buf,
    266 	size_t buflen, int buftype, int flags)
    267 {
    268 	struct arm32_bus_dma_cookie * const cookie = map->_dm_cookie;
    269 	struct vmspace * const vm = vmspace_kernel();
    270 	int error;
    271 
    272 	KASSERT(cookie != NULL);
    273 	KASSERT(cookie->id_flags & _BUS_DMA_MIGHT_NEED_BOUNCE);
    274 
    275 	/*
    276 	 * Allocate bounce pages, if necessary.
    277 	 */
    278 	if ((cookie->id_flags & _BUS_DMA_HAS_BOUNCE) == 0) {
    279 		error = _bus_dma_alloc_bouncebuf(t, map, buflen, flags);
    280 		if (error)
    281 			return error;
    282 	}
    283 
    284 	/*
    285 	 * Cache a pointer to the caller's buffer and load the DMA map
    286 	 * with the bounce buffer.
    287 	 */
    288 	cookie->id_origbuf = buf;
    289 	cookie->id_origbuflen = buflen;
    290 	error = _bus_dmamap_load_buffer(t, map, cookie->id_bouncebuf,
    291 	    buflen, vm, flags);
    292 	if (error)
    293 		return error;
    294 
    295 	STAT_INCR(bounced_loads);
    296 	map->dm_mapsize = buflen;
    297 	map->_dm_vmspace = vm;
    298 	map->_dm_buftype = buftype;
    299 
    300 	/* ...so _bus_dmamap_sync() knows we're bouncing */
    301 	map->_dm_flags |= _BUS_DMAMAP_IS_BOUNCING;
    302 	cookie->id_flags |= _BUS_DMA_IS_BOUNCING;
    303 	return 0;
    304 }
    305 #endif /* _ARM32_NEED_BUS_DMA_BOUNCE */
    306 
    307 /*
    308  * Common function for DMA map creation.  May be called by bus-specific
    309  * DMA map creation functions.
    310  */
    311 int
    312 _bus_dmamap_create(bus_dma_tag_t t, bus_size_t size, int nsegments,
    313     bus_size_t maxsegsz, bus_size_t boundary, int flags, bus_dmamap_t *dmamp)
    314 {
    315 	struct arm32_bus_dmamap *map;
    316 	void *mapstore;
    317 
    318 #ifdef DEBUG_DMA
    319 	printf("dmamap_create: t=%p size=%lx nseg=%x msegsz=%lx boundary=%lx"
    320 	    " flags=%x\n", t, size, nsegments, maxsegsz, boundary, flags);
    321 #endif	/* DEBUG_DMA */
    322 
    323 	/*
    324 	 * Allocate and initialize the DMA map.  The end of the map
    325 	 * is a variable-sized array of segments, so we allocate enough
    326 	 * room for them in one shot.
    327 	 *
    328 	 * Note we don't preserve the WAITOK or NOWAIT flags.  Preservation
    329 	 * of ALLOCNOW notifies others that we've reserved these resources,
    330 	 * and they are not to be freed.
    331 	 *
    332 	 * The bus_dmamap_t includes one bus_dma_segment_t, hence
    333 	 * the (nsegments - 1).
    334 	 */
    335 	const size_t mapsize = sizeof(struct arm32_bus_dmamap) +
    336 	    (sizeof(bus_dma_segment_t) * (nsegments - 1));
    337 	const int zallocflags = (flags & BUS_DMA_NOWAIT) ? KM_NOSLEEP : KM_SLEEP;
    338 	if ((mapstore = kmem_intr_zalloc(mapsize, zallocflags)) == NULL)
    339 		return ENOMEM;
    340 
    341 	map = (struct arm32_bus_dmamap *)mapstore;
    342 	map->_dm_size = size;
    343 	map->_dm_segcnt = nsegments;
    344 	map->_dm_maxmaxsegsz = maxsegsz;
    345 	map->_dm_boundary = boundary;
    346 	map->_dm_flags = flags & ~(BUS_DMA_WAITOK|BUS_DMA_NOWAIT);
    347 	map->_dm_origbuf = NULL;
    348 	map->_dm_buftype = _BUS_DMA_BUFTYPE_INVALID;
    349 	map->_dm_vmspace = vmspace_kernel();
    350 	map->_dm_cookie = NULL;
    351 	map->dm_maxsegsz = maxsegsz;
    352 	map->dm_mapsize = 0;		/* no valid mappings */
    353 	map->dm_nsegs = 0;
    354 
    355 #ifdef _ARM32_NEED_BUS_DMA_BOUNCE
    356 	struct arm32_bus_dma_cookie *cookie;
    357 	int cookieflags;
    358 	void *cookiestore;
    359 	int error;
    360 
    361 	cookieflags = 0;
    362 
    363 	if (t->_may_bounce != NULL) {
    364 		error = (*t->_may_bounce)(t, map, flags, &cookieflags);
    365 		if (error != 0)
    366 			goto out;
    367 	}
    368 
    369 	if (t->_ranges != NULL)
    370 		cookieflags |= _BUS_DMA_MIGHT_NEED_BOUNCE;
    371 
    372 	if ((cookieflags & _BUS_DMA_MIGHT_NEED_BOUNCE) == 0) {
    373 		STAT_INCR(creates);
    374 		*dmamp = map;
    375 		return 0;
    376 	}
    377 
    378 	const size_t cookiesize = sizeof(struct arm32_bus_dma_cookie) +
    379 	    (sizeof(bus_dma_segment_t) * map->_dm_segcnt);
    380 
    381 	/*
    382 	 * Allocate our cookie.
    383 	 */
    384 	if ((cookiestore = kmem_intr_zalloc(cookiesize, zallocflags)) == NULL) {
    385 		error = ENOMEM;
    386 		goto out;
    387 	}
    388 	cookie = (struct arm32_bus_dma_cookie *)cookiestore;
    389 	cookie->id_flags = cookieflags;
    390 	map->_dm_cookie = cookie;
    391 	STAT_INCR(bounced_creates);
    392 
    393 	error = _bus_dma_alloc_bouncebuf(t, map, size, flags);
    394  out:
    395 	if (error)
    396 		_bus_dmamap_destroy(t, map);
    397 	else
    398 		*dmamp = map;
    399 #else
    400 	*dmamp = map;
    401 	STAT_INCR(creates);
    402 #endif /* _ARM32_NEED_BUS_DMA_BOUNCE */
    403 #ifdef DEBUG_DMA
    404 	printf("dmamap_create:map=%p\n", map);
    405 #endif	/* DEBUG_DMA */
    406 	return 0;
    407 }
    408 
    409 /*
    410  * Common function for DMA map destruction.  May be called by bus-specific
    411  * DMA map destruction functions.
    412  */
    413 void
    414 _bus_dmamap_destroy(bus_dma_tag_t t, bus_dmamap_t map)
    415 {
    416 
    417 #ifdef DEBUG_DMA
    418 	printf("dmamap_destroy: t=%p map=%p\n", t, map);
    419 #endif	/* DEBUG_DMA */
    420 #ifdef _ARM32_NEED_BUS_DMA_BOUNCE
    421 	struct arm32_bus_dma_cookie *cookie = map->_dm_cookie;
    422 
    423 	/*
    424 	 * Free any bounce pages this map might hold.
    425 	 */
    426 	if (cookie != NULL) {
    427 		const size_t cookiesize = sizeof(struct arm32_bus_dma_cookie) +
    428 		    (sizeof(bus_dma_segment_t) * map->_dm_segcnt);
    429 
    430 		if (cookie->id_flags & _BUS_DMA_IS_BOUNCING)
    431 			STAT_INCR(bounced_unloads);
    432 		map->dm_nsegs = 0;
    433 		if (cookie->id_flags & _BUS_DMA_HAS_BOUNCE)
    434 			_bus_dma_free_bouncebuf(t, map);
    435 		STAT_INCR(bounced_destroys);
    436 		kmem_intr_free(cookie, cookiesize);
    437 	} else
    438 #endif
    439 	STAT_INCR(destroys);
    440 
    441 	if (map->dm_nsegs > 0)
    442 		STAT_INCR(unloads);
    443 
    444 	const size_t mapsize = sizeof(struct arm32_bus_dmamap) +
    445 	    (sizeof(bus_dma_segment_t) * (map->_dm_segcnt - 1));
    446 	kmem_intr_free(map, mapsize);
    447 }
    448 
    449 /*
    450  * Common function for loading a DMA map with a linear buffer.  May
    451  * be called by bus-specific DMA map load functions.
    452  */
    453 int
    454 _bus_dmamap_load(bus_dma_tag_t t, bus_dmamap_t map, void *buf,
    455     bus_size_t buflen, struct proc *p, int flags)
    456 {
    457 	struct vmspace *vm;
    458 	int error;
    459 
    460 #ifdef DEBUG_DMA
    461 	printf("dmamap_load: t=%p map=%p buf=%p len=%lx p=%p f=%d\n",
    462 	    t, map, buf, buflen, p, flags);
    463 #endif	/* DEBUG_DMA */
    464 
    465 	if (map->dm_nsegs > 0) {
    466 #ifdef _ARM32_NEED_BUS_DMA_BOUNCE
    467 		struct arm32_bus_dma_cookie *cookie = map->_dm_cookie;
    468 		if (cookie != NULL) {
    469 			if (cookie->id_flags & _BUS_DMA_IS_BOUNCING) {
    470 				STAT_INCR(bounced_unloads);
    471 				cookie->id_flags &= ~_BUS_DMA_IS_BOUNCING;
    472 				map->_dm_flags &= ~_BUS_DMAMAP_IS_BOUNCING;
    473 			}
    474 		} else
    475 #endif
    476 		STAT_INCR(unloads);
    477 	}
    478 
    479 	/*
    480 	 * Make sure that on error condition we return "no valid mappings".
    481 	 */
    482 	map->dm_mapsize = 0;
    483 	map->dm_nsegs = 0;
    484 	map->_dm_buftype = _BUS_DMA_BUFTYPE_INVALID;
    485 	KASSERTMSG(map->dm_maxsegsz <= map->_dm_maxmaxsegsz,
    486 	    "dm_maxsegsz %lu _dm_maxmaxsegsz %lu",
    487 	    map->dm_maxsegsz, map->_dm_maxmaxsegsz);
    488 
    489 	if (buflen > map->_dm_size)
    490 		return EINVAL;
    491 
    492 	if (p != NULL) {
    493 		vm = p->p_vmspace;
    494 	} else {
    495 		vm = vmspace_kernel();
    496 	}
    497 
    498 	/* _bus_dmamap_load_buffer() clears this if we're not... */
    499 	map->_dm_flags |= _BUS_DMAMAP_COHERENT;
    500 
    501 	error = _bus_dmamap_load_buffer(t, map, buf, buflen, vm, flags);
    502 	if (error == 0) {
    503 		map->dm_mapsize = buflen;
    504 		map->_dm_vmspace = vm;
    505 		map->_dm_origbuf = buf;
    506 		map->_dm_buftype = _BUS_DMA_BUFTYPE_LINEAR;
    507 		if (map->_dm_flags & _BUS_DMAMAP_COHERENT) {
    508 			STAT_INCR(coherent_loads);
    509 		} else {
    510 			STAT_INCR(loads);
    511 		}
    512 		return 0;
    513 	}
    514 #ifdef _ARM32_NEED_BUS_DMA_BOUNCE
    515 	struct arm32_bus_dma_cookie * const cookie = map->_dm_cookie;
    516 	if (cookie != NULL && (cookie->id_flags & _BUS_DMA_MIGHT_NEED_BOUNCE)) {
    517 		error = _bus_dma_load_bouncebuf(t, map, buf, buflen,
    518 		    _BUS_DMA_BUFTYPE_LINEAR, flags);
    519 	}
    520 #endif
    521 	return error;
    522 }
    523 
    524 /*
    525  * Like _bus_dmamap_load(), but for mbufs.
    526  */
    527 int
    528 _bus_dmamap_load_mbuf(bus_dma_tag_t t, bus_dmamap_t map, struct mbuf *m0,
    529     int flags)
    530 {
    531 	int error;
    532 	struct mbuf *m;
    533 
    534 #ifdef DEBUG_DMA
    535 	printf("dmamap_load_mbuf: t=%p map=%p m0=%p f=%d\n",
    536 	    t, map, m0, flags);
    537 #endif	/* DEBUG_DMA */
    538 
    539 	if (map->dm_nsegs > 0) {
    540 #ifdef _ARM32_NEED_BUS_DMA_BOUNCE
    541 		struct arm32_bus_dma_cookie *cookie = map->_dm_cookie;
    542 		if (cookie != NULL) {
    543 			if (cookie->id_flags & _BUS_DMA_IS_BOUNCING) {
    544 				STAT_INCR(bounced_unloads);
    545 				cookie->id_flags &= ~_BUS_DMA_IS_BOUNCING;
    546 				map->_dm_flags &= ~_BUS_DMAMAP_IS_BOUNCING;
    547 			}
    548 		} else
    549 #endif
    550 		STAT_INCR(unloads);
    551 	}
    552 
    553 	/*
    554 	 * Make sure that on error condition we return "no valid mappings."
    555 	 */
    556 	map->dm_mapsize = 0;
    557 	map->dm_nsegs = 0;
    558 	map->_dm_buftype = _BUS_DMA_BUFTYPE_INVALID;
    559 	KASSERTMSG(map->dm_maxsegsz <= map->_dm_maxmaxsegsz,
    560 	    "dm_maxsegsz %lu _dm_maxmaxsegsz %lu",
    561 	    map->dm_maxsegsz, map->_dm_maxmaxsegsz);
    562 
    563 	KASSERT(m0->m_flags & M_PKTHDR);
    564 
    565 	if (m0->m_pkthdr.len > map->_dm_size)
    566 		return EINVAL;
    567 
    568 	/* _bus_dmamap_load_paddr() clears this if we're not... */
    569 	map->_dm_flags |= _BUS_DMAMAP_COHERENT;
    570 
    571 	error = 0;
    572 	for (m = m0; m != NULL && error == 0; m = m->m_next) {
    573 		int offset;
    574 		int remainbytes;
    575 		const struct vm_page * const *pgs;
    576 		paddr_t paddr;
    577 		int size;
    578 
    579 		if (m->m_len == 0)
    580 			continue;
    581 		/*
    582 		 * Don't allow reads in read-only mbufs.
    583 		 */
    584 		if (M_ROMAP(m) && (flags & BUS_DMA_READ)) {
    585 			error = EFAULT;
    586 			break;
    587 		}
    588 		switch (m->m_flags & (M_EXT|M_CLUSTER|M_EXT_PAGES)) {
    589 		case M_EXT|M_CLUSTER:
    590 			/* XXX KDASSERT */
    591 			KASSERT(m->m_ext.ext_paddr != M_PADDR_INVALID);
    592 			paddr = m->m_ext.ext_paddr +
    593 			    (m->m_data - m->m_ext.ext_buf);
    594 			size = m->m_len;
    595 			error = _bus_dmamap_load_paddr(t, map, paddr, size,
    596 			    false);
    597 			break;
    598 
    599 		case M_EXT|M_EXT_PAGES:
    600 			KASSERT(m->m_ext.ext_buf <= m->m_data);
    601 			KASSERT(m->m_data <=
    602 			    m->m_ext.ext_buf + m->m_ext.ext_size);
    603 
    604 			offset = (vaddr_t)m->m_data -
    605 			    trunc_page((vaddr_t)m->m_ext.ext_buf);
    606 			remainbytes = m->m_len;
    607 
    608 			/* skip uninteresting pages */
    609 			pgs = (const struct vm_page * const *)
    610 			    m->m_ext.ext_pgs + (offset >> PAGE_SHIFT);
    611 
    612 			offset &= PAGE_MASK;	/* offset in the first page */
    613 
    614 			/* load each page */
    615 			while (remainbytes > 0) {
    616 				const struct vm_page *pg;
    617 
    618 				size = MIN(remainbytes, PAGE_SIZE - offset);
    619 
    620 				pg = *pgs++;
    621 				KASSERT(pg);
    622 				paddr = VM_PAGE_TO_PHYS(pg) + offset;
    623 
    624 				error = _bus_dmamap_load_paddr(t, map,
    625 				    paddr, size, false);
    626 				if (error)
    627 					break;
    628 				offset = 0;
    629 				remainbytes -= size;
    630 			}
    631 			break;
    632 
    633 		case 0:
    634 			paddr = m->m_paddr + M_BUFOFFSET(m) +
    635 			    (m->m_data - M_BUFADDR(m));
    636 			size = m->m_len;
    637 			error = _bus_dmamap_load_paddr(t, map, paddr, size,
    638 			    false);
    639 			break;
    640 
    641 		default:
    642 			error = _bus_dmamap_load_buffer(t, map, m->m_data,
    643 			    m->m_len, vmspace_kernel(), flags);
    644 		}
    645 	}
    646 	if (error == 0) {
    647 		map->dm_mapsize = m0->m_pkthdr.len;
    648 		map->_dm_origbuf = m0;
    649 		map->_dm_buftype = _BUS_DMA_BUFTYPE_MBUF;
    650 		map->_dm_vmspace = vmspace_kernel();	/* always kernel */
    651 		if (map->_dm_flags & _BUS_DMAMAP_COHERENT) {
    652 			STAT_INCR(coherent_loads);
    653 		} else {
    654 			STAT_INCR(loads);
    655 		}
    656 		return 0;
    657 	}
    658 #ifdef _ARM32_NEED_BUS_DMA_BOUNCE
    659 	struct arm32_bus_dma_cookie * const cookie = map->_dm_cookie;
    660 	if (cookie != NULL && (cookie->id_flags & _BUS_DMA_MIGHT_NEED_BOUNCE)) {
    661 		error = _bus_dma_load_bouncebuf(t, map, m0, m0->m_pkthdr.len,
    662 		    _BUS_DMA_BUFTYPE_MBUF, flags);
    663 	}
    664 #endif
    665 	return error;
    666 }
    667 
    668 /*
    669  * Like _bus_dmamap_load(), but for uios.
    670  */
    671 int
    672 _bus_dmamap_load_uio(bus_dma_tag_t t, bus_dmamap_t map, struct uio *uio,
    673     int flags)
    674 {
    675 	int i, error;
    676 	bus_size_t minlen, resid;
    677 	struct iovec *iov;
    678 	void *addr;
    679 
    680 	/*
    681 	 * Make sure that on error condition we return "no valid mappings."
    682 	 */
    683 	map->dm_mapsize = 0;
    684 	map->dm_nsegs = 0;
    685 	KASSERTMSG(map->dm_maxsegsz <= map->_dm_maxmaxsegsz,
    686 	    "dm_maxsegsz %lu _dm_maxmaxsegsz %lu",
    687 	    map->dm_maxsegsz, map->_dm_maxmaxsegsz);
    688 
    689 	resid = uio->uio_resid;
    690 	iov = uio->uio_iov;
    691 
    692 	/* _bus_dmamap_load_buffer() clears this if we're not... */
    693 	map->_dm_flags |= _BUS_DMAMAP_COHERENT;
    694 
    695 	error = 0;
    696 	for (i = 0; i < uio->uio_iovcnt && resid != 0 && error == 0; i++) {
    697 		/*
    698 		 * Now at the first iovec to load.  Load each iovec
    699 		 * until we have exhausted the residual count.
    700 		 */
    701 		minlen = resid < iov[i].iov_len ? resid : iov[i].iov_len;
    702 		addr = (void *)iov[i].iov_base;
    703 
    704 		error = _bus_dmamap_load_buffer(t, map, addr, minlen,
    705 		    uio->uio_vmspace, flags);
    706 
    707 		resid -= minlen;
    708 	}
    709 	if (error == 0) {
    710 		map->dm_mapsize = uio->uio_resid;
    711 		map->_dm_origbuf = uio;
    712 		map->_dm_buftype = _BUS_DMA_BUFTYPE_UIO;
    713 		map->_dm_vmspace = uio->uio_vmspace;
    714 		if (map->_dm_flags & _BUS_DMAMAP_COHERENT) {
    715 			STAT_INCR(coherent_loads);
    716 		} else {
    717 			STAT_INCR(loads);
    718 		}
    719 	}
    720 	return error;
    721 }
    722 
    723 /*
    724  * Like _bus_dmamap_load(), but for raw memory allocated with
    725  * bus_dmamem_alloc().
    726  */
    727 int
    728 _bus_dmamap_load_raw(bus_dma_tag_t t, bus_dmamap_t map,
    729     bus_dma_segment_t *segs, int nsegs, bus_size_t size0, int flags)
    730 {
    731 
    732 	bus_size_t size;
    733 	int i, error = 0;
    734 
    735 	/*
    736 	 * Make sure that on error conditions we return "no valid mappings."
    737 	 */
    738 	map->dm_mapsize = 0;
    739 	map->dm_nsegs = 0;
    740 	KASSERT(map->dm_maxsegsz <= map->_dm_maxmaxsegsz);
    741 
    742 	if (size0 > map->_dm_size)
    743 		return EINVAL;
    744 
    745 	for (i = 0, size = size0; i < nsegs && size > 0; i++) {
    746 		bus_dma_segment_t *ds = &segs[i];
    747 		bus_size_t sgsize;
    748 
    749 		sgsize = MIN(ds->ds_len, size);
    750 		if (sgsize == 0)
    751 			continue;
    752 		error = _bus_dmamap_load_paddr(t, map, ds->ds_addr,
    753 		    sgsize, false);
    754 		if (error != 0)
    755 			break;
    756 		size -= sgsize;
    757 	}
    758 
    759 	if (error != 0) {
    760 		map->dm_mapsize = 0;
    761 		map->dm_nsegs = 0;
    762 		return error;
    763 	}
    764 
    765 	/* XXX TBD bounce */
    766 
    767 	map->dm_mapsize = size0;
    768 	return 0;
    769 }
    770 
    771 /*
    772  * Common function for unloading a DMA map.  May be called by
    773  * bus-specific DMA map unload functions.
    774  */
    775 void
    776 _bus_dmamap_unload(bus_dma_tag_t t, bus_dmamap_t map)
    777 {
    778 
    779 #ifdef DEBUG_DMA
    780 	printf("dmamap_unload: t=%p map=%p\n", t, map);
    781 #endif	/* DEBUG_DMA */
    782 
    783 	/*
    784 	 * No resources to free; just mark the mappings as
    785 	 * invalid.
    786 	 */
    787 	map->dm_mapsize = 0;
    788 	map->dm_nsegs = 0;
    789 	map->_dm_origbuf = NULL;
    790 	map->_dm_buftype = _BUS_DMA_BUFTYPE_INVALID;
    791 	map->_dm_vmspace = NULL;
    792 }
    793 
    794 static void
    795 _bus_dmamap_sync_segment(vaddr_t va, paddr_t pa, vsize_t len, int ops,
    796     bool readonly_p)
    797 {
    798 	KASSERTMSG((va & PAGE_MASK) == (pa & PAGE_MASK),
    799 	    "va %#lx pa %#lx", va, pa);
    800 #if 0
    801 	printf("sync_segment: va=%#lx pa=%#lx len=%#lx ops=%#x ro=%d\n",
    802 	    va, pa, len, ops, readonly_p);
    803 #endif
    804 
    805 	switch (ops) {
    806 	case BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE:
    807 #ifdef ARM_MMU_EXTENDED
    808 		(void)readonly_p;
    809 #else
    810 		if (!readonly_p) {
    811 #endif
    812 			STAT_INCR(sync_prereadwrite);
    813 			cpu_dcache_wbinv_range(va, len);
    814 			cpu_sdcache_wbinv_range(va, pa, len);
    815 			break;
    816 #ifndef ARM_MMU_EXTENDED
    817 		}
    818 		/* FALLTHROUGH */
    819 #endif
    820 
    821 	case BUS_DMASYNC_PREREAD: {
    822 		const size_t line_size = arm_dcache_align;
    823 		const size_t line_mask = arm_dcache_align_mask;
    824 		vsize_t misalignment = va & line_mask;
    825 		if (misalignment) {
    826 			va -= misalignment;
    827 			pa -= misalignment;
    828 			len += misalignment;
    829 			STAT_INCR(sync_preread_begin);
    830 			cpu_dcache_wbinv_range(va, line_size);
    831 			cpu_sdcache_wbinv_range(va, pa, line_size);
    832 			if (len <= line_size)
    833 				break;
    834 			va += line_size;
    835 			pa += line_size;
    836 			len -= line_size;
    837 		}
    838 		misalignment = len & line_mask;
    839 		len -= misalignment;
    840 		if (len > 0) {
    841 			STAT_INCR(sync_preread);
    842 			cpu_dcache_inv_range(va, len);
    843 			cpu_sdcache_inv_range(va, pa, len);
    844 		}
    845 		if (misalignment) {
    846 			va += len;
    847 			pa += len;
    848 			STAT_INCR(sync_preread_tail);
    849 			cpu_dcache_wbinv_range(va, line_size);
    850 			cpu_sdcache_wbinv_range(va, pa, line_size);
    851 		}
    852 		break;
    853 	}
    854 
    855 	case BUS_DMASYNC_PREWRITE:
    856 		STAT_INCR(sync_prewrite);
    857 		cpu_dcache_wb_range(va, len);
    858 		cpu_sdcache_wb_range(va, pa, len);
    859 		break;
    860 
    861 #ifdef CPU_CORTEX
    862 	/*
    863 	 * Cortex CPUs can do speculative loads so we need to clean the cache
    864 	 * after a DMA read to deal with any speculatively loaded cache lines.
    865 	 * Since these can't be dirty, we can just invalidate them and don't
    866 	 * have to worry about having to write back their contents.
    867 	 */
    868 	case BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE:
    869 		STAT_INCR(sync_postreadwrite);
    870 		cpu_dcache_inv_range(va, len);
    871 		cpu_sdcache_inv_range(va, pa, len);
    872 		break;
    873 	case BUS_DMASYNC_POSTREAD:
    874 		STAT_INCR(sync_postread);
    875 		cpu_dcache_inv_range(va, len);
    876 		cpu_sdcache_inv_range(va, pa, len);
    877 		break;
    878 #endif
    879 	}
    880 }
    881 
    882 static inline void
    883 _bus_dmamap_sync_linear(bus_dma_tag_t t, bus_dmamap_t map, bus_addr_t offset,
    884     bus_size_t len, int ops)
    885 {
    886 	bus_dma_segment_t *ds = map->dm_segs;
    887 	vaddr_t va = (vaddr_t) map->_dm_origbuf;
    888 #ifdef _ARM32_NEED_BUS_DMA_BOUNCE
    889 	if (map->_dm_flags & _BUS_DMAMAP_IS_BOUNCING) {
    890 		struct arm32_bus_dma_cookie * const cookie = map->_dm_cookie;
    891 		va = (vaddr_t) cookie->id_bouncebuf;
    892 	}
    893 #endif
    894 
    895 	while (len > 0) {
    896 		while (offset >= ds->ds_len) {
    897 			offset -= ds->ds_len;
    898 			va += ds->ds_len;
    899 			ds++;
    900 		}
    901 
    902 		paddr_t pa = _bus_dma_busaddr_to_paddr(t, ds->ds_addr + offset);
    903 		size_t seglen = min(len, ds->ds_len - offset);
    904 
    905 		if ((ds->_ds_flags & _BUS_DMAMAP_COHERENT) == 0)
    906 			_bus_dmamap_sync_segment(va + offset, pa, seglen, ops,
    907 			    false);
    908 
    909 		offset += seglen;
    910 		len -= seglen;
    911 	}
    912 }
    913 
    914 static inline void
    915 _bus_dmamap_sync_mbuf(bus_dma_tag_t t, bus_dmamap_t map, bus_size_t offset,
    916     bus_size_t len, int ops)
    917 {
    918 	bus_dma_segment_t *ds = map->dm_segs;
    919 	struct mbuf *m = map->_dm_origbuf;
    920 	bus_size_t voff = offset;
    921 	bus_size_t ds_off = offset;
    922 
    923 	while (len > 0) {
    924 		/* Find the current dma segment */
    925 		while (ds_off >= ds->ds_len) {
    926 			ds_off -= ds->ds_len;
    927 			ds++;
    928 		}
    929 		/* Find the current mbuf. */
    930 		while (voff >= m->m_len) {
    931 			voff -= m->m_len;
    932 			m = m->m_next;
    933 		}
    934 
    935 		/*
    936 		 * Now at the first mbuf to sync; nail each one until
    937 		 * we have exhausted the length.
    938 		 */
    939 		vsize_t seglen = min(len, min(m->m_len - voff, ds->ds_len - ds_off));
    940 		vaddr_t va = mtod(m, vaddr_t) + voff;
    941 		paddr_t pa = _bus_dma_busaddr_to_paddr(t, ds->ds_addr + ds_off);
    942 
    943 		/*
    944 		 * We can save a lot of work here if we know the mapping
    945 		 * is read-only at the MMU and we aren't using the armv6+
    946 		 * MMU:
    947 		 *
    948 		 * If a mapping is read-only, no dirty cache blocks will
    949 		 * exist for it.  If a writable mapping was made read-only,
    950 		 * we know any dirty cache lines for the range will have
    951 		 * been cleaned for us already.  Therefore, if the upper
    952 		 * layer can tell us we have a read-only mapping, we can
    953 		 * skip all cache cleaning.
    954 		 *
    955 		 * NOTE: This only works if we know the pmap cleans pages
    956 		 * before making a read-write -> read-only transition.  If
    957 		 * this ever becomes non-true (e.g. Physically Indexed
    958 		 * cache), this will have to be revisited.
    959 		 */
    960 
    961 		if ((ds->_ds_flags & _BUS_DMAMAP_COHERENT) == 0) {
    962 			/*
    963 			 * If we are doing preread (DMAing into the mbuf),
    964 			 * this mbuf better not be readonly,
    965 			 */
    966 			KASSERT(!(ops & BUS_DMASYNC_PREREAD) || !M_ROMAP(m));
    967 			_bus_dmamap_sync_segment(va, pa, seglen, ops,
    968 			    M_ROMAP(m));
    969 		}
    970 		voff += seglen;
    971 		ds_off += seglen;
    972 		len -= seglen;
    973 	}
    974 }
    975 
    976 static inline void
    977 _bus_dmamap_sync_uio(bus_dma_tag_t t, bus_dmamap_t map, bus_addr_t offset,
    978     bus_size_t len, int ops)
    979 {
    980 	bus_dma_segment_t *ds = map->dm_segs;
    981 	struct uio *uio = map->_dm_origbuf;
    982 	struct iovec *iov = uio->uio_iov;
    983 	bus_size_t voff = offset;
    984 	bus_size_t ds_off = offset;
    985 
    986 	while (len > 0) {
    987 		/* Find the current dma segment */
    988 		while (ds_off >= ds->ds_len) {
    989 			ds_off -= ds->ds_len;
    990 			ds++;
    991 		}
    992 
    993 		/* Find the current iovec. */
    994 		while (voff >= iov->iov_len) {
    995 			voff -= iov->iov_len;
    996 			iov++;
    997 		}
    998 
    999 		/*
   1000 		 * Now at the first iovec to sync; nail each one until
   1001 		 * we have exhausted the length.
   1002 		 */
   1003 		vsize_t seglen = min(len, min(iov->iov_len - voff, ds->ds_len - ds_off));
   1004 		vaddr_t va = (vaddr_t) iov->iov_base + voff;
   1005 		paddr_t pa = _bus_dma_busaddr_to_paddr(t, ds->ds_addr + ds_off);
   1006 
   1007 		if ((ds->_ds_flags & _BUS_DMAMAP_COHERENT) == 0)
   1008 			_bus_dmamap_sync_segment(va, pa, seglen, ops, false);
   1009 
   1010 		voff += seglen;
   1011 		ds_off += seglen;
   1012 		len -= seglen;
   1013 	}
   1014 }
   1015 
   1016 /*
   1017  * Common function for DMA map synchronization.  May be called
   1018  * by bus-specific DMA map synchronization functions.
   1019  *
   1020  * This version works for the Virtually Indexed Virtually Tagged
   1021  * cache found on 32-bit ARM processors.
   1022  *
   1023  * XXX Should have separate versions for write-through vs.
   1024  * XXX write-back caches.  We currently assume write-back
   1025  * XXX here, which is not as efficient as it could be for
   1026  * XXX the write-through case.
   1027  */
   1028 void
   1029 _bus_dmamap_sync(bus_dma_tag_t t, bus_dmamap_t map, bus_addr_t offset,
   1030     bus_size_t len, int ops)
   1031 {
   1032 #ifdef DEBUG_DMA
   1033 	printf("dmamap_sync: t=%p map=%p offset=%lx len=%lx ops=%x\n",
   1034 	    t, map, offset, len, ops);
   1035 #endif	/* DEBUG_DMA */
   1036 
   1037 	/*
   1038 	 * Mixing of PRE and POST operations is not allowed.
   1039 	 */
   1040 	if ((ops & (BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE)) != 0 &&
   1041 	    (ops & (BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE)) != 0)
   1042 		panic("_bus_dmamap_sync: mix PRE and POST");
   1043 
   1044 	KASSERTMSG(offset < map->dm_mapsize,
   1045 	    "offset %lu mapsize %lu",
   1046 	    offset, map->dm_mapsize);
   1047 	KASSERTMSG(len > 0 && offset + len <= map->dm_mapsize,
   1048 	    "len %lu offset %lu mapsize %lu",
   1049 	    len, offset, map->dm_mapsize);
   1050 
   1051 	/*
   1052 	 * For a virtually-indexed write-back cache, we need
   1053 	 * to do the following things:
   1054 	 *
   1055 	 *	PREREAD -- Invalidate the D-cache.  We do this
   1056 	 *	here in case a write-back is required by the back-end.
   1057 	 *
   1058 	 *	PREWRITE -- Write-back the D-cache.  Note that if
   1059 	 *	we are doing a PREREAD|PREWRITE, we can collapse
   1060 	 *	the whole thing into a single Wb-Inv.
   1061 	 *
   1062 	 *	POSTREAD -- Re-invalidate the D-cache in case speculative
   1063 	 *	memory accesses caused cachelines to become valid with now
   1064 	 *	invalid data.
   1065 	 *
   1066 	 *	POSTWRITE -- Nothing.
   1067 	 */
   1068 #ifdef _ARM32_NEED_BUS_DMA_BOUNCE
   1069 	const bool bouncing = (map->_dm_flags & _BUS_DMAMAP_IS_BOUNCING);
   1070 #else
   1071 	const bool bouncing = false;
   1072 #endif
   1073 
   1074 	const int pre_ops = ops & (BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
   1075 #ifdef CPU_CORTEX
   1076 	const int post_ops = ops & (BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
   1077 #else
   1078 	const int post_ops = 0;
   1079 #endif
   1080 	if (!bouncing) {
   1081 		if (pre_ops == 0 && post_ops == BUS_DMASYNC_POSTWRITE) {
   1082 			STAT_INCR(sync_postwrite);
   1083 			return;
   1084 		} else if (pre_ops == 0 && post_ops == 0) {
   1085 			return;
   1086 		}
   1087 	}
   1088 	KASSERTMSG(bouncing || pre_ops != 0 || (post_ops & BUS_DMASYNC_POSTREAD),
   1089 	    "pre_ops %#x post_ops %#x", pre_ops, post_ops);
   1090 #ifdef _ARM32_NEED_BUS_DMA_BOUNCE
   1091 	if (bouncing && (ops & BUS_DMASYNC_PREWRITE)) {
   1092 		struct arm32_bus_dma_cookie * const cookie = map->_dm_cookie;
   1093 		STAT_INCR(write_bounces);
   1094 		char * const dataptr = (char *)cookie->id_bouncebuf + offset;
   1095 		/*
   1096 		 * Copy the caller's buffer to the bounce buffer.
   1097 		 */
   1098 		switch (map->_dm_buftype) {
   1099 		case _BUS_DMA_BUFTYPE_LINEAR:
   1100 			memcpy(dataptr, cookie->id_origlinearbuf + offset, len);
   1101 			break;
   1102 		case _BUS_DMA_BUFTYPE_MBUF:
   1103 			m_copydata(cookie->id_origmbuf, offset, len, dataptr);
   1104 			break;
   1105 		case _BUS_DMA_BUFTYPE_UIO:
   1106 			_bus_dma_uiomove(dataptr, cookie->id_origuio, len, UIO_WRITE);
   1107 			break;
   1108 #ifdef DIAGNOSTIC
   1109 		case _BUS_DMA_BUFTYPE_RAW:
   1110 			panic("_bus_dmamap_sync(pre): _BUS_DMA_BUFTYPE_RAW");
   1111 			break;
   1112 
   1113 		case _BUS_DMA_BUFTYPE_INVALID:
   1114 			panic("_bus_dmamap_sync(pre): _BUS_DMA_BUFTYPE_INVALID");
   1115 			break;
   1116 
   1117 		default:
   1118 			panic("_bus_dmamap_sync(pre): map %p: unknown buffer type %d\n",
   1119 			    map, map->_dm_buftype);
   1120 			break;
   1121 #endif /* DIAGNOSTIC */
   1122 		}
   1123 	}
   1124 #endif /* _ARM32_NEED_BUS_DMA_BOUNCE */
   1125 
   1126 	/* Skip cache frobbing if mapping was COHERENT. */
   1127 	if (!bouncing && (map->_dm_flags & _BUS_DMAMAP_COHERENT)) {
   1128 		/* Drain the write buffer. */
   1129 		if (pre_ops & BUS_DMASYNC_PREWRITE)
   1130 			cpu_drain_writebuf();
   1131 		return;
   1132 	}
   1133 
   1134 #ifdef _ARM32_NEED_BUS_DMA_BOUNCE
   1135 	if (bouncing && ((map->_dm_flags & _BUS_DMAMAP_COHERENT) || pre_ops == 0)) {
   1136 		goto bounce_it;
   1137 	}
   1138 #endif /* _ARM32_NEED_BUS_DMA_BOUNCE */
   1139 
   1140 #ifndef ARM_MMU_EXTENDED
   1141 	/*
   1142 	 * If the mapping belongs to a non-kernel vmspace, and the
   1143 	 * vmspace has not been active since the last time a full
   1144 	 * cache flush was performed, we don't need to do anything.
   1145 	 */
   1146 	if (__predict_false(!VMSPACE_IS_KERNEL_P(map->_dm_vmspace) &&
   1147 	    vm_map_pmap(&map->_dm_vmspace->vm_map)->pm_cstate.cs_cache_d == 0))
   1148 		return;
   1149 #endif
   1150 
   1151 	int buftype = map->_dm_buftype;
   1152 #ifdef _ARM32_NEED_BUS_DMA_BOUNCE
   1153 	if (bouncing) {
   1154 		buftype = _BUS_DMA_BUFTYPE_LINEAR;
   1155 	}
   1156 #endif
   1157 
   1158 	switch (buftype) {
   1159 	case _BUS_DMA_BUFTYPE_LINEAR:
   1160 		_bus_dmamap_sync_linear(t, map, offset, len, ops);
   1161 		break;
   1162 
   1163 	case _BUS_DMA_BUFTYPE_MBUF:
   1164 		_bus_dmamap_sync_mbuf(t, map, offset, len, ops);
   1165 		break;
   1166 
   1167 	case _BUS_DMA_BUFTYPE_UIO:
   1168 		_bus_dmamap_sync_uio(t, map, offset, len, ops);
   1169 		break;
   1170 
   1171 	case _BUS_DMA_BUFTYPE_RAW:
   1172 		panic("_bus_dmamap_sync: _BUS_DMA_BUFTYPE_RAW");
   1173 		break;
   1174 
   1175 	case _BUS_DMA_BUFTYPE_INVALID:
   1176 		panic("_bus_dmamap_sync: _BUS_DMA_BUFTYPE_INVALID");
   1177 		break;
   1178 
   1179 	default:
   1180 		panic("_bus_dmamap_sync: map %p: unknown buffer type %d\n",
   1181 		    map, map->_dm_buftype);
   1182 	}
   1183 
   1184 	/* Drain the write buffer. */
   1185 	cpu_drain_writebuf();
   1186 
   1187 #ifdef _ARM32_NEED_BUS_DMA_BOUNCE
   1188   bounce_it:
   1189 	if (!bouncing || (ops & BUS_DMASYNC_POSTREAD) == 0)
   1190 		return;
   1191 
   1192 	struct arm32_bus_dma_cookie * const cookie = map->_dm_cookie;
   1193 	char * const dataptr = (char *)cookie->id_bouncebuf + offset;
   1194 	STAT_INCR(read_bounces);
   1195 	/*
   1196 	 * Copy the bounce buffer to the caller's buffer.
   1197 	 */
   1198 	switch (map->_dm_buftype) {
   1199 	case _BUS_DMA_BUFTYPE_LINEAR:
   1200 		memcpy(cookie->id_origlinearbuf + offset, dataptr, len);
   1201 		break;
   1202 
   1203 	case _BUS_DMA_BUFTYPE_MBUF:
   1204 		m_copyback(cookie->id_origmbuf, offset, len, dataptr);
   1205 		break;
   1206 
   1207 	case _BUS_DMA_BUFTYPE_UIO:
   1208 		_bus_dma_uiomove(dataptr, cookie->id_origuio, len, UIO_READ);
   1209 		break;
   1210 #ifdef DIAGNOSTIC
   1211 	case _BUS_DMA_BUFTYPE_RAW:
   1212 		panic("_bus_dmamap_sync(post): _BUS_DMA_BUFTYPE_RAW");
   1213 		break;
   1214 
   1215 	case _BUS_DMA_BUFTYPE_INVALID:
   1216 		panic("_bus_dmamap_sync(post): _BUS_DMA_BUFTYPE_INVALID");
   1217 		break;
   1218 
   1219 	default:
   1220 		panic("_bus_dmamap_sync(post): map %p: unknown buffer type %d\n",
   1221 		    map, map->_dm_buftype);
   1222 		break;
   1223 #endif
   1224 	}
   1225 #endif /* _ARM32_NEED_BUS_DMA_BOUNCE */
   1226 }
   1227 
   1228 /*
   1229  * Common function for DMA-safe memory allocation.  May be called
   1230  * by bus-specific DMA memory allocation functions.
   1231  */
   1232 
   1233 extern paddr_t physical_start;
   1234 extern paddr_t physical_end;
   1235 
   1236 int
   1237 _bus_dmamem_alloc(bus_dma_tag_t t, bus_size_t size, bus_size_t alignment,
   1238     bus_size_t boundary, bus_dma_segment_t *segs, int nsegs, int *rsegs,
   1239     int flags)
   1240 {
   1241 	struct arm32_dma_range *dr;
   1242 	int error, i;
   1243 
   1244 #ifdef DEBUG_DMA
   1245 	printf("dmamem_alloc t=%p size=%lx align=%lx boundary=%lx "
   1246 	    "segs=%p nsegs=%x rsegs=%p flags=%x\n", t, size, alignment,
   1247 	    boundary, segs, nsegs, rsegs, flags);
   1248 #endif
   1249 
   1250 	if ((dr = t->_ranges) != NULL) {
   1251 		error = ENOMEM;
   1252 		for (i = 0; i < t->_nranges; i++, dr++) {
   1253 			if (dr->dr_len == 0
   1254 			    || (dr->dr_flags & _BUS_DMAMAP_NOALLOC))
   1255 				continue;
   1256 			error = _bus_dmamem_alloc_range(t, size, alignment,
   1257 			    boundary, segs, nsegs, rsegs, flags,
   1258 			    trunc_page(dr->dr_sysbase),
   1259 			    trunc_page(dr->dr_sysbase + dr->dr_len));
   1260 			if (error == 0)
   1261 				break;
   1262 		}
   1263 	} else {
   1264 		error = _bus_dmamem_alloc_range(t, size, alignment, boundary,
   1265 		    segs, nsegs, rsegs, flags, trunc_page(physical_start),
   1266 		    trunc_page(physical_end));
   1267 	}
   1268 
   1269 #ifdef DEBUG_DMA
   1270 	printf("dmamem_alloc: =%d\n", error);
   1271 #endif
   1272 
   1273 	return error;
   1274 }
   1275 
   1276 /*
   1277  * Common function for freeing DMA-safe memory.  May be called by
   1278  * bus-specific DMA memory free functions.
   1279  */
   1280 void
   1281 _bus_dmamem_free(bus_dma_tag_t t, bus_dma_segment_t *segs, int nsegs)
   1282 {
   1283 	struct vm_page *m;
   1284 	bus_addr_t addr;
   1285 	struct pglist mlist;
   1286 	int curseg;
   1287 
   1288 #ifdef DEBUG_DMA
   1289 	printf("dmamem_free: t=%p segs=%p nsegs=%x\n", t, segs, nsegs);
   1290 #endif	/* DEBUG_DMA */
   1291 
   1292 	/*
   1293 	 * Build a list of pages to free back to the VM system.
   1294 	 */
   1295 	TAILQ_INIT(&mlist);
   1296 	for (curseg = 0; curseg < nsegs; curseg++) {
   1297 		for (addr = segs[curseg].ds_addr;
   1298 		    addr < (segs[curseg].ds_addr + segs[curseg].ds_len);
   1299 		    addr += PAGE_SIZE) {
   1300 			m = PHYS_TO_VM_PAGE(addr);
   1301 			TAILQ_INSERT_TAIL(&mlist, m, pageq.queue);
   1302 		}
   1303 	}
   1304 	uvm_pglistfree(&mlist);
   1305 }
   1306 
   1307 /*
   1308  * Common function for mapping DMA-safe memory.  May be called by
   1309  * bus-specific DMA memory map functions.
   1310  */
   1311 int
   1312 _bus_dmamem_map(bus_dma_tag_t t, bus_dma_segment_t *segs, int nsegs,
   1313     size_t size, void **kvap, int flags)
   1314 {
   1315 	vaddr_t va;
   1316 	paddr_t pa;
   1317 	int curseg;
   1318 	const uvm_flag_t kmflags = UVM_KMF_VAONLY
   1319 	    | ((flags & BUS_DMA_NOWAIT) != 0 ? UVM_KMF_NOWAIT : 0);
   1320 	vsize_t align = 0;
   1321 
   1322 #ifdef DEBUG_DMA
   1323 	printf("dmamem_map: t=%p segs=%p nsegs=%x size=%lx flags=%x\n", t,
   1324 	    segs, nsegs, (unsigned long)size, flags);
   1325 #endif	/* DEBUG_DMA */
   1326 
   1327 #ifdef PMAP_MAP_POOLPAGE
   1328 	/*
   1329 	 * If all of memory is mapped, and we are mapping a single physically
   1330 	 * contiguous area then this area is already mapped.  Let's see if we
   1331 	 * avoid having a separate mapping for it.
   1332 	 */
   1333 	if (nsegs == 1) {
   1334 		/*
   1335 		 * If this is a non-COHERENT mapping, then the existing kernel
   1336 		 * mapping is already compatible with it.
   1337 		 */
   1338 		bool direct_mapable = (flags & BUS_DMA_COHERENT) == 0;
   1339 		pa = segs[0].ds_addr;
   1340 
   1341 		/*
   1342 		 * This is a COHERENT mapping which, unless this address is in
   1343 		 * a COHERENT dma range, will not be compatible.
   1344 		 */
   1345 		if (t->_ranges != NULL) {
   1346 			const struct arm32_dma_range * const dr =
   1347 			    _bus_dma_paddr_inrange(t->_ranges, t->_nranges, pa);
   1348 			if (dr != NULL
   1349 			    && (dr->dr_flags & _BUS_DMAMAP_COHERENT)) {
   1350 				direct_mapable = true;
   1351 			}
   1352 		}
   1353 
   1354 #ifdef PMAP_NEED_ALLOC_POOLPAGE
   1355 		/*
   1356 		 * The page can only be direct mapped if was allocated out
   1357 		 * of the arm poolpage vm freelist.
   1358 		 */
   1359 		uvm_physseg_t upm = uvm_physseg_find(atop(pa), NULL);
   1360 		KASSERT(uvm_physseg_valid_p(upm));
   1361 		if (direct_mapable) {
   1362 			direct_mapable =
   1363 			    (arm_poolpage_vmfreelist == uvm_physseg_get_free_list(upm));
   1364 		}
   1365 #endif
   1366 
   1367 		if (direct_mapable) {
   1368 			*kvap = (void *)PMAP_MAP_POOLPAGE(pa);
   1369 #ifdef DEBUG_DMA
   1370 			printf("dmamem_map: =%p\n", *kvap);
   1371 #endif	/* DEBUG_DMA */
   1372 			return 0;
   1373 		}
   1374 	}
   1375 #endif
   1376 
   1377 	size = round_page(size);
   1378 	if (__predict_true(size > L2_L_SIZE)) {
   1379 #if (ARM_MMU_V6 + ARM_MMU_V7) > 0
   1380 		if (size >= L1_SS_SIZE)
   1381 			align = L1_SS_SIZE;
   1382 		else
   1383 #endif
   1384 		if (size >= L1_S_SIZE)
   1385 			align = L1_S_SIZE;
   1386 		else
   1387 			align = L2_L_SIZE;
   1388 	}
   1389 
   1390 	va = uvm_km_alloc(kernel_map, size, align, kmflags);
   1391 	if (__predict_false(va == 0 && align > 0)) {
   1392 		align = 0;
   1393 		va = uvm_km_alloc(kernel_map, size, 0, kmflags);
   1394 	}
   1395 
   1396 	if (va == 0)
   1397 		return ENOMEM;
   1398 
   1399 	*kvap = (void *)va;
   1400 
   1401 	for (curseg = 0; curseg < nsegs; curseg++) {
   1402 		for (pa = segs[curseg].ds_addr;
   1403 		    pa < (segs[curseg].ds_addr + segs[curseg].ds_len);
   1404 		    pa += PAGE_SIZE, va += PAGE_SIZE, size -= PAGE_SIZE) {
   1405 			bool uncached = (flags & BUS_DMA_COHERENT);
   1406 #ifdef DEBUG_DMA
   1407 			printf("wiring p%lx to v%lx", pa, va);
   1408 #endif	/* DEBUG_DMA */
   1409 			if (size == 0)
   1410 				panic("_bus_dmamem_map: size botch");
   1411 
   1412 			const struct arm32_dma_range * const dr =
   1413 			    _bus_dma_paddr_inrange(t->_ranges, t->_nranges, pa);
   1414 			/*
   1415 			 * If this dma region is coherent then there is
   1416 			 * no need for an uncached mapping.
   1417 			 */
   1418 			if (dr != NULL
   1419 			    && (dr->dr_flags & _BUS_DMAMAP_COHERENT)) {
   1420 				uncached = false;
   1421 			}
   1422 
   1423 			pmap_kenter_pa(va, pa, VM_PROT_READ | VM_PROT_WRITE,
   1424 			    PMAP_WIRED | (uncached ? PMAP_NOCACHE : 0));
   1425 		}
   1426 	}
   1427 	pmap_update(pmap_kernel());
   1428 #ifdef DEBUG_DMA
   1429 	printf("dmamem_map: =%p\n", *kvap);
   1430 #endif	/* DEBUG_DMA */
   1431 	return 0;
   1432 }
   1433 
   1434 /*
   1435  * Common function for unmapping DMA-safe memory.  May be called by
   1436  * bus-specific DMA memory unmapping functions.
   1437  */
   1438 void
   1439 _bus_dmamem_unmap(bus_dma_tag_t t, void *kva, size_t size)
   1440 {
   1441 
   1442 #ifdef DEBUG_DMA
   1443 	printf("dmamem_unmap: t=%p kva=%p size=%zx\n", t, kva, size);
   1444 #endif	/* DEBUG_DMA */
   1445 	KASSERTMSG(((uintptr_t)kva & PAGE_MASK) == 0,
   1446 	    "kva %p (%#"PRIxPTR")", kva, ((uintptr_t)kva & PAGE_MASK));
   1447 
   1448 #ifdef __HAVE_MM_MD_DIRECT_MAPPED_PHYS
   1449 	/*
   1450 	 * Check to see if this used direct mapped memory.  Get its physical
   1451 	 * address and try to map it.  If the resultant matches the kva, then
   1452 	 * it was and so we can just return since we have nothing to free up.
   1453 	 */
   1454 	paddr_t pa;
   1455 	vaddr_t va;
   1456 	(void)pmap_extract(pmap_kernel(), (vaddr_t)kva, &pa);
   1457 	if (mm_md_direct_mapped_phys(pa, &va) && va == (vaddr_t)kva)
   1458 		return;
   1459 #endif
   1460 
   1461 	size = round_page(size);
   1462 	pmap_kremove((vaddr_t)kva, size);
   1463 	pmap_update(pmap_kernel());
   1464 	uvm_km_free(kernel_map, (vaddr_t)kva, size, UVM_KMF_VAONLY);
   1465 }
   1466 
   1467 /*
   1468  * Common functin for mmap(2)'ing DMA-safe memory.  May be called by
   1469  * bus-specific DMA mmap(2)'ing functions.
   1470  */
   1471 paddr_t
   1472 _bus_dmamem_mmap(bus_dma_tag_t t, bus_dma_segment_t *segs, int nsegs,
   1473     off_t off, int prot, int flags)
   1474 {
   1475 	paddr_t map_flags;
   1476 	int i;
   1477 
   1478 	for (i = 0; i < nsegs; i++) {
   1479 		KASSERTMSG((off & PAGE_MASK) == 0,
   1480 		    "off %#qx (%#x)", off, (int)off & PAGE_MASK);
   1481 		KASSERTMSG((segs[i].ds_addr & PAGE_MASK) == 0,
   1482 		    "ds_addr %#lx (%#x)", segs[i].ds_addr,
   1483 		    (int)segs[i].ds_addr & PAGE_MASK);
   1484 		KASSERTMSG((segs[i].ds_len & PAGE_MASK) == 0,
   1485 		    "ds_len %#lx (%#x)", segs[i].ds_addr,
   1486 		    (int)segs[i].ds_addr & PAGE_MASK);
   1487 		if (off >= segs[i].ds_len) {
   1488 			off -= segs[i].ds_len;
   1489 			continue;
   1490 		}
   1491 
   1492 		map_flags = 0;
   1493 		if (flags & BUS_DMA_PREFETCHABLE)
   1494 			map_flags |= ARM32_MMAP_WRITECOMBINE;
   1495 
   1496 		return arm_btop((u_long)segs[i].ds_addr + off) | map_flags;
   1497 
   1498 	}
   1499 
   1500 	/* Page not found. */
   1501 	return -1;
   1502 }
   1503 
   1504 /**********************************************************************
   1505  * DMA utility functions
   1506  **********************************************************************/
   1507 
   1508 /*
   1509  * Utility function to load a linear buffer.  lastaddrp holds state
   1510  * between invocations (for multiple-buffer loads).  segp contains
   1511  * the starting segment on entrace, and the ending segment on exit.
   1512  * first indicates if this is the first invocation of this function.
   1513  */
   1514 int
   1515 _bus_dmamap_load_buffer(bus_dma_tag_t t, bus_dmamap_t map, void *buf,
   1516     bus_size_t buflen, struct vmspace *vm, int flags)
   1517 {
   1518 	bus_size_t sgsize;
   1519 	bus_addr_t curaddr;
   1520 	vaddr_t vaddr = (vaddr_t)buf;
   1521 	int error;
   1522 	pmap_t pmap;
   1523 
   1524 #ifdef DEBUG_DMA
   1525 	printf("_bus_dmamem_load_buffer(buf=%p, len=%lx, flags=%d)\n",
   1526 	    buf, buflen, flags);
   1527 #endif	/* DEBUG_DMA */
   1528 
   1529 	pmap = vm_map_pmap(&vm->vm_map);
   1530 
   1531 	while (buflen > 0) {
   1532 		/*
   1533 		 * Get the physical address for this segment.
   1534 		 *
   1535 		 * XXX Doesn't support checking for coherent mappings
   1536 		 * XXX in user address space.
   1537 		 */
   1538 		bool coherent;
   1539 		if (__predict_true(pmap == pmap_kernel())) {
   1540 			pd_entry_t *pde;
   1541 			pt_entry_t *ptep;
   1542 			(void) pmap_get_pde_pte(pmap, vaddr, &pde, &ptep);
   1543 			if (__predict_false(pmap_pde_section(pde))) {
   1544 				paddr_t s_frame = L1_S_FRAME;
   1545 				paddr_t s_offset = L1_S_OFFSET;
   1546 #if (ARM_MMU_V6 + ARM_MMU_V7) > 0
   1547 				if (__predict_false(pmap_pde_supersection(pde))) {
   1548 					s_frame = L1_SS_FRAME;
   1549 					s_offset = L1_SS_OFFSET;
   1550 				}
   1551 #endif
   1552 				curaddr = (*pde & s_frame) | (vaddr & s_offset);
   1553 				coherent = (*pde & L1_S_CACHE_MASK) == 0;
   1554 			} else {
   1555 				pt_entry_t pte = *ptep;
   1556 				KDASSERTMSG((pte & L2_TYPE_MASK) != L2_TYPE_INV,
   1557 				    "va=%#"PRIxVADDR" pde=%#x ptep=%p pte=%#x",
   1558 				    vaddr, *pde, ptep, pte);
   1559 				if (__predict_false((pte & L2_TYPE_MASK)
   1560 						    == L2_TYPE_L)) {
   1561 					curaddr = (pte & L2_L_FRAME) |
   1562 					    (vaddr & L2_L_OFFSET);
   1563 					coherent = (pte & L2_L_CACHE_MASK) == 0;
   1564 				} else {
   1565 					curaddr = (pte & ~PAGE_MASK) |
   1566 					    (vaddr & PAGE_MASK);
   1567 					coherent = (pte & L2_S_CACHE_MASK) == 0;
   1568 				}
   1569 			}
   1570 		} else {
   1571 			(void) pmap_extract(pmap, vaddr, &curaddr);
   1572 			coherent = false;
   1573 		}
   1574 		KASSERTMSG((vaddr & PAGE_MASK) == (curaddr & PAGE_MASK),
   1575 		    "va %#lx curaddr %#lx", vaddr, curaddr);
   1576 
   1577 		/*
   1578 		 * Compute the segment size, and adjust counts.
   1579 		 */
   1580 		sgsize = PAGE_SIZE - ((u_long)vaddr & PGOFSET);
   1581 		if (buflen < sgsize)
   1582 			sgsize = buflen;
   1583 
   1584 		error = _bus_dmamap_load_paddr(t, map, curaddr, sgsize,
   1585 		    coherent);
   1586 		if (error)
   1587 			return error;
   1588 
   1589 		vaddr += sgsize;
   1590 		buflen -= sgsize;
   1591 	}
   1592 
   1593 	return 0;
   1594 }
   1595 
   1596 /*
   1597  * Allocate physical memory from the given physical address range.
   1598  * Called by DMA-safe memory allocation methods.
   1599  */
   1600 int
   1601 _bus_dmamem_alloc_range(bus_dma_tag_t t, bus_size_t size, bus_size_t alignment,
   1602     bus_size_t boundary, bus_dma_segment_t *segs, int nsegs, int *rsegs,
   1603     int flags, paddr_t low, paddr_t high)
   1604 {
   1605 	paddr_t curaddr, lastaddr;
   1606 	struct vm_page *m;
   1607 	struct pglist mlist;
   1608 	int curseg, error;
   1609 
   1610 	KASSERTMSG(boundary == 0 || (boundary & (boundary - 1)) == 0,
   1611 	    "invalid boundary %#lx", boundary);
   1612 
   1613 #ifdef DEBUG_DMA
   1614 	printf("alloc_range: t=%p size=%lx align=%lx boundary=%lx segs=%p nsegs=%x rsegs=%p flags=%x lo=%lx hi=%lx\n",
   1615 	    t, size, alignment, boundary, segs, nsegs, rsegs, flags, low, high);
   1616 #endif	/* DEBUG_DMA */
   1617 
   1618 	/* Always round the size. */
   1619 	size = round_page(size);
   1620 
   1621 	/*
   1622 	 * We accept boundaries < size, splitting in multiple segments
   1623 	 * if needed. uvm_pglistalloc does not, so compute an appropriate
   1624 	 * boundary: next power of 2 >= size
   1625 	 */
   1626 	bus_size_t uboundary = boundary;
   1627 	if (uboundary <= PAGE_SIZE) {
   1628 		uboundary = 0;
   1629 	} else {
   1630 		while (uboundary < size) {
   1631 			uboundary <<= 1;
   1632 		}
   1633 	}
   1634 
   1635 	/*
   1636 	 * Allocate pages from the VM system.
   1637 	 */
   1638 	error = uvm_pglistalloc(size, low, high, alignment, uboundary,
   1639 	    &mlist, nsegs, (flags & BUS_DMA_NOWAIT) == 0);
   1640 	if (error)
   1641 		return error;
   1642 
   1643 	/*
   1644 	 * Compute the location, size, and number of segments actually
   1645 	 * returned by the VM code.
   1646 	 */
   1647 	m = TAILQ_FIRST(&mlist);
   1648 	curseg = 0;
   1649 	lastaddr = segs[curseg].ds_addr = VM_PAGE_TO_PHYS(m);
   1650 	segs[curseg].ds_len = PAGE_SIZE;
   1651 #ifdef DEBUG_DMA
   1652 		printf("alloc: page %lx\n", lastaddr);
   1653 #endif	/* DEBUG_DMA */
   1654 	m = TAILQ_NEXT(m, pageq.queue);
   1655 
   1656 	for (; m != NULL; m = TAILQ_NEXT(m, pageq.queue)) {
   1657 		curaddr = VM_PAGE_TO_PHYS(m);
   1658 		KASSERTMSG(low <= curaddr && curaddr < high,
   1659 		    "uvm_pglistalloc returned non-sensicaladdress %#lx "
   1660 		    "(low=%#lx, high=%#lx\n", curaddr, low, high);
   1661 #ifdef DEBUG_DMA
   1662 		printf("alloc: page %lx\n", curaddr);
   1663 #endif	/* DEBUG_DMA */
   1664 		if (curaddr == lastaddr + PAGE_SIZE
   1665 		    && (lastaddr & boundary) == (curaddr & boundary))
   1666 			segs[curseg].ds_len += PAGE_SIZE;
   1667 		else {
   1668 			curseg++;
   1669 			if (curseg >= nsegs) {
   1670 				uvm_pglistfree(&mlist);
   1671 				return EFBIG;
   1672 			}
   1673 			segs[curseg].ds_addr = curaddr;
   1674 			segs[curseg].ds_len = PAGE_SIZE;
   1675 		}
   1676 		lastaddr = curaddr;
   1677 	}
   1678 
   1679 	*rsegs = curseg + 1;
   1680 
   1681 	return 0;
   1682 }
   1683 
   1684 /*
   1685  * Check if a memory region intersects with a DMA range, and return the
   1686  * page-rounded intersection if it does.
   1687  */
   1688 int
   1689 arm32_dma_range_intersect(struct arm32_dma_range *ranges, int nranges,
   1690     paddr_t pa, psize_t size, paddr_t *pap, psize_t *sizep)
   1691 {
   1692 	struct arm32_dma_range *dr;
   1693 	int i;
   1694 
   1695 	if (ranges == NULL)
   1696 		return 0;
   1697 
   1698 	for (i = 0, dr = ranges; i < nranges; i++, dr++) {
   1699 		if (dr->dr_sysbase <= pa &&
   1700 		    pa < (dr->dr_sysbase + dr->dr_len)) {
   1701 			/*
   1702 			 * Beginning of region intersects with this range.
   1703 			 */
   1704 			*pap = trunc_page(pa);
   1705 			*sizep = round_page(min(pa + size,
   1706 			    dr->dr_sysbase + dr->dr_len) - pa);
   1707 			return 1;
   1708 		}
   1709 		if (pa < dr->dr_sysbase && dr->dr_sysbase < (pa + size)) {
   1710 			/*
   1711 			 * End of region intersects with this range.
   1712 			 */
   1713 			*pap = trunc_page(dr->dr_sysbase);
   1714 			*sizep = round_page(min((pa + size) - dr->dr_sysbase,
   1715 			    dr->dr_len));
   1716 			return 1;
   1717 		}
   1718 	}
   1719 
   1720 	/* No intersection found. */
   1721 	return 0;
   1722 }
   1723 
   1724 #ifdef _ARM32_NEED_BUS_DMA_BOUNCE
   1725 static int
   1726 _bus_dma_alloc_bouncebuf(bus_dma_tag_t t, bus_dmamap_t map,
   1727     bus_size_t size, int flags)
   1728 {
   1729 	struct arm32_bus_dma_cookie *cookie = map->_dm_cookie;
   1730 	int error = 0;
   1731 
   1732 	KASSERT(cookie != NULL);
   1733 
   1734 	cookie->id_bouncebuflen = round_page(size);
   1735 	error = _bus_dmamem_alloc(t, cookie->id_bouncebuflen,
   1736 	    PAGE_SIZE, map->_dm_boundary, cookie->id_bouncesegs,
   1737 	    map->_dm_segcnt, &cookie->id_nbouncesegs, flags);
   1738 	if (error == 0) {
   1739 		error = _bus_dmamem_map(t, cookie->id_bouncesegs,
   1740 		    cookie->id_nbouncesegs, cookie->id_bouncebuflen,
   1741 		    (void **)&cookie->id_bouncebuf, flags);
   1742 		if (error) {
   1743 			_bus_dmamem_free(t, cookie->id_bouncesegs,
   1744 			    cookie->id_nbouncesegs);
   1745 			cookie->id_bouncebuflen = 0;
   1746 			cookie->id_nbouncesegs = 0;
   1747 		} else {
   1748 			cookie->id_flags |= _BUS_DMA_HAS_BOUNCE;
   1749 		}
   1750 	} else {
   1751 		cookie->id_bouncebuflen = 0;
   1752 		cookie->id_nbouncesegs = 0;
   1753 	}
   1754 
   1755 	return error;
   1756 }
   1757 
   1758 static void
   1759 _bus_dma_free_bouncebuf(bus_dma_tag_t t, bus_dmamap_t map)
   1760 {
   1761 	struct arm32_bus_dma_cookie *cookie = map->_dm_cookie;
   1762 
   1763 	KASSERT(cookie != NULL);
   1764 
   1765 	_bus_dmamem_unmap(t, cookie->id_bouncebuf, cookie->id_bouncebuflen);
   1766 	_bus_dmamem_free(t, cookie->id_bouncesegs, cookie->id_nbouncesegs);
   1767 	cookie->id_bouncebuflen = 0;
   1768 	cookie->id_nbouncesegs = 0;
   1769 	cookie->id_flags &= ~_BUS_DMA_HAS_BOUNCE;
   1770 }
   1771 
   1772 /*
   1773  * This function does the same as uiomove, but takes an explicit
   1774  * direction, and does not update the uio structure.
   1775  */
   1776 static int
   1777 _bus_dma_uiomove(void *buf, struct uio *uio, size_t n, int direction)
   1778 {
   1779 	struct iovec *iov;
   1780 	int error;
   1781 	struct vmspace *vm;
   1782 	char *cp;
   1783 	size_t resid, cnt;
   1784 	int i;
   1785 
   1786 	iov = uio->uio_iov;
   1787 	vm = uio->uio_vmspace;
   1788 	cp = buf;
   1789 	resid = n;
   1790 
   1791 	for (i = 0; i < uio->uio_iovcnt && resid > 0; i++) {
   1792 		iov = &uio->uio_iov[i];
   1793 		if (iov->iov_len == 0)
   1794 			continue;
   1795 		cnt = MIN(resid, iov->iov_len);
   1796 
   1797 		if (!VMSPACE_IS_KERNEL_P(vm) &&
   1798 		    (curlwp->l_cpu->ci_schedstate.spc_flags & SPCF_SHOULDYIELD)
   1799 		    != 0) {
   1800 			preempt();
   1801 		}
   1802 		if (direction == UIO_READ) {
   1803 			error = copyout_vmspace(vm, cp, iov->iov_base, cnt);
   1804 		} else {
   1805 			error = copyin_vmspace(vm, iov->iov_base, cp, cnt);
   1806 		}
   1807 		if (error)
   1808 			return error;
   1809 		cp += cnt;
   1810 		resid -= cnt;
   1811 	}
   1812 	return 0;
   1813 }
   1814 #endif /* _ARM32_NEED_BUS_DMA_BOUNCE */
   1815 
   1816 int
   1817 _bus_dmatag_subregion(bus_dma_tag_t tag, bus_addr_t min_addr,
   1818     bus_addr_t max_addr, bus_dma_tag_t *newtag, int flags)
   1819 {
   1820 
   1821 #ifdef _ARM32_NEED_BUS_DMA_BOUNCE
   1822 	struct arm32_dma_range *dr;
   1823 	bool subset = false;
   1824 	size_t nranges = 0;
   1825 	size_t i;
   1826 	for (i = 0, dr = tag->_ranges; i < tag->_nranges; i++, dr++) {
   1827 		if (dr->dr_sysbase <= min_addr
   1828 		    && max_addr <= dr->dr_sysbase + dr->dr_len - 1) {
   1829 			subset = true;
   1830 		}
   1831 		if (min_addr <= dr->dr_sysbase + dr->dr_len
   1832 		    && max_addr >= dr->dr_sysbase) {
   1833 			nranges++;
   1834 		}
   1835 	}
   1836 	if (subset) {
   1837 		*newtag = tag;
   1838 		/* if the tag must be freed, add a reference */
   1839 		if (tag->_tag_needs_free)
   1840 			(tag->_tag_needs_free)++;
   1841 		return 0;
   1842 	}
   1843 	if (nranges == 0) {
   1844 		nranges = 1;
   1845 	}
   1846 
   1847 	const size_t tagsize = sizeof(*tag) + nranges * sizeof(*dr);
   1848 	if ((*newtag = kmem_intr_zalloc(tagsize,
   1849 	    (flags & BUS_DMA_NOWAIT) ? KM_NOSLEEP : KM_SLEEP)) == NULL)
   1850 		return ENOMEM;
   1851 
   1852 	dr = (void *)(*newtag + 1);
   1853 	**newtag = *tag;
   1854 	(*newtag)->_tag_needs_free = 1;
   1855 	(*newtag)->_ranges = dr;
   1856 	(*newtag)->_nranges = nranges;
   1857 
   1858 	if (tag->_ranges == NULL) {
   1859 		dr->dr_sysbase = min_addr;
   1860 		dr->dr_busbase = min_addr;
   1861 		dr->dr_len = max_addr + 1 - min_addr;
   1862 	} else {
   1863 		for (i = 0; i < nranges; i++) {
   1864 			if (min_addr > dr->dr_sysbase + dr->dr_len
   1865 			    || max_addr < dr->dr_sysbase)
   1866 				continue;
   1867 			dr[0] = tag->_ranges[i];
   1868 			if (dr->dr_sysbase < min_addr) {
   1869 				psize_t diff = min_addr - dr->dr_sysbase;
   1870 				dr->dr_busbase += diff;
   1871 				dr->dr_len -= diff;
   1872 				dr->dr_sysbase += diff;
   1873 			}
   1874 			if (max_addr != 0xffffffff
   1875 			    && max_addr + 1 < dr->dr_sysbase + dr->dr_len) {
   1876 				dr->dr_len = max_addr + 1 - dr->dr_sysbase;
   1877 			}
   1878 			dr++;
   1879 		}
   1880 	}
   1881 
   1882 	return 0;
   1883 #else
   1884 	return EOPNOTSUPP;
   1885 #endif /* _ARM32_NEED_BUS_DMA_BOUNCE */
   1886 }
   1887 
   1888 void
   1889 _bus_dmatag_destroy(bus_dma_tag_t tag)
   1890 {
   1891 #ifdef _ARM32_NEED_BUS_DMA_BOUNCE
   1892 	switch (tag->_tag_needs_free) {
   1893 	case 0:
   1894 		break;				/* not allocated with kmem */
   1895 	case 1: {
   1896 		const size_t tagsize = sizeof(*tag)
   1897 		    + tag->_nranges * sizeof(*tag->_ranges);
   1898 		kmem_intr_free(tag, tagsize);	/* last reference to tag */
   1899 		break;
   1900 	}
   1901 	default:
   1902 		(tag->_tag_needs_free)--;	/* one less reference */
   1903 	}
   1904 #endif
   1905 }
   1906