Home | History | Annotate | Line # | Download | only in arm32
bus_dma.c revision 1.107
      1 /*	$NetBSD: bus_dma.c,v 1.107 2018/04/01 04:35:03 ryo Exp $	*/
      2 
      3 /*-
      4  * Copyright (c) 1996, 1997, 1998 The NetBSD Foundation, Inc.
      5  * All rights reserved.
      6  *
      7  * This code is derived from software contributed to The NetBSD Foundation
      8  * by Jason R. Thorpe of the Numerical Aerospace Simulation Facility,
      9  * NASA Ames Research Center.
     10  *
     11  * Redistribution and use in source and binary forms, with or without
     12  * modification, are permitted provided that the following conditions
     13  * are met:
     14  * 1. Redistributions of source code must retain the above copyright
     15  *    notice, this list of conditions and the following disclaimer.
     16  * 2. Redistributions in binary form must reproduce the above copyright
     17  *    notice, this list of conditions and the following disclaimer in the
     18  *    documentation and/or other materials provided with the distribution.
     19  *
     20  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     21  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     22  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     23  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     24  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     25  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     26  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     27  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     28  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     29  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     30  * POSSIBILITY OF SUCH DAMAGE.
     31  */
     32 
     33 #define _ARM32_BUS_DMA_PRIVATE
     34 
     35 #include "opt_arm_bus_space.h"
     36 #include "opt_cputypes.h"
     37 
     38 #include <sys/cdefs.h>
     39 __KERNEL_RCSID(0, "$NetBSD: bus_dma.c,v 1.107 2018/04/01 04:35:03 ryo Exp $");
     40 
     41 #include <sys/param.h>
     42 #include <sys/bus.h>
     43 #include <sys/cpu.h>
     44 #include <sys/kmem.h>
     45 #include <sys/mbuf.h>
     46 
     47 #include <uvm/uvm.h>
     48 
     49 #include <arm/cpuconf.h>
     50 #include <arm/cpufunc.h>
     51 
     52 #ifdef __HAVE_MM_MD_DIRECT_MAPPED_PHYS
     53 #include <dev/mm.h>
     54 #endif
     55 
     56 #ifdef BUSDMA_COUNTERS
     57 static struct evcnt bus_dma_creates =
     58 	EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL, "busdma", "creates");
     59 static struct evcnt bus_dma_bounced_creates =
     60 	EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL, "busdma", "bounced creates");
     61 static struct evcnt bus_dma_loads =
     62 	EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL, "busdma", "loads");
     63 static struct evcnt bus_dma_bounced_loads =
     64 	EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL, "busdma", "bounced loads");
     65 static struct evcnt bus_dma_coherent_loads =
     66 	EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL, "busdma", "coherent loads");
     67 static struct evcnt bus_dma_read_bounces =
     68 	EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL, "busdma", "read bounces");
     69 static struct evcnt bus_dma_write_bounces =
     70 	EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL, "busdma", "write bounces");
     71 static struct evcnt bus_dma_bounced_unloads =
     72 	EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL, "busdma", "bounced unloads");
     73 static struct evcnt bus_dma_unloads =
     74 	EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL, "busdma", "unloads");
     75 static struct evcnt bus_dma_bounced_destroys =
     76 	EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL, "busdma", "bounced destroys");
     77 static struct evcnt bus_dma_destroys =
     78 	EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL, "busdma", "destroys");
     79 static struct evcnt bus_dma_sync_prereadwrite =
     80 	EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL, "busdma", "sync prereadwrite");
     81 static struct evcnt bus_dma_sync_preread_begin =
     82 	EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL, "busdma", "sync preread begin");
     83 static struct evcnt bus_dma_sync_preread =
     84 	EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL, "busdma", "sync preread");
     85 static struct evcnt bus_dma_sync_preread_tail =
     86 	EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL, "busdma", "sync preread tail");
     87 static struct evcnt bus_dma_sync_prewrite =
     88 	EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL, "busdma", "sync prewrite");
     89 static struct evcnt bus_dma_sync_postread =
     90 	EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL, "busdma", "sync postread");
     91 static struct evcnt bus_dma_sync_postreadwrite =
     92 	EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL, "busdma", "sync postreadwrite");
     93 static struct evcnt bus_dma_sync_postwrite =
     94 	EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL, "busdma", "sync postwrite");
     95 
     96 EVCNT_ATTACH_STATIC(bus_dma_creates);
     97 EVCNT_ATTACH_STATIC(bus_dma_bounced_creates);
     98 EVCNT_ATTACH_STATIC(bus_dma_loads);
     99 EVCNT_ATTACH_STATIC(bus_dma_bounced_loads);
    100 EVCNT_ATTACH_STATIC(bus_dma_coherent_loads);
    101 EVCNT_ATTACH_STATIC(bus_dma_read_bounces);
    102 EVCNT_ATTACH_STATIC(bus_dma_write_bounces);
    103 EVCNT_ATTACH_STATIC(bus_dma_unloads);
    104 EVCNT_ATTACH_STATIC(bus_dma_bounced_unloads);
    105 EVCNT_ATTACH_STATIC(bus_dma_destroys);
    106 EVCNT_ATTACH_STATIC(bus_dma_bounced_destroys);
    107 EVCNT_ATTACH_STATIC(bus_dma_sync_prereadwrite);
    108 EVCNT_ATTACH_STATIC(bus_dma_sync_preread_begin);
    109 EVCNT_ATTACH_STATIC(bus_dma_sync_preread);
    110 EVCNT_ATTACH_STATIC(bus_dma_sync_preread_tail);
    111 EVCNT_ATTACH_STATIC(bus_dma_sync_prewrite);
    112 EVCNT_ATTACH_STATIC(bus_dma_sync_postread);
    113 EVCNT_ATTACH_STATIC(bus_dma_sync_postreadwrite);
    114 EVCNT_ATTACH_STATIC(bus_dma_sync_postwrite);
    115 
    116 #define	STAT_INCR(x)	(bus_dma_ ## x.ev_count++)
    117 #else
    118 #define	STAT_INCR(x)	__nothing
    119 #endif
    120 
    121 int	_bus_dmamap_load_buffer(bus_dma_tag_t, bus_dmamap_t, void *,
    122 	    bus_size_t, struct vmspace *, int);
    123 
    124 /*
    125  * Check to see if the specified page is in an allowed DMA range.
    126  */
    127 static inline struct arm32_dma_range *
    128 _bus_dma_paddr_inrange(struct arm32_dma_range *ranges, int nranges,
    129     bus_addr_t curaddr)
    130 {
    131 	struct arm32_dma_range *dr;
    132 	int i;
    133 
    134 	for (i = 0, dr = ranges; i < nranges; i++, dr++) {
    135 		if (curaddr >= dr->dr_sysbase &&
    136 		    curaddr < (dr->dr_sysbase + dr->dr_len))
    137 			return dr;
    138 	}
    139 
    140 	return NULL;
    141 }
    142 
    143 /*
    144  * Check to see if the specified busaddr is in an allowed DMA range.
    145  */
    146 static inline paddr_t
    147 _bus_dma_busaddr_to_paddr(bus_dma_tag_t t, bus_addr_t curaddr)
    148 {
    149 	struct arm32_dma_range *dr;
    150 	u_int i;
    151 
    152 	if (t->_nranges == 0)
    153 		return curaddr;
    154 
    155 	for (i = 0, dr = t->_ranges; i < t->_nranges; i++, dr++) {
    156 		if (dr->dr_busbase <= curaddr
    157 		    && curaddr < dr->dr_busbase + dr->dr_len)
    158 			return curaddr - dr->dr_busbase + dr->dr_sysbase;
    159 	}
    160 	panic("%s: curaddr %#lx not in range", __func__, curaddr);
    161 }
    162 
    163 /*
    164  * Common function to load the specified physical address into the
    165  * DMA map, coalescing segments and boundary checking as necessary.
    166  */
    167 static int
    168 _bus_dmamap_load_paddr(bus_dma_tag_t t, bus_dmamap_t map,
    169     bus_addr_t paddr, bus_size_t size, bool coherent)
    170 {
    171 	bus_dma_segment_t * const segs = map->dm_segs;
    172 	int nseg = map->dm_nsegs;
    173 	bus_addr_t lastaddr;
    174 	bus_addr_t bmask = ~(map->_dm_boundary - 1);
    175 	bus_addr_t curaddr;
    176 	bus_size_t sgsize;
    177 	uint32_t _ds_flags = coherent ? _BUS_DMAMAP_COHERENT : 0;
    178 
    179 	if (nseg > 0)
    180 		lastaddr = segs[nseg - 1].ds_addr + segs[nseg - 1].ds_len;
    181 	else
    182 		lastaddr = 0xdead;
    183 
    184  again:
    185 	sgsize = size;
    186 
    187 	/* Make sure we're in an allowed DMA range. */
    188 	if (t->_ranges != NULL) {
    189 		/* XXX cache last result? */
    190 		const struct arm32_dma_range * const dr =
    191 		    _bus_dma_paddr_inrange(t->_ranges, t->_nranges, paddr);
    192 		if (dr == NULL)
    193 			return EINVAL;
    194 
    195 		/*
    196 		 * If this region is coherent, mark the segment as coherent.
    197 		 */
    198 		_ds_flags |= dr->dr_flags & _BUS_DMAMAP_COHERENT;
    199 
    200 		/*
    201 		 * In a valid DMA range.  Translate the physical
    202 		 * memory address to an address in the DMA window.
    203 		 */
    204 		curaddr = (paddr - dr->dr_sysbase) + dr->dr_busbase;
    205 #if 0
    206 		printf("%p: %#lx: range %#lx/%#lx/%#lx/%#x: %#x <-- %#lx\n",
    207 		    t, paddr, dr->dr_sysbase, dr->dr_busbase,
    208 		    dr->dr_len, dr->dr_flags, _ds_flags, curaddr);
    209 #endif
    210 	} else
    211 		curaddr = paddr;
    212 
    213 	/*
    214 	 * Make sure we don't cross any boundaries.
    215 	 */
    216 	if (map->_dm_boundary > 0) {
    217 		bus_addr_t baddr;	/* next boundary address */
    218 
    219 		baddr = (curaddr + map->_dm_boundary) & bmask;
    220 		if (sgsize > (baddr - curaddr))
    221 			sgsize = (baddr - curaddr);
    222 	}
    223 
    224 	/*
    225 	 * Insert chunk into a segment, coalescing with the
    226 	 * previous segment if possible.
    227 	 */
    228 	if (nseg > 0 && curaddr == lastaddr &&
    229 	    segs[nseg - 1].ds_len + sgsize <= map->dm_maxsegsz &&
    230 	    ((segs[nseg - 1]._ds_flags ^ _ds_flags) & _BUS_DMAMAP_COHERENT) == 0 &&
    231 	    (map->_dm_boundary == 0 ||
    232 	     (segs[nseg - 1].ds_addr & bmask) == (curaddr & bmask))) {
    233 	     	/* coalesce */
    234 		segs[nseg - 1].ds_len += sgsize;
    235 	} else if (nseg >= map->_dm_segcnt) {
    236 		return EFBIG;
    237 	} else {
    238 		/* new segment */
    239 		segs[nseg].ds_addr = curaddr;
    240 		segs[nseg].ds_len = sgsize;
    241 		segs[nseg]._ds_flags = _ds_flags;
    242 		nseg++;
    243 	}
    244 
    245 	lastaddr = curaddr + sgsize;
    246 
    247 	paddr += sgsize;
    248 	size -= sgsize;
    249 	if (size > 0)
    250 		goto again;
    251 
    252 	map->_dm_flags &= (_ds_flags & _BUS_DMAMAP_COHERENT);
    253 	map->dm_nsegs = nseg;
    254 	return 0;
    255 }
    256 
    257 #ifdef _ARM32_NEED_BUS_DMA_BOUNCE
    258 static int _bus_dma_alloc_bouncebuf(bus_dma_tag_t t, bus_dmamap_t map,
    259 	    bus_size_t size, int flags);
    260 static void _bus_dma_free_bouncebuf(bus_dma_tag_t t, bus_dmamap_t map);
    261 static int _bus_dma_uiomove(void *buf, struct uio *uio, size_t n,
    262 	    int direction);
    263 
    264 static int
    265 _bus_dma_load_bouncebuf(bus_dma_tag_t t, bus_dmamap_t map, void *buf,
    266 	size_t buflen, int buftype, int flags)
    267 {
    268 	struct arm32_bus_dma_cookie * const cookie = map->_dm_cookie;
    269 	struct vmspace * const vm = vmspace_kernel();
    270 	int error;
    271 
    272 	KASSERT(cookie != NULL);
    273 	KASSERT(cookie->id_flags & _BUS_DMA_MIGHT_NEED_BOUNCE);
    274 
    275 	/*
    276 	 * Allocate bounce pages, if necessary.
    277 	 */
    278 	if ((cookie->id_flags & _BUS_DMA_HAS_BOUNCE) == 0) {
    279 		error = _bus_dma_alloc_bouncebuf(t, map, buflen, flags);
    280 		if (error)
    281 			return error;
    282 	}
    283 
    284 	/*
    285 	 * Cache a pointer to the caller's buffer and load the DMA map
    286 	 * with the bounce buffer.
    287 	 */
    288 	cookie->id_origbuf = buf;
    289 	cookie->id_origbuflen = buflen;
    290 	error = _bus_dmamap_load_buffer(t, map, cookie->id_bouncebuf,
    291 	    buflen, vm, flags);
    292 	if (error)
    293 		return error;
    294 
    295 	STAT_INCR(bounced_loads);
    296 	map->dm_mapsize = buflen;
    297 	map->_dm_vmspace = vm;
    298 	map->_dm_buftype = buftype;
    299 
    300 	/* ...so _bus_dmamap_sync() knows we're bouncing */
    301 	map->_dm_flags |= _BUS_DMAMAP_IS_BOUNCING;
    302 	cookie->id_flags |= _BUS_DMA_IS_BOUNCING;
    303 	return 0;
    304 }
    305 #endif /* _ARM32_NEED_BUS_DMA_BOUNCE */
    306 
    307 /*
    308  * Common function for DMA map creation.  May be called by bus-specific
    309  * DMA map creation functions.
    310  */
    311 int
    312 _bus_dmamap_create(bus_dma_tag_t t, bus_size_t size, int nsegments,
    313     bus_size_t maxsegsz, bus_size_t boundary, int flags, bus_dmamap_t *dmamp)
    314 {
    315 	struct arm32_bus_dmamap *map;
    316 	void *mapstore;
    317 
    318 #ifdef DEBUG_DMA
    319 	printf("dmamap_create: t=%p size=%lx nseg=%x msegsz=%lx boundary=%lx"
    320 	    " flags=%x\n", t, size, nsegments, maxsegsz, boundary, flags);
    321 #endif	/* DEBUG_DMA */
    322 
    323 	/*
    324 	 * Allocate and initialize the DMA map.  The end of the map
    325 	 * is a variable-sized array of segments, so we allocate enough
    326 	 * room for them in one shot.
    327 	 *
    328 	 * Note we don't preserve the WAITOK or NOWAIT flags.  Preservation
    329 	 * of ALLOCNOW notifies others that we've reserved these resources,
    330 	 * and they are not to be freed.
    331 	 *
    332 	 * The bus_dmamap_t includes one bus_dma_segment_t, hence
    333 	 * the (nsegments - 1).
    334 	 */
    335 	const size_t mapsize = sizeof(struct arm32_bus_dmamap) +
    336 	    (sizeof(bus_dma_segment_t) * (nsegments - 1));
    337 	const int zallocflags = (flags & BUS_DMA_NOWAIT) ? KM_NOSLEEP : KM_SLEEP;
    338 	if ((mapstore = kmem_intr_zalloc(mapsize, zallocflags)) == NULL)
    339 		return ENOMEM;
    340 
    341 	map = (struct arm32_bus_dmamap *)mapstore;
    342 	map->_dm_size = size;
    343 	map->_dm_segcnt = nsegments;
    344 	map->_dm_maxmaxsegsz = maxsegsz;
    345 	map->_dm_boundary = boundary;
    346 	map->_dm_flags = flags & ~(BUS_DMA_WAITOK|BUS_DMA_NOWAIT);
    347 	map->_dm_origbuf = NULL;
    348 	map->_dm_buftype = _BUS_DMA_BUFTYPE_INVALID;
    349 	map->_dm_vmspace = vmspace_kernel();
    350 	map->_dm_cookie = NULL;
    351 	map->dm_maxsegsz = maxsegsz;
    352 	map->dm_mapsize = 0;		/* no valid mappings */
    353 	map->dm_nsegs = 0;
    354 
    355 #ifdef _ARM32_NEED_BUS_DMA_BOUNCE
    356 	struct arm32_bus_dma_cookie *cookie;
    357 	int cookieflags;
    358 	void *cookiestore;
    359 	int error;
    360 
    361 	cookieflags = 0;
    362 
    363 	if (t->_may_bounce != NULL) {
    364 		error = (*t->_may_bounce)(t, map, flags, &cookieflags);
    365 		if (error != 0)
    366 			goto out;
    367 	}
    368 
    369 	if (t->_ranges != NULL)
    370 		cookieflags |= _BUS_DMA_MIGHT_NEED_BOUNCE;
    371 
    372 	if ((cookieflags & _BUS_DMA_MIGHT_NEED_BOUNCE) == 0) {
    373 		STAT_INCR(creates);
    374 		*dmamp = map;
    375 		return 0;
    376 	}
    377 
    378 	const size_t cookiesize = sizeof(struct arm32_bus_dma_cookie) +
    379 	    (sizeof(bus_dma_segment_t) * map->_dm_segcnt);
    380 
    381 	/*
    382 	 * Allocate our cookie.
    383 	 */
    384 	if ((cookiestore = kmem_intr_zalloc(cookiesize, zallocflags)) == NULL) {
    385 		error = ENOMEM;
    386 		goto out;
    387 	}
    388 	cookie = (struct arm32_bus_dma_cookie *)cookiestore;
    389 	cookie->id_flags = cookieflags;
    390 	map->_dm_cookie = cookie;
    391 	STAT_INCR(bounced_creates);
    392 
    393 	error = _bus_dma_alloc_bouncebuf(t, map, size, flags);
    394  out:
    395 	if (error)
    396 		_bus_dmamap_destroy(t, map);
    397 	else
    398 		*dmamp = map;
    399 #else
    400 	*dmamp = map;
    401 	STAT_INCR(creates);
    402 #endif /* _ARM32_NEED_BUS_DMA_BOUNCE */
    403 #ifdef DEBUG_DMA
    404 	printf("dmamap_create:map=%p\n", map);
    405 #endif	/* DEBUG_DMA */
    406 	return 0;
    407 }
    408 
    409 /*
    410  * Common function for DMA map destruction.  May be called by bus-specific
    411  * DMA map destruction functions.
    412  */
    413 void
    414 _bus_dmamap_destroy(bus_dma_tag_t t, bus_dmamap_t map)
    415 {
    416 
    417 #ifdef DEBUG_DMA
    418 	printf("dmamap_destroy: t=%p map=%p\n", t, map);
    419 #endif	/* DEBUG_DMA */
    420 #ifdef _ARM32_NEED_BUS_DMA_BOUNCE
    421 	struct arm32_bus_dma_cookie *cookie = map->_dm_cookie;
    422 
    423 	/*
    424 	 * Free any bounce pages this map might hold.
    425 	 */
    426 	if (cookie != NULL) {
    427 		const size_t cookiesize = sizeof(struct arm32_bus_dma_cookie) +
    428 		    (sizeof(bus_dma_segment_t) * map->_dm_segcnt);
    429 
    430 		if (cookie->id_flags & _BUS_DMA_IS_BOUNCING)
    431 			STAT_INCR(bounced_unloads);
    432 		map->dm_nsegs = 0;
    433 		if (cookie->id_flags & _BUS_DMA_HAS_BOUNCE)
    434 			_bus_dma_free_bouncebuf(t, map);
    435 		STAT_INCR(bounced_destroys);
    436 		kmem_intr_free(cookie, cookiesize);
    437 	} else
    438 #endif
    439 	STAT_INCR(destroys);
    440 
    441 	if (map->dm_nsegs > 0)
    442 		STAT_INCR(unloads);
    443 
    444 	const size_t mapsize = sizeof(struct arm32_bus_dmamap) +
    445 	    (sizeof(bus_dma_segment_t) * (map->_dm_segcnt - 1));
    446 	kmem_intr_free(map, mapsize);
    447 }
    448 
    449 /*
    450  * Common function for loading a DMA map with a linear buffer.  May
    451  * be called by bus-specific DMA map load functions.
    452  */
    453 int
    454 _bus_dmamap_load(bus_dma_tag_t t, bus_dmamap_t map, void *buf,
    455     bus_size_t buflen, struct proc *p, int flags)
    456 {
    457 	struct vmspace *vm;
    458 	int error;
    459 
    460 #ifdef DEBUG_DMA
    461 	printf("dmamap_load: t=%p map=%p buf=%p len=%lx p=%p f=%d\n",
    462 	    t, map, buf, buflen, p, flags);
    463 #endif	/* DEBUG_DMA */
    464 
    465 	if (map->dm_nsegs > 0) {
    466 #ifdef _ARM32_NEED_BUS_DMA_BOUNCE
    467 		struct arm32_bus_dma_cookie *cookie = map->_dm_cookie;
    468 		if (cookie != NULL) {
    469 			if (cookie->id_flags & _BUS_DMA_IS_BOUNCING) {
    470 				STAT_INCR(bounced_unloads);
    471 				cookie->id_flags &= ~_BUS_DMA_IS_BOUNCING;
    472 				map->_dm_flags &= ~_BUS_DMAMAP_IS_BOUNCING;
    473 			}
    474 		} else
    475 #endif
    476 		STAT_INCR(unloads);
    477 	}
    478 
    479 	/*
    480 	 * Make sure that on error condition we return "no valid mappings".
    481 	 */
    482 	map->dm_mapsize = 0;
    483 	map->dm_nsegs = 0;
    484 	map->_dm_buftype = _BUS_DMA_BUFTYPE_INVALID;
    485 	KASSERTMSG(map->dm_maxsegsz <= map->_dm_maxmaxsegsz,
    486 	    "dm_maxsegsz %lu _dm_maxmaxsegsz %lu",
    487 	    map->dm_maxsegsz, map->_dm_maxmaxsegsz);
    488 
    489 	if (buflen > map->_dm_size)
    490 		return EINVAL;
    491 
    492 	if (p != NULL) {
    493 		vm = p->p_vmspace;
    494 	} else {
    495 		vm = vmspace_kernel();
    496 	}
    497 
    498 	/* _bus_dmamap_load_buffer() clears this if we're not... */
    499 	map->_dm_flags |= _BUS_DMAMAP_COHERENT;
    500 
    501 	error = _bus_dmamap_load_buffer(t, map, buf, buflen, vm, flags);
    502 	if (error == 0) {
    503 		map->dm_mapsize = buflen;
    504 		map->_dm_vmspace = vm;
    505 		map->_dm_origbuf = buf;
    506 		map->_dm_buftype = _BUS_DMA_BUFTYPE_LINEAR;
    507 		if (map->_dm_flags & _BUS_DMAMAP_COHERENT) {
    508 			STAT_INCR(coherent_loads);
    509 		} else {
    510 			STAT_INCR(loads);
    511 		}
    512 		return 0;
    513 	}
    514 #ifdef _ARM32_NEED_BUS_DMA_BOUNCE
    515 	struct arm32_bus_dma_cookie * const cookie = map->_dm_cookie;
    516 	if (cookie != NULL && (cookie->id_flags & _BUS_DMA_MIGHT_NEED_BOUNCE)) {
    517 		error = _bus_dma_load_bouncebuf(t, map, buf, buflen,
    518 		    _BUS_DMA_BUFTYPE_LINEAR, flags);
    519 	}
    520 #endif
    521 	return error;
    522 }
    523 
    524 /*
    525  * Like _bus_dmamap_load(), but for mbufs.
    526  */
    527 int
    528 _bus_dmamap_load_mbuf(bus_dma_tag_t t, bus_dmamap_t map, struct mbuf *m0,
    529     int flags)
    530 {
    531 	struct mbuf *m;
    532 	int error;
    533 
    534 #ifdef DEBUG_DMA
    535 	printf("dmamap_load_mbuf: t=%p map=%p m0=%p f=%d\n",
    536 	    t, map, m0, flags);
    537 #endif	/* DEBUG_DMA */
    538 
    539 	if (map->dm_nsegs > 0) {
    540 #ifdef _ARM32_NEED_BUS_DMA_BOUNCE
    541 		struct arm32_bus_dma_cookie *cookie = map->_dm_cookie;
    542 		if (cookie != NULL) {
    543 			if (cookie->id_flags & _BUS_DMA_IS_BOUNCING) {
    544 				STAT_INCR(bounced_unloads);
    545 				cookie->id_flags &= ~_BUS_DMA_IS_BOUNCING;
    546 				map->_dm_flags &= ~_BUS_DMAMAP_IS_BOUNCING;
    547 			}
    548 		} else
    549 #endif
    550 		STAT_INCR(unloads);
    551 	}
    552 
    553 	/*
    554 	 * Make sure that on error condition we return "no valid mappings."
    555 	 */
    556 	map->dm_mapsize = 0;
    557 	map->dm_nsegs = 0;
    558 	map->_dm_buftype = _BUS_DMA_BUFTYPE_INVALID;
    559 	KASSERTMSG(map->dm_maxsegsz <= map->_dm_maxmaxsegsz,
    560 	    "dm_maxsegsz %lu _dm_maxmaxsegsz %lu",
    561 	    map->dm_maxsegsz, map->_dm_maxmaxsegsz);
    562 
    563 	KASSERT(m0->m_flags & M_PKTHDR);
    564 
    565 	if (m0->m_pkthdr.len > map->_dm_size)
    566 		return EINVAL;
    567 
    568 	/* _bus_dmamap_load_paddr() clears this if we're not... */
    569 	map->_dm_flags |= _BUS_DMAMAP_COHERENT;
    570 
    571 	error = 0;
    572 	for (m = m0; m != NULL && error == 0; m = m->m_next) {
    573 		int offset;
    574 		int remainbytes;
    575 		const struct vm_page * const *pgs;
    576 		paddr_t paddr;
    577 		int size;
    578 
    579 		if (m->m_len == 0)
    580 			continue;
    581 		/*
    582 		 * Don't allow reads in read-only mbufs.
    583 		 */
    584 		if (M_ROMAP(m) && (flags & BUS_DMA_READ)) {
    585 			error = EFAULT;
    586 			break;
    587 		}
    588 		switch (m->m_flags & (M_EXT|M_CLUSTER|M_EXT_PAGES)) {
    589 		case M_EXT|M_CLUSTER:
    590 			/* XXX KDASSERT */
    591 			KASSERT(m->m_ext.ext_paddr != M_PADDR_INVALID);
    592 			paddr = m->m_ext.ext_paddr +
    593 			    (m->m_data - m->m_ext.ext_buf);
    594 			size = m->m_len;
    595 			error = _bus_dmamap_load_paddr(t, map, paddr, size,
    596 			    false);
    597 			break;
    598 
    599 		case M_EXT|M_EXT_PAGES:
    600 			KASSERT(m->m_ext.ext_buf <= m->m_data);
    601 			KASSERT(m->m_data <=
    602 			    m->m_ext.ext_buf + m->m_ext.ext_size);
    603 
    604 			offset = (vaddr_t)m->m_data -
    605 			    trunc_page((vaddr_t)m->m_ext.ext_buf);
    606 			remainbytes = m->m_len;
    607 
    608 			/* skip uninteresting pages */
    609 			pgs = (const struct vm_page * const *)
    610 			    m->m_ext.ext_pgs + (offset >> PAGE_SHIFT);
    611 
    612 			offset &= PAGE_MASK;	/* offset in the first page */
    613 
    614 			/* load each page */
    615 			while (remainbytes > 0) {
    616 				const struct vm_page *pg;
    617 
    618 				size = MIN(remainbytes, PAGE_SIZE - offset);
    619 
    620 				pg = *pgs++;
    621 				KASSERT(pg);
    622 				paddr = VM_PAGE_TO_PHYS(pg) + offset;
    623 
    624 				error = _bus_dmamap_load_paddr(t, map,
    625 				    paddr, size, false);
    626 				if (error)
    627 					break;
    628 				offset = 0;
    629 				remainbytes -= size;
    630 			}
    631 			break;
    632 
    633 		case 0:
    634 			paddr = m->m_paddr + M_BUFOFFSET(m) +
    635 			    (m->m_data - M_BUFADDR(m));
    636 			size = m->m_len;
    637 			error = _bus_dmamap_load_paddr(t, map, paddr, size,
    638 			    false);
    639 			break;
    640 
    641 		default:
    642 			error = _bus_dmamap_load_buffer(t, map, m->m_data,
    643 			    m->m_len, vmspace_kernel(), flags);
    644 		}
    645 	}
    646 	if (error == 0) {
    647 		map->dm_mapsize = m0->m_pkthdr.len;
    648 		map->_dm_origbuf = m0;
    649 		map->_dm_buftype = _BUS_DMA_BUFTYPE_MBUF;
    650 		map->_dm_vmspace = vmspace_kernel();	/* always kernel */
    651 		if (map->_dm_flags & _BUS_DMAMAP_COHERENT) {
    652 			STAT_INCR(coherent_loads);
    653 		} else {
    654 			STAT_INCR(loads);
    655 		}
    656 		return 0;
    657 	}
    658 #ifdef _ARM32_NEED_BUS_DMA_BOUNCE
    659 	struct arm32_bus_dma_cookie * const cookie = map->_dm_cookie;
    660 	if (cookie != NULL && (cookie->id_flags & _BUS_DMA_MIGHT_NEED_BOUNCE)) {
    661 		error = _bus_dma_load_bouncebuf(t, map, m0, m0->m_pkthdr.len,
    662 		    _BUS_DMA_BUFTYPE_MBUF, flags);
    663 	}
    664 #endif
    665 	return error;
    666 }
    667 
    668 /*
    669  * Like _bus_dmamap_load(), but for uios.
    670  */
    671 int
    672 _bus_dmamap_load_uio(bus_dma_tag_t t, bus_dmamap_t map, struct uio *uio,
    673     int flags)
    674 {
    675 	bus_size_t minlen, resid;
    676 	struct iovec *iov;
    677 	void *addr;
    678 	int i, error;
    679 
    680 	/*
    681 	 * Make sure that on error condition we return "no valid mappings."
    682 	 */
    683 	map->dm_mapsize = 0;
    684 	map->dm_nsegs = 0;
    685 	KASSERTMSG(map->dm_maxsegsz <= map->_dm_maxmaxsegsz,
    686 	    "dm_maxsegsz %lu _dm_maxmaxsegsz %lu",
    687 	    map->dm_maxsegsz, map->_dm_maxmaxsegsz);
    688 
    689 	resid = uio->uio_resid;
    690 	iov = uio->uio_iov;
    691 
    692 	/* _bus_dmamap_load_buffer() clears this if we're not... */
    693 	map->_dm_flags |= _BUS_DMAMAP_COHERENT;
    694 
    695 	error = 0;
    696 	for (i = 0; i < uio->uio_iovcnt && resid != 0 && error == 0; i++) {
    697 		/*
    698 		 * Now at the first iovec to load.  Load each iovec
    699 		 * until we have exhausted the residual count.
    700 		 */
    701 		minlen = resid < iov[i].iov_len ? resid : iov[i].iov_len;
    702 		addr = (void *)iov[i].iov_base;
    703 
    704 		error = _bus_dmamap_load_buffer(t, map, addr, minlen,
    705 		    uio->uio_vmspace, flags);
    706 
    707 		resid -= minlen;
    708 	}
    709 	if (error == 0) {
    710 		map->dm_mapsize = uio->uio_resid;
    711 		map->_dm_origbuf = uio;
    712 		map->_dm_buftype = _BUS_DMA_BUFTYPE_UIO;
    713 		map->_dm_vmspace = uio->uio_vmspace;
    714 		if (map->_dm_flags & _BUS_DMAMAP_COHERENT) {
    715 			STAT_INCR(coherent_loads);
    716 		} else {
    717 			STAT_INCR(loads);
    718 		}
    719 	}
    720 	return error;
    721 }
    722 
    723 /*
    724  * Like _bus_dmamap_load(), but for raw memory allocated with
    725  * bus_dmamem_alloc().
    726  */
    727 int
    728 _bus_dmamap_load_raw(bus_dma_tag_t t, bus_dmamap_t map,
    729     bus_dma_segment_t *segs, int nsegs, bus_size_t size0, int flags)
    730 {
    731 
    732 	bus_size_t size;
    733 	int i, error = 0;
    734 
    735 	/*
    736 	 * Make sure that on error conditions we return "no valid mappings."
    737 	 */
    738 	map->dm_mapsize = 0;
    739 	map->dm_nsegs = 0;
    740 	KASSERT(map->dm_maxsegsz <= map->_dm_maxmaxsegsz);
    741 
    742 	if (size0 > map->_dm_size)
    743 		return EINVAL;
    744 
    745 	for (i = 0, size = size0; i < nsegs && size > 0; i++) {
    746 		bus_dma_segment_t *ds = &segs[i];
    747 		bus_size_t sgsize;
    748 
    749 		sgsize = MIN(ds->ds_len, size);
    750 		if (sgsize == 0)
    751 			continue;
    752 		error = _bus_dmamap_load_paddr(t, map, ds->ds_addr,
    753 		    sgsize, false);
    754 		if (error != 0)
    755 			break;
    756 		size -= sgsize;
    757 	}
    758 
    759 	if (error != 0) {
    760 		map->dm_mapsize = 0;
    761 		map->dm_nsegs = 0;
    762 		return error;
    763 	}
    764 
    765 	/* XXX TBD bounce */
    766 
    767 	map->dm_mapsize = size0;
    768 	return 0;
    769 }
    770 
    771 /*
    772  * Common function for unloading a DMA map.  May be called by
    773  * bus-specific DMA map unload functions.
    774  */
    775 void
    776 _bus_dmamap_unload(bus_dma_tag_t t, bus_dmamap_t map)
    777 {
    778 
    779 #ifdef DEBUG_DMA
    780 	printf("dmamap_unload: t=%p map=%p\n", t, map);
    781 #endif	/* DEBUG_DMA */
    782 
    783 	/*
    784 	 * No resources to free; just mark the mappings as
    785 	 * invalid.
    786 	 */
    787 	map->dm_mapsize = 0;
    788 	map->dm_nsegs = 0;
    789 	map->_dm_origbuf = NULL;
    790 	map->_dm_buftype = _BUS_DMA_BUFTYPE_INVALID;
    791 	map->_dm_vmspace = NULL;
    792 }
    793 
    794 static void
    795 _bus_dmamap_sync_segment(vaddr_t va, paddr_t pa, vsize_t len, int ops,
    796     bool readonly_p)
    797 {
    798 
    799 #ifdef ARM_MMU_EXTENDED
    800 	/*
    801 	 * No optimisations are available for readonly mbufs on armv6+, so
    802 	 * assume it's not readonly from here on.
    803 	 *
    804  	 * See the comment in _bus_dmamap_sync_mbuf
    805 	 */
    806 	readonly_p = false;
    807 #endif
    808 
    809 	KASSERTMSG((va & PAGE_MASK) == (pa & PAGE_MASK),
    810 	    "va %#lx pa %#lx", va, pa);
    811 #if 0
    812 	printf("sync_segment: va=%#lx pa=%#lx len=%#lx ops=%#x ro=%d\n",
    813 	    va, pa, len, ops, readonly_p);
    814 #endif
    815 
    816 	switch (ops) {
    817 	case BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE:
    818 		if (!readonly_p) {
    819 			STAT_INCR(sync_prereadwrite);
    820 			cpu_dcache_wbinv_range(va, len);
    821 			cpu_sdcache_wbinv_range(va, pa, len);
    822 			break;
    823 		}
    824 		/* FALLTHROUGH */
    825 
    826 	case BUS_DMASYNC_PREREAD: {
    827 		const size_t line_size = arm_dcache_align;
    828 		const size_t line_mask = arm_dcache_align_mask;
    829 		vsize_t misalignment = va & line_mask;
    830 		if (misalignment) {
    831 			va -= misalignment;
    832 			pa -= misalignment;
    833 			len += misalignment;
    834 			STAT_INCR(sync_preread_begin);
    835 			cpu_dcache_wbinv_range(va, line_size);
    836 			cpu_sdcache_wbinv_range(va, pa, line_size);
    837 			if (len <= line_size)
    838 				break;
    839 			va += line_size;
    840 			pa += line_size;
    841 			len -= line_size;
    842 		}
    843 		misalignment = len & line_mask;
    844 		len -= misalignment;
    845 		if (len > 0) {
    846 			STAT_INCR(sync_preread);
    847 			cpu_dcache_inv_range(va, len);
    848 			cpu_sdcache_inv_range(va, pa, len);
    849 		}
    850 		if (misalignment) {
    851 			va += len;
    852 			pa += len;
    853 			STAT_INCR(sync_preread_tail);
    854 			cpu_dcache_wbinv_range(va, line_size);
    855 			cpu_sdcache_wbinv_range(va, pa, line_size);
    856 		}
    857 		break;
    858 	}
    859 
    860 	case BUS_DMASYNC_PREWRITE:
    861 		STAT_INCR(sync_prewrite);
    862 		cpu_dcache_wb_range(va, len);
    863 		cpu_sdcache_wb_range(va, pa, len);
    864 		break;
    865 
    866 #ifdef CPU_CORTEX
    867 	/*
    868 	 * Cortex CPUs can do speculative loads so we need to clean the cache
    869 	 * after a DMA read to deal with any speculatively loaded cache lines.
    870 	 * Since these can't be dirty, we can just invalidate them and don't
    871 	 * have to worry about having to write back their contents.
    872 	 */
    873 	case BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE:
    874 		STAT_INCR(sync_postreadwrite);
    875 		cpu_dcache_inv_range(va, len);
    876 		cpu_sdcache_inv_range(va, pa, len);
    877 		break;
    878 	case BUS_DMASYNC_POSTREAD:
    879 		STAT_INCR(sync_postread);
    880 		cpu_dcache_inv_range(va, len);
    881 		cpu_sdcache_inv_range(va, pa, len);
    882 		break;
    883 #endif
    884 	}
    885 }
    886 
    887 static inline void
    888 _bus_dmamap_sync_linear(bus_dma_tag_t t, bus_dmamap_t map, bus_addr_t offset,
    889     bus_size_t len, int ops)
    890 {
    891 	bus_dma_segment_t *ds = map->dm_segs;
    892 	vaddr_t va = (vaddr_t) map->_dm_origbuf;
    893 #ifdef _ARM32_NEED_BUS_DMA_BOUNCE
    894 	if (map->_dm_flags & _BUS_DMAMAP_IS_BOUNCING) {
    895 		struct arm32_bus_dma_cookie * const cookie = map->_dm_cookie;
    896 		va = (vaddr_t) cookie->id_bouncebuf;
    897 	}
    898 #endif
    899 
    900 	while (len > 0) {
    901 		while (offset >= ds->ds_len) {
    902 			offset -= ds->ds_len;
    903 			va += ds->ds_len;
    904 			ds++;
    905 		}
    906 
    907 		paddr_t pa = _bus_dma_busaddr_to_paddr(t, ds->ds_addr + offset);
    908 		size_t seglen = min(len, ds->ds_len - offset);
    909 
    910 		if ((ds->_ds_flags & _BUS_DMAMAP_COHERENT) == 0)
    911 			_bus_dmamap_sync_segment(va + offset, pa, seglen, ops,
    912 			    false);
    913 
    914 		offset += seglen;
    915 		len -= seglen;
    916 	}
    917 }
    918 
    919 static inline void
    920 _bus_dmamap_sync_mbuf(bus_dma_tag_t t, bus_dmamap_t map, bus_size_t offset,
    921     bus_size_t len, int ops)
    922 {
    923 	bus_dma_segment_t *ds = map->dm_segs;
    924 	struct mbuf *m = map->_dm_origbuf;
    925 	bus_size_t voff = offset;
    926 	bus_size_t ds_off = offset;
    927 
    928 	while (len > 0) {
    929 		/* Find the current dma segment */
    930 		while (ds_off >= ds->ds_len) {
    931 			ds_off -= ds->ds_len;
    932 			ds++;
    933 		}
    934 		/* Find the current mbuf. */
    935 		while (voff >= m->m_len) {
    936 			voff -= m->m_len;
    937 			m = m->m_next;
    938 		}
    939 
    940 		/*
    941 		 * Now at the first mbuf to sync; nail each one until
    942 		 * we have exhausted the length.
    943 		 */
    944 		vsize_t seglen = min(len, min(m->m_len - voff, ds->ds_len - ds_off));
    945 		vaddr_t va = mtod(m, vaddr_t) + voff;
    946 		paddr_t pa = _bus_dma_busaddr_to_paddr(t, ds->ds_addr + ds_off);
    947 
    948 		/*
    949 		 * We can save a lot of work here if we know the mapping
    950 		 * is read-only at the MMU and we aren't using the armv6+
    951 		 * MMU:
    952 		 *
    953 		 * If a mapping is read-only, no dirty cache blocks will
    954 		 * exist for it.  If a writable mapping was made read-only,
    955 		 * we know any dirty cache lines for the range will have
    956 		 * been cleaned for us already.  Therefore, if the upper
    957 		 * layer can tell us we have a read-only mapping, we can
    958 		 * skip all cache cleaning.
    959 		 *
    960 		 * NOTE: This only works if we know the pmap cleans pages
    961 		 * before making a read-write -> read-only transition.  If
    962 		 * this ever becomes non-true (e.g. Physically Indexed
    963 		 * cache), this will have to be revisited.
    964 		 */
    965 
    966 		if ((ds->_ds_flags & _BUS_DMAMAP_COHERENT) == 0) {
    967 			/*
    968 			 * If we are doing preread (DMAing into the mbuf),
    969 			 * this mbuf better not be readonly,
    970 			 */
    971 			KASSERT(!(ops & BUS_DMASYNC_PREREAD) || !M_ROMAP(m));
    972 			_bus_dmamap_sync_segment(va, pa, seglen, ops,
    973 			    M_ROMAP(m));
    974 		}
    975 		voff += seglen;
    976 		ds_off += seglen;
    977 		len -= seglen;
    978 	}
    979 }
    980 
    981 static inline void
    982 _bus_dmamap_sync_uio(bus_dma_tag_t t, bus_dmamap_t map, bus_addr_t offset,
    983     bus_size_t len, int ops)
    984 {
    985 	bus_dma_segment_t *ds = map->dm_segs;
    986 	struct uio *uio = map->_dm_origbuf;
    987 	struct iovec *iov = uio->uio_iov;
    988 	bus_size_t voff = offset;
    989 	bus_size_t ds_off = offset;
    990 
    991 	while (len > 0) {
    992 		/* Find the current dma segment */
    993 		while (ds_off >= ds->ds_len) {
    994 			ds_off -= ds->ds_len;
    995 			ds++;
    996 		}
    997 
    998 		/* Find the current iovec. */
    999 		while (voff >= iov->iov_len) {
   1000 			voff -= iov->iov_len;
   1001 			iov++;
   1002 		}
   1003 
   1004 		/*
   1005 		 * Now at the first iovec to sync; nail each one until
   1006 		 * we have exhausted the length.
   1007 		 */
   1008 		vsize_t seglen = min(len, min(iov->iov_len - voff, ds->ds_len - ds_off));
   1009 		vaddr_t va = (vaddr_t) iov->iov_base + voff;
   1010 		paddr_t pa = _bus_dma_busaddr_to_paddr(t, ds->ds_addr + ds_off);
   1011 
   1012 		if ((ds->_ds_flags & _BUS_DMAMAP_COHERENT) == 0)
   1013 			_bus_dmamap_sync_segment(va, pa, seglen, ops, false);
   1014 
   1015 		voff += seglen;
   1016 		ds_off += seglen;
   1017 		len -= seglen;
   1018 	}
   1019 }
   1020 
   1021 /*
   1022  * Common function for DMA map synchronization.  May be called
   1023  * by bus-specific DMA map synchronization functions.
   1024  *
   1025  * This version works for the Virtually Indexed Virtually Tagged
   1026  * cache found on 32-bit ARM processors.
   1027  *
   1028  * XXX Should have separate versions for write-through vs.
   1029  * XXX write-back caches.  We currently assume write-back
   1030  * XXX here, which is not as efficient as it could be for
   1031  * XXX the write-through case.
   1032  */
   1033 void
   1034 _bus_dmamap_sync(bus_dma_tag_t t, bus_dmamap_t map, bus_addr_t offset,
   1035     bus_size_t len, int ops)
   1036 {
   1037 #ifdef DEBUG_DMA
   1038 	printf("dmamap_sync: t=%p map=%p offset=%lx len=%lx ops=%x\n",
   1039 	    t, map, offset, len, ops);
   1040 #endif	/* DEBUG_DMA */
   1041 
   1042 	/*
   1043 	 * Mixing of PRE and POST operations is not allowed.
   1044 	 */
   1045 	if ((ops & (BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE)) != 0 &&
   1046 	    (ops & (BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE)) != 0)
   1047 		panic("_bus_dmamap_sync: mix PRE and POST");
   1048 
   1049 	KASSERTMSG(offset < map->dm_mapsize,
   1050 	    "offset %lu mapsize %lu",
   1051 	    offset, map->dm_mapsize);
   1052 	KASSERTMSG(len > 0 && offset + len <= map->dm_mapsize,
   1053 	    "len %lu offset %lu mapsize %lu",
   1054 	    len, offset, map->dm_mapsize);
   1055 
   1056 	/*
   1057 	 * For a virtually-indexed write-back cache, we need
   1058 	 * to do the following things:
   1059 	 *
   1060 	 *	PREREAD -- Invalidate the D-cache.  We do this
   1061 	 *	here in case a write-back is required by the back-end.
   1062 	 *
   1063 	 *	PREWRITE -- Write-back the D-cache.  Note that if
   1064 	 *	we are doing a PREREAD|PREWRITE, we can collapse
   1065 	 *	the whole thing into a single Wb-Inv.
   1066 	 *
   1067 	 *	POSTREAD -- Re-invalidate the D-cache in case speculative
   1068 	 *	memory accesses caused cachelines to become valid with now
   1069 	 *	invalid data.
   1070 	 *
   1071 	 *	POSTWRITE -- Nothing.
   1072 	 */
   1073 #ifdef _ARM32_NEED_BUS_DMA_BOUNCE
   1074 	const bool bouncing = (map->_dm_flags & _BUS_DMAMAP_IS_BOUNCING);
   1075 #else
   1076 	const bool bouncing = false;
   1077 #endif
   1078 
   1079 	const int pre_ops = ops & (BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
   1080 #ifdef CPU_CORTEX
   1081 	const int post_ops = ops & (BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
   1082 #else
   1083 	const int post_ops = 0;
   1084 #endif
   1085 	if (!bouncing) {
   1086 		if (pre_ops == 0 && post_ops == BUS_DMASYNC_POSTWRITE) {
   1087 			STAT_INCR(sync_postwrite);
   1088 			return;
   1089 		} else if (pre_ops == 0 && post_ops == 0) {
   1090 			return;
   1091 		}
   1092 	}
   1093 	KASSERTMSG(bouncing || pre_ops != 0 || (post_ops & BUS_DMASYNC_POSTREAD),
   1094 	    "pre_ops %#x post_ops %#x", pre_ops, post_ops);
   1095 #ifdef _ARM32_NEED_BUS_DMA_BOUNCE
   1096 	if (bouncing && (ops & BUS_DMASYNC_PREWRITE)) {
   1097 		struct arm32_bus_dma_cookie * const cookie = map->_dm_cookie;
   1098 		STAT_INCR(write_bounces);
   1099 		char * const dataptr = (char *)cookie->id_bouncebuf + offset;
   1100 		/*
   1101 		 * Copy the caller's buffer to the bounce buffer.
   1102 		 */
   1103 		switch (map->_dm_buftype) {
   1104 		case _BUS_DMA_BUFTYPE_LINEAR:
   1105 			memcpy(dataptr, cookie->id_origlinearbuf + offset, len);
   1106 			break;
   1107 		case _BUS_DMA_BUFTYPE_MBUF:
   1108 			m_copydata(cookie->id_origmbuf, offset, len, dataptr);
   1109 			break;
   1110 		case _BUS_DMA_BUFTYPE_UIO:
   1111 			_bus_dma_uiomove(dataptr, cookie->id_origuio, len, UIO_WRITE);
   1112 			break;
   1113 #ifdef DIAGNOSTIC
   1114 		case _BUS_DMA_BUFTYPE_RAW:
   1115 			panic("_bus_dmamap_sync(pre): _BUS_DMA_BUFTYPE_RAW");
   1116 			break;
   1117 
   1118 		case _BUS_DMA_BUFTYPE_INVALID:
   1119 			panic("_bus_dmamap_sync(pre): _BUS_DMA_BUFTYPE_INVALID");
   1120 			break;
   1121 
   1122 		default:
   1123 			panic("_bus_dmamap_sync(pre): map %p: unknown buffer type %d\n",
   1124 			    map, map->_dm_buftype);
   1125 			break;
   1126 #endif /* DIAGNOSTIC */
   1127 		}
   1128 	}
   1129 #endif /* _ARM32_NEED_BUS_DMA_BOUNCE */
   1130 
   1131 	/* Skip cache frobbing if mapping was COHERENT. */
   1132 	if (!bouncing && (map->_dm_flags & _BUS_DMAMAP_COHERENT)) {
   1133 		/* Drain the write buffer. */
   1134 		if (pre_ops & BUS_DMASYNC_PREWRITE)
   1135 			cpu_drain_writebuf();
   1136 		return;
   1137 	}
   1138 
   1139 #ifdef _ARM32_NEED_BUS_DMA_BOUNCE
   1140 	if (bouncing && ((map->_dm_flags & _BUS_DMAMAP_COHERENT) || pre_ops == 0)) {
   1141 		goto bounce_it;
   1142 	}
   1143 #endif /* _ARM32_NEED_BUS_DMA_BOUNCE */
   1144 
   1145 #ifndef ARM_MMU_EXTENDED
   1146 	/*
   1147 	 * If the mapping belongs to a non-kernel vmspace, and the
   1148 	 * vmspace has not been active since the last time a full
   1149 	 * cache flush was performed, we don't need to do anything.
   1150 	 */
   1151 	if (__predict_false(!VMSPACE_IS_KERNEL_P(map->_dm_vmspace) &&
   1152 	    vm_map_pmap(&map->_dm_vmspace->vm_map)->pm_cstate.cs_cache_d == 0))
   1153 		return;
   1154 #endif
   1155 
   1156 	int buftype = map->_dm_buftype;
   1157 #ifdef _ARM32_NEED_BUS_DMA_BOUNCE
   1158 	if (bouncing) {
   1159 		buftype = _BUS_DMA_BUFTYPE_LINEAR;
   1160 	}
   1161 #endif
   1162 
   1163 	switch (buftype) {
   1164 	case _BUS_DMA_BUFTYPE_LINEAR:
   1165 		_bus_dmamap_sync_linear(t, map, offset, len, ops);
   1166 		break;
   1167 
   1168 	case _BUS_DMA_BUFTYPE_MBUF:
   1169 		_bus_dmamap_sync_mbuf(t, map, offset, len, ops);
   1170 		break;
   1171 
   1172 	case _BUS_DMA_BUFTYPE_UIO:
   1173 		_bus_dmamap_sync_uio(t, map, offset, len, ops);
   1174 		break;
   1175 
   1176 	case _BUS_DMA_BUFTYPE_RAW:
   1177 		panic("_bus_dmamap_sync: _BUS_DMA_BUFTYPE_RAW");
   1178 		break;
   1179 
   1180 	case _BUS_DMA_BUFTYPE_INVALID:
   1181 		panic("_bus_dmamap_sync: _BUS_DMA_BUFTYPE_INVALID");
   1182 		break;
   1183 
   1184 	default:
   1185 		panic("_bus_dmamap_sync: map %p: unknown buffer type %d\n",
   1186 		    map, map->_dm_buftype);
   1187 	}
   1188 
   1189 	/* Drain the write buffer. */
   1190 	cpu_drain_writebuf();
   1191 
   1192 #ifdef _ARM32_NEED_BUS_DMA_BOUNCE
   1193   bounce_it:
   1194 	if (!bouncing || (ops & BUS_DMASYNC_POSTREAD) == 0)
   1195 		return;
   1196 
   1197 	struct arm32_bus_dma_cookie * const cookie = map->_dm_cookie;
   1198 	char * const dataptr = (char *)cookie->id_bouncebuf + offset;
   1199 	STAT_INCR(read_bounces);
   1200 	/*
   1201 	 * Copy the bounce buffer to the caller's buffer.
   1202 	 */
   1203 	switch (map->_dm_buftype) {
   1204 	case _BUS_DMA_BUFTYPE_LINEAR:
   1205 		memcpy(cookie->id_origlinearbuf + offset, dataptr, len);
   1206 		break;
   1207 
   1208 	case _BUS_DMA_BUFTYPE_MBUF:
   1209 		m_copyback(cookie->id_origmbuf, offset, len, dataptr);
   1210 		break;
   1211 
   1212 	case _BUS_DMA_BUFTYPE_UIO:
   1213 		_bus_dma_uiomove(dataptr, cookie->id_origuio, len, UIO_READ);
   1214 		break;
   1215 #ifdef DIAGNOSTIC
   1216 	case _BUS_DMA_BUFTYPE_RAW:
   1217 		panic("_bus_dmamap_sync(post): _BUS_DMA_BUFTYPE_RAW");
   1218 		break;
   1219 
   1220 	case _BUS_DMA_BUFTYPE_INVALID:
   1221 		panic("_bus_dmamap_sync(post): _BUS_DMA_BUFTYPE_INVALID");
   1222 		break;
   1223 
   1224 	default:
   1225 		panic("_bus_dmamap_sync(post): map %p: unknown buffer type %d\n",
   1226 		    map, map->_dm_buftype);
   1227 		break;
   1228 #endif
   1229 	}
   1230 #endif /* _ARM32_NEED_BUS_DMA_BOUNCE */
   1231 }
   1232 
   1233 /*
   1234  * Common function for DMA-safe memory allocation.  May be called
   1235  * by bus-specific DMA memory allocation functions.
   1236  */
   1237 
   1238 extern paddr_t physical_start;
   1239 extern paddr_t physical_end;
   1240 
   1241 int
   1242 _bus_dmamem_alloc(bus_dma_tag_t t, bus_size_t size, bus_size_t alignment,
   1243     bus_size_t boundary, bus_dma_segment_t *segs, int nsegs, int *rsegs,
   1244     int flags)
   1245 {
   1246 	struct arm32_dma_range *dr;
   1247 	int error, i;
   1248 
   1249 #ifdef DEBUG_DMA
   1250 	printf("dmamem_alloc t=%p size=%lx align=%lx boundary=%lx "
   1251 	    "segs=%p nsegs=%x rsegs=%p flags=%x\n", t, size, alignment,
   1252 	    boundary, segs, nsegs, rsegs, flags);
   1253 #endif
   1254 
   1255 	if ((dr = t->_ranges) != NULL) {
   1256 		error = ENOMEM;
   1257 		for (i = 0; i < t->_nranges; i++, dr++) {
   1258 			if (dr->dr_len == 0
   1259 			    || (dr->dr_flags & _BUS_DMAMAP_NOALLOC))
   1260 				continue;
   1261 			error = _bus_dmamem_alloc_range(t, size, alignment,
   1262 			    boundary, segs, nsegs, rsegs, flags,
   1263 			    trunc_page(dr->dr_sysbase),
   1264 			    trunc_page(dr->dr_sysbase + dr->dr_len));
   1265 			if (error == 0)
   1266 				break;
   1267 		}
   1268 	} else {
   1269 		error = _bus_dmamem_alloc_range(t, size, alignment, boundary,
   1270 		    segs, nsegs, rsegs, flags, trunc_page(physical_start),
   1271 		    trunc_page(physical_end));
   1272 	}
   1273 
   1274 #ifdef DEBUG_DMA
   1275 	printf("dmamem_alloc: =%d\n", error);
   1276 #endif
   1277 
   1278 	return error;
   1279 }
   1280 
   1281 /*
   1282  * Common function for freeing DMA-safe memory.  May be called by
   1283  * bus-specific DMA memory free functions.
   1284  */
   1285 void
   1286 _bus_dmamem_free(bus_dma_tag_t t, bus_dma_segment_t *segs, int nsegs)
   1287 {
   1288 	struct vm_page *m;
   1289 	bus_addr_t addr;
   1290 	struct pglist mlist;
   1291 	int curseg;
   1292 
   1293 #ifdef DEBUG_DMA
   1294 	printf("dmamem_free: t=%p segs=%p nsegs=%x\n", t, segs, nsegs);
   1295 #endif	/* DEBUG_DMA */
   1296 
   1297 	/*
   1298 	 * Build a list of pages to free back to the VM system.
   1299 	 */
   1300 	TAILQ_INIT(&mlist);
   1301 	for (curseg = 0; curseg < nsegs; curseg++) {
   1302 		for (addr = segs[curseg].ds_addr;
   1303 		    addr < (segs[curseg].ds_addr + segs[curseg].ds_len);
   1304 		    addr += PAGE_SIZE) {
   1305 			m = PHYS_TO_VM_PAGE(addr);
   1306 			TAILQ_INSERT_TAIL(&mlist, m, pageq.queue);
   1307 		}
   1308 	}
   1309 	uvm_pglistfree(&mlist);
   1310 }
   1311 
   1312 /*
   1313  * Common function for mapping DMA-safe memory.  May be called by
   1314  * bus-specific DMA memory map functions.
   1315  */
   1316 int
   1317 _bus_dmamem_map(bus_dma_tag_t t, bus_dma_segment_t *segs, int nsegs,
   1318     size_t size, void **kvap, int flags)
   1319 {
   1320 	vaddr_t va;
   1321 	paddr_t pa;
   1322 	int curseg;
   1323 	const uvm_flag_t kmflags = UVM_KMF_VAONLY
   1324 	    | ((flags & BUS_DMA_NOWAIT) != 0 ? UVM_KMF_NOWAIT : 0);
   1325 	vsize_t align = 0;
   1326 
   1327 #ifdef DEBUG_DMA
   1328 	printf("dmamem_map: t=%p segs=%p nsegs=%x size=%lx flags=%x\n", t,
   1329 	    segs, nsegs, (unsigned long)size, flags);
   1330 #endif	/* DEBUG_DMA */
   1331 
   1332 #ifdef PMAP_MAP_POOLPAGE
   1333 	/*
   1334 	 * If all of memory is mapped, and we are mapping a single physically
   1335 	 * contiguous area then this area is already mapped.  Let's see if we
   1336 	 * avoid having a separate mapping for it.
   1337 	 */
   1338 	if (nsegs == 1) {
   1339 		/*
   1340 		 * If this is a non-COHERENT mapping, then the existing kernel
   1341 		 * mapping is already compatible with it.
   1342 		 */
   1343 		bool direct_mapable = (flags & BUS_DMA_COHERENT) == 0;
   1344 		pa = segs[0].ds_addr;
   1345 
   1346 		/*
   1347 		 * This is a COHERENT mapping which, unless this address is in
   1348 		 * a COHERENT dma range, will not be compatible.
   1349 		 */
   1350 		if (t->_ranges != NULL) {
   1351 			const struct arm32_dma_range * const dr =
   1352 			    _bus_dma_paddr_inrange(t->_ranges, t->_nranges, pa);
   1353 			if (dr != NULL
   1354 			    && (dr->dr_flags & _BUS_DMAMAP_COHERENT)) {
   1355 				direct_mapable = true;
   1356 			}
   1357 		}
   1358 
   1359 #ifdef PMAP_NEED_ALLOC_POOLPAGE
   1360 		/*
   1361 		 * The page can only be direct mapped if was allocated out
   1362 		 * of the arm poolpage vm freelist.
   1363 		 */
   1364 		uvm_physseg_t upm = uvm_physseg_find(atop(pa), NULL);
   1365 		KASSERT(uvm_physseg_valid_p(upm));
   1366 		if (direct_mapable) {
   1367 			direct_mapable =
   1368 			    (arm_poolpage_vmfreelist == uvm_physseg_get_free_list(upm));
   1369 		}
   1370 #endif
   1371 
   1372 		if (direct_mapable) {
   1373 			*kvap = (void *)PMAP_MAP_POOLPAGE(pa);
   1374 #ifdef DEBUG_DMA
   1375 			printf("dmamem_map: =%p\n", *kvap);
   1376 #endif	/* DEBUG_DMA */
   1377 			return 0;
   1378 		}
   1379 	}
   1380 #endif
   1381 
   1382 	size = round_page(size);
   1383 
   1384 #ifdef PMAP_MAPSIZE1
   1385 	if (size >= PMAP_MAPSIZE1)
   1386 		align = PMAP_MAPSIZE1;
   1387 
   1388 #ifdef PMAP_MAPSIZE2
   1389 
   1390 #if PMAP_MAPSIZE1 > PMAP_MAPSIZE2
   1391 #error PMAP_MAPSIZE1 must be smaller than PMAP_MAPSIZE2
   1392 #endif
   1393 
   1394 	if (size >= PMAP_MAPSIZE2)
   1395 		align = PMAP_MAPSIZE2;
   1396 
   1397 #ifdef PMAP_MAPSIZE3
   1398 
   1399 #if PMAP_MAPSIZE2 > PMAP_MAPSIZE3
   1400 #error PMAP_MAPSIZE2 must be smaller than PMAP_MAPSIZE3
   1401 #endif
   1402 
   1403 	if (size >= PMAP_MAPSIZE3)
   1404 		align = PMAP_MAPSIZE3;
   1405 #endif
   1406 #endif
   1407 #endif
   1408 
   1409 	va = uvm_km_alloc(kernel_map, size, align, kmflags);
   1410 	if (__predict_false(va == 0 && align > 0)) {
   1411 		align = 0;
   1412 		va = uvm_km_alloc(kernel_map, size, 0, kmflags);
   1413 	}
   1414 
   1415 	if (va == 0)
   1416 		return ENOMEM;
   1417 
   1418 	*kvap = (void *)va;
   1419 
   1420 	for (curseg = 0; curseg < nsegs; curseg++) {
   1421 		for (pa = segs[curseg].ds_addr;
   1422 		    pa < (segs[curseg].ds_addr + segs[curseg].ds_len);
   1423 		    pa += PAGE_SIZE, va += PAGE_SIZE, size -= PAGE_SIZE) {
   1424 			bool uncached = (flags & BUS_DMA_COHERENT);
   1425 #ifdef DEBUG_DMA
   1426 			printf("wiring p%lx to v%lx", pa, va);
   1427 #endif	/* DEBUG_DMA */
   1428 			if (size == 0)
   1429 				panic("_bus_dmamem_map: size botch");
   1430 
   1431 			const struct arm32_dma_range * const dr =
   1432 			    _bus_dma_paddr_inrange(t->_ranges, t->_nranges, pa);
   1433 			/*
   1434 			 * If this dma region is coherent then there is
   1435 			 * no need for an uncached mapping.
   1436 			 */
   1437 			if (dr != NULL
   1438 			    && (dr->dr_flags & _BUS_DMAMAP_COHERENT)) {
   1439 				uncached = false;
   1440 			}
   1441 
   1442 			pmap_kenter_pa(va, pa, VM_PROT_READ | VM_PROT_WRITE,
   1443 			    PMAP_WIRED | (uncached ? PMAP_NOCACHE : 0));
   1444 		}
   1445 	}
   1446 	pmap_update(pmap_kernel());
   1447 #ifdef DEBUG_DMA
   1448 	printf("dmamem_map: =%p\n", *kvap);
   1449 #endif	/* DEBUG_DMA */
   1450 	return 0;
   1451 }
   1452 
   1453 /*
   1454  * Common function for unmapping DMA-safe memory.  May be called by
   1455  * bus-specific DMA memory unmapping functions.
   1456  */
   1457 void
   1458 _bus_dmamem_unmap(bus_dma_tag_t t, void *kva, size_t size)
   1459 {
   1460 
   1461 #ifdef DEBUG_DMA
   1462 	printf("dmamem_unmap: t=%p kva=%p size=%zx\n", t, kva, size);
   1463 #endif	/* DEBUG_DMA */
   1464 	KASSERTMSG(((uintptr_t)kva & PAGE_MASK) == 0,
   1465 	    "kva %p (%#"PRIxPTR")", kva, ((uintptr_t)kva & PAGE_MASK));
   1466 
   1467 #ifdef __HAVE_MM_MD_DIRECT_MAPPED_PHYS
   1468 	/*
   1469 	 * Check to see if this used direct mapped memory.  Get its physical
   1470 	 * address and try to map it.  If the resultant matches the kva, then
   1471 	 * it was and so we can just return since we have nothing to free up.
   1472 	 */
   1473 	paddr_t pa;
   1474 	vaddr_t va;
   1475 	(void)pmap_extract(pmap_kernel(), (vaddr_t)kva, &pa);
   1476 	if (mm_md_direct_mapped_phys(pa, &va) && va == (vaddr_t)kva)
   1477 		return;
   1478 #endif
   1479 
   1480 	size = round_page(size);
   1481 	pmap_kremove((vaddr_t)kva, size);
   1482 	pmap_update(pmap_kernel());
   1483 	uvm_km_free(kernel_map, (vaddr_t)kva, size, UVM_KMF_VAONLY);
   1484 }
   1485 
   1486 /*
   1487  * Common functin for mmap(2)'ing DMA-safe memory.  May be called by
   1488  * bus-specific DMA mmap(2)'ing functions.
   1489  */
   1490 paddr_t
   1491 _bus_dmamem_mmap(bus_dma_tag_t t, bus_dma_segment_t *segs, int nsegs,
   1492     off_t off, int prot, int flags)
   1493 {
   1494 	paddr_t map_flags;
   1495 	int i;
   1496 
   1497 	for (i = 0; i < nsegs; i++) {
   1498 		KASSERTMSG((off & PAGE_MASK) == 0,
   1499 		    "off %#qx (%#x)", off, (int)off & PAGE_MASK);
   1500 		KASSERTMSG((segs[i].ds_addr & PAGE_MASK) == 0,
   1501 		    "ds_addr %#lx (%#x)", segs[i].ds_addr,
   1502 		    (int)segs[i].ds_addr & PAGE_MASK);
   1503 		KASSERTMSG((segs[i].ds_len & PAGE_MASK) == 0,
   1504 		    "ds_len %#lx (%#x)", segs[i].ds_addr,
   1505 		    (int)segs[i].ds_addr & PAGE_MASK);
   1506 		if (off >= segs[i].ds_len) {
   1507 			off -= segs[i].ds_len;
   1508 			continue;
   1509 		}
   1510 
   1511 		map_flags = 0;
   1512 		if (flags & BUS_DMA_PREFETCHABLE)
   1513 			map_flags |= ARM_MMAP_WRITECOMBINE;
   1514 
   1515 		return arm_btop((u_long)segs[i].ds_addr + off) | map_flags;
   1516 
   1517 	}
   1518 
   1519 	/* Page not found. */
   1520 	return -1;
   1521 }
   1522 
   1523 /**********************************************************************
   1524  * DMA utility functions
   1525  **********************************************************************/
   1526 
   1527 /*
   1528  * Utility function to load a linear buffer.  lastaddrp holds state
   1529  * between invocations (for multiple-buffer loads).  segp contains
   1530  * the starting segment on entrace, and the ending segment on exit.
   1531  * first indicates if this is the first invocation of this function.
   1532  */
   1533 int
   1534 _bus_dmamap_load_buffer(bus_dma_tag_t t, bus_dmamap_t map, void *buf,
   1535     bus_size_t buflen, struct vmspace *vm, int flags)
   1536 {
   1537 	bus_size_t sgsize;
   1538 	bus_addr_t curaddr;
   1539 	vaddr_t vaddr = (vaddr_t)buf;
   1540 	int error;
   1541 	pmap_t pmap;
   1542 
   1543 #ifdef DEBUG_DMA
   1544 	printf("_bus_dmamem_load_buffer(buf=%p, len=%lx, flags=%d)\n",
   1545 	    buf, buflen, flags);
   1546 #endif	/* DEBUG_DMA */
   1547 
   1548 	pmap = vm_map_pmap(&vm->vm_map);
   1549 
   1550 	while (buflen > 0) {
   1551 		/*
   1552 		 * Get the physical address for this segment.
   1553 		 *
   1554 		 */
   1555 		bool coherent;
   1556 		pmap_extract_coherency(pmap, vaddr, &curaddr, &coherent);
   1557 
   1558 		KASSERTMSG((vaddr & PAGE_MASK) == (curaddr & PAGE_MASK),
   1559 		    "va %#lx curaddr %#lx", vaddr, curaddr);
   1560 
   1561 		/*
   1562 		 * Compute the segment size, and adjust counts.
   1563 		 */
   1564 		sgsize = PAGE_SIZE - ((u_long)vaddr & PGOFSET);
   1565 		if (buflen < sgsize)
   1566 			sgsize = buflen;
   1567 
   1568 		error = _bus_dmamap_load_paddr(t, map, curaddr, sgsize,
   1569 		    coherent);
   1570 		if (error)
   1571 			return error;
   1572 
   1573 		vaddr += sgsize;
   1574 		buflen -= sgsize;
   1575 	}
   1576 
   1577 	return 0;
   1578 }
   1579 
   1580 /*
   1581  * Allocate physical memory from the given physical address range.
   1582  * Called by DMA-safe memory allocation methods.
   1583  */
   1584 int
   1585 _bus_dmamem_alloc_range(bus_dma_tag_t t, bus_size_t size, bus_size_t alignment,
   1586     bus_size_t boundary, bus_dma_segment_t *segs, int nsegs, int *rsegs,
   1587     int flags, paddr_t low, paddr_t high)
   1588 {
   1589 	paddr_t curaddr, lastaddr;
   1590 	struct vm_page *m;
   1591 	struct pglist mlist;
   1592 	int curseg, error;
   1593 
   1594 	KASSERTMSG(boundary == 0 || (boundary & (boundary - 1)) == 0,
   1595 	    "invalid boundary %#lx", boundary);
   1596 
   1597 #ifdef DEBUG_DMA
   1598 	printf("alloc_range: t=%p size=%lx align=%lx boundary=%lx segs=%p nsegs=%x rsegs=%p flags=%x lo=%lx hi=%lx\n",
   1599 	    t, size, alignment, boundary, segs, nsegs, rsegs, flags, low, high);
   1600 #endif	/* DEBUG_DMA */
   1601 
   1602 	/* Always round the size. */
   1603 	size = round_page(size);
   1604 
   1605 	/*
   1606 	 * We accept boundaries < size, splitting in multiple segments
   1607 	 * if needed. uvm_pglistalloc does not, so compute an appropriate
   1608 	 * boundary: next power of 2 >= size
   1609 	 */
   1610 	bus_size_t uboundary = boundary;
   1611 	if (uboundary <= PAGE_SIZE) {
   1612 		uboundary = 0;
   1613 	} else {
   1614 		while (uboundary < size) {
   1615 			uboundary <<= 1;
   1616 		}
   1617 	}
   1618 
   1619 	/*
   1620 	 * Allocate pages from the VM system.
   1621 	 */
   1622 	error = uvm_pglistalloc(size, low, high, alignment, uboundary,
   1623 	    &mlist, nsegs, (flags & BUS_DMA_NOWAIT) == 0);
   1624 	if (error)
   1625 		return error;
   1626 
   1627 	/*
   1628 	 * Compute the location, size, and number of segments actually
   1629 	 * returned by the VM code.
   1630 	 */
   1631 	m = TAILQ_FIRST(&mlist);
   1632 	curseg = 0;
   1633 	lastaddr = segs[curseg].ds_addr = VM_PAGE_TO_PHYS(m);
   1634 	segs[curseg].ds_len = PAGE_SIZE;
   1635 #ifdef DEBUG_DMA
   1636 		printf("alloc: page %lx\n", lastaddr);
   1637 #endif	/* DEBUG_DMA */
   1638 	m = TAILQ_NEXT(m, pageq.queue);
   1639 
   1640 	for (; m != NULL; m = TAILQ_NEXT(m, pageq.queue)) {
   1641 		curaddr = VM_PAGE_TO_PHYS(m);
   1642 		KASSERTMSG(low <= curaddr && curaddr < high,
   1643 		    "uvm_pglistalloc returned non-sensicaladdress %#lx "
   1644 		    "(low=%#lx, high=%#lx\n", curaddr, low, high);
   1645 #ifdef DEBUG_DMA
   1646 		printf("alloc: page %lx\n", curaddr);
   1647 #endif	/* DEBUG_DMA */
   1648 		if (curaddr == lastaddr + PAGE_SIZE
   1649 		    && (lastaddr & boundary) == (curaddr & boundary))
   1650 			segs[curseg].ds_len += PAGE_SIZE;
   1651 		else {
   1652 			curseg++;
   1653 			if (curseg >= nsegs) {
   1654 				uvm_pglistfree(&mlist);
   1655 				return EFBIG;
   1656 			}
   1657 			segs[curseg].ds_addr = curaddr;
   1658 			segs[curseg].ds_len = PAGE_SIZE;
   1659 		}
   1660 		lastaddr = curaddr;
   1661 	}
   1662 
   1663 	*rsegs = curseg + 1;
   1664 
   1665 	return 0;
   1666 }
   1667 
   1668 /*
   1669  * Check if a memory region intersects with a DMA range, and return the
   1670  * page-rounded intersection if it does.
   1671  */
   1672 int
   1673 arm32_dma_range_intersect(struct arm32_dma_range *ranges, int nranges,
   1674     paddr_t pa, psize_t size, paddr_t *pap, psize_t *sizep)
   1675 {
   1676 	struct arm32_dma_range *dr;
   1677 	int i;
   1678 
   1679 	if (ranges == NULL)
   1680 		return 0;
   1681 
   1682 	for (i = 0, dr = ranges; i < nranges; i++, dr++) {
   1683 		if (dr->dr_sysbase <= pa &&
   1684 		    pa < (dr->dr_sysbase + dr->dr_len)) {
   1685 			/*
   1686 			 * Beginning of region intersects with this range.
   1687 			 */
   1688 			*pap = trunc_page(pa);
   1689 			*sizep = round_page(min(pa + size,
   1690 			    dr->dr_sysbase + dr->dr_len) - pa);
   1691 			return 1;
   1692 		}
   1693 		if (pa < dr->dr_sysbase && dr->dr_sysbase < (pa + size)) {
   1694 			/*
   1695 			 * End of region intersects with this range.
   1696 			 */
   1697 			*pap = trunc_page(dr->dr_sysbase);
   1698 			*sizep = round_page(min((pa + size) - dr->dr_sysbase,
   1699 			    dr->dr_len));
   1700 			return 1;
   1701 		}
   1702 	}
   1703 
   1704 	/* No intersection found. */
   1705 	return 0;
   1706 }
   1707 
   1708 #ifdef _ARM32_NEED_BUS_DMA_BOUNCE
   1709 static int
   1710 _bus_dma_alloc_bouncebuf(bus_dma_tag_t t, bus_dmamap_t map,
   1711     bus_size_t size, int flags)
   1712 {
   1713 	struct arm32_bus_dma_cookie *cookie = map->_dm_cookie;
   1714 	int error = 0;
   1715 
   1716 	KASSERT(cookie != NULL);
   1717 
   1718 	cookie->id_bouncebuflen = round_page(size);
   1719 	error = _bus_dmamem_alloc(t, cookie->id_bouncebuflen,
   1720 	    PAGE_SIZE, map->_dm_boundary, cookie->id_bouncesegs,
   1721 	    map->_dm_segcnt, &cookie->id_nbouncesegs, flags);
   1722 	if (error == 0) {
   1723 		error = _bus_dmamem_map(t, cookie->id_bouncesegs,
   1724 		    cookie->id_nbouncesegs, cookie->id_bouncebuflen,
   1725 		    (void **)&cookie->id_bouncebuf, flags);
   1726 		if (error) {
   1727 			_bus_dmamem_free(t, cookie->id_bouncesegs,
   1728 			    cookie->id_nbouncesegs);
   1729 			cookie->id_bouncebuflen = 0;
   1730 			cookie->id_nbouncesegs = 0;
   1731 		} else {
   1732 			cookie->id_flags |= _BUS_DMA_HAS_BOUNCE;
   1733 		}
   1734 	} else {
   1735 		cookie->id_bouncebuflen = 0;
   1736 		cookie->id_nbouncesegs = 0;
   1737 	}
   1738 
   1739 	return error;
   1740 }
   1741 
   1742 static void
   1743 _bus_dma_free_bouncebuf(bus_dma_tag_t t, bus_dmamap_t map)
   1744 {
   1745 	struct arm32_bus_dma_cookie *cookie = map->_dm_cookie;
   1746 
   1747 	KASSERT(cookie != NULL);
   1748 
   1749 	_bus_dmamem_unmap(t, cookie->id_bouncebuf, cookie->id_bouncebuflen);
   1750 	_bus_dmamem_free(t, cookie->id_bouncesegs, cookie->id_nbouncesegs);
   1751 	cookie->id_bouncebuflen = 0;
   1752 	cookie->id_nbouncesegs = 0;
   1753 	cookie->id_flags &= ~_BUS_DMA_HAS_BOUNCE;
   1754 }
   1755 
   1756 /*
   1757  * This function does the same as uiomove, but takes an explicit
   1758  * direction, and does not update the uio structure.
   1759  */
   1760 static int
   1761 _bus_dma_uiomove(void *buf, struct uio *uio, size_t n, int direction)
   1762 {
   1763 	struct iovec *iov;
   1764 	int error;
   1765 	struct vmspace *vm;
   1766 	char *cp;
   1767 	size_t resid, cnt;
   1768 	int i;
   1769 
   1770 	iov = uio->uio_iov;
   1771 	vm = uio->uio_vmspace;
   1772 	cp = buf;
   1773 	resid = n;
   1774 
   1775 	for (i = 0; i < uio->uio_iovcnt && resid > 0; i++) {
   1776 		iov = &uio->uio_iov[i];
   1777 		if (iov->iov_len == 0)
   1778 			continue;
   1779 		cnt = MIN(resid, iov->iov_len);
   1780 
   1781 		if (!VMSPACE_IS_KERNEL_P(vm) &&
   1782 		    (curlwp->l_cpu->ci_schedstate.spc_flags & SPCF_SHOULDYIELD)
   1783 		    != 0) {
   1784 			preempt();
   1785 		}
   1786 		if (direction == UIO_READ) {
   1787 			error = copyout_vmspace(vm, cp, iov->iov_base, cnt);
   1788 		} else {
   1789 			error = copyin_vmspace(vm, iov->iov_base, cp, cnt);
   1790 		}
   1791 		if (error)
   1792 			return error;
   1793 		cp += cnt;
   1794 		resid -= cnt;
   1795 	}
   1796 	return 0;
   1797 }
   1798 #endif /* _ARM32_NEED_BUS_DMA_BOUNCE */
   1799 
   1800 int
   1801 _bus_dmatag_subregion(bus_dma_tag_t tag, bus_addr_t min_addr,
   1802     bus_addr_t max_addr, bus_dma_tag_t *newtag, int flags)
   1803 {
   1804 
   1805 #ifdef _ARM32_NEED_BUS_DMA_BOUNCE
   1806 	struct arm32_dma_range *dr;
   1807 	bool subset = false;
   1808 	size_t nranges = 0;
   1809 	size_t i;
   1810 	for (i = 0, dr = tag->_ranges; i < tag->_nranges; i++, dr++) {
   1811 		if (dr->dr_sysbase <= min_addr
   1812 		    && max_addr <= dr->dr_sysbase + dr->dr_len - 1) {
   1813 			subset = true;
   1814 		}
   1815 		if (min_addr <= dr->dr_sysbase + dr->dr_len
   1816 		    && max_addr >= dr->dr_sysbase) {
   1817 			nranges++;
   1818 		}
   1819 	}
   1820 	if (subset) {
   1821 		*newtag = tag;
   1822 		/* if the tag must be freed, add a reference */
   1823 		if (tag->_tag_needs_free)
   1824 			(tag->_tag_needs_free)++;
   1825 		return 0;
   1826 	}
   1827 	if (nranges == 0) {
   1828 		nranges = 1;
   1829 	}
   1830 
   1831 	const size_t tagsize = sizeof(*tag) + nranges * sizeof(*dr);
   1832 	if ((*newtag = kmem_intr_zalloc(tagsize,
   1833 	    (flags & BUS_DMA_NOWAIT) ? KM_NOSLEEP : KM_SLEEP)) == NULL)
   1834 		return ENOMEM;
   1835 
   1836 	dr = (void *)(*newtag + 1);
   1837 	**newtag = *tag;
   1838 	(*newtag)->_tag_needs_free = 1;
   1839 	(*newtag)->_ranges = dr;
   1840 	(*newtag)->_nranges = nranges;
   1841 
   1842 	if (tag->_ranges == NULL) {
   1843 		dr->dr_sysbase = min_addr;
   1844 		dr->dr_busbase = min_addr;
   1845 		dr->dr_len = max_addr + 1 - min_addr;
   1846 	} else {
   1847 		for (i = 0; i < nranges; i++) {
   1848 			if (min_addr > dr->dr_sysbase + dr->dr_len
   1849 			    || max_addr < dr->dr_sysbase)
   1850 				continue;
   1851 			dr[0] = tag->_ranges[i];
   1852 			if (dr->dr_sysbase < min_addr) {
   1853 				psize_t diff = min_addr - dr->dr_sysbase;
   1854 				dr->dr_busbase += diff;
   1855 				dr->dr_len -= diff;
   1856 				dr->dr_sysbase += diff;
   1857 			}
   1858 			if (max_addr != 0xffffffff
   1859 			    && max_addr + 1 < dr->dr_sysbase + dr->dr_len) {
   1860 				dr->dr_len = max_addr + 1 - dr->dr_sysbase;
   1861 			}
   1862 			dr++;
   1863 		}
   1864 	}
   1865 
   1866 	return 0;
   1867 #else
   1868 	return EOPNOTSUPP;
   1869 #endif /* _ARM32_NEED_BUS_DMA_BOUNCE */
   1870 }
   1871 
   1872 void
   1873 _bus_dmatag_destroy(bus_dma_tag_t tag)
   1874 {
   1875 #ifdef _ARM32_NEED_BUS_DMA_BOUNCE
   1876 	switch (tag->_tag_needs_free) {
   1877 	case 0:
   1878 		break;				/* not allocated with kmem */
   1879 	case 1: {
   1880 		const size_t tagsize = sizeof(*tag)
   1881 		    + tag->_nranges * sizeof(*tag->_ranges);
   1882 		kmem_intr_free(tag, tagsize);	/* last reference to tag */
   1883 		break;
   1884 	}
   1885 	default:
   1886 		(tag->_tag_needs_free)--;	/* one less reference */
   1887 	}
   1888 #endif
   1889 }
   1890