Home | History | Annotate | Line # | Download | only in arm32
bus_dma.c revision 1.106
      1 /*	$NetBSD: bus_dma.c,v 1.106 2018/03/04 08:04:59 skrll Exp $	*/
      2 
      3 /*-
      4  * Copyright (c) 1996, 1997, 1998 The NetBSD Foundation, Inc.
      5  * All rights reserved.
      6  *
      7  * This code is derived from software contributed to The NetBSD Foundation
      8  * by Jason R. Thorpe of the Numerical Aerospace Simulation Facility,
      9  * NASA Ames Research Center.
     10  *
     11  * Redistribution and use in source and binary forms, with or without
     12  * modification, are permitted provided that the following conditions
     13  * are met:
     14  * 1. Redistributions of source code must retain the above copyright
     15  *    notice, this list of conditions and the following disclaimer.
     16  * 2. Redistributions in binary form must reproduce the above copyright
     17  *    notice, this list of conditions and the following disclaimer in the
     18  *    documentation and/or other materials provided with the distribution.
     19  *
     20  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     21  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     22  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     23  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     24  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     25  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     26  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     27  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     28  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     29  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     30  * POSSIBILITY OF SUCH DAMAGE.
     31  */
     32 
     33 #define _ARM32_BUS_DMA_PRIVATE
     34 
     35 #include "opt_arm_bus_space.h"
     36 
     37 #include <sys/cdefs.h>
     38 __KERNEL_RCSID(0, "$NetBSD: bus_dma.c,v 1.106 2018/03/04 08:04:59 skrll Exp $");
     39 
     40 #include <sys/param.h>
     41 #include <sys/bus.h>
     42 #include <sys/cpu.h>
     43 #include <sys/kmem.h>
     44 #include <sys/mbuf.h>
     45 
     46 #include <uvm/uvm.h>
     47 
     48 #include <arm/cpufunc.h>
     49 
     50 #ifdef __HAVE_MM_MD_DIRECT_MAPPED_PHYS
     51 #include <dev/mm.h>
     52 #endif
     53 
     54 #ifdef BUSDMA_COUNTERS
     55 static struct evcnt bus_dma_creates =
     56 	EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL, "busdma", "creates");
     57 static struct evcnt bus_dma_bounced_creates =
     58 	EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL, "busdma", "bounced creates");
     59 static struct evcnt bus_dma_loads =
     60 	EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL, "busdma", "loads");
     61 static struct evcnt bus_dma_bounced_loads =
     62 	EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL, "busdma", "bounced loads");
     63 static struct evcnt bus_dma_coherent_loads =
     64 	EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL, "busdma", "coherent loads");
     65 static struct evcnt bus_dma_read_bounces =
     66 	EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL, "busdma", "read bounces");
     67 static struct evcnt bus_dma_write_bounces =
     68 	EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL, "busdma", "write bounces");
     69 static struct evcnt bus_dma_bounced_unloads =
     70 	EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL, "busdma", "bounced unloads");
     71 static struct evcnt bus_dma_unloads =
     72 	EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL, "busdma", "unloads");
     73 static struct evcnt bus_dma_bounced_destroys =
     74 	EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL, "busdma", "bounced destroys");
     75 static struct evcnt bus_dma_destroys =
     76 	EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL, "busdma", "destroys");
     77 static struct evcnt bus_dma_sync_prereadwrite =
     78 	EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL, "busdma", "sync prereadwrite");
     79 static struct evcnt bus_dma_sync_preread_begin =
     80 	EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL, "busdma", "sync preread begin");
     81 static struct evcnt bus_dma_sync_preread =
     82 	EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL, "busdma", "sync preread");
     83 static struct evcnt bus_dma_sync_preread_tail =
     84 	EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL, "busdma", "sync preread tail");
     85 static struct evcnt bus_dma_sync_prewrite =
     86 	EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL, "busdma", "sync prewrite");
     87 static struct evcnt bus_dma_sync_postread =
     88 	EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL, "busdma", "sync postread");
     89 static struct evcnt bus_dma_sync_postreadwrite =
     90 	EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL, "busdma", "sync postreadwrite");
     91 static struct evcnt bus_dma_sync_postwrite =
     92 	EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL, "busdma", "sync postwrite");
     93 
     94 EVCNT_ATTACH_STATIC(bus_dma_creates);
     95 EVCNT_ATTACH_STATIC(bus_dma_bounced_creates);
     96 EVCNT_ATTACH_STATIC(bus_dma_loads);
     97 EVCNT_ATTACH_STATIC(bus_dma_bounced_loads);
     98 EVCNT_ATTACH_STATIC(bus_dma_coherent_loads);
     99 EVCNT_ATTACH_STATIC(bus_dma_read_bounces);
    100 EVCNT_ATTACH_STATIC(bus_dma_write_bounces);
    101 EVCNT_ATTACH_STATIC(bus_dma_unloads);
    102 EVCNT_ATTACH_STATIC(bus_dma_bounced_unloads);
    103 EVCNT_ATTACH_STATIC(bus_dma_destroys);
    104 EVCNT_ATTACH_STATIC(bus_dma_bounced_destroys);
    105 EVCNT_ATTACH_STATIC(bus_dma_sync_prereadwrite);
    106 EVCNT_ATTACH_STATIC(bus_dma_sync_preread_begin);
    107 EVCNT_ATTACH_STATIC(bus_dma_sync_preread);
    108 EVCNT_ATTACH_STATIC(bus_dma_sync_preread_tail);
    109 EVCNT_ATTACH_STATIC(bus_dma_sync_prewrite);
    110 EVCNT_ATTACH_STATIC(bus_dma_sync_postread);
    111 EVCNT_ATTACH_STATIC(bus_dma_sync_postreadwrite);
    112 EVCNT_ATTACH_STATIC(bus_dma_sync_postwrite);
    113 
    114 #define	STAT_INCR(x)	(bus_dma_ ## x.ev_count++)
    115 #else
    116 #define	STAT_INCR(x)	/*(bus_dma_ ## x.ev_count++)*/
    117 #endif
    118 
    119 int	_bus_dmamap_load_buffer(bus_dma_tag_t, bus_dmamap_t, void *,
    120 	    bus_size_t, struct vmspace *, int);
    121 
    122 /*
    123  * Check to see if the specified page is in an allowed DMA range.
    124  */
    125 static inline struct arm32_dma_range *
    126 _bus_dma_paddr_inrange(struct arm32_dma_range *ranges, int nranges,
    127     bus_addr_t curaddr)
    128 {
    129 	struct arm32_dma_range *dr;
    130 	int i;
    131 
    132 	for (i = 0, dr = ranges; i < nranges; i++, dr++) {
    133 		if (curaddr >= dr->dr_sysbase &&
    134 		    curaddr < (dr->dr_sysbase + dr->dr_len))
    135 			return dr;
    136 	}
    137 
    138 	return NULL;
    139 }
    140 
    141 /*
    142  * Check to see if the specified busaddr is in an allowed DMA range.
    143  */
    144 static inline paddr_t
    145 _bus_dma_busaddr_to_paddr(bus_dma_tag_t t, bus_addr_t curaddr)
    146 {
    147 	struct arm32_dma_range *dr;
    148 	u_int i;
    149 
    150 	if (t->_nranges == 0)
    151 		return curaddr;
    152 
    153 	for (i = 0, dr = t->_ranges; i < t->_nranges; i++, dr++) {
    154 		if (dr->dr_busbase <= curaddr
    155 		    && curaddr < dr->dr_busbase + dr->dr_len)
    156 			return curaddr - dr->dr_busbase + dr->dr_sysbase;
    157 	}
    158 	panic("%s: curaddr %#lx not in range", __func__, curaddr);
    159 }
    160 
    161 /*
    162  * Common function to load the specified physical address into the
    163  * DMA map, coalescing segments and boundary checking as necessary.
    164  */
    165 static int
    166 _bus_dmamap_load_paddr(bus_dma_tag_t t, bus_dmamap_t map,
    167     bus_addr_t paddr, bus_size_t size, bool coherent)
    168 {
    169 	bus_dma_segment_t * const segs = map->dm_segs;
    170 	int nseg = map->dm_nsegs;
    171 	bus_addr_t lastaddr;
    172 	bus_addr_t bmask = ~(map->_dm_boundary - 1);
    173 	bus_addr_t curaddr;
    174 	bus_size_t sgsize;
    175 	uint32_t _ds_flags = coherent ? _BUS_DMAMAP_COHERENT : 0;
    176 
    177 	if (nseg > 0)
    178 		lastaddr = segs[nseg - 1].ds_addr + segs[nseg - 1].ds_len;
    179 	else
    180 		lastaddr = 0xdead;
    181 
    182  again:
    183 	sgsize = size;
    184 
    185 	/* Make sure we're in an allowed DMA range. */
    186 	if (t->_ranges != NULL) {
    187 		/* XXX cache last result? */
    188 		const struct arm32_dma_range * const dr =
    189 		    _bus_dma_paddr_inrange(t->_ranges, t->_nranges, paddr);
    190 		if (dr == NULL)
    191 			return EINVAL;
    192 
    193 		/*
    194 		 * If this region is coherent, mark the segment as coherent.
    195 		 */
    196 		_ds_flags |= dr->dr_flags & _BUS_DMAMAP_COHERENT;
    197 
    198 		/*
    199 		 * In a valid DMA range.  Translate the physical
    200 		 * memory address to an address in the DMA window.
    201 		 */
    202 		curaddr = (paddr - dr->dr_sysbase) + dr->dr_busbase;
    203 #if 0
    204 		printf("%p: %#lx: range %#lx/%#lx/%#lx/%#x: %#x <-- %#lx\n",
    205 		    t, paddr, dr->dr_sysbase, dr->dr_busbase,
    206 		    dr->dr_len, dr->dr_flags, _ds_flags, curaddr);
    207 #endif
    208 	} else
    209 		curaddr = paddr;
    210 
    211 	/*
    212 	 * Make sure we don't cross any boundaries.
    213 	 */
    214 	if (map->_dm_boundary > 0) {
    215 		bus_addr_t baddr;	/* next boundary address */
    216 
    217 		baddr = (curaddr + map->_dm_boundary) & bmask;
    218 		if (sgsize > (baddr - curaddr))
    219 			sgsize = (baddr - curaddr);
    220 	}
    221 
    222 	/*
    223 	 * Insert chunk into a segment, coalescing with the
    224 	 * previous segment if possible.
    225 	 */
    226 	if (nseg > 0 && curaddr == lastaddr &&
    227 	    segs[nseg - 1].ds_len + sgsize <= map->dm_maxsegsz &&
    228 	    ((segs[nseg - 1]._ds_flags ^ _ds_flags) & _BUS_DMAMAP_COHERENT) == 0 &&
    229 	    (map->_dm_boundary == 0 ||
    230 	     (segs[nseg - 1].ds_addr & bmask) == (curaddr & bmask))) {
    231 	     	/* coalesce */
    232 		segs[nseg - 1].ds_len += sgsize;
    233 	} else if (nseg >= map->_dm_segcnt) {
    234 		return EFBIG;
    235 	} else {
    236 		/* new segment */
    237 		segs[nseg].ds_addr = curaddr;
    238 		segs[nseg].ds_len = sgsize;
    239 		segs[nseg]._ds_flags = _ds_flags;
    240 		nseg++;
    241 	}
    242 
    243 	lastaddr = curaddr + sgsize;
    244 
    245 	paddr += sgsize;
    246 	size -= sgsize;
    247 	if (size > 0)
    248 		goto again;
    249 
    250 	map->_dm_flags &= (_ds_flags & _BUS_DMAMAP_COHERENT);
    251 	map->dm_nsegs = nseg;
    252 	return 0;
    253 }
    254 
    255 #ifdef _ARM32_NEED_BUS_DMA_BOUNCE
    256 static int _bus_dma_alloc_bouncebuf(bus_dma_tag_t t, bus_dmamap_t map,
    257 	    bus_size_t size, int flags);
    258 static void _bus_dma_free_bouncebuf(bus_dma_tag_t t, bus_dmamap_t map);
    259 static int _bus_dma_uiomove(void *buf, struct uio *uio, size_t n,
    260 	    int direction);
    261 
    262 static int
    263 _bus_dma_load_bouncebuf(bus_dma_tag_t t, bus_dmamap_t map, void *buf,
    264 	size_t buflen, int buftype, int flags)
    265 {
    266 	struct arm32_bus_dma_cookie * const cookie = map->_dm_cookie;
    267 	struct vmspace * const vm = vmspace_kernel();
    268 	int error;
    269 
    270 	KASSERT(cookie != NULL);
    271 	KASSERT(cookie->id_flags & _BUS_DMA_MIGHT_NEED_BOUNCE);
    272 
    273 	/*
    274 	 * Allocate bounce pages, if necessary.
    275 	 */
    276 	if ((cookie->id_flags & _BUS_DMA_HAS_BOUNCE) == 0) {
    277 		error = _bus_dma_alloc_bouncebuf(t, map, buflen, flags);
    278 		if (error)
    279 			return error;
    280 	}
    281 
    282 	/*
    283 	 * Cache a pointer to the caller's buffer and load the DMA map
    284 	 * with the bounce buffer.
    285 	 */
    286 	cookie->id_origbuf = buf;
    287 	cookie->id_origbuflen = buflen;
    288 	error = _bus_dmamap_load_buffer(t, map, cookie->id_bouncebuf,
    289 	    buflen, vm, flags);
    290 	if (error)
    291 		return error;
    292 
    293 	STAT_INCR(bounced_loads);
    294 	map->dm_mapsize = buflen;
    295 	map->_dm_vmspace = vm;
    296 	map->_dm_buftype = buftype;
    297 
    298 	/* ...so _bus_dmamap_sync() knows we're bouncing */
    299 	map->_dm_flags |= _BUS_DMAMAP_IS_BOUNCING;
    300 	cookie->id_flags |= _BUS_DMA_IS_BOUNCING;
    301 	return 0;
    302 }
    303 #endif /* _ARM32_NEED_BUS_DMA_BOUNCE */
    304 
    305 /*
    306  * Common function for DMA map creation.  May be called by bus-specific
    307  * DMA map creation functions.
    308  */
    309 int
    310 _bus_dmamap_create(bus_dma_tag_t t, bus_size_t size, int nsegments,
    311     bus_size_t maxsegsz, bus_size_t boundary, int flags, bus_dmamap_t *dmamp)
    312 {
    313 	struct arm32_bus_dmamap *map;
    314 	void *mapstore;
    315 
    316 #ifdef DEBUG_DMA
    317 	printf("dmamap_create: t=%p size=%lx nseg=%x msegsz=%lx boundary=%lx"
    318 	    " flags=%x\n", t, size, nsegments, maxsegsz, boundary, flags);
    319 #endif	/* DEBUG_DMA */
    320 
    321 	/*
    322 	 * Allocate and initialize the DMA map.  The end of the map
    323 	 * is a variable-sized array of segments, so we allocate enough
    324 	 * room for them in one shot.
    325 	 *
    326 	 * Note we don't preserve the WAITOK or NOWAIT flags.  Preservation
    327 	 * of ALLOCNOW notifies others that we've reserved these resources,
    328 	 * and they are not to be freed.
    329 	 *
    330 	 * The bus_dmamap_t includes one bus_dma_segment_t, hence
    331 	 * the (nsegments - 1).
    332 	 */
    333 	const size_t mapsize = sizeof(struct arm32_bus_dmamap) +
    334 	    (sizeof(bus_dma_segment_t) * (nsegments - 1));
    335 	const int zallocflags = (flags & BUS_DMA_NOWAIT) ? KM_NOSLEEP : KM_SLEEP;
    336 	if ((mapstore = kmem_intr_zalloc(mapsize, zallocflags)) == NULL)
    337 		return ENOMEM;
    338 
    339 	map = (struct arm32_bus_dmamap *)mapstore;
    340 	map->_dm_size = size;
    341 	map->_dm_segcnt = nsegments;
    342 	map->_dm_maxmaxsegsz = maxsegsz;
    343 	map->_dm_boundary = boundary;
    344 	map->_dm_flags = flags & ~(BUS_DMA_WAITOK|BUS_DMA_NOWAIT);
    345 	map->_dm_origbuf = NULL;
    346 	map->_dm_buftype = _BUS_DMA_BUFTYPE_INVALID;
    347 	map->_dm_vmspace = vmspace_kernel();
    348 	map->_dm_cookie = NULL;
    349 	map->dm_maxsegsz = maxsegsz;
    350 	map->dm_mapsize = 0;		/* no valid mappings */
    351 	map->dm_nsegs = 0;
    352 
    353 #ifdef _ARM32_NEED_BUS_DMA_BOUNCE
    354 	struct arm32_bus_dma_cookie *cookie;
    355 	int cookieflags;
    356 	void *cookiestore;
    357 	int error;
    358 
    359 	cookieflags = 0;
    360 
    361 	if (t->_may_bounce != NULL) {
    362 		error = (*t->_may_bounce)(t, map, flags, &cookieflags);
    363 		if (error != 0)
    364 			goto out;
    365 	}
    366 
    367 	if (t->_ranges != NULL)
    368 		cookieflags |= _BUS_DMA_MIGHT_NEED_BOUNCE;
    369 
    370 	if ((cookieflags & _BUS_DMA_MIGHT_NEED_BOUNCE) == 0) {
    371 		STAT_INCR(creates);
    372 		*dmamp = map;
    373 		return 0;
    374 	}
    375 
    376 	const size_t cookiesize = sizeof(struct arm32_bus_dma_cookie) +
    377 	    (sizeof(bus_dma_segment_t) * map->_dm_segcnt);
    378 
    379 	/*
    380 	 * Allocate our cookie.
    381 	 */
    382 	if ((cookiestore = kmem_intr_zalloc(cookiesize, zallocflags)) == NULL) {
    383 		error = ENOMEM;
    384 		goto out;
    385 	}
    386 	cookie = (struct arm32_bus_dma_cookie *)cookiestore;
    387 	cookie->id_flags = cookieflags;
    388 	map->_dm_cookie = cookie;
    389 	STAT_INCR(bounced_creates);
    390 
    391 	error = _bus_dma_alloc_bouncebuf(t, map, size, flags);
    392  out:
    393 	if (error)
    394 		_bus_dmamap_destroy(t, map);
    395 	else
    396 		*dmamp = map;
    397 #else
    398 	*dmamp = map;
    399 	STAT_INCR(creates);
    400 #endif /* _ARM32_NEED_BUS_DMA_BOUNCE */
    401 #ifdef DEBUG_DMA
    402 	printf("dmamap_create:map=%p\n", map);
    403 #endif	/* DEBUG_DMA */
    404 	return 0;
    405 }
    406 
    407 /*
    408  * Common function for DMA map destruction.  May be called by bus-specific
    409  * DMA map destruction functions.
    410  */
    411 void
    412 _bus_dmamap_destroy(bus_dma_tag_t t, bus_dmamap_t map)
    413 {
    414 
    415 #ifdef DEBUG_DMA
    416 	printf("dmamap_destroy: t=%p map=%p\n", t, map);
    417 #endif	/* DEBUG_DMA */
    418 #ifdef _ARM32_NEED_BUS_DMA_BOUNCE
    419 	struct arm32_bus_dma_cookie *cookie = map->_dm_cookie;
    420 
    421 	/*
    422 	 * Free any bounce pages this map might hold.
    423 	 */
    424 	if (cookie != NULL) {
    425 		const size_t cookiesize = sizeof(struct arm32_bus_dma_cookie) +
    426 		    (sizeof(bus_dma_segment_t) * map->_dm_segcnt);
    427 
    428 		if (cookie->id_flags & _BUS_DMA_IS_BOUNCING)
    429 			STAT_INCR(bounced_unloads);
    430 		map->dm_nsegs = 0;
    431 		if (cookie->id_flags & _BUS_DMA_HAS_BOUNCE)
    432 			_bus_dma_free_bouncebuf(t, map);
    433 		STAT_INCR(bounced_destroys);
    434 		kmem_intr_free(cookie, cookiesize);
    435 	} else
    436 #endif
    437 	STAT_INCR(destroys);
    438 
    439 	if (map->dm_nsegs > 0)
    440 		STAT_INCR(unloads);
    441 
    442 	const size_t mapsize = sizeof(struct arm32_bus_dmamap) +
    443 	    (sizeof(bus_dma_segment_t) * (map->_dm_segcnt - 1));
    444 	kmem_intr_free(map, mapsize);
    445 }
    446 
    447 /*
    448  * Common function for loading a DMA map with a linear buffer.  May
    449  * be called by bus-specific DMA map load functions.
    450  */
    451 int
    452 _bus_dmamap_load(bus_dma_tag_t t, bus_dmamap_t map, void *buf,
    453     bus_size_t buflen, struct proc *p, int flags)
    454 {
    455 	struct vmspace *vm;
    456 	int error;
    457 
    458 #ifdef DEBUG_DMA
    459 	printf("dmamap_load: t=%p map=%p buf=%p len=%lx p=%p f=%d\n",
    460 	    t, map, buf, buflen, p, flags);
    461 #endif	/* DEBUG_DMA */
    462 
    463 	if (map->dm_nsegs > 0) {
    464 #ifdef _ARM32_NEED_BUS_DMA_BOUNCE
    465 		struct arm32_bus_dma_cookie *cookie = map->_dm_cookie;
    466 		if (cookie != NULL) {
    467 			if (cookie->id_flags & _BUS_DMA_IS_BOUNCING) {
    468 				STAT_INCR(bounced_unloads);
    469 				cookie->id_flags &= ~_BUS_DMA_IS_BOUNCING;
    470 				map->_dm_flags &= ~_BUS_DMAMAP_IS_BOUNCING;
    471 			}
    472 		} else
    473 #endif
    474 		STAT_INCR(unloads);
    475 	}
    476 
    477 	/*
    478 	 * Make sure that on error condition we return "no valid mappings".
    479 	 */
    480 	map->dm_mapsize = 0;
    481 	map->dm_nsegs = 0;
    482 	map->_dm_buftype = _BUS_DMA_BUFTYPE_INVALID;
    483 	KASSERTMSG(map->dm_maxsegsz <= map->_dm_maxmaxsegsz,
    484 	    "dm_maxsegsz %lu _dm_maxmaxsegsz %lu",
    485 	    map->dm_maxsegsz, map->_dm_maxmaxsegsz);
    486 
    487 	if (buflen > map->_dm_size)
    488 		return EINVAL;
    489 
    490 	if (p != NULL) {
    491 		vm = p->p_vmspace;
    492 	} else {
    493 		vm = vmspace_kernel();
    494 	}
    495 
    496 	/* _bus_dmamap_load_buffer() clears this if we're not... */
    497 	map->_dm_flags |= _BUS_DMAMAP_COHERENT;
    498 
    499 	error = _bus_dmamap_load_buffer(t, map, buf, buflen, vm, flags);
    500 	if (error == 0) {
    501 		map->dm_mapsize = buflen;
    502 		map->_dm_vmspace = vm;
    503 		map->_dm_origbuf = buf;
    504 		map->_dm_buftype = _BUS_DMA_BUFTYPE_LINEAR;
    505 		if (map->_dm_flags & _BUS_DMAMAP_COHERENT) {
    506 			STAT_INCR(coherent_loads);
    507 		} else {
    508 			STAT_INCR(loads);
    509 		}
    510 		return 0;
    511 	}
    512 #ifdef _ARM32_NEED_BUS_DMA_BOUNCE
    513 	struct arm32_bus_dma_cookie * const cookie = map->_dm_cookie;
    514 	if (cookie != NULL && (cookie->id_flags & _BUS_DMA_MIGHT_NEED_BOUNCE)) {
    515 		error = _bus_dma_load_bouncebuf(t, map, buf, buflen,
    516 		    _BUS_DMA_BUFTYPE_LINEAR, flags);
    517 	}
    518 #endif
    519 	return error;
    520 }
    521 
    522 /*
    523  * Like _bus_dmamap_load(), but for mbufs.
    524  */
    525 int
    526 _bus_dmamap_load_mbuf(bus_dma_tag_t t, bus_dmamap_t map, struct mbuf *m0,
    527     int flags)
    528 {
    529 	struct mbuf *m;
    530 	int error;
    531 
    532 #ifdef DEBUG_DMA
    533 	printf("dmamap_load_mbuf: t=%p map=%p m0=%p f=%d\n",
    534 	    t, map, m0, flags);
    535 #endif	/* DEBUG_DMA */
    536 
    537 	if (map->dm_nsegs > 0) {
    538 #ifdef _ARM32_NEED_BUS_DMA_BOUNCE
    539 		struct arm32_bus_dma_cookie *cookie = map->_dm_cookie;
    540 		if (cookie != NULL) {
    541 			if (cookie->id_flags & _BUS_DMA_IS_BOUNCING) {
    542 				STAT_INCR(bounced_unloads);
    543 				cookie->id_flags &= ~_BUS_DMA_IS_BOUNCING;
    544 				map->_dm_flags &= ~_BUS_DMAMAP_IS_BOUNCING;
    545 			}
    546 		} else
    547 #endif
    548 		STAT_INCR(unloads);
    549 	}
    550 
    551 	/*
    552 	 * Make sure that on error condition we return "no valid mappings."
    553 	 */
    554 	map->dm_mapsize = 0;
    555 	map->dm_nsegs = 0;
    556 	map->_dm_buftype = _BUS_DMA_BUFTYPE_INVALID;
    557 	KASSERTMSG(map->dm_maxsegsz <= map->_dm_maxmaxsegsz,
    558 	    "dm_maxsegsz %lu _dm_maxmaxsegsz %lu",
    559 	    map->dm_maxsegsz, map->_dm_maxmaxsegsz);
    560 
    561 	KASSERT(m0->m_flags & M_PKTHDR);
    562 
    563 	if (m0->m_pkthdr.len > map->_dm_size)
    564 		return EINVAL;
    565 
    566 	/* _bus_dmamap_load_paddr() clears this if we're not... */
    567 	map->_dm_flags |= _BUS_DMAMAP_COHERENT;
    568 
    569 	error = 0;
    570 	for (m = m0; m != NULL && error == 0; m = m->m_next) {
    571 		int offset;
    572 		int remainbytes;
    573 		const struct vm_page * const *pgs;
    574 		paddr_t paddr;
    575 		int size;
    576 
    577 		if (m->m_len == 0)
    578 			continue;
    579 		/*
    580 		 * Don't allow reads in read-only mbufs.
    581 		 */
    582 		if (M_ROMAP(m) && (flags & BUS_DMA_READ)) {
    583 			error = EFAULT;
    584 			break;
    585 		}
    586 		switch (m->m_flags & (M_EXT|M_CLUSTER|M_EXT_PAGES)) {
    587 		case M_EXT|M_CLUSTER:
    588 			/* XXX KDASSERT */
    589 			KASSERT(m->m_ext.ext_paddr != M_PADDR_INVALID);
    590 			paddr = m->m_ext.ext_paddr +
    591 			    (m->m_data - m->m_ext.ext_buf);
    592 			size = m->m_len;
    593 			error = _bus_dmamap_load_paddr(t, map, paddr, size,
    594 			    false);
    595 			break;
    596 
    597 		case M_EXT|M_EXT_PAGES:
    598 			KASSERT(m->m_ext.ext_buf <= m->m_data);
    599 			KASSERT(m->m_data <=
    600 			    m->m_ext.ext_buf + m->m_ext.ext_size);
    601 
    602 			offset = (vaddr_t)m->m_data -
    603 			    trunc_page((vaddr_t)m->m_ext.ext_buf);
    604 			remainbytes = m->m_len;
    605 
    606 			/* skip uninteresting pages */
    607 			pgs = (const struct vm_page * const *)
    608 			    m->m_ext.ext_pgs + (offset >> PAGE_SHIFT);
    609 
    610 			offset &= PAGE_MASK;	/* offset in the first page */
    611 
    612 			/* load each page */
    613 			while (remainbytes > 0) {
    614 				const struct vm_page *pg;
    615 
    616 				size = MIN(remainbytes, PAGE_SIZE - offset);
    617 
    618 				pg = *pgs++;
    619 				KASSERT(pg);
    620 				paddr = VM_PAGE_TO_PHYS(pg) + offset;
    621 
    622 				error = _bus_dmamap_load_paddr(t, map,
    623 				    paddr, size, false);
    624 				if (error)
    625 					break;
    626 				offset = 0;
    627 				remainbytes -= size;
    628 			}
    629 			break;
    630 
    631 		case 0:
    632 			paddr = m->m_paddr + M_BUFOFFSET(m) +
    633 			    (m->m_data - M_BUFADDR(m));
    634 			size = m->m_len;
    635 			error = _bus_dmamap_load_paddr(t, map, paddr, size,
    636 			    false);
    637 			break;
    638 
    639 		default:
    640 			error = _bus_dmamap_load_buffer(t, map, m->m_data,
    641 			    m->m_len, vmspace_kernel(), flags);
    642 		}
    643 	}
    644 	if (error == 0) {
    645 		map->dm_mapsize = m0->m_pkthdr.len;
    646 		map->_dm_origbuf = m0;
    647 		map->_dm_buftype = _BUS_DMA_BUFTYPE_MBUF;
    648 		map->_dm_vmspace = vmspace_kernel();	/* always kernel */
    649 		if (map->_dm_flags & _BUS_DMAMAP_COHERENT) {
    650 			STAT_INCR(coherent_loads);
    651 		} else {
    652 			STAT_INCR(loads);
    653 		}
    654 		return 0;
    655 	}
    656 #ifdef _ARM32_NEED_BUS_DMA_BOUNCE
    657 	struct arm32_bus_dma_cookie * const cookie = map->_dm_cookie;
    658 	if (cookie != NULL && (cookie->id_flags & _BUS_DMA_MIGHT_NEED_BOUNCE)) {
    659 		error = _bus_dma_load_bouncebuf(t, map, m0, m0->m_pkthdr.len,
    660 		    _BUS_DMA_BUFTYPE_MBUF, flags);
    661 	}
    662 #endif
    663 	return error;
    664 }
    665 
    666 /*
    667  * Like _bus_dmamap_load(), but for uios.
    668  */
    669 int
    670 _bus_dmamap_load_uio(bus_dma_tag_t t, bus_dmamap_t map, struct uio *uio,
    671     int flags)
    672 {
    673 	bus_size_t minlen, resid;
    674 	struct iovec *iov;
    675 	void *addr;
    676 	int i, error;
    677 
    678 	/*
    679 	 * Make sure that on error condition we return "no valid mappings."
    680 	 */
    681 	map->dm_mapsize = 0;
    682 	map->dm_nsegs = 0;
    683 	KASSERTMSG(map->dm_maxsegsz <= map->_dm_maxmaxsegsz,
    684 	    "dm_maxsegsz %lu _dm_maxmaxsegsz %lu",
    685 	    map->dm_maxsegsz, map->_dm_maxmaxsegsz);
    686 
    687 	resid = uio->uio_resid;
    688 	iov = uio->uio_iov;
    689 
    690 	/* _bus_dmamap_load_buffer() clears this if we're not... */
    691 	map->_dm_flags |= _BUS_DMAMAP_COHERENT;
    692 
    693 	error = 0;
    694 	for (i = 0; i < uio->uio_iovcnt && resid != 0 && error == 0; i++) {
    695 		/*
    696 		 * Now at the first iovec to load.  Load each iovec
    697 		 * until we have exhausted the residual count.
    698 		 */
    699 		minlen = resid < iov[i].iov_len ? resid : iov[i].iov_len;
    700 		addr = (void *)iov[i].iov_base;
    701 
    702 		error = _bus_dmamap_load_buffer(t, map, addr, minlen,
    703 		    uio->uio_vmspace, flags);
    704 
    705 		resid -= minlen;
    706 	}
    707 	if (error == 0) {
    708 		map->dm_mapsize = uio->uio_resid;
    709 		map->_dm_origbuf = uio;
    710 		map->_dm_buftype = _BUS_DMA_BUFTYPE_UIO;
    711 		map->_dm_vmspace = uio->uio_vmspace;
    712 		if (map->_dm_flags & _BUS_DMAMAP_COHERENT) {
    713 			STAT_INCR(coherent_loads);
    714 		} else {
    715 			STAT_INCR(loads);
    716 		}
    717 	}
    718 	return error;
    719 }
    720 
    721 /*
    722  * Like _bus_dmamap_load(), but for raw memory allocated with
    723  * bus_dmamem_alloc().
    724  */
    725 int
    726 _bus_dmamap_load_raw(bus_dma_tag_t t, bus_dmamap_t map,
    727     bus_dma_segment_t *segs, int nsegs, bus_size_t size0, int flags)
    728 {
    729 
    730 	bus_size_t size;
    731 	int i, error = 0;
    732 
    733 	/*
    734 	 * Make sure that on error conditions we return "no valid mappings."
    735 	 */
    736 	map->dm_mapsize = 0;
    737 	map->dm_nsegs = 0;
    738 	KASSERT(map->dm_maxsegsz <= map->_dm_maxmaxsegsz);
    739 
    740 	if (size0 > map->_dm_size)
    741 		return EINVAL;
    742 
    743 	for (i = 0, size = size0; i < nsegs && size > 0; i++) {
    744 		bus_dma_segment_t *ds = &segs[i];
    745 		bus_size_t sgsize;
    746 
    747 		sgsize = MIN(ds->ds_len, size);
    748 		if (sgsize == 0)
    749 			continue;
    750 		error = _bus_dmamap_load_paddr(t, map, ds->ds_addr,
    751 		    sgsize, false);
    752 		if (error != 0)
    753 			break;
    754 		size -= sgsize;
    755 	}
    756 
    757 	if (error != 0) {
    758 		map->dm_mapsize = 0;
    759 		map->dm_nsegs = 0;
    760 		return error;
    761 	}
    762 
    763 	/* XXX TBD bounce */
    764 
    765 	map->dm_mapsize = size0;
    766 	return 0;
    767 }
    768 
    769 /*
    770  * Common function for unloading a DMA map.  May be called by
    771  * bus-specific DMA map unload functions.
    772  */
    773 void
    774 _bus_dmamap_unload(bus_dma_tag_t t, bus_dmamap_t map)
    775 {
    776 
    777 #ifdef DEBUG_DMA
    778 	printf("dmamap_unload: t=%p map=%p\n", t, map);
    779 #endif	/* DEBUG_DMA */
    780 
    781 	/*
    782 	 * No resources to free; just mark the mappings as
    783 	 * invalid.
    784 	 */
    785 	map->dm_mapsize = 0;
    786 	map->dm_nsegs = 0;
    787 	map->_dm_origbuf = NULL;
    788 	map->_dm_buftype = _BUS_DMA_BUFTYPE_INVALID;
    789 	map->_dm_vmspace = NULL;
    790 }
    791 
    792 static void
    793 _bus_dmamap_sync_segment(vaddr_t va, paddr_t pa, vsize_t len, int ops,
    794     bool readonly_p)
    795 {
    796 
    797 #ifdef ARM_MMU_EXTENDED
    798 	/*
    799 	 * No optimisations are available for readonly mbufs on armv6+, so
    800 	 * assume it's not readonly from here on.
    801 	 *
    802  	 * See the comment in _bus_dmamap_sync_mbuf
    803 	 */
    804 	readonly_p = false;
    805 #endif
    806 
    807 	KASSERTMSG((va & PAGE_MASK) == (pa & PAGE_MASK),
    808 	    "va %#lx pa %#lx", va, pa);
    809 #if 0
    810 	printf("sync_segment: va=%#lx pa=%#lx len=%#lx ops=%#x ro=%d\n",
    811 	    va, pa, len, ops, readonly_p);
    812 #endif
    813 
    814 	switch (ops) {
    815 	case BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE:
    816 		if (!readonly_p) {
    817 			STAT_INCR(sync_prereadwrite);
    818 			cpu_dcache_wbinv_range(va, len);
    819 			cpu_sdcache_wbinv_range(va, pa, len);
    820 			break;
    821 		}
    822 		/* FALLTHROUGH */
    823 
    824 	case BUS_DMASYNC_PREREAD: {
    825 		const size_t line_size = arm_dcache_align;
    826 		const size_t line_mask = arm_dcache_align_mask;
    827 		vsize_t misalignment = va & line_mask;
    828 		if (misalignment) {
    829 			va -= misalignment;
    830 			pa -= misalignment;
    831 			len += misalignment;
    832 			STAT_INCR(sync_preread_begin);
    833 			cpu_dcache_wbinv_range(va, line_size);
    834 			cpu_sdcache_wbinv_range(va, pa, line_size);
    835 			if (len <= line_size)
    836 				break;
    837 			va += line_size;
    838 			pa += line_size;
    839 			len -= line_size;
    840 		}
    841 		misalignment = len & line_mask;
    842 		len -= misalignment;
    843 		if (len > 0) {
    844 			STAT_INCR(sync_preread);
    845 			cpu_dcache_inv_range(va, len);
    846 			cpu_sdcache_inv_range(va, pa, len);
    847 		}
    848 		if (misalignment) {
    849 			va += len;
    850 			pa += len;
    851 			STAT_INCR(sync_preread_tail);
    852 			cpu_dcache_wbinv_range(va, line_size);
    853 			cpu_sdcache_wbinv_range(va, pa, line_size);
    854 		}
    855 		break;
    856 	}
    857 
    858 	case BUS_DMASYNC_PREWRITE:
    859 		STAT_INCR(sync_prewrite);
    860 		cpu_dcache_wb_range(va, len);
    861 		cpu_sdcache_wb_range(va, pa, len);
    862 		break;
    863 
    864 #ifdef CPU_CORTEX
    865 	/*
    866 	 * Cortex CPUs can do speculative loads so we need to clean the cache
    867 	 * after a DMA read to deal with any speculatively loaded cache lines.
    868 	 * Since these can't be dirty, we can just invalidate them and don't
    869 	 * have to worry about having to write back their contents.
    870 	 */
    871 	case BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE:
    872 		STAT_INCR(sync_postreadwrite);
    873 		cpu_dcache_inv_range(va, len);
    874 		cpu_sdcache_inv_range(va, pa, len);
    875 		break;
    876 	case BUS_DMASYNC_POSTREAD:
    877 		STAT_INCR(sync_postread);
    878 		cpu_dcache_inv_range(va, len);
    879 		cpu_sdcache_inv_range(va, pa, len);
    880 		break;
    881 #endif
    882 	}
    883 }
    884 
    885 static inline void
    886 _bus_dmamap_sync_linear(bus_dma_tag_t t, bus_dmamap_t map, bus_addr_t offset,
    887     bus_size_t len, int ops)
    888 {
    889 	bus_dma_segment_t *ds = map->dm_segs;
    890 	vaddr_t va = (vaddr_t) map->_dm_origbuf;
    891 #ifdef _ARM32_NEED_BUS_DMA_BOUNCE
    892 	if (map->_dm_flags & _BUS_DMAMAP_IS_BOUNCING) {
    893 		struct arm32_bus_dma_cookie * const cookie = map->_dm_cookie;
    894 		va = (vaddr_t) cookie->id_bouncebuf;
    895 	}
    896 #endif
    897 
    898 	while (len > 0) {
    899 		while (offset >= ds->ds_len) {
    900 			offset -= ds->ds_len;
    901 			va += ds->ds_len;
    902 			ds++;
    903 		}
    904 
    905 		paddr_t pa = _bus_dma_busaddr_to_paddr(t, ds->ds_addr + offset);
    906 		size_t seglen = min(len, ds->ds_len - offset);
    907 
    908 		if ((ds->_ds_flags & _BUS_DMAMAP_COHERENT) == 0)
    909 			_bus_dmamap_sync_segment(va + offset, pa, seglen, ops,
    910 			    false);
    911 
    912 		offset += seglen;
    913 		len -= seglen;
    914 	}
    915 }
    916 
    917 static inline void
    918 _bus_dmamap_sync_mbuf(bus_dma_tag_t t, bus_dmamap_t map, bus_size_t offset,
    919     bus_size_t len, int ops)
    920 {
    921 	bus_dma_segment_t *ds = map->dm_segs;
    922 	struct mbuf *m = map->_dm_origbuf;
    923 	bus_size_t voff = offset;
    924 	bus_size_t ds_off = offset;
    925 
    926 	while (len > 0) {
    927 		/* Find the current dma segment */
    928 		while (ds_off >= ds->ds_len) {
    929 			ds_off -= ds->ds_len;
    930 			ds++;
    931 		}
    932 		/* Find the current mbuf. */
    933 		while (voff >= m->m_len) {
    934 			voff -= m->m_len;
    935 			m = m->m_next;
    936 		}
    937 
    938 		/*
    939 		 * Now at the first mbuf to sync; nail each one until
    940 		 * we have exhausted the length.
    941 		 */
    942 		vsize_t seglen = min(len, min(m->m_len - voff, ds->ds_len - ds_off));
    943 		vaddr_t va = mtod(m, vaddr_t) + voff;
    944 		paddr_t pa = _bus_dma_busaddr_to_paddr(t, ds->ds_addr + ds_off);
    945 
    946 		/*
    947 		 * We can save a lot of work here if we know the mapping
    948 		 * is read-only at the MMU and we aren't using the armv6+
    949 		 * MMU:
    950 		 *
    951 		 * If a mapping is read-only, no dirty cache blocks will
    952 		 * exist for it.  If a writable mapping was made read-only,
    953 		 * we know any dirty cache lines for the range will have
    954 		 * been cleaned for us already.  Therefore, if the upper
    955 		 * layer can tell us we have a read-only mapping, we can
    956 		 * skip all cache cleaning.
    957 		 *
    958 		 * NOTE: This only works if we know the pmap cleans pages
    959 		 * before making a read-write -> read-only transition.  If
    960 		 * this ever becomes non-true (e.g. Physically Indexed
    961 		 * cache), this will have to be revisited.
    962 		 */
    963 
    964 		if ((ds->_ds_flags & _BUS_DMAMAP_COHERENT) == 0) {
    965 			/*
    966 			 * If we are doing preread (DMAing into the mbuf),
    967 			 * this mbuf better not be readonly,
    968 			 */
    969 			KASSERT(!(ops & BUS_DMASYNC_PREREAD) || !M_ROMAP(m));
    970 			_bus_dmamap_sync_segment(va, pa, seglen, ops,
    971 			    M_ROMAP(m));
    972 		}
    973 		voff += seglen;
    974 		ds_off += seglen;
    975 		len -= seglen;
    976 	}
    977 }
    978 
    979 static inline void
    980 _bus_dmamap_sync_uio(bus_dma_tag_t t, bus_dmamap_t map, bus_addr_t offset,
    981     bus_size_t len, int ops)
    982 {
    983 	bus_dma_segment_t *ds = map->dm_segs;
    984 	struct uio *uio = map->_dm_origbuf;
    985 	struct iovec *iov = uio->uio_iov;
    986 	bus_size_t voff = offset;
    987 	bus_size_t ds_off = offset;
    988 
    989 	while (len > 0) {
    990 		/* Find the current dma segment */
    991 		while (ds_off >= ds->ds_len) {
    992 			ds_off -= ds->ds_len;
    993 			ds++;
    994 		}
    995 
    996 		/* Find the current iovec. */
    997 		while (voff >= iov->iov_len) {
    998 			voff -= iov->iov_len;
    999 			iov++;
   1000 		}
   1001 
   1002 		/*
   1003 		 * Now at the first iovec to sync; nail each one until
   1004 		 * we have exhausted the length.
   1005 		 */
   1006 		vsize_t seglen = min(len, min(iov->iov_len - voff, ds->ds_len - ds_off));
   1007 		vaddr_t va = (vaddr_t) iov->iov_base + voff;
   1008 		paddr_t pa = _bus_dma_busaddr_to_paddr(t, ds->ds_addr + ds_off);
   1009 
   1010 		if ((ds->_ds_flags & _BUS_DMAMAP_COHERENT) == 0)
   1011 			_bus_dmamap_sync_segment(va, pa, seglen, ops, false);
   1012 
   1013 		voff += seglen;
   1014 		ds_off += seglen;
   1015 		len -= seglen;
   1016 	}
   1017 }
   1018 
   1019 /*
   1020  * Common function for DMA map synchronization.  May be called
   1021  * by bus-specific DMA map synchronization functions.
   1022  *
   1023  * This version works for the Virtually Indexed Virtually Tagged
   1024  * cache found on 32-bit ARM processors.
   1025  *
   1026  * XXX Should have separate versions for write-through vs.
   1027  * XXX write-back caches.  We currently assume write-back
   1028  * XXX here, which is not as efficient as it could be for
   1029  * XXX the write-through case.
   1030  */
   1031 void
   1032 _bus_dmamap_sync(bus_dma_tag_t t, bus_dmamap_t map, bus_addr_t offset,
   1033     bus_size_t len, int ops)
   1034 {
   1035 #ifdef DEBUG_DMA
   1036 	printf("dmamap_sync: t=%p map=%p offset=%lx len=%lx ops=%x\n",
   1037 	    t, map, offset, len, ops);
   1038 #endif	/* DEBUG_DMA */
   1039 
   1040 	/*
   1041 	 * Mixing of PRE and POST operations is not allowed.
   1042 	 */
   1043 	if ((ops & (BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE)) != 0 &&
   1044 	    (ops & (BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE)) != 0)
   1045 		panic("_bus_dmamap_sync: mix PRE and POST");
   1046 
   1047 	KASSERTMSG(offset < map->dm_mapsize,
   1048 	    "offset %lu mapsize %lu",
   1049 	    offset, map->dm_mapsize);
   1050 	KASSERTMSG(len > 0 && offset + len <= map->dm_mapsize,
   1051 	    "len %lu offset %lu mapsize %lu",
   1052 	    len, offset, map->dm_mapsize);
   1053 
   1054 	/*
   1055 	 * For a virtually-indexed write-back cache, we need
   1056 	 * to do the following things:
   1057 	 *
   1058 	 *	PREREAD -- Invalidate the D-cache.  We do this
   1059 	 *	here in case a write-back is required by the back-end.
   1060 	 *
   1061 	 *	PREWRITE -- Write-back the D-cache.  Note that if
   1062 	 *	we are doing a PREREAD|PREWRITE, we can collapse
   1063 	 *	the whole thing into a single Wb-Inv.
   1064 	 *
   1065 	 *	POSTREAD -- Re-invalidate the D-cache in case speculative
   1066 	 *	memory accesses caused cachelines to become valid with now
   1067 	 *	invalid data.
   1068 	 *
   1069 	 *	POSTWRITE -- Nothing.
   1070 	 */
   1071 #ifdef _ARM32_NEED_BUS_DMA_BOUNCE
   1072 	const bool bouncing = (map->_dm_flags & _BUS_DMAMAP_IS_BOUNCING);
   1073 #else
   1074 	const bool bouncing = false;
   1075 #endif
   1076 
   1077 	const int pre_ops = ops & (BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
   1078 #ifdef CPU_CORTEX
   1079 	const int post_ops = ops & (BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
   1080 #else
   1081 	const int post_ops = 0;
   1082 #endif
   1083 	if (!bouncing) {
   1084 		if (pre_ops == 0 && post_ops == BUS_DMASYNC_POSTWRITE) {
   1085 			STAT_INCR(sync_postwrite);
   1086 			return;
   1087 		} else if (pre_ops == 0 && post_ops == 0) {
   1088 			return;
   1089 		}
   1090 	}
   1091 	KASSERTMSG(bouncing || pre_ops != 0 || (post_ops & BUS_DMASYNC_POSTREAD),
   1092 	    "pre_ops %#x post_ops %#x", pre_ops, post_ops);
   1093 #ifdef _ARM32_NEED_BUS_DMA_BOUNCE
   1094 	if (bouncing && (ops & BUS_DMASYNC_PREWRITE)) {
   1095 		struct arm32_bus_dma_cookie * const cookie = map->_dm_cookie;
   1096 		STAT_INCR(write_bounces);
   1097 		char * const dataptr = (char *)cookie->id_bouncebuf + offset;
   1098 		/*
   1099 		 * Copy the caller's buffer to the bounce buffer.
   1100 		 */
   1101 		switch (map->_dm_buftype) {
   1102 		case _BUS_DMA_BUFTYPE_LINEAR:
   1103 			memcpy(dataptr, cookie->id_origlinearbuf + offset, len);
   1104 			break;
   1105 		case _BUS_DMA_BUFTYPE_MBUF:
   1106 			m_copydata(cookie->id_origmbuf, offset, len, dataptr);
   1107 			break;
   1108 		case _BUS_DMA_BUFTYPE_UIO:
   1109 			_bus_dma_uiomove(dataptr, cookie->id_origuio, len, UIO_WRITE);
   1110 			break;
   1111 #ifdef DIAGNOSTIC
   1112 		case _BUS_DMA_BUFTYPE_RAW:
   1113 			panic("_bus_dmamap_sync(pre): _BUS_DMA_BUFTYPE_RAW");
   1114 			break;
   1115 
   1116 		case _BUS_DMA_BUFTYPE_INVALID:
   1117 			panic("_bus_dmamap_sync(pre): _BUS_DMA_BUFTYPE_INVALID");
   1118 			break;
   1119 
   1120 		default:
   1121 			panic("_bus_dmamap_sync(pre): map %p: unknown buffer type %d\n",
   1122 			    map, map->_dm_buftype);
   1123 			break;
   1124 #endif /* DIAGNOSTIC */
   1125 		}
   1126 	}
   1127 #endif /* _ARM32_NEED_BUS_DMA_BOUNCE */
   1128 
   1129 	/* Skip cache frobbing if mapping was COHERENT. */
   1130 	if (!bouncing && (map->_dm_flags & _BUS_DMAMAP_COHERENT)) {
   1131 		/* Drain the write buffer. */
   1132 		if (pre_ops & BUS_DMASYNC_PREWRITE)
   1133 			cpu_drain_writebuf();
   1134 		return;
   1135 	}
   1136 
   1137 #ifdef _ARM32_NEED_BUS_DMA_BOUNCE
   1138 	if (bouncing && ((map->_dm_flags & _BUS_DMAMAP_COHERENT) || pre_ops == 0)) {
   1139 		goto bounce_it;
   1140 	}
   1141 #endif /* _ARM32_NEED_BUS_DMA_BOUNCE */
   1142 
   1143 #ifndef ARM_MMU_EXTENDED
   1144 	/*
   1145 	 * If the mapping belongs to a non-kernel vmspace, and the
   1146 	 * vmspace has not been active since the last time a full
   1147 	 * cache flush was performed, we don't need to do anything.
   1148 	 */
   1149 	if (__predict_false(!VMSPACE_IS_KERNEL_P(map->_dm_vmspace) &&
   1150 	    vm_map_pmap(&map->_dm_vmspace->vm_map)->pm_cstate.cs_cache_d == 0))
   1151 		return;
   1152 #endif
   1153 
   1154 	int buftype = map->_dm_buftype;
   1155 #ifdef _ARM32_NEED_BUS_DMA_BOUNCE
   1156 	if (bouncing) {
   1157 		buftype = _BUS_DMA_BUFTYPE_LINEAR;
   1158 	}
   1159 #endif
   1160 
   1161 	switch (buftype) {
   1162 	case _BUS_DMA_BUFTYPE_LINEAR:
   1163 		_bus_dmamap_sync_linear(t, map, offset, len, ops);
   1164 		break;
   1165 
   1166 	case _BUS_DMA_BUFTYPE_MBUF:
   1167 		_bus_dmamap_sync_mbuf(t, map, offset, len, ops);
   1168 		break;
   1169 
   1170 	case _BUS_DMA_BUFTYPE_UIO:
   1171 		_bus_dmamap_sync_uio(t, map, offset, len, ops);
   1172 		break;
   1173 
   1174 	case _BUS_DMA_BUFTYPE_RAW:
   1175 		panic("_bus_dmamap_sync: _BUS_DMA_BUFTYPE_RAW");
   1176 		break;
   1177 
   1178 	case _BUS_DMA_BUFTYPE_INVALID:
   1179 		panic("_bus_dmamap_sync: _BUS_DMA_BUFTYPE_INVALID");
   1180 		break;
   1181 
   1182 	default:
   1183 		panic("_bus_dmamap_sync: map %p: unknown buffer type %d\n",
   1184 		    map, map->_dm_buftype);
   1185 	}
   1186 
   1187 	/* Drain the write buffer. */
   1188 	cpu_drain_writebuf();
   1189 
   1190 #ifdef _ARM32_NEED_BUS_DMA_BOUNCE
   1191   bounce_it:
   1192 	if (!bouncing || (ops & BUS_DMASYNC_POSTREAD) == 0)
   1193 		return;
   1194 
   1195 	struct arm32_bus_dma_cookie * const cookie = map->_dm_cookie;
   1196 	char * const dataptr = (char *)cookie->id_bouncebuf + offset;
   1197 	STAT_INCR(read_bounces);
   1198 	/*
   1199 	 * Copy the bounce buffer to the caller's buffer.
   1200 	 */
   1201 	switch (map->_dm_buftype) {
   1202 	case _BUS_DMA_BUFTYPE_LINEAR:
   1203 		memcpy(cookie->id_origlinearbuf + offset, dataptr, len);
   1204 		break;
   1205 
   1206 	case _BUS_DMA_BUFTYPE_MBUF:
   1207 		m_copyback(cookie->id_origmbuf, offset, len, dataptr);
   1208 		break;
   1209 
   1210 	case _BUS_DMA_BUFTYPE_UIO:
   1211 		_bus_dma_uiomove(dataptr, cookie->id_origuio, len, UIO_READ);
   1212 		break;
   1213 #ifdef DIAGNOSTIC
   1214 	case _BUS_DMA_BUFTYPE_RAW:
   1215 		panic("_bus_dmamap_sync(post): _BUS_DMA_BUFTYPE_RAW");
   1216 		break;
   1217 
   1218 	case _BUS_DMA_BUFTYPE_INVALID:
   1219 		panic("_bus_dmamap_sync(post): _BUS_DMA_BUFTYPE_INVALID");
   1220 		break;
   1221 
   1222 	default:
   1223 		panic("_bus_dmamap_sync(post): map %p: unknown buffer type %d\n",
   1224 		    map, map->_dm_buftype);
   1225 		break;
   1226 #endif
   1227 	}
   1228 #endif /* _ARM32_NEED_BUS_DMA_BOUNCE */
   1229 }
   1230 
   1231 /*
   1232  * Common function for DMA-safe memory allocation.  May be called
   1233  * by bus-specific DMA memory allocation functions.
   1234  */
   1235 
   1236 extern paddr_t physical_start;
   1237 extern paddr_t physical_end;
   1238 
   1239 int
   1240 _bus_dmamem_alloc(bus_dma_tag_t t, bus_size_t size, bus_size_t alignment,
   1241     bus_size_t boundary, bus_dma_segment_t *segs, int nsegs, int *rsegs,
   1242     int flags)
   1243 {
   1244 	struct arm32_dma_range *dr;
   1245 	int error, i;
   1246 
   1247 #ifdef DEBUG_DMA
   1248 	printf("dmamem_alloc t=%p size=%lx align=%lx boundary=%lx "
   1249 	    "segs=%p nsegs=%x rsegs=%p flags=%x\n", t, size, alignment,
   1250 	    boundary, segs, nsegs, rsegs, flags);
   1251 #endif
   1252 
   1253 	if ((dr = t->_ranges) != NULL) {
   1254 		error = ENOMEM;
   1255 		for (i = 0; i < t->_nranges; i++, dr++) {
   1256 			if (dr->dr_len == 0
   1257 			    || (dr->dr_flags & _BUS_DMAMAP_NOALLOC))
   1258 				continue;
   1259 			error = _bus_dmamem_alloc_range(t, size, alignment,
   1260 			    boundary, segs, nsegs, rsegs, flags,
   1261 			    trunc_page(dr->dr_sysbase),
   1262 			    trunc_page(dr->dr_sysbase + dr->dr_len));
   1263 			if (error == 0)
   1264 				break;
   1265 		}
   1266 	} else {
   1267 		error = _bus_dmamem_alloc_range(t, size, alignment, boundary,
   1268 		    segs, nsegs, rsegs, flags, trunc_page(physical_start),
   1269 		    trunc_page(physical_end));
   1270 	}
   1271 
   1272 #ifdef DEBUG_DMA
   1273 	printf("dmamem_alloc: =%d\n", error);
   1274 #endif
   1275 
   1276 	return error;
   1277 }
   1278 
   1279 /*
   1280  * Common function for freeing DMA-safe memory.  May be called by
   1281  * bus-specific DMA memory free functions.
   1282  */
   1283 void
   1284 _bus_dmamem_free(bus_dma_tag_t t, bus_dma_segment_t *segs, int nsegs)
   1285 {
   1286 	struct vm_page *m;
   1287 	bus_addr_t addr;
   1288 	struct pglist mlist;
   1289 	int curseg;
   1290 
   1291 #ifdef DEBUG_DMA
   1292 	printf("dmamem_free: t=%p segs=%p nsegs=%x\n", t, segs, nsegs);
   1293 #endif	/* DEBUG_DMA */
   1294 
   1295 	/*
   1296 	 * Build a list of pages to free back to the VM system.
   1297 	 */
   1298 	TAILQ_INIT(&mlist);
   1299 	for (curseg = 0; curseg < nsegs; curseg++) {
   1300 		for (addr = segs[curseg].ds_addr;
   1301 		    addr < (segs[curseg].ds_addr + segs[curseg].ds_len);
   1302 		    addr += PAGE_SIZE) {
   1303 			m = PHYS_TO_VM_PAGE(addr);
   1304 			TAILQ_INSERT_TAIL(&mlist, m, pageq.queue);
   1305 		}
   1306 	}
   1307 	uvm_pglistfree(&mlist);
   1308 }
   1309 
   1310 /*
   1311  * Common function for mapping DMA-safe memory.  May be called by
   1312  * bus-specific DMA memory map functions.
   1313  */
   1314 int
   1315 _bus_dmamem_map(bus_dma_tag_t t, bus_dma_segment_t *segs, int nsegs,
   1316     size_t size, void **kvap, int flags)
   1317 {
   1318 	vaddr_t va;
   1319 	paddr_t pa;
   1320 	int curseg;
   1321 	const uvm_flag_t kmflags = UVM_KMF_VAONLY
   1322 	    | ((flags & BUS_DMA_NOWAIT) != 0 ? UVM_KMF_NOWAIT : 0);
   1323 	vsize_t align = 0;
   1324 
   1325 #ifdef DEBUG_DMA
   1326 	printf("dmamem_map: t=%p segs=%p nsegs=%x size=%lx flags=%x\n", t,
   1327 	    segs, nsegs, (unsigned long)size, flags);
   1328 #endif	/* DEBUG_DMA */
   1329 
   1330 #ifdef PMAP_MAP_POOLPAGE
   1331 	/*
   1332 	 * If all of memory is mapped, and we are mapping a single physically
   1333 	 * contiguous area then this area is already mapped.  Let's see if we
   1334 	 * avoid having a separate mapping for it.
   1335 	 */
   1336 	if (nsegs == 1) {
   1337 		/*
   1338 		 * If this is a non-COHERENT mapping, then the existing kernel
   1339 		 * mapping is already compatible with it.
   1340 		 */
   1341 		bool direct_mapable = (flags & BUS_DMA_COHERENT) == 0;
   1342 		pa = segs[0].ds_addr;
   1343 
   1344 		/*
   1345 		 * This is a COHERENT mapping which, unless this address is in
   1346 		 * a COHERENT dma range, will not be compatible.
   1347 		 */
   1348 		if (t->_ranges != NULL) {
   1349 			const struct arm32_dma_range * const dr =
   1350 			    _bus_dma_paddr_inrange(t->_ranges, t->_nranges, pa);
   1351 			if (dr != NULL
   1352 			    && (dr->dr_flags & _BUS_DMAMAP_COHERENT)) {
   1353 				direct_mapable = true;
   1354 			}
   1355 		}
   1356 
   1357 #ifdef PMAP_NEED_ALLOC_POOLPAGE
   1358 		/*
   1359 		 * The page can only be direct mapped if was allocated out
   1360 		 * of the arm poolpage vm freelist.
   1361 		 */
   1362 		uvm_physseg_t upm = uvm_physseg_find(atop(pa), NULL);
   1363 		KASSERT(uvm_physseg_valid_p(upm));
   1364 		if (direct_mapable) {
   1365 			direct_mapable =
   1366 			    (arm_poolpage_vmfreelist == uvm_physseg_get_free_list(upm));
   1367 		}
   1368 #endif
   1369 
   1370 		if (direct_mapable) {
   1371 			*kvap = (void *)PMAP_MAP_POOLPAGE(pa);
   1372 #ifdef DEBUG_DMA
   1373 			printf("dmamem_map: =%p\n", *kvap);
   1374 #endif	/* DEBUG_DMA */
   1375 			return 0;
   1376 		}
   1377 	}
   1378 #endif
   1379 
   1380 	size = round_page(size);
   1381 	if (__predict_true(size > L2_L_SIZE)) {
   1382 #if (ARM_MMU_V6 + ARM_MMU_V7) > 0
   1383 		if (size >= L1_SS_SIZE)
   1384 			align = L1_SS_SIZE;
   1385 		else
   1386 #endif
   1387 		if (size >= L1_S_SIZE)
   1388 			align = L1_S_SIZE;
   1389 		else
   1390 			align = L2_L_SIZE;
   1391 	}
   1392 
   1393 	va = uvm_km_alloc(kernel_map, size, align, kmflags);
   1394 	if (__predict_false(va == 0 && align > 0)) {
   1395 		align = 0;
   1396 		va = uvm_km_alloc(kernel_map, size, 0, kmflags);
   1397 	}
   1398 
   1399 	if (va == 0)
   1400 		return ENOMEM;
   1401 
   1402 	*kvap = (void *)va;
   1403 
   1404 	for (curseg = 0; curseg < nsegs; curseg++) {
   1405 		for (pa = segs[curseg].ds_addr;
   1406 		    pa < (segs[curseg].ds_addr + segs[curseg].ds_len);
   1407 		    pa += PAGE_SIZE, va += PAGE_SIZE, size -= PAGE_SIZE) {
   1408 			bool uncached = (flags & BUS_DMA_COHERENT);
   1409 #ifdef DEBUG_DMA
   1410 			printf("wiring p%lx to v%lx", pa, va);
   1411 #endif	/* DEBUG_DMA */
   1412 			if (size == 0)
   1413 				panic("_bus_dmamem_map: size botch");
   1414 
   1415 			const struct arm32_dma_range * const dr =
   1416 			    _bus_dma_paddr_inrange(t->_ranges, t->_nranges, pa);
   1417 			/*
   1418 			 * If this dma region is coherent then there is
   1419 			 * no need for an uncached mapping.
   1420 			 */
   1421 			if (dr != NULL
   1422 			    && (dr->dr_flags & _BUS_DMAMAP_COHERENT)) {
   1423 				uncached = false;
   1424 			}
   1425 
   1426 			pmap_kenter_pa(va, pa, VM_PROT_READ | VM_PROT_WRITE,
   1427 			    PMAP_WIRED | (uncached ? PMAP_NOCACHE : 0));
   1428 		}
   1429 	}
   1430 	pmap_update(pmap_kernel());
   1431 #ifdef DEBUG_DMA
   1432 	printf("dmamem_map: =%p\n", *kvap);
   1433 #endif	/* DEBUG_DMA */
   1434 	return 0;
   1435 }
   1436 
   1437 /*
   1438  * Common function for unmapping DMA-safe memory.  May be called by
   1439  * bus-specific DMA memory unmapping functions.
   1440  */
   1441 void
   1442 _bus_dmamem_unmap(bus_dma_tag_t t, void *kva, size_t size)
   1443 {
   1444 
   1445 #ifdef DEBUG_DMA
   1446 	printf("dmamem_unmap: t=%p kva=%p size=%zx\n", t, kva, size);
   1447 #endif	/* DEBUG_DMA */
   1448 	KASSERTMSG(((uintptr_t)kva & PAGE_MASK) == 0,
   1449 	    "kva %p (%#"PRIxPTR")", kva, ((uintptr_t)kva & PAGE_MASK));
   1450 
   1451 #ifdef __HAVE_MM_MD_DIRECT_MAPPED_PHYS
   1452 	/*
   1453 	 * Check to see if this used direct mapped memory.  Get its physical
   1454 	 * address and try to map it.  If the resultant matches the kva, then
   1455 	 * it was and so we can just return since we have nothing to free up.
   1456 	 */
   1457 	paddr_t pa;
   1458 	vaddr_t va;
   1459 	(void)pmap_extract(pmap_kernel(), (vaddr_t)kva, &pa);
   1460 	if (mm_md_direct_mapped_phys(pa, &va) && va == (vaddr_t)kva)
   1461 		return;
   1462 #endif
   1463 
   1464 	size = round_page(size);
   1465 	pmap_kremove((vaddr_t)kva, size);
   1466 	pmap_update(pmap_kernel());
   1467 	uvm_km_free(kernel_map, (vaddr_t)kva, size, UVM_KMF_VAONLY);
   1468 }
   1469 
   1470 /*
   1471  * Common functin for mmap(2)'ing DMA-safe memory.  May be called by
   1472  * bus-specific DMA mmap(2)'ing functions.
   1473  */
   1474 paddr_t
   1475 _bus_dmamem_mmap(bus_dma_tag_t t, bus_dma_segment_t *segs, int nsegs,
   1476     off_t off, int prot, int flags)
   1477 {
   1478 	paddr_t map_flags;
   1479 	int i;
   1480 
   1481 	for (i = 0; i < nsegs; i++) {
   1482 		KASSERTMSG((off & PAGE_MASK) == 0,
   1483 		    "off %#qx (%#x)", off, (int)off & PAGE_MASK);
   1484 		KASSERTMSG((segs[i].ds_addr & PAGE_MASK) == 0,
   1485 		    "ds_addr %#lx (%#x)", segs[i].ds_addr,
   1486 		    (int)segs[i].ds_addr & PAGE_MASK);
   1487 		KASSERTMSG((segs[i].ds_len & PAGE_MASK) == 0,
   1488 		    "ds_len %#lx (%#x)", segs[i].ds_addr,
   1489 		    (int)segs[i].ds_addr & PAGE_MASK);
   1490 		if (off >= segs[i].ds_len) {
   1491 			off -= segs[i].ds_len;
   1492 			continue;
   1493 		}
   1494 
   1495 		map_flags = 0;
   1496 		if (flags & BUS_DMA_PREFETCHABLE)
   1497 			map_flags |= ARM32_MMAP_WRITECOMBINE;
   1498 
   1499 		return arm_btop((u_long)segs[i].ds_addr + off) | map_flags;
   1500 
   1501 	}
   1502 
   1503 	/* Page not found. */
   1504 	return -1;
   1505 }
   1506 
   1507 /**********************************************************************
   1508  * DMA utility functions
   1509  **********************************************************************/
   1510 
   1511 /*
   1512  * Utility function to load a linear buffer.  lastaddrp holds state
   1513  * between invocations (for multiple-buffer loads).  segp contains
   1514  * the starting segment on entrace, and the ending segment on exit.
   1515  * first indicates if this is the first invocation of this function.
   1516  */
   1517 int
   1518 _bus_dmamap_load_buffer(bus_dma_tag_t t, bus_dmamap_t map, void *buf,
   1519     bus_size_t buflen, struct vmspace *vm, int flags)
   1520 {
   1521 	bus_size_t sgsize;
   1522 	bus_addr_t curaddr;
   1523 	vaddr_t vaddr = (vaddr_t)buf;
   1524 	int error;
   1525 	pmap_t pmap;
   1526 
   1527 #ifdef DEBUG_DMA
   1528 	printf("_bus_dmamem_load_buffer(buf=%p, len=%lx, flags=%d)\n",
   1529 	    buf, buflen, flags);
   1530 #endif	/* DEBUG_DMA */
   1531 
   1532 	pmap = vm_map_pmap(&vm->vm_map);
   1533 
   1534 	while (buflen > 0) {
   1535 		/*
   1536 		 * Get the physical address for this segment.
   1537 		 *
   1538 		 * XXX Doesn't support checking for coherent mappings
   1539 		 * XXX in user address space.
   1540 		 */
   1541 		bool coherent;
   1542 		if (__predict_true(pmap == pmap_kernel())) {
   1543 			pd_entry_t *pde;
   1544 			pt_entry_t *ptep;
   1545 			(void) pmap_get_pde_pte(pmap, vaddr, &pde, &ptep);
   1546 			if (__predict_false(pmap_pde_section(pde))) {
   1547 				paddr_t s_frame = L1_S_FRAME;
   1548 				paddr_t s_offset = L1_S_OFFSET;
   1549 #if (ARM_MMU_V6 + ARM_MMU_V7) > 0
   1550 				if (__predict_false(pmap_pde_supersection(pde))) {
   1551 					s_frame = L1_SS_FRAME;
   1552 					s_offset = L1_SS_OFFSET;
   1553 				}
   1554 #endif
   1555 				curaddr = (*pde & s_frame) | (vaddr & s_offset);
   1556 				coherent = (*pde & L1_S_CACHE_MASK) == 0;
   1557 			} else {
   1558 				pt_entry_t pte = *ptep;
   1559 				KDASSERTMSG((pte & L2_TYPE_MASK) != L2_TYPE_INV,
   1560 				    "va=%#"PRIxVADDR" pde=%#x ptep=%p pte=%#x",
   1561 				    vaddr, *pde, ptep, pte);
   1562 				if (__predict_false((pte & L2_TYPE_MASK)
   1563 						    == L2_TYPE_L)) {
   1564 					curaddr = (pte & L2_L_FRAME) |
   1565 					    (vaddr & L2_L_OFFSET);
   1566 					coherent = (pte & L2_L_CACHE_MASK) == 0;
   1567 				} else {
   1568 					curaddr = (pte & ~PAGE_MASK) |
   1569 					    (vaddr & PAGE_MASK);
   1570 					coherent = (pte & L2_S_CACHE_MASK) == 0;
   1571 				}
   1572 			}
   1573 		} else {
   1574 			(void) pmap_extract(pmap, vaddr, &curaddr);
   1575 			coherent = false;
   1576 		}
   1577 		KASSERTMSG((vaddr & PAGE_MASK) == (curaddr & PAGE_MASK),
   1578 		    "va %#lx curaddr %#lx", vaddr, curaddr);
   1579 
   1580 		/*
   1581 		 * Compute the segment size, and adjust counts.
   1582 		 */
   1583 		sgsize = PAGE_SIZE - ((u_long)vaddr & PGOFSET);
   1584 		if (buflen < sgsize)
   1585 			sgsize = buflen;
   1586 
   1587 		error = _bus_dmamap_load_paddr(t, map, curaddr, sgsize,
   1588 		    coherent);
   1589 		if (error)
   1590 			return error;
   1591 
   1592 		vaddr += sgsize;
   1593 		buflen -= sgsize;
   1594 	}
   1595 
   1596 	return 0;
   1597 }
   1598 
   1599 /*
   1600  * Allocate physical memory from the given physical address range.
   1601  * Called by DMA-safe memory allocation methods.
   1602  */
   1603 int
   1604 _bus_dmamem_alloc_range(bus_dma_tag_t t, bus_size_t size, bus_size_t alignment,
   1605     bus_size_t boundary, bus_dma_segment_t *segs, int nsegs, int *rsegs,
   1606     int flags, paddr_t low, paddr_t high)
   1607 {
   1608 	paddr_t curaddr, lastaddr;
   1609 	struct vm_page *m;
   1610 	struct pglist mlist;
   1611 	int curseg, error;
   1612 
   1613 	KASSERTMSG(boundary == 0 || (boundary & (boundary - 1)) == 0,
   1614 	    "invalid boundary %#lx", boundary);
   1615 
   1616 #ifdef DEBUG_DMA
   1617 	printf("alloc_range: t=%p size=%lx align=%lx boundary=%lx segs=%p nsegs=%x rsegs=%p flags=%x lo=%lx hi=%lx\n",
   1618 	    t, size, alignment, boundary, segs, nsegs, rsegs, flags, low, high);
   1619 #endif	/* DEBUG_DMA */
   1620 
   1621 	/* Always round the size. */
   1622 	size = round_page(size);
   1623 
   1624 	/*
   1625 	 * We accept boundaries < size, splitting in multiple segments
   1626 	 * if needed. uvm_pglistalloc does not, so compute an appropriate
   1627 	 * boundary: next power of 2 >= size
   1628 	 */
   1629 	bus_size_t uboundary = boundary;
   1630 	if (uboundary <= PAGE_SIZE) {
   1631 		uboundary = 0;
   1632 	} else {
   1633 		while (uboundary < size) {
   1634 			uboundary <<= 1;
   1635 		}
   1636 	}
   1637 
   1638 	/*
   1639 	 * Allocate pages from the VM system.
   1640 	 */
   1641 	error = uvm_pglistalloc(size, low, high, alignment, uboundary,
   1642 	    &mlist, nsegs, (flags & BUS_DMA_NOWAIT) == 0);
   1643 	if (error)
   1644 		return error;
   1645 
   1646 	/*
   1647 	 * Compute the location, size, and number of segments actually
   1648 	 * returned by the VM code.
   1649 	 */
   1650 	m = TAILQ_FIRST(&mlist);
   1651 	curseg = 0;
   1652 	lastaddr = segs[curseg].ds_addr = VM_PAGE_TO_PHYS(m);
   1653 	segs[curseg].ds_len = PAGE_SIZE;
   1654 #ifdef DEBUG_DMA
   1655 		printf("alloc: page %lx\n", lastaddr);
   1656 #endif	/* DEBUG_DMA */
   1657 	m = TAILQ_NEXT(m, pageq.queue);
   1658 
   1659 	for (; m != NULL; m = TAILQ_NEXT(m, pageq.queue)) {
   1660 		curaddr = VM_PAGE_TO_PHYS(m);
   1661 		KASSERTMSG(low <= curaddr && curaddr < high,
   1662 		    "uvm_pglistalloc returned non-sensicaladdress %#lx "
   1663 		    "(low=%#lx, high=%#lx\n", curaddr, low, high);
   1664 #ifdef DEBUG_DMA
   1665 		printf("alloc: page %lx\n", curaddr);
   1666 #endif	/* DEBUG_DMA */
   1667 		if (curaddr == lastaddr + PAGE_SIZE
   1668 		    && (lastaddr & boundary) == (curaddr & boundary))
   1669 			segs[curseg].ds_len += PAGE_SIZE;
   1670 		else {
   1671 			curseg++;
   1672 			if (curseg >= nsegs) {
   1673 				uvm_pglistfree(&mlist);
   1674 				return EFBIG;
   1675 			}
   1676 			segs[curseg].ds_addr = curaddr;
   1677 			segs[curseg].ds_len = PAGE_SIZE;
   1678 		}
   1679 		lastaddr = curaddr;
   1680 	}
   1681 
   1682 	*rsegs = curseg + 1;
   1683 
   1684 	return 0;
   1685 }
   1686 
   1687 /*
   1688  * Check if a memory region intersects with a DMA range, and return the
   1689  * page-rounded intersection if it does.
   1690  */
   1691 int
   1692 arm32_dma_range_intersect(struct arm32_dma_range *ranges, int nranges,
   1693     paddr_t pa, psize_t size, paddr_t *pap, psize_t *sizep)
   1694 {
   1695 	struct arm32_dma_range *dr;
   1696 	int i;
   1697 
   1698 	if (ranges == NULL)
   1699 		return 0;
   1700 
   1701 	for (i = 0, dr = ranges; i < nranges; i++, dr++) {
   1702 		if (dr->dr_sysbase <= pa &&
   1703 		    pa < (dr->dr_sysbase + dr->dr_len)) {
   1704 			/*
   1705 			 * Beginning of region intersects with this range.
   1706 			 */
   1707 			*pap = trunc_page(pa);
   1708 			*sizep = round_page(min(pa + size,
   1709 			    dr->dr_sysbase + dr->dr_len) - pa);
   1710 			return 1;
   1711 		}
   1712 		if (pa < dr->dr_sysbase && dr->dr_sysbase < (pa + size)) {
   1713 			/*
   1714 			 * End of region intersects with this range.
   1715 			 */
   1716 			*pap = trunc_page(dr->dr_sysbase);
   1717 			*sizep = round_page(min((pa + size) - dr->dr_sysbase,
   1718 			    dr->dr_len));
   1719 			return 1;
   1720 		}
   1721 	}
   1722 
   1723 	/* No intersection found. */
   1724 	return 0;
   1725 }
   1726 
   1727 #ifdef _ARM32_NEED_BUS_DMA_BOUNCE
   1728 static int
   1729 _bus_dma_alloc_bouncebuf(bus_dma_tag_t t, bus_dmamap_t map,
   1730     bus_size_t size, int flags)
   1731 {
   1732 	struct arm32_bus_dma_cookie *cookie = map->_dm_cookie;
   1733 	int error = 0;
   1734 
   1735 	KASSERT(cookie != NULL);
   1736 
   1737 	cookie->id_bouncebuflen = round_page(size);
   1738 	error = _bus_dmamem_alloc(t, cookie->id_bouncebuflen,
   1739 	    PAGE_SIZE, map->_dm_boundary, cookie->id_bouncesegs,
   1740 	    map->_dm_segcnt, &cookie->id_nbouncesegs, flags);
   1741 	if (error == 0) {
   1742 		error = _bus_dmamem_map(t, cookie->id_bouncesegs,
   1743 		    cookie->id_nbouncesegs, cookie->id_bouncebuflen,
   1744 		    (void **)&cookie->id_bouncebuf, flags);
   1745 		if (error) {
   1746 			_bus_dmamem_free(t, cookie->id_bouncesegs,
   1747 			    cookie->id_nbouncesegs);
   1748 			cookie->id_bouncebuflen = 0;
   1749 			cookie->id_nbouncesegs = 0;
   1750 		} else {
   1751 			cookie->id_flags |= _BUS_DMA_HAS_BOUNCE;
   1752 		}
   1753 	} else {
   1754 		cookie->id_bouncebuflen = 0;
   1755 		cookie->id_nbouncesegs = 0;
   1756 	}
   1757 
   1758 	return error;
   1759 }
   1760 
   1761 static void
   1762 _bus_dma_free_bouncebuf(bus_dma_tag_t t, bus_dmamap_t map)
   1763 {
   1764 	struct arm32_bus_dma_cookie *cookie = map->_dm_cookie;
   1765 
   1766 	KASSERT(cookie != NULL);
   1767 
   1768 	_bus_dmamem_unmap(t, cookie->id_bouncebuf, cookie->id_bouncebuflen);
   1769 	_bus_dmamem_free(t, cookie->id_bouncesegs, cookie->id_nbouncesegs);
   1770 	cookie->id_bouncebuflen = 0;
   1771 	cookie->id_nbouncesegs = 0;
   1772 	cookie->id_flags &= ~_BUS_DMA_HAS_BOUNCE;
   1773 }
   1774 
   1775 /*
   1776  * This function does the same as uiomove, but takes an explicit
   1777  * direction, and does not update the uio structure.
   1778  */
   1779 static int
   1780 _bus_dma_uiomove(void *buf, struct uio *uio, size_t n, int direction)
   1781 {
   1782 	struct iovec *iov;
   1783 	int error;
   1784 	struct vmspace *vm;
   1785 	char *cp;
   1786 	size_t resid, cnt;
   1787 	int i;
   1788 
   1789 	iov = uio->uio_iov;
   1790 	vm = uio->uio_vmspace;
   1791 	cp = buf;
   1792 	resid = n;
   1793 
   1794 	for (i = 0; i < uio->uio_iovcnt && resid > 0; i++) {
   1795 		iov = &uio->uio_iov[i];
   1796 		if (iov->iov_len == 0)
   1797 			continue;
   1798 		cnt = MIN(resid, iov->iov_len);
   1799 
   1800 		if (!VMSPACE_IS_KERNEL_P(vm) &&
   1801 		    (curlwp->l_cpu->ci_schedstate.spc_flags & SPCF_SHOULDYIELD)
   1802 		    != 0) {
   1803 			preempt();
   1804 		}
   1805 		if (direction == UIO_READ) {
   1806 			error = copyout_vmspace(vm, cp, iov->iov_base, cnt);
   1807 		} else {
   1808 			error = copyin_vmspace(vm, iov->iov_base, cp, cnt);
   1809 		}
   1810 		if (error)
   1811 			return error;
   1812 		cp += cnt;
   1813 		resid -= cnt;
   1814 	}
   1815 	return 0;
   1816 }
   1817 #endif /* _ARM32_NEED_BUS_DMA_BOUNCE */
   1818 
   1819 int
   1820 _bus_dmatag_subregion(bus_dma_tag_t tag, bus_addr_t min_addr,
   1821     bus_addr_t max_addr, bus_dma_tag_t *newtag, int flags)
   1822 {
   1823 
   1824 #ifdef _ARM32_NEED_BUS_DMA_BOUNCE
   1825 	struct arm32_dma_range *dr;
   1826 	bool subset = false;
   1827 	size_t nranges = 0;
   1828 	size_t i;
   1829 	for (i = 0, dr = tag->_ranges; i < tag->_nranges; i++, dr++) {
   1830 		if (dr->dr_sysbase <= min_addr
   1831 		    && max_addr <= dr->dr_sysbase + dr->dr_len - 1) {
   1832 			subset = true;
   1833 		}
   1834 		if (min_addr <= dr->dr_sysbase + dr->dr_len
   1835 		    && max_addr >= dr->dr_sysbase) {
   1836 			nranges++;
   1837 		}
   1838 	}
   1839 	if (subset) {
   1840 		*newtag = tag;
   1841 		/* if the tag must be freed, add a reference */
   1842 		if (tag->_tag_needs_free)
   1843 			(tag->_tag_needs_free)++;
   1844 		return 0;
   1845 	}
   1846 	if (nranges == 0) {
   1847 		nranges = 1;
   1848 	}
   1849 
   1850 	const size_t tagsize = sizeof(*tag) + nranges * sizeof(*dr);
   1851 	if ((*newtag = kmem_intr_zalloc(tagsize,
   1852 	    (flags & BUS_DMA_NOWAIT) ? KM_NOSLEEP : KM_SLEEP)) == NULL)
   1853 		return ENOMEM;
   1854 
   1855 	dr = (void *)(*newtag + 1);
   1856 	**newtag = *tag;
   1857 	(*newtag)->_tag_needs_free = 1;
   1858 	(*newtag)->_ranges = dr;
   1859 	(*newtag)->_nranges = nranges;
   1860 
   1861 	if (tag->_ranges == NULL) {
   1862 		dr->dr_sysbase = min_addr;
   1863 		dr->dr_busbase = min_addr;
   1864 		dr->dr_len = max_addr + 1 - min_addr;
   1865 	} else {
   1866 		for (i = 0; i < nranges; i++) {
   1867 			if (min_addr > dr->dr_sysbase + dr->dr_len
   1868 			    || max_addr < dr->dr_sysbase)
   1869 				continue;
   1870 			dr[0] = tag->_ranges[i];
   1871 			if (dr->dr_sysbase < min_addr) {
   1872 				psize_t diff = min_addr - dr->dr_sysbase;
   1873 				dr->dr_busbase += diff;
   1874 				dr->dr_len -= diff;
   1875 				dr->dr_sysbase += diff;
   1876 			}
   1877 			if (max_addr != 0xffffffff
   1878 			    && max_addr + 1 < dr->dr_sysbase + dr->dr_len) {
   1879 				dr->dr_len = max_addr + 1 - dr->dr_sysbase;
   1880 			}
   1881 			dr++;
   1882 		}
   1883 	}
   1884 
   1885 	return 0;
   1886 #else
   1887 	return EOPNOTSUPP;
   1888 #endif /* _ARM32_NEED_BUS_DMA_BOUNCE */
   1889 }
   1890 
   1891 void
   1892 _bus_dmatag_destroy(bus_dma_tag_t tag)
   1893 {
   1894 #ifdef _ARM32_NEED_BUS_DMA_BOUNCE
   1895 	switch (tag->_tag_needs_free) {
   1896 	case 0:
   1897 		break;				/* not allocated with kmem */
   1898 	case 1: {
   1899 		const size_t tagsize = sizeof(*tag)
   1900 		    + tag->_nranges * sizeof(*tag->_ranges);
   1901 		kmem_intr_free(tag, tagsize);	/* last reference to tag */
   1902 		break;
   1903 	}
   1904 	default:
   1905 		(tag->_tag_needs_free)--;	/* one less reference */
   1906 	}
   1907 #endif
   1908 }
   1909