bus_dma.c revision 1.106 1 /* $NetBSD: bus_dma.c,v 1.106 2018/03/04 08:04:59 skrll Exp $ */
2
3 /*-
4 * Copyright (c) 1996, 1997, 1998 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Jason R. Thorpe of the Numerical Aerospace Simulation Facility,
9 * NASA Ames Research Center.
10 *
11 * Redistribution and use in source and binary forms, with or without
12 * modification, are permitted provided that the following conditions
13 * are met:
14 * 1. Redistributions of source code must retain the above copyright
15 * notice, this list of conditions and the following disclaimer.
16 * 2. Redistributions in binary form must reproduce the above copyright
17 * notice, this list of conditions and the following disclaimer in the
18 * documentation and/or other materials provided with the distribution.
19 *
20 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
21 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
22 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
23 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
24 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
25 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
26 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
27 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
28 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
29 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
30 * POSSIBILITY OF SUCH DAMAGE.
31 */
32
33 #define _ARM32_BUS_DMA_PRIVATE
34
35 #include "opt_arm_bus_space.h"
36
37 #include <sys/cdefs.h>
38 __KERNEL_RCSID(0, "$NetBSD: bus_dma.c,v 1.106 2018/03/04 08:04:59 skrll Exp $");
39
40 #include <sys/param.h>
41 #include <sys/bus.h>
42 #include <sys/cpu.h>
43 #include <sys/kmem.h>
44 #include <sys/mbuf.h>
45
46 #include <uvm/uvm.h>
47
48 #include <arm/cpufunc.h>
49
50 #ifdef __HAVE_MM_MD_DIRECT_MAPPED_PHYS
51 #include <dev/mm.h>
52 #endif
53
54 #ifdef BUSDMA_COUNTERS
55 static struct evcnt bus_dma_creates =
56 EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL, "busdma", "creates");
57 static struct evcnt bus_dma_bounced_creates =
58 EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL, "busdma", "bounced creates");
59 static struct evcnt bus_dma_loads =
60 EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL, "busdma", "loads");
61 static struct evcnt bus_dma_bounced_loads =
62 EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL, "busdma", "bounced loads");
63 static struct evcnt bus_dma_coherent_loads =
64 EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL, "busdma", "coherent loads");
65 static struct evcnt bus_dma_read_bounces =
66 EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL, "busdma", "read bounces");
67 static struct evcnt bus_dma_write_bounces =
68 EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL, "busdma", "write bounces");
69 static struct evcnt bus_dma_bounced_unloads =
70 EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL, "busdma", "bounced unloads");
71 static struct evcnt bus_dma_unloads =
72 EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL, "busdma", "unloads");
73 static struct evcnt bus_dma_bounced_destroys =
74 EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL, "busdma", "bounced destroys");
75 static struct evcnt bus_dma_destroys =
76 EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL, "busdma", "destroys");
77 static struct evcnt bus_dma_sync_prereadwrite =
78 EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL, "busdma", "sync prereadwrite");
79 static struct evcnt bus_dma_sync_preread_begin =
80 EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL, "busdma", "sync preread begin");
81 static struct evcnt bus_dma_sync_preread =
82 EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL, "busdma", "sync preread");
83 static struct evcnt bus_dma_sync_preread_tail =
84 EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL, "busdma", "sync preread tail");
85 static struct evcnt bus_dma_sync_prewrite =
86 EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL, "busdma", "sync prewrite");
87 static struct evcnt bus_dma_sync_postread =
88 EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL, "busdma", "sync postread");
89 static struct evcnt bus_dma_sync_postreadwrite =
90 EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL, "busdma", "sync postreadwrite");
91 static struct evcnt bus_dma_sync_postwrite =
92 EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL, "busdma", "sync postwrite");
93
94 EVCNT_ATTACH_STATIC(bus_dma_creates);
95 EVCNT_ATTACH_STATIC(bus_dma_bounced_creates);
96 EVCNT_ATTACH_STATIC(bus_dma_loads);
97 EVCNT_ATTACH_STATIC(bus_dma_bounced_loads);
98 EVCNT_ATTACH_STATIC(bus_dma_coherent_loads);
99 EVCNT_ATTACH_STATIC(bus_dma_read_bounces);
100 EVCNT_ATTACH_STATIC(bus_dma_write_bounces);
101 EVCNT_ATTACH_STATIC(bus_dma_unloads);
102 EVCNT_ATTACH_STATIC(bus_dma_bounced_unloads);
103 EVCNT_ATTACH_STATIC(bus_dma_destroys);
104 EVCNT_ATTACH_STATIC(bus_dma_bounced_destroys);
105 EVCNT_ATTACH_STATIC(bus_dma_sync_prereadwrite);
106 EVCNT_ATTACH_STATIC(bus_dma_sync_preread_begin);
107 EVCNT_ATTACH_STATIC(bus_dma_sync_preread);
108 EVCNT_ATTACH_STATIC(bus_dma_sync_preread_tail);
109 EVCNT_ATTACH_STATIC(bus_dma_sync_prewrite);
110 EVCNT_ATTACH_STATIC(bus_dma_sync_postread);
111 EVCNT_ATTACH_STATIC(bus_dma_sync_postreadwrite);
112 EVCNT_ATTACH_STATIC(bus_dma_sync_postwrite);
113
114 #define STAT_INCR(x) (bus_dma_ ## x.ev_count++)
115 #else
116 #define STAT_INCR(x) /*(bus_dma_ ## x.ev_count++)*/
117 #endif
118
119 int _bus_dmamap_load_buffer(bus_dma_tag_t, bus_dmamap_t, void *,
120 bus_size_t, struct vmspace *, int);
121
122 /*
123 * Check to see if the specified page is in an allowed DMA range.
124 */
125 static inline struct arm32_dma_range *
126 _bus_dma_paddr_inrange(struct arm32_dma_range *ranges, int nranges,
127 bus_addr_t curaddr)
128 {
129 struct arm32_dma_range *dr;
130 int i;
131
132 for (i = 0, dr = ranges; i < nranges; i++, dr++) {
133 if (curaddr >= dr->dr_sysbase &&
134 curaddr < (dr->dr_sysbase + dr->dr_len))
135 return dr;
136 }
137
138 return NULL;
139 }
140
141 /*
142 * Check to see if the specified busaddr is in an allowed DMA range.
143 */
144 static inline paddr_t
145 _bus_dma_busaddr_to_paddr(bus_dma_tag_t t, bus_addr_t curaddr)
146 {
147 struct arm32_dma_range *dr;
148 u_int i;
149
150 if (t->_nranges == 0)
151 return curaddr;
152
153 for (i = 0, dr = t->_ranges; i < t->_nranges; i++, dr++) {
154 if (dr->dr_busbase <= curaddr
155 && curaddr < dr->dr_busbase + dr->dr_len)
156 return curaddr - dr->dr_busbase + dr->dr_sysbase;
157 }
158 panic("%s: curaddr %#lx not in range", __func__, curaddr);
159 }
160
161 /*
162 * Common function to load the specified physical address into the
163 * DMA map, coalescing segments and boundary checking as necessary.
164 */
165 static int
166 _bus_dmamap_load_paddr(bus_dma_tag_t t, bus_dmamap_t map,
167 bus_addr_t paddr, bus_size_t size, bool coherent)
168 {
169 bus_dma_segment_t * const segs = map->dm_segs;
170 int nseg = map->dm_nsegs;
171 bus_addr_t lastaddr;
172 bus_addr_t bmask = ~(map->_dm_boundary - 1);
173 bus_addr_t curaddr;
174 bus_size_t sgsize;
175 uint32_t _ds_flags = coherent ? _BUS_DMAMAP_COHERENT : 0;
176
177 if (nseg > 0)
178 lastaddr = segs[nseg - 1].ds_addr + segs[nseg - 1].ds_len;
179 else
180 lastaddr = 0xdead;
181
182 again:
183 sgsize = size;
184
185 /* Make sure we're in an allowed DMA range. */
186 if (t->_ranges != NULL) {
187 /* XXX cache last result? */
188 const struct arm32_dma_range * const dr =
189 _bus_dma_paddr_inrange(t->_ranges, t->_nranges, paddr);
190 if (dr == NULL)
191 return EINVAL;
192
193 /*
194 * If this region is coherent, mark the segment as coherent.
195 */
196 _ds_flags |= dr->dr_flags & _BUS_DMAMAP_COHERENT;
197
198 /*
199 * In a valid DMA range. Translate the physical
200 * memory address to an address in the DMA window.
201 */
202 curaddr = (paddr - dr->dr_sysbase) + dr->dr_busbase;
203 #if 0
204 printf("%p: %#lx: range %#lx/%#lx/%#lx/%#x: %#x <-- %#lx\n",
205 t, paddr, dr->dr_sysbase, dr->dr_busbase,
206 dr->dr_len, dr->dr_flags, _ds_flags, curaddr);
207 #endif
208 } else
209 curaddr = paddr;
210
211 /*
212 * Make sure we don't cross any boundaries.
213 */
214 if (map->_dm_boundary > 0) {
215 bus_addr_t baddr; /* next boundary address */
216
217 baddr = (curaddr + map->_dm_boundary) & bmask;
218 if (sgsize > (baddr - curaddr))
219 sgsize = (baddr - curaddr);
220 }
221
222 /*
223 * Insert chunk into a segment, coalescing with the
224 * previous segment if possible.
225 */
226 if (nseg > 0 && curaddr == lastaddr &&
227 segs[nseg - 1].ds_len + sgsize <= map->dm_maxsegsz &&
228 ((segs[nseg - 1]._ds_flags ^ _ds_flags) & _BUS_DMAMAP_COHERENT) == 0 &&
229 (map->_dm_boundary == 0 ||
230 (segs[nseg - 1].ds_addr & bmask) == (curaddr & bmask))) {
231 /* coalesce */
232 segs[nseg - 1].ds_len += sgsize;
233 } else if (nseg >= map->_dm_segcnt) {
234 return EFBIG;
235 } else {
236 /* new segment */
237 segs[nseg].ds_addr = curaddr;
238 segs[nseg].ds_len = sgsize;
239 segs[nseg]._ds_flags = _ds_flags;
240 nseg++;
241 }
242
243 lastaddr = curaddr + sgsize;
244
245 paddr += sgsize;
246 size -= sgsize;
247 if (size > 0)
248 goto again;
249
250 map->_dm_flags &= (_ds_flags & _BUS_DMAMAP_COHERENT);
251 map->dm_nsegs = nseg;
252 return 0;
253 }
254
255 #ifdef _ARM32_NEED_BUS_DMA_BOUNCE
256 static int _bus_dma_alloc_bouncebuf(bus_dma_tag_t t, bus_dmamap_t map,
257 bus_size_t size, int flags);
258 static void _bus_dma_free_bouncebuf(bus_dma_tag_t t, bus_dmamap_t map);
259 static int _bus_dma_uiomove(void *buf, struct uio *uio, size_t n,
260 int direction);
261
262 static int
263 _bus_dma_load_bouncebuf(bus_dma_tag_t t, bus_dmamap_t map, void *buf,
264 size_t buflen, int buftype, int flags)
265 {
266 struct arm32_bus_dma_cookie * const cookie = map->_dm_cookie;
267 struct vmspace * const vm = vmspace_kernel();
268 int error;
269
270 KASSERT(cookie != NULL);
271 KASSERT(cookie->id_flags & _BUS_DMA_MIGHT_NEED_BOUNCE);
272
273 /*
274 * Allocate bounce pages, if necessary.
275 */
276 if ((cookie->id_flags & _BUS_DMA_HAS_BOUNCE) == 0) {
277 error = _bus_dma_alloc_bouncebuf(t, map, buflen, flags);
278 if (error)
279 return error;
280 }
281
282 /*
283 * Cache a pointer to the caller's buffer and load the DMA map
284 * with the bounce buffer.
285 */
286 cookie->id_origbuf = buf;
287 cookie->id_origbuflen = buflen;
288 error = _bus_dmamap_load_buffer(t, map, cookie->id_bouncebuf,
289 buflen, vm, flags);
290 if (error)
291 return error;
292
293 STAT_INCR(bounced_loads);
294 map->dm_mapsize = buflen;
295 map->_dm_vmspace = vm;
296 map->_dm_buftype = buftype;
297
298 /* ...so _bus_dmamap_sync() knows we're bouncing */
299 map->_dm_flags |= _BUS_DMAMAP_IS_BOUNCING;
300 cookie->id_flags |= _BUS_DMA_IS_BOUNCING;
301 return 0;
302 }
303 #endif /* _ARM32_NEED_BUS_DMA_BOUNCE */
304
305 /*
306 * Common function for DMA map creation. May be called by bus-specific
307 * DMA map creation functions.
308 */
309 int
310 _bus_dmamap_create(bus_dma_tag_t t, bus_size_t size, int nsegments,
311 bus_size_t maxsegsz, bus_size_t boundary, int flags, bus_dmamap_t *dmamp)
312 {
313 struct arm32_bus_dmamap *map;
314 void *mapstore;
315
316 #ifdef DEBUG_DMA
317 printf("dmamap_create: t=%p size=%lx nseg=%x msegsz=%lx boundary=%lx"
318 " flags=%x\n", t, size, nsegments, maxsegsz, boundary, flags);
319 #endif /* DEBUG_DMA */
320
321 /*
322 * Allocate and initialize the DMA map. The end of the map
323 * is a variable-sized array of segments, so we allocate enough
324 * room for them in one shot.
325 *
326 * Note we don't preserve the WAITOK or NOWAIT flags. Preservation
327 * of ALLOCNOW notifies others that we've reserved these resources,
328 * and they are not to be freed.
329 *
330 * The bus_dmamap_t includes one bus_dma_segment_t, hence
331 * the (nsegments - 1).
332 */
333 const size_t mapsize = sizeof(struct arm32_bus_dmamap) +
334 (sizeof(bus_dma_segment_t) * (nsegments - 1));
335 const int zallocflags = (flags & BUS_DMA_NOWAIT) ? KM_NOSLEEP : KM_SLEEP;
336 if ((mapstore = kmem_intr_zalloc(mapsize, zallocflags)) == NULL)
337 return ENOMEM;
338
339 map = (struct arm32_bus_dmamap *)mapstore;
340 map->_dm_size = size;
341 map->_dm_segcnt = nsegments;
342 map->_dm_maxmaxsegsz = maxsegsz;
343 map->_dm_boundary = boundary;
344 map->_dm_flags = flags & ~(BUS_DMA_WAITOK|BUS_DMA_NOWAIT);
345 map->_dm_origbuf = NULL;
346 map->_dm_buftype = _BUS_DMA_BUFTYPE_INVALID;
347 map->_dm_vmspace = vmspace_kernel();
348 map->_dm_cookie = NULL;
349 map->dm_maxsegsz = maxsegsz;
350 map->dm_mapsize = 0; /* no valid mappings */
351 map->dm_nsegs = 0;
352
353 #ifdef _ARM32_NEED_BUS_DMA_BOUNCE
354 struct arm32_bus_dma_cookie *cookie;
355 int cookieflags;
356 void *cookiestore;
357 int error;
358
359 cookieflags = 0;
360
361 if (t->_may_bounce != NULL) {
362 error = (*t->_may_bounce)(t, map, flags, &cookieflags);
363 if (error != 0)
364 goto out;
365 }
366
367 if (t->_ranges != NULL)
368 cookieflags |= _BUS_DMA_MIGHT_NEED_BOUNCE;
369
370 if ((cookieflags & _BUS_DMA_MIGHT_NEED_BOUNCE) == 0) {
371 STAT_INCR(creates);
372 *dmamp = map;
373 return 0;
374 }
375
376 const size_t cookiesize = sizeof(struct arm32_bus_dma_cookie) +
377 (sizeof(bus_dma_segment_t) * map->_dm_segcnt);
378
379 /*
380 * Allocate our cookie.
381 */
382 if ((cookiestore = kmem_intr_zalloc(cookiesize, zallocflags)) == NULL) {
383 error = ENOMEM;
384 goto out;
385 }
386 cookie = (struct arm32_bus_dma_cookie *)cookiestore;
387 cookie->id_flags = cookieflags;
388 map->_dm_cookie = cookie;
389 STAT_INCR(bounced_creates);
390
391 error = _bus_dma_alloc_bouncebuf(t, map, size, flags);
392 out:
393 if (error)
394 _bus_dmamap_destroy(t, map);
395 else
396 *dmamp = map;
397 #else
398 *dmamp = map;
399 STAT_INCR(creates);
400 #endif /* _ARM32_NEED_BUS_DMA_BOUNCE */
401 #ifdef DEBUG_DMA
402 printf("dmamap_create:map=%p\n", map);
403 #endif /* DEBUG_DMA */
404 return 0;
405 }
406
407 /*
408 * Common function for DMA map destruction. May be called by bus-specific
409 * DMA map destruction functions.
410 */
411 void
412 _bus_dmamap_destroy(bus_dma_tag_t t, bus_dmamap_t map)
413 {
414
415 #ifdef DEBUG_DMA
416 printf("dmamap_destroy: t=%p map=%p\n", t, map);
417 #endif /* DEBUG_DMA */
418 #ifdef _ARM32_NEED_BUS_DMA_BOUNCE
419 struct arm32_bus_dma_cookie *cookie = map->_dm_cookie;
420
421 /*
422 * Free any bounce pages this map might hold.
423 */
424 if (cookie != NULL) {
425 const size_t cookiesize = sizeof(struct arm32_bus_dma_cookie) +
426 (sizeof(bus_dma_segment_t) * map->_dm_segcnt);
427
428 if (cookie->id_flags & _BUS_DMA_IS_BOUNCING)
429 STAT_INCR(bounced_unloads);
430 map->dm_nsegs = 0;
431 if (cookie->id_flags & _BUS_DMA_HAS_BOUNCE)
432 _bus_dma_free_bouncebuf(t, map);
433 STAT_INCR(bounced_destroys);
434 kmem_intr_free(cookie, cookiesize);
435 } else
436 #endif
437 STAT_INCR(destroys);
438
439 if (map->dm_nsegs > 0)
440 STAT_INCR(unloads);
441
442 const size_t mapsize = sizeof(struct arm32_bus_dmamap) +
443 (sizeof(bus_dma_segment_t) * (map->_dm_segcnt - 1));
444 kmem_intr_free(map, mapsize);
445 }
446
447 /*
448 * Common function for loading a DMA map with a linear buffer. May
449 * be called by bus-specific DMA map load functions.
450 */
451 int
452 _bus_dmamap_load(bus_dma_tag_t t, bus_dmamap_t map, void *buf,
453 bus_size_t buflen, struct proc *p, int flags)
454 {
455 struct vmspace *vm;
456 int error;
457
458 #ifdef DEBUG_DMA
459 printf("dmamap_load: t=%p map=%p buf=%p len=%lx p=%p f=%d\n",
460 t, map, buf, buflen, p, flags);
461 #endif /* DEBUG_DMA */
462
463 if (map->dm_nsegs > 0) {
464 #ifdef _ARM32_NEED_BUS_DMA_BOUNCE
465 struct arm32_bus_dma_cookie *cookie = map->_dm_cookie;
466 if (cookie != NULL) {
467 if (cookie->id_flags & _BUS_DMA_IS_BOUNCING) {
468 STAT_INCR(bounced_unloads);
469 cookie->id_flags &= ~_BUS_DMA_IS_BOUNCING;
470 map->_dm_flags &= ~_BUS_DMAMAP_IS_BOUNCING;
471 }
472 } else
473 #endif
474 STAT_INCR(unloads);
475 }
476
477 /*
478 * Make sure that on error condition we return "no valid mappings".
479 */
480 map->dm_mapsize = 0;
481 map->dm_nsegs = 0;
482 map->_dm_buftype = _BUS_DMA_BUFTYPE_INVALID;
483 KASSERTMSG(map->dm_maxsegsz <= map->_dm_maxmaxsegsz,
484 "dm_maxsegsz %lu _dm_maxmaxsegsz %lu",
485 map->dm_maxsegsz, map->_dm_maxmaxsegsz);
486
487 if (buflen > map->_dm_size)
488 return EINVAL;
489
490 if (p != NULL) {
491 vm = p->p_vmspace;
492 } else {
493 vm = vmspace_kernel();
494 }
495
496 /* _bus_dmamap_load_buffer() clears this if we're not... */
497 map->_dm_flags |= _BUS_DMAMAP_COHERENT;
498
499 error = _bus_dmamap_load_buffer(t, map, buf, buflen, vm, flags);
500 if (error == 0) {
501 map->dm_mapsize = buflen;
502 map->_dm_vmspace = vm;
503 map->_dm_origbuf = buf;
504 map->_dm_buftype = _BUS_DMA_BUFTYPE_LINEAR;
505 if (map->_dm_flags & _BUS_DMAMAP_COHERENT) {
506 STAT_INCR(coherent_loads);
507 } else {
508 STAT_INCR(loads);
509 }
510 return 0;
511 }
512 #ifdef _ARM32_NEED_BUS_DMA_BOUNCE
513 struct arm32_bus_dma_cookie * const cookie = map->_dm_cookie;
514 if (cookie != NULL && (cookie->id_flags & _BUS_DMA_MIGHT_NEED_BOUNCE)) {
515 error = _bus_dma_load_bouncebuf(t, map, buf, buflen,
516 _BUS_DMA_BUFTYPE_LINEAR, flags);
517 }
518 #endif
519 return error;
520 }
521
522 /*
523 * Like _bus_dmamap_load(), but for mbufs.
524 */
525 int
526 _bus_dmamap_load_mbuf(bus_dma_tag_t t, bus_dmamap_t map, struct mbuf *m0,
527 int flags)
528 {
529 struct mbuf *m;
530 int error;
531
532 #ifdef DEBUG_DMA
533 printf("dmamap_load_mbuf: t=%p map=%p m0=%p f=%d\n",
534 t, map, m0, flags);
535 #endif /* DEBUG_DMA */
536
537 if (map->dm_nsegs > 0) {
538 #ifdef _ARM32_NEED_BUS_DMA_BOUNCE
539 struct arm32_bus_dma_cookie *cookie = map->_dm_cookie;
540 if (cookie != NULL) {
541 if (cookie->id_flags & _BUS_DMA_IS_BOUNCING) {
542 STAT_INCR(bounced_unloads);
543 cookie->id_flags &= ~_BUS_DMA_IS_BOUNCING;
544 map->_dm_flags &= ~_BUS_DMAMAP_IS_BOUNCING;
545 }
546 } else
547 #endif
548 STAT_INCR(unloads);
549 }
550
551 /*
552 * Make sure that on error condition we return "no valid mappings."
553 */
554 map->dm_mapsize = 0;
555 map->dm_nsegs = 0;
556 map->_dm_buftype = _BUS_DMA_BUFTYPE_INVALID;
557 KASSERTMSG(map->dm_maxsegsz <= map->_dm_maxmaxsegsz,
558 "dm_maxsegsz %lu _dm_maxmaxsegsz %lu",
559 map->dm_maxsegsz, map->_dm_maxmaxsegsz);
560
561 KASSERT(m0->m_flags & M_PKTHDR);
562
563 if (m0->m_pkthdr.len > map->_dm_size)
564 return EINVAL;
565
566 /* _bus_dmamap_load_paddr() clears this if we're not... */
567 map->_dm_flags |= _BUS_DMAMAP_COHERENT;
568
569 error = 0;
570 for (m = m0; m != NULL && error == 0; m = m->m_next) {
571 int offset;
572 int remainbytes;
573 const struct vm_page * const *pgs;
574 paddr_t paddr;
575 int size;
576
577 if (m->m_len == 0)
578 continue;
579 /*
580 * Don't allow reads in read-only mbufs.
581 */
582 if (M_ROMAP(m) && (flags & BUS_DMA_READ)) {
583 error = EFAULT;
584 break;
585 }
586 switch (m->m_flags & (M_EXT|M_CLUSTER|M_EXT_PAGES)) {
587 case M_EXT|M_CLUSTER:
588 /* XXX KDASSERT */
589 KASSERT(m->m_ext.ext_paddr != M_PADDR_INVALID);
590 paddr = m->m_ext.ext_paddr +
591 (m->m_data - m->m_ext.ext_buf);
592 size = m->m_len;
593 error = _bus_dmamap_load_paddr(t, map, paddr, size,
594 false);
595 break;
596
597 case M_EXT|M_EXT_PAGES:
598 KASSERT(m->m_ext.ext_buf <= m->m_data);
599 KASSERT(m->m_data <=
600 m->m_ext.ext_buf + m->m_ext.ext_size);
601
602 offset = (vaddr_t)m->m_data -
603 trunc_page((vaddr_t)m->m_ext.ext_buf);
604 remainbytes = m->m_len;
605
606 /* skip uninteresting pages */
607 pgs = (const struct vm_page * const *)
608 m->m_ext.ext_pgs + (offset >> PAGE_SHIFT);
609
610 offset &= PAGE_MASK; /* offset in the first page */
611
612 /* load each page */
613 while (remainbytes > 0) {
614 const struct vm_page *pg;
615
616 size = MIN(remainbytes, PAGE_SIZE - offset);
617
618 pg = *pgs++;
619 KASSERT(pg);
620 paddr = VM_PAGE_TO_PHYS(pg) + offset;
621
622 error = _bus_dmamap_load_paddr(t, map,
623 paddr, size, false);
624 if (error)
625 break;
626 offset = 0;
627 remainbytes -= size;
628 }
629 break;
630
631 case 0:
632 paddr = m->m_paddr + M_BUFOFFSET(m) +
633 (m->m_data - M_BUFADDR(m));
634 size = m->m_len;
635 error = _bus_dmamap_load_paddr(t, map, paddr, size,
636 false);
637 break;
638
639 default:
640 error = _bus_dmamap_load_buffer(t, map, m->m_data,
641 m->m_len, vmspace_kernel(), flags);
642 }
643 }
644 if (error == 0) {
645 map->dm_mapsize = m0->m_pkthdr.len;
646 map->_dm_origbuf = m0;
647 map->_dm_buftype = _BUS_DMA_BUFTYPE_MBUF;
648 map->_dm_vmspace = vmspace_kernel(); /* always kernel */
649 if (map->_dm_flags & _BUS_DMAMAP_COHERENT) {
650 STAT_INCR(coherent_loads);
651 } else {
652 STAT_INCR(loads);
653 }
654 return 0;
655 }
656 #ifdef _ARM32_NEED_BUS_DMA_BOUNCE
657 struct arm32_bus_dma_cookie * const cookie = map->_dm_cookie;
658 if (cookie != NULL && (cookie->id_flags & _BUS_DMA_MIGHT_NEED_BOUNCE)) {
659 error = _bus_dma_load_bouncebuf(t, map, m0, m0->m_pkthdr.len,
660 _BUS_DMA_BUFTYPE_MBUF, flags);
661 }
662 #endif
663 return error;
664 }
665
666 /*
667 * Like _bus_dmamap_load(), but for uios.
668 */
669 int
670 _bus_dmamap_load_uio(bus_dma_tag_t t, bus_dmamap_t map, struct uio *uio,
671 int flags)
672 {
673 bus_size_t minlen, resid;
674 struct iovec *iov;
675 void *addr;
676 int i, error;
677
678 /*
679 * Make sure that on error condition we return "no valid mappings."
680 */
681 map->dm_mapsize = 0;
682 map->dm_nsegs = 0;
683 KASSERTMSG(map->dm_maxsegsz <= map->_dm_maxmaxsegsz,
684 "dm_maxsegsz %lu _dm_maxmaxsegsz %lu",
685 map->dm_maxsegsz, map->_dm_maxmaxsegsz);
686
687 resid = uio->uio_resid;
688 iov = uio->uio_iov;
689
690 /* _bus_dmamap_load_buffer() clears this if we're not... */
691 map->_dm_flags |= _BUS_DMAMAP_COHERENT;
692
693 error = 0;
694 for (i = 0; i < uio->uio_iovcnt && resid != 0 && error == 0; i++) {
695 /*
696 * Now at the first iovec to load. Load each iovec
697 * until we have exhausted the residual count.
698 */
699 minlen = resid < iov[i].iov_len ? resid : iov[i].iov_len;
700 addr = (void *)iov[i].iov_base;
701
702 error = _bus_dmamap_load_buffer(t, map, addr, minlen,
703 uio->uio_vmspace, flags);
704
705 resid -= minlen;
706 }
707 if (error == 0) {
708 map->dm_mapsize = uio->uio_resid;
709 map->_dm_origbuf = uio;
710 map->_dm_buftype = _BUS_DMA_BUFTYPE_UIO;
711 map->_dm_vmspace = uio->uio_vmspace;
712 if (map->_dm_flags & _BUS_DMAMAP_COHERENT) {
713 STAT_INCR(coherent_loads);
714 } else {
715 STAT_INCR(loads);
716 }
717 }
718 return error;
719 }
720
721 /*
722 * Like _bus_dmamap_load(), but for raw memory allocated with
723 * bus_dmamem_alloc().
724 */
725 int
726 _bus_dmamap_load_raw(bus_dma_tag_t t, bus_dmamap_t map,
727 bus_dma_segment_t *segs, int nsegs, bus_size_t size0, int flags)
728 {
729
730 bus_size_t size;
731 int i, error = 0;
732
733 /*
734 * Make sure that on error conditions we return "no valid mappings."
735 */
736 map->dm_mapsize = 0;
737 map->dm_nsegs = 0;
738 KASSERT(map->dm_maxsegsz <= map->_dm_maxmaxsegsz);
739
740 if (size0 > map->_dm_size)
741 return EINVAL;
742
743 for (i = 0, size = size0; i < nsegs && size > 0; i++) {
744 bus_dma_segment_t *ds = &segs[i];
745 bus_size_t sgsize;
746
747 sgsize = MIN(ds->ds_len, size);
748 if (sgsize == 0)
749 continue;
750 error = _bus_dmamap_load_paddr(t, map, ds->ds_addr,
751 sgsize, false);
752 if (error != 0)
753 break;
754 size -= sgsize;
755 }
756
757 if (error != 0) {
758 map->dm_mapsize = 0;
759 map->dm_nsegs = 0;
760 return error;
761 }
762
763 /* XXX TBD bounce */
764
765 map->dm_mapsize = size0;
766 return 0;
767 }
768
769 /*
770 * Common function for unloading a DMA map. May be called by
771 * bus-specific DMA map unload functions.
772 */
773 void
774 _bus_dmamap_unload(bus_dma_tag_t t, bus_dmamap_t map)
775 {
776
777 #ifdef DEBUG_DMA
778 printf("dmamap_unload: t=%p map=%p\n", t, map);
779 #endif /* DEBUG_DMA */
780
781 /*
782 * No resources to free; just mark the mappings as
783 * invalid.
784 */
785 map->dm_mapsize = 0;
786 map->dm_nsegs = 0;
787 map->_dm_origbuf = NULL;
788 map->_dm_buftype = _BUS_DMA_BUFTYPE_INVALID;
789 map->_dm_vmspace = NULL;
790 }
791
792 static void
793 _bus_dmamap_sync_segment(vaddr_t va, paddr_t pa, vsize_t len, int ops,
794 bool readonly_p)
795 {
796
797 #ifdef ARM_MMU_EXTENDED
798 /*
799 * No optimisations are available for readonly mbufs on armv6+, so
800 * assume it's not readonly from here on.
801 *
802 * See the comment in _bus_dmamap_sync_mbuf
803 */
804 readonly_p = false;
805 #endif
806
807 KASSERTMSG((va & PAGE_MASK) == (pa & PAGE_MASK),
808 "va %#lx pa %#lx", va, pa);
809 #if 0
810 printf("sync_segment: va=%#lx pa=%#lx len=%#lx ops=%#x ro=%d\n",
811 va, pa, len, ops, readonly_p);
812 #endif
813
814 switch (ops) {
815 case BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE:
816 if (!readonly_p) {
817 STAT_INCR(sync_prereadwrite);
818 cpu_dcache_wbinv_range(va, len);
819 cpu_sdcache_wbinv_range(va, pa, len);
820 break;
821 }
822 /* FALLTHROUGH */
823
824 case BUS_DMASYNC_PREREAD: {
825 const size_t line_size = arm_dcache_align;
826 const size_t line_mask = arm_dcache_align_mask;
827 vsize_t misalignment = va & line_mask;
828 if (misalignment) {
829 va -= misalignment;
830 pa -= misalignment;
831 len += misalignment;
832 STAT_INCR(sync_preread_begin);
833 cpu_dcache_wbinv_range(va, line_size);
834 cpu_sdcache_wbinv_range(va, pa, line_size);
835 if (len <= line_size)
836 break;
837 va += line_size;
838 pa += line_size;
839 len -= line_size;
840 }
841 misalignment = len & line_mask;
842 len -= misalignment;
843 if (len > 0) {
844 STAT_INCR(sync_preread);
845 cpu_dcache_inv_range(va, len);
846 cpu_sdcache_inv_range(va, pa, len);
847 }
848 if (misalignment) {
849 va += len;
850 pa += len;
851 STAT_INCR(sync_preread_tail);
852 cpu_dcache_wbinv_range(va, line_size);
853 cpu_sdcache_wbinv_range(va, pa, line_size);
854 }
855 break;
856 }
857
858 case BUS_DMASYNC_PREWRITE:
859 STAT_INCR(sync_prewrite);
860 cpu_dcache_wb_range(va, len);
861 cpu_sdcache_wb_range(va, pa, len);
862 break;
863
864 #ifdef CPU_CORTEX
865 /*
866 * Cortex CPUs can do speculative loads so we need to clean the cache
867 * after a DMA read to deal with any speculatively loaded cache lines.
868 * Since these can't be dirty, we can just invalidate them and don't
869 * have to worry about having to write back their contents.
870 */
871 case BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE:
872 STAT_INCR(sync_postreadwrite);
873 cpu_dcache_inv_range(va, len);
874 cpu_sdcache_inv_range(va, pa, len);
875 break;
876 case BUS_DMASYNC_POSTREAD:
877 STAT_INCR(sync_postread);
878 cpu_dcache_inv_range(va, len);
879 cpu_sdcache_inv_range(va, pa, len);
880 break;
881 #endif
882 }
883 }
884
885 static inline void
886 _bus_dmamap_sync_linear(bus_dma_tag_t t, bus_dmamap_t map, bus_addr_t offset,
887 bus_size_t len, int ops)
888 {
889 bus_dma_segment_t *ds = map->dm_segs;
890 vaddr_t va = (vaddr_t) map->_dm_origbuf;
891 #ifdef _ARM32_NEED_BUS_DMA_BOUNCE
892 if (map->_dm_flags & _BUS_DMAMAP_IS_BOUNCING) {
893 struct arm32_bus_dma_cookie * const cookie = map->_dm_cookie;
894 va = (vaddr_t) cookie->id_bouncebuf;
895 }
896 #endif
897
898 while (len > 0) {
899 while (offset >= ds->ds_len) {
900 offset -= ds->ds_len;
901 va += ds->ds_len;
902 ds++;
903 }
904
905 paddr_t pa = _bus_dma_busaddr_to_paddr(t, ds->ds_addr + offset);
906 size_t seglen = min(len, ds->ds_len - offset);
907
908 if ((ds->_ds_flags & _BUS_DMAMAP_COHERENT) == 0)
909 _bus_dmamap_sync_segment(va + offset, pa, seglen, ops,
910 false);
911
912 offset += seglen;
913 len -= seglen;
914 }
915 }
916
917 static inline void
918 _bus_dmamap_sync_mbuf(bus_dma_tag_t t, bus_dmamap_t map, bus_size_t offset,
919 bus_size_t len, int ops)
920 {
921 bus_dma_segment_t *ds = map->dm_segs;
922 struct mbuf *m = map->_dm_origbuf;
923 bus_size_t voff = offset;
924 bus_size_t ds_off = offset;
925
926 while (len > 0) {
927 /* Find the current dma segment */
928 while (ds_off >= ds->ds_len) {
929 ds_off -= ds->ds_len;
930 ds++;
931 }
932 /* Find the current mbuf. */
933 while (voff >= m->m_len) {
934 voff -= m->m_len;
935 m = m->m_next;
936 }
937
938 /*
939 * Now at the first mbuf to sync; nail each one until
940 * we have exhausted the length.
941 */
942 vsize_t seglen = min(len, min(m->m_len - voff, ds->ds_len - ds_off));
943 vaddr_t va = mtod(m, vaddr_t) + voff;
944 paddr_t pa = _bus_dma_busaddr_to_paddr(t, ds->ds_addr + ds_off);
945
946 /*
947 * We can save a lot of work here if we know the mapping
948 * is read-only at the MMU and we aren't using the armv6+
949 * MMU:
950 *
951 * If a mapping is read-only, no dirty cache blocks will
952 * exist for it. If a writable mapping was made read-only,
953 * we know any dirty cache lines for the range will have
954 * been cleaned for us already. Therefore, if the upper
955 * layer can tell us we have a read-only mapping, we can
956 * skip all cache cleaning.
957 *
958 * NOTE: This only works if we know the pmap cleans pages
959 * before making a read-write -> read-only transition. If
960 * this ever becomes non-true (e.g. Physically Indexed
961 * cache), this will have to be revisited.
962 */
963
964 if ((ds->_ds_flags & _BUS_DMAMAP_COHERENT) == 0) {
965 /*
966 * If we are doing preread (DMAing into the mbuf),
967 * this mbuf better not be readonly,
968 */
969 KASSERT(!(ops & BUS_DMASYNC_PREREAD) || !M_ROMAP(m));
970 _bus_dmamap_sync_segment(va, pa, seglen, ops,
971 M_ROMAP(m));
972 }
973 voff += seglen;
974 ds_off += seglen;
975 len -= seglen;
976 }
977 }
978
979 static inline void
980 _bus_dmamap_sync_uio(bus_dma_tag_t t, bus_dmamap_t map, bus_addr_t offset,
981 bus_size_t len, int ops)
982 {
983 bus_dma_segment_t *ds = map->dm_segs;
984 struct uio *uio = map->_dm_origbuf;
985 struct iovec *iov = uio->uio_iov;
986 bus_size_t voff = offset;
987 bus_size_t ds_off = offset;
988
989 while (len > 0) {
990 /* Find the current dma segment */
991 while (ds_off >= ds->ds_len) {
992 ds_off -= ds->ds_len;
993 ds++;
994 }
995
996 /* Find the current iovec. */
997 while (voff >= iov->iov_len) {
998 voff -= iov->iov_len;
999 iov++;
1000 }
1001
1002 /*
1003 * Now at the first iovec to sync; nail each one until
1004 * we have exhausted the length.
1005 */
1006 vsize_t seglen = min(len, min(iov->iov_len - voff, ds->ds_len - ds_off));
1007 vaddr_t va = (vaddr_t) iov->iov_base + voff;
1008 paddr_t pa = _bus_dma_busaddr_to_paddr(t, ds->ds_addr + ds_off);
1009
1010 if ((ds->_ds_flags & _BUS_DMAMAP_COHERENT) == 0)
1011 _bus_dmamap_sync_segment(va, pa, seglen, ops, false);
1012
1013 voff += seglen;
1014 ds_off += seglen;
1015 len -= seglen;
1016 }
1017 }
1018
1019 /*
1020 * Common function for DMA map synchronization. May be called
1021 * by bus-specific DMA map synchronization functions.
1022 *
1023 * This version works for the Virtually Indexed Virtually Tagged
1024 * cache found on 32-bit ARM processors.
1025 *
1026 * XXX Should have separate versions for write-through vs.
1027 * XXX write-back caches. We currently assume write-back
1028 * XXX here, which is not as efficient as it could be for
1029 * XXX the write-through case.
1030 */
1031 void
1032 _bus_dmamap_sync(bus_dma_tag_t t, bus_dmamap_t map, bus_addr_t offset,
1033 bus_size_t len, int ops)
1034 {
1035 #ifdef DEBUG_DMA
1036 printf("dmamap_sync: t=%p map=%p offset=%lx len=%lx ops=%x\n",
1037 t, map, offset, len, ops);
1038 #endif /* DEBUG_DMA */
1039
1040 /*
1041 * Mixing of PRE and POST operations is not allowed.
1042 */
1043 if ((ops & (BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE)) != 0 &&
1044 (ops & (BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE)) != 0)
1045 panic("_bus_dmamap_sync: mix PRE and POST");
1046
1047 KASSERTMSG(offset < map->dm_mapsize,
1048 "offset %lu mapsize %lu",
1049 offset, map->dm_mapsize);
1050 KASSERTMSG(len > 0 && offset + len <= map->dm_mapsize,
1051 "len %lu offset %lu mapsize %lu",
1052 len, offset, map->dm_mapsize);
1053
1054 /*
1055 * For a virtually-indexed write-back cache, we need
1056 * to do the following things:
1057 *
1058 * PREREAD -- Invalidate the D-cache. We do this
1059 * here in case a write-back is required by the back-end.
1060 *
1061 * PREWRITE -- Write-back the D-cache. Note that if
1062 * we are doing a PREREAD|PREWRITE, we can collapse
1063 * the whole thing into a single Wb-Inv.
1064 *
1065 * POSTREAD -- Re-invalidate the D-cache in case speculative
1066 * memory accesses caused cachelines to become valid with now
1067 * invalid data.
1068 *
1069 * POSTWRITE -- Nothing.
1070 */
1071 #ifdef _ARM32_NEED_BUS_DMA_BOUNCE
1072 const bool bouncing = (map->_dm_flags & _BUS_DMAMAP_IS_BOUNCING);
1073 #else
1074 const bool bouncing = false;
1075 #endif
1076
1077 const int pre_ops = ops & (BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1078 #ifdef CPU_CORTEX
1079 const int post_ops = ops & (BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1080 #else
1081 const int post_ops = 0;
1082 #endif
1083 if (!bouncing) {
1084 if (pre_ops == 0 && post_ops == BUS_DMASYNC_POSTWRITE) {
1085 STAT_INCR(sync_postwrite);
1086 return;
1087 } else if (pre_ops == 0 && post_ops == 0) {
1088 return;
1089 }
1090 }
1091 KASSERTMSG(bouncing || pre_ops != 0 || (post_ops & BUS_DMASYNC_POSTREAD),
1092 "pre_ops %#x post_ops %#x", pre_ops, post_ops);
1093 #ifdef _ARM32_NEED_BUS_DMA_BOUNCE
1094 if (bouncing && (ops & BUS_DMASYNC_PREWRITE)) {
1095 struct arm32_bus_dma_cookie * const cookie = map->_dm_cookie;
1096 STAT_INCR(write_bounces);
1097 char * const dataptr = (char *)cookie->id_bouncebuf + offset;
1098 /*
1099 * Copy the caller's buffer to the bounce buffer.
1100 */
1101 switch (map->_dm_buftype) {
1102 case _BUS_DMA_BUFTYPE_LINEAR:
1103 memcpy(dataptr, cookie->id_origlinearbuf + offset, len);
1104 break;
1105 case _BUS_DMA_BUFTYPE_MBUF:
1106 m_copydata(cookie->id_origmbuf, offset, len, dataptr);
1107 break;
1108 case _BUS_DMA_BUFTYPE_UIO:
1109 _bus_dma_uiomove(dataptr, cookie->id_origuio, len, UIO_WRITE);
1110 break;
1111 #ifdef DIAGNOSTIC
1112 case _BUS_DMA_BUFTYPE_RAW:
1113 panic("_bus_dmamap_sync(pre): _BUS_DMA_BUFTYPE_RAW");
1114 break;
1115
1116 case _BUS_DMA_BUFTYPE_INVALID:
1117 panic("_bus_dmamap_sync(pre): _BUS_DMA_BUFTYPE_INVALID");
1118 break;
1119
1120 default:
1121 panic("_bus_dmamap_sync(pre): map %p: unknown buffer type %d\n",
1122 map, map->_dm_buftype);
1123 break;
1124 #endif /* DIAGNOSTIC */
1125 }
1126 }
1127 #endif /* _ARM32_NEED_BUS_DMA_BOUNCE */
1128
1129 /* Skip cache frobbing if mapping was COHERENT. */
1130 if (!bouncing && (map->_dm_flags & _BUS_DMAMAP_COHERENT)) {
1131 /* Drain the write buffer. */
1132 if (pre_ops & BUS_DMASYNC_PREWRITE)
1133 cpu_drain_writebuf();
1134 return;
1135 }
1136
1137 #ifdef _ARM32_NEED_BUS_DMA_BOUNCE
1138 if (bouncing && ((map->_dm_flags & _BUS_DMAMAP_COHERENT) || pre_ops == 0)) {
1139 goto bounce_it;
1140 }
1141 #endif /* _ARM32_NEED_BUS_DMA_BOUNCE */
1142
1143 #ifndef ARM_MMU_EXTENDED
1144 /*
1145 * If the mapping belongs to a non-kernel vmspace, and the
1146 * vmspace has not been active since the last time a full
1147 * cache flush was performed, we don't need to do anything.
1148 */
1149 if (__predict_false(!VMSPACE_IS_KERNEL_P(map->_dm_vmspace) &&
1150 vm_map_pmap(&map->_dm_vmspace->vm_map)->pm_cstate.cs_cache_d == 0))
1151 return;
1152 #endif
1153
1154 int buftype = map->_dm_buftype;
1155 #ifdef _ARM32_NEED_BUS_DMA_BOUNCE
1156 if (bouncing) {
1157 buftype = _BUS_DMA_BUFTYPE_LINEAR;
1158 }
1159 #endif
1160
1161 switch (buftype) {
1162 case _BUS_DMA_BUFTYPE_LINEAR:
1163 _bus_dmamap_sync_linear(t, map, offset, len, ops);
1164 break;
1165
1166 case _BUS_DMA_BUFTYPE_MBUF:
1167 _bus_dmamap_sync_mbuf(t, map, offset, len, ops);
1168 break;
1169
1170 case _BUS_DMA_BUFTYPE_UIO:
1171 _bus_dmamap_sync_uio(t, map, offset, len, ops);
1172 break;
1173
1174 case _BUS_DMA_BUFTYPE_RAW:
1175 panic("_bus_dmamap_sync: _BUS_DMA_BUFTYPE_RAW");
1176 break;
1177
1178 case _BUS_DMA_BUFTYPE_INVALID:
1179 panic("_bus_dmamap_sync: _BUS_DMA_BUFTYPE_INVALID");
1180 break;
1181
1182 default:
1183 panic("_bus_dmamap_sync: map %p: unknown buffer type %d\n",
1184 map, map->_dm_buftype);
1185 }
1186
1187 /* Drain the write buffer. */
1188 cpu_drain_writebuf();
1189
1190 #ifdef _ARM32_NEED_BUS_DMA_BOUNCE
1191 bounce_it:
1192 if (!bouncing || (ops & BUS_DMASYNC_POSTREAD) == 0)
1193 return;
1194
1195 struct arm32_bus_dma_cookie * const cookie = map->_dm_cookie;
1196 char * const dataptr = (char *)cookie->id_bouncebuf + offset;
1197 STAT_INCR(read_bounces);
1198 /*
1199 * Copy the bounce buffer to the caller's buffer.
1200 */
1201 switch (map->_dm_buftype) {
1202 case _BUS_DMA_BUFTYPE_LINEAR:
1203 memcpy(cookie->id_origlinearbuf + offset, dataptr, len);
1204 break;
1205
1206 case _BUS_DMA_BUFTYPE_MBUF:
1207 m_copyback(cookie->id_origmbuf, offset, len, dataptr);
1208 break;
1209
1210 case _BUS_DMA_BUFTYPE_UIO:
1211 _bus_dma_uiomove(dataptr, cookie->id_origuio, len, UIO_READ);
1212 break;
1213 #ifdef DIAGNOSTIC
1214 case _BUS_DMA_BUFTYPE_RAW:
1215 panic("_bus_dmamap_sync(post): _BUS_DMA_BUFTYPE_RAW");
1216 break;
1217
1218 case _BUS_DMA_BUFTYPE_INVALID:
1219 panic("_bus_dmamap_sync(post): _BUS_DMA_BUFTYPE_INVALID");
1220 break;
1221
1222 default:
1223 panic("_bus_dmamap_sync(post): map %p: unknown buffer type %d\n",
1224 map, map->_dm_buftype);
1225 break;
1226 #endif
1227 }
1228 #endif /* _ARM32_NEED_BUS_DMA_BOUNCE */
1229 }
1230
1231 /*
1232 * Common function for DMA-safe memory allocation. May be called
1233 * by bus-specific DMA memory allocation functions.
1234 */
1235
1236 extern paddr_t physical_start;
1237 extern paddr_t physical_end;
1238
1239 int
1240 _bus_dmamem_alloc(bus_dma_tag_t t, bus_size_t size, bus_size_t alignment,
1241 bus_size_t boundary, bus_dma_segment_t *segs, int nsegs, int *rsegs,
1242 int flags)
1243 {
1244 struct arm32_dma_range *dr;
1245 int error, i;
1246
1247 #ifdef DEBUG_DMA
1248 printf("dmamem_alloc t=%p size=%lx align=%lx boundary=%lx "
1249 "segs=%p nsegs=%x rsegs=%p flags=%x\n", t, size, alignment,
1250 boundary, segs, nsegs, rsegs, flags);
1251 #endif
1252
1253 if ((dr = t->_ranges) != NULL) {
1254 error = ENOMEM;
1255 for (i = 0; i < t->_nranges; i++, dr++) {
1256 if (dr->dr_len == 0
1257 || (dr->dr_flags & _BUS_DMAMAP_NOALLOC))
1258 continue;
1259 error = _bus_dmamem_alloc_range(t, size, alignment,
1260 boundary, segs, nsegs, rsegs, flags,
1261 trunc_page(dr->dr_sysbase),
1262 trunc_page(dr->dr_sysbase + dr->dr_len));
1263 if (error == 0)
1264 break;
1265 }
1266 } else {
1267 error = _bus_dmamem_alloc_range(t, size, alignment, boundary,
1268 segs, nsegs, rsegs, flags, trunc_page(physical_start),
1269 trunc_page(physical_end));
1270 }
1271
1272 #ifdef DEBUG_DMA
1273 printf("dmamem_alloc: =%d\n", error);
1274 #endif
1275
1276 return error;
1277 }
1278
1279 /*
1280 * Common function for freeing DMA-safe memory. May be called by
1281 * bus-specific DMA memory free functions.
1282 */
1283 void
1284 _bus_dmamem_free(bus_dma_tag_t t, bus_dma_segment_t *segs, int nsegs)
1285 {
1286 struct vm_page *m;
1287 bus_addr_t addr;
1288 struct pglist mlist;
1289 int curseg;
1290
1291 #ifdef DEBUG_DMA
1292 printf("dmamem_free: t=%p segs=%p nsegs=%x\n", t, segs, nsegs);
1293 #endif /* DEBUG_DMA */
1294
1295 /*
1296 * Build a list of pages to free back to the VM system.
1297 */
1298 TAILQ_INIT(&mlist);
1299 for (curseg = 0; curseg < nsegs; curseg++) {
1300 for (addr = segs[curseg].ds_addr;
1301 addr < (segs[curseg].ds_addr + segs[curseg].ds_len);
1302 addr += PAGE_SIZE) {
1303 m = PHYS_TO_VM_PAGE(addr);
1304 TAILQ_INSERT_TAIL(&mlist, m, pageq.queue);
1305 }
1306 }
1307 uvm_pglistfree(&mlist);
1308 }
1309
1310 /*
1311 * Common function for mapping DMA-safe memory. May be called by
1312 * bus-specific DMA memory map functions.
1313 */
1314 int
1315 _bus_dmamem_map(bus_dma_tag_t t, bus_dma_segment_t *segs, int nsegs,
1316 size_t size, void **kvap, int flags)
1317 {
1318 vaddr_t va;
1319 paddr_t pa;
1320 int curseg;
1321 const uvm_flag_t kmflags = UVM_KMF_VAONLY
1322 | ((flags & BUS_DMA_NOWAIT) != 0 ? UVM_KMF_NOWAIT : 0);
1323 vsize_t align = 0;
1324
1325 #ifdef DEBUG_DMA
1326 printf("dmamem_map: t=%p segs=%p nsegs=%x size=%lx flags=%x\n", t,
1327 segs, nsegs, (unsigned long)size, flags);
1328 #endif /* DEBUG_DMA */
1329
1330 #ifdef PMAP_MAP_POOLPAGE
1331 /*
1332 * If all of memory is mapped, and we are mapping a single physically
1333 * contiguous area then this area is already mapped. Let's see if we
1334 * avoid having a separate mapping for it.
1335 */
1336 if (nsegs == 1) {
1337 /*
1338 * If this is a non-COHERENT mapping, then the existing kernel
1339 * mapping is already compatible with it.
1340 */
1341 bool direct_mapable = (flags & BUS_DMA_COHERENT) == 0;
1342 pa = segs[0].ds_addr;
1343
1344 /*
1345 * This is a COHERENT mapping which, unless this address is in
1346 * a COHERENT dma range, will not be compatible.
1347 */
1348 if (t->_ranges != NULL) {
1349 const struct arm32_dma_range * const dr =
1350 _bus_dma_paddr_inrange(t->_ranges, t->_nranges, pa);
1351 if (dr != NULL
1352 && (dr->dr_flags & _BUS_DMAMAP_COHERENT)) {
1353 direct_mapable = true;
1354 }
1355 }
1356
1357 #ifdef PMAP_NEED_ALLOC_POOLPAGE
1358 /*
1359 * The page can only be direct mapped if was allocated out
1360 * of the arm poolpage vm freelist.
1361 */
1362 uvm_physseg_t upm = uvm_physseg_find(atop(pa), NULL);
1363 KASSERT(uvm_physseg_valid_p(upm));
1364 if (direct_mapable) {
1365 direct_mapable =
1366 (arm_poolpage_vmfreelist == uvm_physseg_get_free_list(upm));
1367 }
1368 #endif
1369
1370 if (direct_mapable) {
1371 *kvap = (void *)PMAP_MAP_POOLPAGE(pa);
1372 #ifdef DEBUG_DMA
1373 printf("dmamem_map: =%p\n", *kvap);
1374 #endif /* DEBUG_DMA */
1375 return 0;
1376 }
1377 }
1378 #endif
1379
1380 size = round_page(size);
1381 if (__predict_true(size > L2_L_SIZE)) {
1382 #if (ARM_MMU_V6 + ARM_MMU_V7) > 0
1383 if (size >= L1_SS_SIZE)
1384 align = L1_SS_SIZE;
1385 else
1386 #endif
1387 if (size >= L1_S_SIZE)
1388 align = L1_S_SIZE;
1389 else
1390 align = L2_L_SIZE;
1391 }
1392
1393 va = uvm_km_alloc(kernel_map, size, align, kmflags);
1394 if (__predict_false(va == 0 && align > 0)) {
1395 align = 0;
1396 va = uvm_km_alloc(kernel_map, size, 0, kmflags);
1397 }
1398
1399 if (va == 0)
1400 return ENOMEM;
1401
1402 *kvap = (void *)va;
1403
1404 for (curseg = 0; curseg < nsegs; curseg++) {
1405 for (pa = segs[curseg].ds_addr;
1406 pa < (segs[curseg].ds_addr + segs[curseg].ds_len);
1407 pa += PAGE_SIZE, va += PAGE_SIZE, size -= PAGE_SIZE) {
1408 bool uncached = (flags & BUS_DMA_COHERENT);
1409 #ifdef DEBUG_DMA
1410 printf("wiring p%lx to v%lx", pa, va);
1411 #endif /* DEBUG_DMA */
1412 if (size == 0)
1413 panic("_bus_dmamem_map: size botch");
1414
1415 const struct arm32_dma_range * const dr =
1416 _bus_dma_paddr_inrange(t->_ranges, t->_nranges, pa);
1417 /*
1418 * If this dma region is coherent then there is
1419 * no need for an uncached mapping.
1420 */
1421 if (dr != NULL
1422 && (dr->dr_flags & _BUS_DMAMAP_COHERENT)) {
1423 uncached = false;
1424 }
1425
1426 pmap_kenter_pa(va, pa, VM_PROT_READ | VM_PROT_WRITE,
1427 PMAP_WIRED | (uncached ? PMAP_NOCACHE : 0));
1428 }
1429 }
1430 pmap_update(pmap_kernel());
1431 #ifdef DEBUG_DMA
1432 printf("dmamem_map: =%p\n", *kvap);
1433 #endif /* DEBUG_DMA */
1434 return 0;
1435 }
1436
1437 /*
1438 * Common function for unmapping DMA-safe memory. May be called by
1439 * bus-specific DMA memory unmapping functions.
1440 */
1441 void
1442 _bus_dmamem_unmap(bus_dma_tag_t t, void *kva, size_t size)
1443 {
1444
1445 #ifdef DEBUG_DMA
1446 printf("dmamem_unmap: t=%p kva=%p size=%zx\n", t, kva, size);
1447 #endif /* DEBUG_DMA */
1448 KASSERTMSG(((uintptr_t)kva & PAGE_MASK) == 0,
1449 "kva %p (%#"PRIxPTR")", kva, ((uintptr_t)kva & PAGE_MASK));
1450
1451 #ifdef __HAVE_MM_MD_DIRECT_MAPPED_PHYS
1452 /*
1453 * Check to see if this used direct mapped memory. Get its physical
1454 * address and try to map it. If the resultant matches the kva, then
1455 * it was and so we can just return since we have nothing to free up.
1456 */
1457 paddr_t pa;
1458 vaddr_t va;
1459 (void)pmap_extract(pmap_kernel(), (vaddr_t)kva, &pa);
1460 if (mm_md_direct_mapped_phys(pa, &va) && va == (vaddr_t)kva)
1461 return;
1462 #endif
1463
1464 size = round_page(size);
1465 pmap_kremove((vaddr_t)kva, size);
1466 pmap_update(pmap_kernel());
1467 uvm_km_free(kernel_map, (vaddr_t)kva, size, UVM_KMF_VAONLY);
1468 }
1469
1470 /*
1471 * Common functin for mmap(2)'ing DMA-safe memory. May be called by
1472 * bus-specific DMA mmap(2)'ing functions.
1473 */
1474 paddr_t
1475 _bus_dmamem_mmap(bus_dma_tag_t t, bus_dma_segment_t *segs, int nsegs,
1476 off_t off, int prot, int flags)
1477 {
1478 paddr_t map_flags;
1479 int i;
1480
1481 for (i = 0; i < nsegs; i++) {
1482 KASSERTMSG((off & PAGE_MASK) == 0,
1483 "off %#qx (%#x)", off, (int)off & PAGE_MASK);
1484 KASSERTMSG((segs[i].ds_addr & PAGE_MASK) == 0,
1485 "ds_addr %#lx (%#x)", segs[i].ds_addr,
1486 (int)segs[i].ds_addr & PAGE_MASK);
1487 KASSERTMSG((segs[i].ds_len & PAGE_MASK) == 0,
1488 "ds_len %#lx (%#x)", segs[i].ds_addr,
1489 (int)segs[i].ds_addr & PAGE_MASK);
1490 if (off >= segs[i].ds_len) {
1491 off -= segs[i].ds_len;
1492 continue;
1493 }
1494
1495 map_flags = 0;
1496 if (flags & BUS_DMA_PREFETCHABLE)
1497 map_flags |= ARM32_MMAP_WRITECOMBINE;
1498
1499 return arm_btop((u_long)segs[i].ds_addr + off) | map_flags;
1500
1501 }
1502
1503 /* Page not found. */
1504 return -1;
1505 }
1506
1507 /**********************************************************************
1508 * DMA utility functions
1509 **********************************************************************/
1510
1511 /*
1512 * Utility function to load a linear buffer. lastaddrp holds state
1513 * between invocations (for multiple-buffer loads). segp contains
1514 * the starting segment on entrace, and the ending segment on exit.
1515 * first indicates if this is the first invocation of this function.
1516 */
1517 int
1518 _bus_dmamap_load_buffer(bus_dma_tag_t t, bus_dmamap_t map, void *buf,
1519 bus_size_t buflen, struct vmspace *vm, int flags)
1520 {
1521 bus_size_t sgsize;
1522 bus_addr_t curaddr;
1523 vaddr_t vaddr = (vaddr_t)buf;
1524 int error;
1525 pmap_t pmap;
1526
1527 #ifdef DEBUG_DMA
1528 printf("_bus_dmamem_load_buffer(buf=%p, len=%lx, flags=%d)\n",
1529 buf, buflen, flags);
1530 #endif /* DEBUG_DMA */
1531
1532 pmap = vm_map_pmap(&vm->vm_map);
1533
1534 while (buflen > 0) {
1535 /*
1536 * Get the physical address for this segment.
1537 *
1538 * XXX Doesn't support checking for coherent mappings
1539 * XXX in user address space.
1540 */
1541 bool coherent;
1542 if (__predict_true(pmap == pmap_kernel())) {
1543 pd_entry_t *pde;
1544 pt_entry_t *ptep;
1545 (void) pmap_get_pde_pte(pmap, vaddr, &pde, &ptep);
1546 if (__predict_false(pmap_pde_section(pde))) {
1547 paddr_t s_frame = L1_S_FRAME;
1548 paddr_t s_offset = L1_S_OFFSET;
1549 #if (ARM_MMU_V6 + ARM_MMU_V7) > 0
1550 if (__predict_false(pmap_pde_supersection(pde))) {
1551 s_frame = L1_SS_FRAME;
1552 s_offset = L1_SS_OFFSET;
1553 }
1554 #endif
1555 curaddr = (*pde & s_frame) | (vaddr & s_offset);
1556 coherent = (*pde & L1_S_CACHE_MASK) == 0;
1557 } else {
1558 pt_entry_t pte = *ptep;
1559 KDASSERTMSG((pte & L2_TYPE_MASK) != L2_TYPE_INV,
1560 "va=%#"PRIxVADDR" pde=%#x ptep=%p pte=%#x",
1561 vaddr, *pde, ptep, pte);
1562 if (__predict_false((pte & L2_TYPE_MASK)
1563 == L2_TYPE_L)) {
1564 curaddr = (pte & L2_L_FRAME) |
1565 (vaddr & L2_L_OFFSET);
1566 coherent = (pte & L2_L_CACHE_MASK) == 0;
1567 } else {
1568 curaddr = (pte & ~PAGE_MASK) |
1569 (vaddr & PAGE_MASK);
1570 coherent = (pte & L2_S_CACHE_MASK) == 0;
1571 }
1572 }
1573 } else {
1574 (void) pmap_extract(pmap, vaddr, &curaddr);
1575 coherent = false;
1576 }
1577 KASSERTMSG((vaddr & PAGE_MASK) == (curaddr & PAGE_MASK),
1578 "va %#lx curaddr %#lx", vaddr, curaddr);
1579
1580 /*
1581 * Compute the segment size, and adjust counts.
1582 */
1583 sgsize = PAGE_SIZE - ((u_long)vaddr & PGOFSET);
1584 if (buflen < sgsize)
1585 sgsize = buflen;
1586
1587 error = _bus_dmamap_load_paddr(t, map, curaddr, sgsize,
1588 coherent);
1589 if (error)
1590 return error;
1591
1592 vaddr += sgsize;
1593 buflen -= sgsize;
1594 }
1595
1596 return 0;
1597 }
1598
1599 /*
1600 * Allocate physical memory from the given physical address range.
1601 * Called by DMA-safe memory allocation methods.
1602 */
1603 int
1604 _bus_dmamem_alloc_range(bus_dma_tag_t t, bus_size_t size, bus_size_t alignment,
1605 bus_size_t boundary, bus_dma_segment_t *segs, int nsegs, int *rsegs,
1606 int flags, paddr_t low, paddr_t high)
1607 {
1608 paddr_t curaddr, lastaddr;
1609 struct vm_page *m;
1610 struct pglist mlist;
1611 int curseg, error;
1612
1613 KASSERTMSG(boundary == 0 || (boundary & (boundary - 1)) == 0,
1614 "invalid boundary %#lx", boundary);
1615
1616 #ifdef DEBUG_DMA
1617 printf("alloc_range: t=%p size=%lx align=%lx boundary=%lx segs=%p nsegs=%x rsegs=%p flags=%x lo=%lx hi=%lx\n",
1618 t, size, alignment, boundary, segs, nsegs, rsegs, flags, low, high);
1619 #endif /* DEBUG_DMA */
1620
1621 /* Always round the size. */
1622 size = round_page(size);
1623
1624 /*
1625 * We accept boundaries < size, splitting in multiple segments
1626 * if needed. uvm_pglistalloc does not, so compute an appropriate
1627 * boundary: next power of 2 >= size
1628 */
1629 bus_size_t uboundary = boundary;
1630 if (uboundary <= PAGE_SIZE) {
1631 uboundary = 0;
1632 } else {
1633 while (uboundary < size) {
1634 uboundary <<= 1;
1635 }
1636 }
1637
1638 /*
1639 * Allocate pages from the VM system.
1640 */
1641 error = uvm_pglistalloc(size, low, high, alignment, uboundary,
1642 &mlist, nsegs, (flags & BUS_DMA_NOWAIT) == 0);
1643 if (error)
1644 return error;
1645
1646 /*
1647 * Compute the location, size, and number of segments actually
1648 * returned by the VM code.
1649 */
1650 m = TAILQ_FIRST(&mlist);
1651 curseg = 0;
1652 lastaddr = segs[curseg].ds_addr = VM_PAGE_TO_PHYS(m);
1653 segs[curseg].ds_len = PAGE_SIZE;
1654 #ifdef DEBUG_DMA
1655 printf("alloc: page %lx\n", lastaddr);
1656 #endif /* DEBUG_DMA */
1657 m = TAILQ_NEXT(m, pageq.queue);
1658
1659 for (; m != NULL; m = TAILQ_NEXT(m, pageq.queue)) {
1660 curaddr = VM_PAGE_TO_PHYS(m);
1661 KASSERTMSG(low <= curaddr && curaddr < high,
1662 "uvm_pglistalloc returned non-sensicaladdress %#lx "
1663 "(low=%#lx, high=%#lx\n", curaddr, low, high);
1664 #ifdef DEBUG_DMA
1665 printf("alloc: page %lx\n", curaddr);
1666 #endif /* DEBUG_DMA */
1667 if (curaddr == lastaddr + PAGE_SIZE
1668 && (lastaddr & boundary) == (curaddr & boundary))
1669 segs[curseg].ds_len += PAGE_SIZE;
1670 else {
1671 curseg++;
1672 if (curseg >= nsegs) {
1673 uvm_pglistfree(&mlist);
1674 return EFBIG;
1675 }
1676 segs[curseg].ds_addr = curaddr;
1677 segs[curseg].ds_len = PAGE_SIZE;
1678 }
1679 lastaddr = curaddr;
1680 }
1681
1682 *rsegs = curseg + 1;
1683
1684 return 0;
1685 }
1686
1687 /*
1688 * Check if a memory region intersects with a DMA range, and return the
1689 * page-rounded intersection if it does.
1690 */
1691 int
1692 arm32_dma_range_intersect(struct arm32_dma_range *ranges, int nranges,
1693 paddr_t pa, psize_t size, paddr_t *pap, psize_t *sizep)
1694 {
1695 struct arm32_dma_range *dr;
1696 int i;
1697
1698 if (ranges == NULL)
1699 return 0;
1700
1701 for (i = 0, dr = ranges; i < nranges; i++, dr++) {
1702 if (dr->dr_sysbase <= pa &&
1703 pa < (dr->dr_sysbase + dr->dr_len)) {
1704 /*
1705 * Beginning of region intersects with this range.
1706 */
1707 *pap = trunc_page(pa);
1708 *sizep = round_page(min(pa + size,
1709 dr->dr_sysbase + dr->dr_len) - pa);
1710 return 1;
1711 }
1712 if (pa < dr->dr_sysbase && dr->dr_sysbase < (pa + size)) {
1713 /*
1714 * End of region intersects with this range.
1715 */
1716 *pap = trunc_page(dr->dr_sysbase);
1717 *sizep = round_page(min((pa + size) - dr->dr_sysbase,
1718 dr->dr_len));
1719 return 1;
1720 }
1721 }
1722
1723 /* No intersection found. */
1724 return 0;
1725 }
1726
1727 #ifdef _ARM32_NEED_BUS_DMA_BOUNCE
1728 static int
1729 _bus_dma_alloc_bouncebuf(bus_dma_tag_t t, bus_dmamap_t map,
1730 bus_size_t size, int flags)
1731 {
1732 struct arm32_bus_dma_cookie *cookie = map->_dm_cookie;
1733 int error = 0;
1734
1735 KASSERT(cookie != NULL);
1736
1737 cookie->id_bouncebuflen = round_page(size);
1738 error = _bus_dmamem_alloc(t, cookie->id_bouncebuflen,
1739 PAGE_SIZE, map->_dm_boundary, cookie->id_bouncesegs,
1740 map->_dm_segcnt, &cookie->id_nbouncesegs, flags);
1741 if (error == 0) {
1742 error = _bus_dmamem_map(t, cookie->id_bouncesegs,
1743 cookie->id_nbouncesegs, cookie->id_bouncebuflen,
1744 (void **)&cookie->id_bouncebuf, flags);
1745 if (error) {
1746 _bus_dmamem_free(t, cookie->id_bouncesegs,
1747 cookie->id_nbouncesegs);
1748 cookie->id_bouncebuflen = 0;
1749 cookie->id_nbouncesegs = 0;
1750 } else {
1751 cookie->id_flags |= _BUS_DMA_HAS_BOUNCE;
1752 }
1753 } else {
1754 cookie->id_bouncebuflen = 0;
1755 cookie->id_nbouncesegs = 0;
1756 }
1757
1758 return error;
1759 }
1760
1761 static void
1762 _bus_dma_free_bouncebuf(bus_dma_tag_t t, bus_dmamap_t map)
1763 {
1764 struct arm32_bus_dma_cookie *cookie = map->_dm_cookie;
1765
1766 KASSERT(cookie != NULL);
1767
1768 _bus_dmamem_unmap(t, cookie->id_bouncebuf, cookie->id_bouncebuflen);
1769 _bus_dmamem_free(t, cookie->id_bouncesegs, cookie->id_nbouncesegs);
1770 cookie->id_bouncebuflen = 0;
1771 cookie->id_nbouncesegs = 0;
1772 cookie->id_flags &= ~_BUS_DMA_HAS_BOUNCE;
1773 }
1774
1775 /*
1776 * This function does the same as uiomove, but takes an explicit
1777 * direction, and does not update the uio structure.
1778 */
1779 static int
1780 _bus_dma_uiomove(void *buf, struct uio *uio, size_t n, int direction)
1781 {
1782 struct iovec *iov;
1783 int error;
1784 struct vmspace *vm;
1785 char *cp;
1786 size_t resid, cnt;
1787 int i;
1788
1789 iov = uio->uio_iov;
1790 vm = uio->uio_vmspace;
1791 cp = buf;
1792 resid = n;
1793
1794 for (i = 0; i < uio->uio_iovcnt && resid > 0; i++) {
1795 iov = &uio->uio_iov[i];
1796 if (iov->iov_len == 0)
1797 continue;
1798 cnt = MIN(resid, iov->iov_len);
1799
1800 if (!VMSPACE_IS_KERNEL_P(vm) &&
1801 (curlwp->l_cpu->ci_schedstate.spc_flags & SPCF_SHOULDYIELD)
1802 != 0) {
1803 preempt();
1804 }
1805 if (direction == UIO_READ) {
1806 error = copyout_vmspace(vm, cp, iov->iov_base, cnt);
1807 } else {
1808 error = copyin_vmspace(vm, iov->iov_base, cp, cnt);
1809 }
1810 if (error)
1811 return error;
1812 cp += cnt;
1813 resid -= cnt;
1814 }
1815 return 0;
1816 }
1817 #endif /* _ARM32_NEED_BUS_DMA_BOUNCE */
1818
1819 int
1820 _bus_dmatag_subregion(bus_dma_tag_t tag, bus_addr_t min_addr,
1821 bus_addr_t max_addr, bus_dma_tag_t *newtag, int flags)
1822 {
1823
1824 #ifdef _ARM32_NEED_BUS_DMA_BOUNCE
1825 struct arm32_dma_range *dr;
1826 bool subset = false;
1827 size_t nranges = 0;
1828 size_t i;
1829 for (i = 0, dr = tag->_ranges; i < tag->_nranges; i++, dr++) {
1830 if (dr->dr_sysbase <= min_addr
1831 && max_addr <= dr->dr_sysbase + dr->dr_len - 1) {
1832 subset = true;
1833 }
1834 if (min_addr <= dr->dr_sysbase + dr->dr_len
1835 && max_addr >= dr->dr_sysbase) {
1836 nranges++;
1837 }
1838 }
1839 if (subset) {
1840 *newtag = tag;
1841 /* if the tag must be freed, add a reference */
1842 if (tag->_tag_needs_free)
1843 (tag->_tag_needs_free)++;
1844 return 0;
1845 }
1846 if (nranges == 0) {
1847 nranges = 1;
1848 }
1849
1850 const size_t tagsize = sizeof(*tag) + nranges * sizeof(*dr);
1851 if ((*newtag = kmem_intr_zalloc(tagsize,
1852 (flags & BUS_DMA_NOWAIT) ? KM_NOSLEEP : KM_SLEEP)) == NULL)
1853 return ENOMEM;
1854
1855 dr = (void *)(*newtag + 1);
1856 **newtag = *tag;
1857 (*newtag)->_tag_needs_free = 1;
1858 (*newtag)->_ranges = dr;
1859 (*newtag)->_nranges = nranges;
1860
1861 if (tag->_ranges == NULL) {
1862 dr->dr_sysbase = min_addr;
1863 dr->dr_busbase = min_addr;
1864 dr->dr_len = max_addr + 1 - min_addr;
1865 } else {
1866 for (i = 0; i < nranges; i++) {
1867 if (min_addr > dr->dr_sysbase + dr->dr_len
1868 || max_addr < dr->dr_sysbase)
1869 continue;
1870 dr[0] = tag->_ranges[i];
1871 if (dr->dr_sysbase < min_addr) {
1872 psize_t diff = min_addr - dr->dr_sysbase;
1873 dr->dr_busbase += diff;
1874 dr->dr_len -= diff;
1875 dr->dr_sysbase += diff;
1876 }
1877 if (max_addr != 0xffffffff
1878 && max_addr + 1 < dr->dr_sysbase + dr->dr_len) {
1879 dr->dr_len = max_addr + 1 - dr->dr_sysbase;
1880 }
1881 dr++;
1882 }
1883 }
1884
1885 return 0;
1886 #else
1887 return EOPNOTSUPP;
1888 #endif /* _ARM32_NEED_BUS_DMA_BOUNCE */
1889 }
1890
1891 void
1892 _bus_dmatag_destroy(bus_dma_tag_t tag)
1893 {
1894 #ifdef _ARM32_NEED_BUS_DMA_BOUNCE
1895 switch (tag->_tag_needs_free) {
1896 case 0:
1897 break; /* not allocated with kmem */
1898 case 1: {
1899 const size_t tagsize = sizeof(*tag)
1900 + tag->_nranges * sizeof(*tag->_ranges);
1901 kmem_intr_free(tag, tagsize); /* last reference to tag */
1902 break;
1903 }
1904 default:
1905 (tag->_tag_needs_free)--; /* one less reference */
1906 }
1907 #endif
1908 }
1909