bus_dma.c revision 1.114 1 /* $NetBSD: bus_dma.c,v 1.114 2019/06/08 11:57:27 skrll Exp $ */
2
3 /*-
4 * Copyright (c) 1996, 1997, 1998 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Jason R. Thorpe of the Numerical Aerospace Simulation Facility,
9 * NASA Ames Research Center.
10 *
11 * Redistribution and use in source and binary forms, with or without
12 * modification, are permitted provided that the following conditions
13 * are met:
14 * 1. Redistributions of source code must retain the above copyright
15 * notice, this list of conditions and the following disclaimer.
16 * 2. Redistributions in binary form must reproduce the above copyright
17 * notice, this list of conditions and the following disclaimer in the
18 * documentation and/or other materials provided with the distribution.
19 *
20 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
21 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
22 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
23 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
24 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
25 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
26 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
27 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
28 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
29 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
30 * POSSIBILITY OF SUCH DAMAGE.
31 */
32
33 #define _ARM32_BUS_DMA_PRIVATE
34
35 #include "opt_arm_bus_space.h"
36 #include "opt_cputypes.h"
37
38 #include <sys/cdefs.h>
39 __KERNEL_RCSID(0, "$NetBSD: bus_dma.c,v 1.114 2019/06/08 11:57:27 skrll Exp $");
40
41 #include <sys/param.h>
42 #include <sys/bus.h>
43 #include <sys/cpu.h>
44 #include <sys/kmem.h>
45 #include <sys/mbuf.h>
46
47 #include <uvm/uvm.h>
48
49 #include <arm/cpuconf.h>
50 #include <arm/cpufunc.h>
51
52 #ifdef __HAVE_MM_MD_DIRECT_MAPPED_PHYS
53 #include <dev/mm.h>
54 #endif
55
56 #ifdef BUSDMA_COUNTERS
57 static struct evcnt bus_dma_creates =
58 EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL, "busdma", "creates");
59 static struct evcnt bus_dma_bounced_creates =
60 EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL, "busdma", "bounced creates");
61 static struct evcnt bus_dma_loads =
62 EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL, "busdma", "loads");
63 static struct evcnt bus_dma_bounced_loads =
64 EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL, "busdma", "bounced loads");
65 static struct evcnt bus_dma_coherent_loads =
66 EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL, "busdma", "coherent loads");
67 static struct evcnt bus_dma_read_bounces =
68 EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL, "busdma", "read bounces");
69 static struct evcnt bus_dma_write_bounces =
70 EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL, "busdma", "write bounces");
71 static struct evcnt bus_dma_bounced_unloads =
72 EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL, "busdma", "bounced unloads");
73 static struct evcnt bus_dma_unloads =
74 EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL, "busdma", "unloads");
75 static struct evcnt bus_dma_bounced_destroys =
76 EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL, "busdma", "bounced destroys");
77 static struct evcnt bus_dma_destroys =
78 EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL, "busdma", "destroys");
79 static struct evcnt bus_dma_sync_prereadwrite =
80 EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL, "busdma", "sync prereadwrite");
81 static struct evcnt bus_dma_sync_preread_begin =
82 EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL, "busdma", "sync preread begin");
83 static struct evcnt bus_dma_sync_preread =
84 EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL, "busdma", "sync preread");
85 static struct evcnt bus_dma_sync_preread_tail =
86 EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL, "busdma", "sync preread tail");
87 static struct evcnt bus_dma_sync_prewrite =
88 EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL, "busdma", "sync prewrite");
89 static struct evcnt bus_dma_sync_postread =
90 EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL, "busdma", "sync postread");
91 static struct evcnt bus_dma_sync_postreadwrite =
92 EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL, "busdma", "sync postreadwrite");
93 static struct evcnt bus_dma_sync_postwrite =
94 EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL, "busdma", "sync postwrite");
95
96 EVCNT_ATTACH_STATIC(bus_dma_creates);
97 EVCNT_ATTACH_STATIC(bus_dma_bounced_creates);
98 EVCNT_ATTACH_STATIC(bus_dma_loads);
99 EVCNT_ATTACH_STATIC(bus_dma_bounced_loads);
100 EVCNT_ATTACH_STATIC(bus_dma_coherent_loads);
101 EVCNT_ATTACH_STATIC(bus_dma_read_bounces);
102 EVCNT_ATTACH_STATIC(bus_dma_write_bounces);
103 EVCNT_ATTACH_STATIC(bus_dma_unloads);
104 EVCNT_ATTACH_STATIC(bus_dma_bounced_unloads);
105 EVCNT_ATTACH_STATIC(bus_dma_destroys);
106 EVCNT_ATTACH_STATIC(bus_dma_bounced_destroys);
107 EVCNT_ATTACH_STATIC(bus_dma_sync_prereadwrite);
108 EVCNT_ATTACH_STATIC(bus_dma_sync_preread_begin);
109 EVCNT_ATTACH_STATIC(bus_dma_sync_preread);
110 EVCNT_ATTACH_STATIC(bus_dma_sync_preread_tail);
111 EVCNT_ATTACH_STATIC(bus_dma_sync_prewrite);
112 EVCNT_ATTACH_STATIC(bus_dma_sync_postread);
113 EVCNT_ATTACH_STATIC(bus_dma_sync_postreadwrite);
114 EVCNT_ATTACH_STATIC(bus_dma_sync_postwrite);
115
116 #define STAT_INCR(x) (bus_dma_ ## x.ev_count++)
117 #else
118 #define STAT_INCR(x) __nothing
119 #endif
120
121 int _bus_dmamap_load_buffer(bus_dma_tag_t, bus_dmamap_t, void *,
122 bus_size_t, struct vmspace *, int);
123
124 /*
125 * Check to see if the specified page is in an allowed DMA range.
126 */
127 static inline struct arm32_dma_range *
128 _bus_dma_paddr_inrange(struct arm32_dma_range *ranges, int nranges,
129 bus_addr_t curaddr)
130 {
131 struct arm32_dma_range *dr;
132 int i;
133
134 for (i = 0, dr = ranges; i < nranges; i++, dr++) {
135 if (curaddr >= dr->dr_sysbase &&
136 curaddr < (dr->dr_sysbase + dr->dr_len))
137 return dr;
138 }
139
140 return NULL;
141 }
142
143 /*
144 * Check to see if the specified busaddr is in an allowed DMA range.
145 */
146 static inline paddr_t
147 _bus_dma_busaddr_to_paddr(bus_dma_tag_t t, bus_addr_t curaddr)
148 {
149 struct arm32_dma_range *dr;
150 u_int i;
151
152 if (t->_nranges == 0)
153 return curaddr;
154
155 for (i = 0, dr = t->_ranges; i < t->_nranges; i++, dr++) {
156 if (dr->dr_busbase <= curaddr
157 && curaddr < dr->dr_busbase + dr->dr_len)
158 return curaddr - dr->dr_busbase + dr->dr_sysbase;
159 }
160 panic("%s: curaddr %#lx not in range", __func__, curaddr);
161 }
162
163 /*
164 * Common function to load the specified physical address into the
165 * DMA map, coalescing segments and boundary checking as necessary.
166 */
167 static int
168 _bus_dmamap_load_paddr(bus_dma_tag_t t, bus_dmamap_t map,
169 bus_addr_t paddr, bus_size_t size, bool coherent)
170 {
171 bus_dma_segment_t * const segs = map->dm_segs;
172 int nseg = map->dm_nsegs;
173 bus_addr_t lastaddr;
174 bus_addr_t bmask = ~(map->_dm_boundary - 1);
175 bus_addr_t curaddr;
176 bus_size_t sgsize;
177 uint32_t _ds_flags = coherent ? _BUS_DMAMAP_COHERENT : 0;
178
179 if (nseg > 0)
180 lastaddr = segs[nseg - 1].ds_addr + segs[nseg - 1].ds_len;
181 else
182 lastaddr = 0xdead;
183
184 again:
185 sgsize = size;
186
187 /* Make sure we're in an allowed DMA range. */
188 if (t->_ranges != NULL) {
189 /* XXX cache last result? */
190 const struct arm32_dma_range * const dr =
191 _bus_dma_paddr_inrange(t->_ranges, t->_nranges, paddr);
192 if (dr == NULL)
193 return EINVAL;
194
195 /*
196 * If this region is coherent, mark the segment as coherent.
197 */
198 _ds_flags |= dr->dr_flags & _BUS_DMAMAP_COHERENT;
199
200 /*
201 * In a valid DMA range. Translate the physical
202 * memory address to an address in the DMA window.
203 */
204 curaddr = (paddr - dr->dr_sysbase) + dr->dr_busbase;
205 #if 0
206 printf("%p: %#lx: range %#lx/%#lx/%#lx/%#x: %#x <-- %#lx\n",
207 t, paddr, dr->dr_sysbase, dr->dr_busbase,
208 dr->dr_len, dr->dr_flags, _ds_flags, curaddr);
209 #endif
210 } else
211 curaddr = paddr;
212
213 /*
214 * Make sure we don't cross any boundaries.
215 */
216 if (map->_dm_boundary > 0) {
217 bus_addr_t baddr; /* next boundary address */
218
219 baddr = (curaddr + map->_dm_boundary) & bmask;
220 if (sgsize > (baddr - curaddr))
221 sgsize = (baddr - curaddr);
222 }
223
224 /*
225 * Insert chunk into a segment, coalescing with the
226 * previous segment if possible.
227 */
228 if (nseg > 0 && curaddr == lastaddr &&
229 segs[nseg - 1].ds_len + sgsize <= map->dm_maxsegsz &&
230 ((segs[nseg - 1]._ds_flags ^ _ds_flags) & _BUS_DMAMAP_COHERENT) == 0 &&
231 (map->_dm_boundary == 0 ||
232 (segs[nseg - 1].ds_addr & bmask) == (curaddr & bmask))) {
233 /* coalesce */
234 segs[nseg - 1].ds_len += sgsize;
235 } else if (nseg >= map->_dm_segcnt) {
236 return EFBIG;
237 } else {
238 /* new segment */
239 segs[nseg].ds_addr = curaddr;
240 segs[nseg].ds_len = sgsize;
241 segs[nseg]._ds_flags = _ds_flags;
242 nseg++;
243 }
244
245 lastaddr = curaddr + sgsize;
246
247 paddr += sgsize;
248 size -= sgsize;
249 if (size > 0)
250 goto again;
251
252 map->_dm_flags &= (_ds_flags & _BUS_DMAMAP_COHERENT);
253 map->dm_nsegs = nseg;
254 return 0;
255 }
256
257 #ifdef _ARM32_NEED_BUS_DMA_BOUNCE
258 static int _bus_dma_alloc_bouncebuf(bus_dma_tag_t t, bus_dmamap_t map,
259 bus_size_t size, int flags);
260 static void _bus_dma_free_bouncebuf(bus_dma_tag_t t, bus_dmamap_t map);
261 static int _bus_dma_uiomove(void *buf, struct uio *uio, size_t n,
262 int direction);
263
264 static int
265 _bus_dma_load_bouncebuf(bus_dma_tag_t t, bus_dmamap_t map, void *buf,
266 size_t buflen, int buftype, int flags)
267 {
268 struct arm32_bus_dma_cookie * const cookie = map->_dm_cookie;
269 struct vmspace * const vm = vmspace_kernel();
270 int error;
271
272 KASSERT(cookie != NULL);
273 KASSERT(cookie->id_flags & _BUS_DMA_MIGHT_NEED_BOUNCE);
274
275 /*
276 * Allocate bounce pages, if necessary.
277 */
278 if ((cookie->id_flags & _BUS_DMA_HAS_BOUNCE) == 0) {
279 error = _bus_dma_alloc_bouncebuf(t, map, buflen, flags);
280 if (error)
281 return error;
282 }
283
284 /*
285 * Cache a pointer to the caller's buffer and load the DMA map
286 * with the bounce buffer.
287 */
288 cookie->id_origbuf = buf;
289 cookie->id_origbuflen = buflen;
290 error = _bus_dmamap_load_buffer(t, map, cookie->id_bouncebuf,
291 buflen, vm, flags);
292 if (error)
293 return error;
294
295 STAT_INCR(bounced_loads);
296 map->dm_mapsize = buflen;
297 map->_dm_vmspace = vm;
298 map->_dm_buftype = buftype;
299
300 /* ...so _bus_dmamap_sync() knows we're bouncing */
301 map->_dm_flags |= _BUS_DMAMAP_IS_BOUNCING;
302 cookie->id_flags |= _BUS_DMA_IS_BOUNCING;
303 return 0;
304 }
305 #endif /* _ARM32_NEED_BUS_DMA_BOUNCE */
306
307 /*
308 * Common function for DMA map creation. May be called by bus-specific
309 * DMA map creation functions.
310 */
311 int
312 _bus_dmamap_create(bus_dma_tag_t t, bus_size_t size, int nsegments,
313 bus_size_t maxsegsz, bus_size_t boundary, int flags, bus_dmamap_t *dmamp)
314 {
315 struct arm32_bus_dmamap *map;
316 void *mapstore;
317
318 #ifdef DEBUG_DMA
319 printf("dmamap_create: t=%p size=%lx nseg=%x msegsz=%lx boundary=%lx"
320 " flags=%x\n", t, size, nsegments, maxsegsz, boundary, flags);
321 #endif /* DEBUG_DMA */
322
323 /*
324 * Allocate and initialize the DMA map. The end of the map
325 * is a variable-sized array of segments, so we allocate enough
326 * room for them in one shot.
327 *
328 * Note we don't preserve the WAITOK or NOWAIT flags. Preservation
329 * of ALLOCNOW notifies others that we've reserved these resources,
330 * and they are not to be freed.
331 *
332 * The bus_dmamap_t includes one bus_dma_segment_t, hence
333 * the (nsegments - 1).
334 */
335 const size_t mapsize = sizeof(struct arm32_bus_dmamap) +
336 (sizeof(bus_dma_segment_t) * (nsegments - 1));
337 const int zallocflags = (flags & BUS_DMA_NOWAIT) ? KM_NOSLEEP : KM_SLEEP;
338 if ((mapstore = kmem_intr_zalloc(mapsize, zallocflags)) == NULL)
339 return ENOMEM;
340
341 map = (struct arm32_bus_dmamap *)mapstore;
342 map->_dm_size = size;
343 map->_dm_segcnt = nsegments;
344 map->_dm_maxmaxsegsz = maxsegsz;
345 map->_dm_boundary = boundary;
346 map->_dm_flags = flags & ~(BUS_DMA_WAITOK|BUS_DMA_NOWAIT);
347 map->_dm_origbuf = NULL;
348 map->_dm_buftype = _BUS_DMA_BUFTYPE_INVALID;
349 map->_dm_vmspace = vmspace_kernel();
350 map->_dm_cookie = NULL;
351 map->dm_maxsegsz = maxsegsz;
352 map->dm_mapsize = 0; /* no valid mappings */
353 map->dm_nsegs = 0;
354
355 #ifdef _ARM32_NEED_BUS_DMA_BOUNCE
356 struct arm32_bus_dma_cookie *cookie;
357 int cookieflags;
358 void *cookiestore;
359 int error;
360
361 cookieflags = 0;
362
363 if (t->_may_bounce != NULL) {
364 error = (*t->_may_bounce)(t, map, flags, &cookieflags);
365 if (error != 0)
366 goto out;
367 }
368
369 if (t->_ranges != NULL)
370 cookieflags |= _BUS_DMA_MIGHT_NEED_BOUNCE;
371
372 if ((cookieflags & _BUS_DMA_MIGHT_NEED_BOUNCE) == 0) {
373 STAT_INCR(creates);
374 *dmamp = map;
375 return 0;
376 }
377
378 const size_t cookiesize = sizeof(struct arm32_bus_dma_cookie) +
379 (sizeof(bus_dma_segment_t) * map->_dm_segcnt);
380
381 /*
382 * Allocate our cookie.
383 */
384 if ((cookiestore = kmem_intr_zalloc(cookiesize, zallocflags)) == NULL) {
385 error = ENOMEM;
386 goto out;
387 }
388 cookie = (struct arm32_bus_dma_cookie *)cookiestore;
389 cookie->id_flags = cookieflags;
390 map->_dm_cookie = cookie;
391 STAT_INCR(bounced_creates);
392
393 error = _bus_dma_alloc_bouncebuf(t, map, size, flags);
394 out:
395 if (error)
396 _bus_dmamap_destroy(t, map);
397 else
398 *dmamp = map;
399 #else
400 *dmamp = map;
401 STAT_INCR(creates);
402 #endif /* _ARM32_NEED_BUS_DMA_BOUNCE */
403 #ifdef DEBUG_DMA
404 printf("dmamap_create:map=%p\n", map);
405 #endif /* DEBUG_DMA */
406 return 0;
407 }
408
409 /*
410 * Common function for DMA map destruction. May be called by bus-specific
411 * DMA map destruction functions.
412 */
413 void
414 _bus_dmamap_destroy(bus_dma_tag_t t, bus_dmamap_t map)
415 {
416
417 #ifdef DEBUG_DMA
418 printf("dmamap_destroy: t=%p map=%p\n", t, map);
419 #endif /* DEBUG_DMA */
420 #ifdef _ARM32_NEED_BUS_DMA_BOUNCE
421 struct arm32_bus_dma_cookie *cookie = map->_dm_cookie;
422
423 /*
424 * Free any bounce pages this map might hold.
425 */
426 if (cookie != NULL) {
427 const size_t cookiesize = sizeof(struct arm32_bus_dma_cookie) +
428 (sizeof(bus_dma_segment_t) * map->_dm_segcnt);
429
430 if (cookie->id_flags & _BUS_DMA_IS_BOUNCING)
431 STAT_INCR(bounced_unloads);
432 map->dm_nsegs = 0;
433 if (cookie->id_flags & _BUS_DMA_HAS_BOUNCE)
434 _bus_dma_free_bouncebuf(t, map);
435 STAT_INCR(bounced_destroys);
436 kmem_intr_free(cookie, cookiesize);
437 } else
438 #endif
439 STAT_INCR(destroys);
440
441 if (map->dm_nsegs > 0)
442 STAT_INCR(unloads);
443
444 const size_t mapsize = sizeof(struct arm32_bus_dmamap) +
445 (sizeof(bus_dma_segment_t) * (map->_dm_segcnt - 1));
446 kmem_intr_free(map, mapsize);
447 }
448
449 /*
450 * Common function for loading a DMA map with a linear buffer. May
451 * be called by bus-specific DMA map load functions.
452 */
453 int
454 _bus_dmamap_load(bus_dma_tag_t t, bus_dmamap_t map, void *buf,
455 bus_size_t buflen, struct proc *p, int flags)
456 {
457 struct vmspace *vm;
458 int error;
459
460 #ifdef DEBUG_DMA
461 printf("dmamap_load: t=%p map=%p buf=%p len=%lx p=%p f=%d\n",
462 t, map, buf, buflen, p, flags);
463 #endif /* DEBUG_DMA */
464
465 if (map->dm_nsegs > 0) {
466 #ifdef _ARM32_NEED_BUS_DMA_BOUNCE
467 struct arm32_bus_dma_cookie *cookie = map->_dm_cookie;
468 if (cookie != NULL) {
469 if (cookie->id_flags & _BUS_DMA_IS_BOUNCING) {
470 STAT_INCR(bounced_unloads);
471 cookie->id_flags &= ~_BUS_DMA_IS_BOUNCING;
472 map->_dm_flags &= ~_BUS_DMAMAP_IS_BOUNCING;
473 }
474 } else
475 #endif
476 STAT_INCR(unloads);
477 }
478
479 /*
480 * Make sure that on error condition we return "no valid mappings".
481 */
482 map->dm_mapsize = 0;
483 map->dm_nsegs = 0;
484 map->_dm_buftype = _BUS_DMA_BUFTYPE_INVALID;
485 KASSERTMSG(map->dm_maxsegsz <= map->_dm_maxmaxsegsz,
486 "dm_maxsegsz %lu _dm_maxmaxsegsz %lu",
487 map->dm_maxsegsz, map->_dm_maxmaxsegsz);
488
489 if (buflen > map->_dm_size)
490 return EINVAL;
491
492 if (p != NULL) {
493 vm = p->p_vmspace;
494 } else {
495 vm = vmspace_kernel();
496 }
497
498 /* _bus_dmamap_load_buffer() clears this if we're not... */
499 map->_dm_flags |= _BUS_DMAMAP_COHERENT;
500
501 error = _bus_dmamap_load_buffer(t, map, buf, buflen, vm, flags);
502 if (error == 0) {
503 map->dm_mapsize = buflen;
504 map->_dm_vmspace = vm;
505 map->_dm_origbuf = buf;
506 map->_dm_buftype = _BUS_DMA_BUFTYPE_LINEAR;
507 if (map->_dm_flags & _BUS_DMAMAP_COHERENT) {
508 STAT_INCR(coherent_loads);
509 } else {
510 STAT_INCR(loads);
511 }
512 return 0;
513 }
514 #ifdef _ARM32_NEED_BUS_DMA_BOUNCE
515 struct arm32_bus_dma_cookie * const cookie = map->_dm_cookie;
516 if (cookie != NULL && (cookie->id_flags & _BUS_DMA_MIGHT_NEED_BOUNCE)) {
517 error = _bus_dma_load_bouncebuf(t, map, buf, buflen,
518 _BUS_DMA_BUFTYPE_LINEAR, flags);
519 }
520 #endif
521 return error;
522 }
523
524 /*
525 * Like _bus_dmamap_load(), but for mbufs.
526 */
527 int
528 _bus_dmamap_load_mbuf(bus_dma_tag_t t, bus_dmamap_t map, struct mbuf *m0,
529 int flags)
530 {
531 struct mbuf *m;
532 int error;
533
534 #ifdef DEBUG_DMA
535 printf("dmamap_load_mbuf: t=%p map=%p m0=%p f=%d\n",
536 t, map, m0, flags);
537 #endif /* DEBUG_DMA */
538
539 if (map->dm_nsegs > 0) {
540 #ifdef _ARM32_NEED_BUS_DMA_BOUNCE
541 struct arm32_bus_dma_cookie *cookie = map->_dm_cookie;
542 if (cookie != NULL) {
543 if (cookie->id_flags & _BUS_DMA_IS_BOUNCING) {
544 STAT_INCR(bounced_unloads);
545 cookie->id_flags &= ~_BUS_DMA_IS_BOUNCING;
546 map->_dm_flags &= ~_BUS_DMAMAP_IS_BOUNCING;
547 }
548 } else
549 #endif
550 STAT_INCR(unloads);
551 }
552
553 /*
554 * Make sure that on error condition we return "no valid mappings."
555 */
556 map->dm_mapsize = 0;
557 map->dm_nsegs = 0;
558 map->_dm_buftype = _BUS_DMA_BUFTYPE_INVALID;
559 KASSERTMSG(map->dm_maxsegsz <= map->_dm_maxmaxsegsz,
560 "dm_maxsegsz %lu _dm_maxmaxsegsz %lu",
561 map->dm_maxsegsz, map->_dm_maxmaxsegsz);
562
563 KASSERT(m0->m_flags & M_PKTHDR);
564
565 if (m0->m_pkthdr.len > map->_dm_size)
566 return EINVAL;
567
568 /* _bus_dmamap_load_paddr() clears this if we're not... */
569 map->_dm_flags |= _BUS_DMAMAP_COHERENT;
570
571 error = 0;
572 for (m = m0; m != NULL && error == 0; m = m->m_next) {
573 int offset;
574 int remainbytes;
575 const struct vm_page * const *pgs;
576 paddr_t paddr;
577 int size;
578
579 if (m->m_len == 0)
580 continue;
581 /*
582 * Don't allow reads in read-only mbufs.
583 */
584 if (M_ROMAP(m) && (flags & BUS_DMA_READ)) {
585 error = EFAULT;
586 break;
587 }
588 switch (m->m_flags & (M_EXT|M_EXT_CLUSTER|M_EXT_PAGES)) {
589 case M_EXT|M_EXT_CLUSTER:
590 /* XXX KDASSERT */
591 KASSERT(m->m_ext.ext_paddr != M_PADDR_INVALID);
592 paddr = m->m_ext.ext_paddr +
593 (m->m_data - m->m_ext.ext_buf);
594 size = m->m_len;
595 error = _bus_dmamap_load_paddr(t, map, paddr, size,
596 false);
597 break;
598
599 case M_EXT|M_EXT_PAGES:
600 KASSERT(m->m_ext.ext_buf <= m->m_data);
601 KASSERT(m->m_data <=
602 m->m_ext.ext_buf + m->m_ext.ext_size);
603
604 offset = (vaddr_t)m->m_data -
605 trunc_page((vaddr_t)m->m_ext.ext_buf);
606 remainbytes = m->m_len;
607
608 /* skip uninteresting pages */
609 pgs = (const struct vm_page * const *)
610 m->m_ext.ext_pgs + (offset >> PAGE_SHIFT);
611
612 offset &= PAGE_MASK; /* offset in the first page */
613
614 /* load each page */
615 while (remainbytes > 0) {
616 const struct vm_page *pg;
617
618 size = MIN(remainbytes, PAGE_SIZE - offset);
619
620 pg = *pgs++;
621 KASSERT(pg);
622 paddr = VM_PAGE_TO_PHYS(pg) + offset;
623
624 error = _bus_dmamap_load_paddr(t, map,
625 paddr, size, false);
626 if (error)
627 break;
628 offset = 0;
629 remainbytes -= size;
630 }
631 break;
632
633 case 0:
634 paddr = m->m_paddr + M_BUFOFFSET(m) +
635 (m->m_data - M_BUFADDR(m));
636 size = m->m_len;
637 error = _bus_dmamap_load_paddr(t, map, paddr, size,
638 false);
639 break;
640
641 default:
642 error = _bus_dmamap_load_buffer(t, map, m->m_data,
643 m->m_len, vmspace_kernel(), flags);
644 }
645 }
646 if (error == 0) {
647 map->dm_mapsize = m0->m_pkthdr.len;
648 map->_dm_origbuf = m0;
649 map->_dm_buftype = _BUS_DMA_BUFTYPE_MBUF;
650 map->_dm_vmspace = vmspace_kernel(); /* always kernel */
651 if (map->_dm_flags & _BUS_DMAMAP_COHERENT) {
652 STAT_INCR(coherent_loads);
653 } else {
654 STAT_INCR(loads);
655 }
656 return 0;
657 }
658 #ifdef _ARM32_NEED_BUS_DMA_BOUNCE
659 struct arm32_bus_dma_cookie * const cookie = map->_dm_cookie;
660 if (cookie != NULL && (cookie->id_flags & _BUS_DMA_MIGHT_NEED_BOUNCE)) {
661 error = _bus_dma_load_bouncebuf(t, map, m0, m0->m_pkthdr.len,
662 _BUS_DMA_BUFTYPE_MBUF, flags);
663 }
664 #endif
665 return error;
666 }
667
668 /*
669 * Like _bus_dmamap_load(), but for uios.
670 */
671 int
672 _bus_dmamap_load_uio(bus_dma_tag_t t, bus_dmamap_t map, struct uio *uio,
673 int flags)
674 {
675 bus_size_t minlen, resid;
676 struct iovec *iov;
677 void *addr;
678 int i, error;
679
680 /*
681 * Make sure that on error condition we return "no valid mappings."
682 */
683 map->dm_mapsize = 0;
684 map->dm_nsegs = 0;
685 KASSERTMSG(map->dm_maxsegsz <= map->_dm_maxmaxsegsz,
686 "dm_maxsegsz %lu _dm_maxmaxsegsz %lu",
687 map->dm_maxsegsz, map->_dm_maxmaxsegsz);
688
689 resid = uio->uio_resid;
690 iov = uio->uio_iov;
691
692 /* _bus_dmamap_load_buffer() clears this if we're not... */
693 map->_dm_flags |= _BUS_DMAMAP_COHERENT;
694
695 error = 0;
696 for (i = 0; i < uio->uio_iovcnt && resid != 0 && error == 0; i++) {
697 /*
698 * Now at the first iovec to load. Load each iovec
699 * until we have exhausted the residual count.
700 */
701 minlen = resid < iov[i].iov_len ? resid : iov[i].iov_len;
702 addr = (void *)iov[i].iov_base;
703
704 error = _bus_dmamap_load_buffer(t, map, addr, minlen,
705 uio->uio_vmspace, flags);
706
707 resid -= minlen;
708 }
709 if (error == 0) {
710 map->dm_mapsize = uio->uio_resid;
711 map->_dm_origbuf = uio;
712 map->_dm_buftype = _BUS_DMA_BUFTYPE_UIO;
713 map->_dm_vmspace = uio->uio_vmspace;
714 if (map->_dm_flags & _BUS_DMAMAP_COHERENT) {
715 STAT_INCR(coherent_loads);
716 } else {
717 STAT_INCR(loads);
718 }
719 }
720 return error;
721 }
722
723 /*
724 * Like _bus_dmamap_load(), but for raw memory allocated with
725 * bus_dmamem_alloc().
726 */
727 int
728 _bus_dmamap_load_raw(bus_dma_tag_t t, bus_dmamap_t map,
729 bus_dma_segment_t *segs, int nsegs, bus_size_t size0, int flags)
730 {
731
732 bus_size_t size;
733 int i, error = 0;
734
735 /*
736 * Make sure that on error conditions we return "no valid mappings."
737 */
738 map->dm_mapsize = 0;
739 map->dm_nsegs = 0;
740 KASSERT(map->dm_maxsegsz <= map->_dm_maxmaxsegsz);
741
742 if (size0 > map->_dm_size)
743 return EINVAL;
744
745 for (i = 0, size = size0; i < nsegs && size > 0; i++) {
746 bus_dma_segment_t *ds = &segs[i];
747 bus_size_t sgsize;
748
749 sgsize = MIN(ds->ds_len, size);
750 if (sgsize == 0)
751 continue;
752 error = _bus_dmamap_load_paddr(t, map, ds->ds_addr,
753 sgsize, false);
754 if (error != 0)
755 break;
756 size -= sgsize;
757 }
758
759 if (error != 0) {
760 map->dm_mapsize = 0;
761 map->dm_nsegs = 0;
762 return error;
763 }
764
765 /* XXX TBD bounce */
766
767 map->dm_mapsize = size0;
768 return 0;
769 }
770
771 /*
772 * Common function for unloading a DMA map. May be called by
773 * bus-specific DMA map unload functions.
774 */
775 void
776 _bus_dmamap_unload(bus_dma_tag_t t, bus_dmamap_t map)
777 {
778
779 #ifdef DEBUG_DMA
780 printf("dmamap_unload: t=%p map=%p\n", t, map);
781 #endif /* DEBUG_DMA */
782
783 /*
784 * No resources to free; just mark the mappings as
785 * invalid.
786 */
787 map->dm_mapsize = 0;
788 map->dm_nsegs = 0;
789 map->_dm_origbuf = NULL;
790 map->_dm_buftype = _BUS_DMA_BUFTYPE_INVALID;
791 map->_dm_vmspace = NULL;
792 }
793
794 static void
795 _bus_dmamap_sync_segment(vaddr_t va, paddr_t pa, vsize_t len, int ops,
796 bool readonly_p)
797 {
798
799 #if defined(ARM_MMU_EXTENDED) || defined(CPU_CORTEX)
800 /*
801 * No optimisations are available for readonly mbufs on armv6+, so
802 * assume it's not readonly from here on.
803 *
804 * See the comment in _bus_dmamap_sync_mbuf
805 */
806 readonly_p = false;
807 #endif
808
809 KASSERTMSG((va & PAGE_MASK) == (pa & PAGE_MASK),
810 "va %#lx pa %#lx", va, pa);
811 #if 0
812 printf("sync_segment: va=%#lx pa=%#lx len=%#lx ops=%#x ro=%d\n",
813 va, pa, len, ops, readonly_p);
814 #endif
815
816 switch (ops) {
817 case BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE:
818 if (!readonly_p) {
819 STAT_INCR(sync_prereadwrite);
820 cpu_dcache_wbinv_range(va, len);
821 cpu_sdcache_wbinv_range(va, pa, len);
822 break;
823 }
824 /* FALLTHROUGH */
825
826 case BUS_DMASYNC_PREREAD: {
827 const size_t line_size = arm_dcache_align;
828 const size_t line_mask = arm_dcache_align_mask;
829 vsize_t misalignment = va & line_mask;
830 if (misalignment) {
831 va -= misalignment;
832 pa -= misalignment;
833 len += misalignment;
834 STAT_INCR(sync_preread_begin);
835 cpu_dcache_wbinv_range(va, line_size);
836 cpu_sdcache_wbinv_range(va, pa, line_size);
837 if (len <= line_size)
838 break;
839 va += line_size;
840 pa += line_size;
841 len -= line_size;
842 }
843 misalignment = len & line_mask;
844 len -= misalignment;
845 if (len > 0) {
846 STAT_INCR(sync_preread);
847 cpu_dcache_inv_range(va, len);
848 cpu_sdcache_inv_range(va, pa, len);
849 }
850 if (misalignment) {
851 va += len;
852 pa += len;
853 STAT_INCR(sync_preread_tail);
854 cpu_dcache_wbinv_range(va, line_size);
855 cpu_sdcache_wbinv_range(va, pa, line_size);
856 }
857 break;
858 }
859
860 case BUS_DMASYNC_PREWRITE:
861 STAT_INCR(sync_prewrite);
862 cpu_dcache_wb_range(va, len);
863 cpu_sdcache_wb_range(va, pa, len);
864 break;
865
866 #ifdef CPU_CORTEX
867 /*
868 * Cortex CPUs can do speculative loads so we need to clean the cache
869 * after a DMA read to deal with any speculatively loaded cache lines.
870 * Since these can't be dirty, we can just invalidate them and don't
871 * have to worry about having to write back their contents.
872 */
873 case BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE:
874 STAT_INCR(sync_postreadwrite);
875 cpu_dcache_inv_range(va, len);
876 cpu_sdcache_inv_range(va, pa, len);
877 break;
878 case BUS_DMASYNC_POSTREAD:
879 STAT_INCR(sync_postread);
880 cpu_dcache_inv_range(va, len);
881 cpu_sdcache_inv_range(va, pa, len);
882 break;
883 #endif
884 }
885 }
886
887 static inline void
888 _bus_dmamap_sync_linear(bus_dma_tag_t t, bus_dmamap_t map, bus_addr_t offset,
889 bus_size_t len, int ops)
890 {
891 bus_dma_segment_t *ds = map->dm_segs;
892 vaddr_t va = (vaddr_t) map->_dm_origbuf;
893 #ifdef _ARM32_NEED_BUS_DMA_BOUNCE
894 if (map->_dm_flags & _BUS_DMAMAP_IS_BOUNCING) {
895 struct arm32_bus_dma_cookie * const cookie = map->_dm_cookie;
896 va = (vaddr_t) cookie->id_bouncebuf;
897 }
898 #endif
899
900 while (len > 0) {
901 while (offset >= ds->ds_len) {
902 offset -= ds->ds_len;
903 va += ds->ds_len;
904 ds++;
905 }
906
907 paddr_t pa = _bus_dma_busaddr_to_paddr(t, ds->ds_addr + offset);
908 size_t seglen = uimin(len, ds->ds_len - offset);
909
910 if ((ds->_ds_flags & _BUS_DMAMAP_COHERENT) == 0)
911 _bus_dmamap_sync_segment(va + offset, pa, seglen, ops,
912 false);
913
914 offset += seglen;
915 len -= seglen;
916 }
917 }
918
919 static inline void
920 _bus_dmamap_sync_mbuf(bus_dma_tag_t t, bus_dmamap_t map, bus_size_t offset,
921 bus_size_t len, int ops)
922 {
923 bus_dma_segment_t *ds = map->dm_segs;
924 struct mbuf *m = map->_dm_origbuf;
925 bus_size_t voff = offset;
926 bus_size_t ds_off = offset;
927
928 while (len > 0) {
929 /* Find the current dma segment */
930 while (ds_off >= ds->ds_len) {
931 ds_off -= ds->ds_len;
932 ds++;
933 }
934 /* Find the current mbuf. */
935 while (voff >= m->m_len) {
936 voff -= m->m_len;
937 m = m->m_next;
938 }
939
940 /*
941 * Now at the first mbuf to sync; nail each one until
942 * we have exhausted the length.
943 */
944 vsize_t seglen = uimin(len, uimin(m->m_len - voff, ds->ds_len - ds_off));
945 vaddr_t va = mtod(m, vaddr_t) + voff;
946 paddr_t pa = _bus_dma_busaddr_to_paddr(t, ds->ds_addr + ds_off);
947
948 /*
949 * We can save a lot of work here if we know the mapping
950 * is read-only at the MMU and we aren't using the armv6+
951 * MMU:
952 *
953 * If a mapping is read-only, no dirty cache blocks will
954 * exist for it. If a writable mapping was made read-only,
955 * we know any dirty cache lines for the range will have
956 * been cleaned for us already. Therefore, if the upper
957 * layer can tell us we have a read-only mapping, we can
958 * skip all cache cleaning.
959 *
960 * NOTE: This only works if we know the pmap cleans pages
961 * before making a read-write -> read-only transition. If
962 * this ever becomes non-true (e.g. Physically Indexed
963 * cache), this will have to be revisited.
964 */
965
966 if ((ds->_ds_flags & _BUS_DMAMAP_COHERENT) == 0) {
967 /*
968 * If we are doing preread (DMAing into the mbuf),
969 * this mbuf better not be readonly,
970 */
971 KASSERT(!(ops & BUS_DMASYNC_PREREAD) || !M_ROMAP(m));
972 _bus_dmamap_sync_segment(va, pa, seglen, ops,
973 M_ROMAP(m));
974 }
975 voff += seglen;
976 ds_off += seglen;
977 len -= seglen;
978 }
979 }
980
981 static inline void
982 _bus_dmamap_sync_uio(bus_dma_tag_t t, bus_dmamap_t map, bus_addr_t offset,
983 bus_size_t len, int ops)
984 {
985 bus_dma_segment_t *ds = map->dm_segs;
986 struct uio *uio = map->_dm_origbuf;
987 struct iovec *iov = uio->uio_iov;
988 bus_size_t voff = offset;
989 bus_size_t ds_off = offset;
990
991 while (len > 0) {
992 /* Find the current dma segment */
993 while (ds_off >= ds->ds_len) {
994 ds_off -= ds->ds_len;
995 ds++;
996 }
997
998 /* Find the current iovec. */
999 while (voff >= iov->iov_len) {
1000 voff -= iov->iov_len;
1001 iov++;
1002 }
1003
1004 /*
1005 * Now at the first iovec to sync; nail each one until
1006 * we have exhausted the length.
1007 */
1008 vsize_t seglen = uimin(len, uimin(iov->iov_len - voff, ds->ds_len - ds_off));
1009 vaddr_t va = (vaddr_t) iov->iov_base + voff;
1010 paddr_t pa = _bus_dma_busaddr_to_paddr(t, ds->ds_addr + ds_off);
1011
1012 if ((ds->_ds_flags & _BUS_DMAMAP_COHERENT) == 0)
1013 _bus_dmamap_sync_segment(va, pa, seglen, ops, false);
1014
1015 voff += seglen;
1016 ds_off += seglen;
1017 len -= seglen;
1018 }
1019 }
1020
1021 /*
1022 * Common function for DMA map synchronization. May be called
1023 * by bus-specific DMA map synchronization functions.
1024 *
1025 * XXX Should have separate versions for write-through vs.
1026 * XXX write-back caches. We currently assume write-back
1027 * XXX here, which is not as efficient as it could be for
1028 * XXX the write-through case.
1029 */
1030 void
1031 _bus_dmamap_sync(bus_dma_tag_t t, bus_dmamap_t map, bus_addr_t offset,
1032 bus_size_t len, int ops)
1033 {
1034 #ifdef DEBUG_DMA
1035 printf("dmamap_sync: t=%p map=%p offset=%lx len=%lx ops=%x\n",
1036 t, map, offset, len, ops);
1037 #endif /* DEBUG_DMA */
1038
1039 /*
1040 * Mixing of PRE and POST operations is not allowed.
1041 */
1042 if ((ops & (BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE)) != 0 &&
1043 (ops & (BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE)) != 0)
1044 panic("_bus_dmamap_sync: mix PRE and POST");
1045
1046 KASSERTMSG(offset < map->dm_mapsize,
1047 "offset %lu mapsize %lu",
1048 offset, map->dm_mapsize);
1049 KASSERTMSG(len > 0 && offset + len <= map->dm_mapsize,
1050 "len %lu offset %lu mapsize %lu",
1051 len, offset, map->dm_mapsize);
1052
1053 /*
1054 * For a virtually-indexed write-back cache, we need
1055 * to do the following things:
1056 *
1057 * PREREAD -- Invalidate the D-cache. We do this
1058 * here in case a write-back is required by the back-end.
1059 *
1060 * PREWRITE -- Write-back the D-cache. Note that if
1061 * we are doing a PREREAD|PREWRITE, we can collapse
1062 * the whole thing into a single Wb-Inv.
1063 *
1064 * POSTREAD -- Re-invalidate the D-cache in case speculative
1065 * memory accesses caused cachelines to become valid with now
1066 * invalid data.
1067 *
1068 * POSTWRITE -- Nothing.
1069 */
1070 #ifdef _ARM32_NEED_BUS_DMA_BOUNCE
1071 const bool bouncing = (map->_dm_flags & _BUS_DMAMAP_IS_BOUNCING);
1072 #else
1073 const bool bouncing = false;
1074 #endif
1075
1076 const int pre_ops = ops & (BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1077 #ifdef CPU_CORTEX
1078 const int post_ops = ops & (BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1079 #else
1080 const int post_ops = 0;
1081 #endif
1082 if (!bouncing) {
1083 if (pre_ops == 0 && post_ops == BUS_DMASYNC_POSTWRITE) {
1084 STAT_INCR(sync_postwrite);
1085 return;
1086 } else if (pre_ops == 0 && post_ops == 0) {
1087 return;
1088 }
1089 }
1090 KASSERTMSG(bouncing || pre_ops != 0 || (post_ops & BUS_DMASYNC_POSTREAD),
1091 "pre_ops %#x post_ops %#x", pre_ops, post_ops);
1092 #ifdef _ARM32_NEED_BUS_DMA_BOUNCE
1093 if (bouncing && (ops & BUS_DMASYNC_PREWRITE)) {
1094 struct arm32_bus_dma_cookie * const cookie = map->_dm_cookie;
1095 STAT_INCR(write_bounces);
1096 char * const dataptr = (char *)cookie->id_bouncebuf + offset;
1097 /*
1098 * Copy the caller's buffer to the bounce buffer.
1099 */
1100 switch (map->_dm_buftype) {
1101 case _BUS_DMA_BUFTYPE_LINEAR:
1102 memcpy(dataptr, cookie->id_origlinearbuf + offset, len);
1103 break;
1104 case _BUS_DMA_BUFTYPE_MBUF:
1105 m_copydata(cookie->id_origmbuf, offset, len, dataptr);
1106 break;
1107 case _BUS_DMA_BUFTYPE_UIO:
1108 _bus_dma_uiomove(dataptr, cookie->id_origuio, len, UIO_WRITE);
1109 break;
1110 #ifdef DIAGNOSTIC
1111 case _BUS_DMA_BUFTYPE_RAW:
1112 panic("_bus_dmamap_sync(pre): _BUS_DMA_BUFTYPE_RAW");
1113 break;
1114
1115 case _BUS_DMA_BUFTYPE_INVALID:
1116 panic("_bus_dmamap_sync(pre): _BUS_DMA_BUFTYPE_INVALID");
1117 break;
1118
1119 default:
1120 panic("_bus_dmamap_sync(pre): map %p: unknown buffer type %d\n",
1121 map, map->_dm_buftype);
1122 break;
1123 #endif /* DIAGNOSTIC */
1124 }
1125 }
1126 #endif /* _ARM32_NEED_BUS_DMA_BOUNCE */
1127
1128 /* Skip cache frobbing if mapping was COHERENT. */
1129 if (!bouncing && (map->_dm_flags & _BUS_DMAMAP_COHERENT)) {
1130 /* Drain the write buffer. */
1131 if (pre_ops & BUS_DMASYNC_PREWRITE)
1132 cpu_drain_writebuf();
1133 return;
1134 }
1135
1136 #ifdef _ARM32_NEED_BUS_DMA_BOUNCE
1137 if (bouncing && ((map->_dm_flags & _BUS_DMAMAP_COHERENT) || pre_ops == 0)) {
1138 goto bounce_it;
1139 }
1140 #endif /* _ARM32_NEED_BUS_DMA_BOUNCE */
1141
1142 #ifndef ARM_MMU_EXTENDED
1143 /*
1144 * If the mapping belongs to a non-kernel vmspace, and the
1145 * vmspace has not been active since the last time a full
1146 * cache flush was performed, we don't need to do anything.
1147 */
1148 if (__predict_false(!VMSPACE_IS_KERNEL_P(map->_dm_vmspace) &&
1149 vm_map_pmap(&map->_dm_vmspace->vm_map)->pm_cstate.cs_cache_d == 0))
1150 return;
1151 #endif
1152
1153 int buftype = map->_dm_buftype;
1154 #ifdef _ARM32_NEED_BUS_DMA_BOUNCE
1155 if (bouncing) {
1156 buftype = _BUS_DMA_BUFTYPE_LINEAR;
1157 }
1158 #endif
1159
1160 switch (buftype) {
1161 case _BUS_DMA_BUFTYPE_LINEAR:
1162 _bus_dmamap_sync_linear(t, map, offset, len, ops);
1163 break;
1164
1165 case _BUS_DMA_BUFTYPE_MBUF:
1166 _bus_dmamap_sync_mbuf(t, map, offset, len, ops);
1167 break;
1168
1169 case _BUS_DMA_BUFTYPE_UIO:
1170 _bus_dmamap_sync_uio(t, map, offset, len, ops);
1171 break;
1172
1173 case _BUS_DMA_BUFTYPE_RAW:
1174 panic("_bus_dmamap_sync: _BUS_DMA_BUFTYPE_RAW");
1175 break;
1176
1177 case _BUS_DMA_BUFTYPE_INVALID:
1178 panic("_bus_dmamap_sync: _BUS_DMA_BUFTYPE_INVALID");
1179 break;
1180
1181 default:
1182 panic("_bus_dmamap_sync: map %p: unknown buffer type %d\n",
1183 map, map->_dm_buftype);
1184 }
1185
1186 /* Drain the write buffer. */
1187 cpu_drain_writebuf();
1188
1189 #ifdef _ARM32_NEED_BUS_DMA_BOUNCE
1190 bounce_it:
1191 if (!bouncing || (ops & BUS_DMASYNC_POSTREAD) == 0)
1192 return;
1193
1194 struct arm32_bus_dma_cookie * const cookie = map->_dm_cookie;
1195 char * const dataptr = (char *)cookie->id_bouncebuf + offset;
1196 STAT_INCR(read_bounces);
1197 /*
1198 * Copy the bounce buffer to the caller's buffer.
1199 */
1200 switch (map->_dm_buftype) {
1201 case _BUS_DMA_BUFTYPE_LINEAR:
1202 memcpy(cookie->id_origlinearbuf + offset, dataptr, len);
1203 break;
1204
1205 case _BUS_DMA_BUFTYPE_MBUF:
1206 m_copyback(cookie->id_origmbuf, offset, len, dataptr);
1207 break;
1208
1209 case _BUS_DMA_BUFTYPE_UIO:
1210 _bus_dma_uiomove(dataptr, cookie->id_origuio, len, UIO_READ);
1211 break;
1212 #ifdef DIAGNOSTIC
1213 case _BUS_DMA_BUFTYPE_RAW:
1214 panic("_bus_dmamap_sync(post): _BUS_DMA_BUFTYPE_RAW");
1215 break;
1216
1217 case _BUS_DMA_BUFTYPE_INVALID:
1218 panic("_bus_dmamap_sync(post): _BUS_DMA_BUFTYPE_INVALID");
1219 break;
1220
1221 default:
1222 panic("_bus_dmamap_sync(post): map %p: unknown buffer type %d\n",
1223 map, map->_dm_buftype);
1224 break;
1225 #endif
1226 }
1227 #endif /* _ARM32_NEED_BUS_DMA_BOUNCE */
1228 }
1229
1230 /*
1231 * Common function for DMA-safe memory allocation. May be called
1232 * by bus-specific DMA memory allocation functions.
1233 */
1234
1235 extern paddr_t physical_start;
1236 extern paddr_t physical_end;
1237
1238 int
1239 _bus_dmamem_alloc(bus_dma_tag_t t, bus_size_t size, bus_size_t alignment,
1240 bus_size_t boundary, bus_dma_segment_t *segs, int nsegs, int *rsegs,
1241 int flags)
1242 {
1243 struct arm32_dma_range *dr;
1244 int error, i;
1245
1246 #ifdef DEBUG_DMA
1247 printf("dmamem_alloc t=%p size=%lx align=%lx boundary=%lx "
1248 "segs=%p nsegs=%x rsegs=%p flags=%x\n", t, size, alignment,
1249 boundary, segs, nsegs, rsegs, flags);
1250 #endif
1251
1252 if ((dr = t->_ranges) != NULL) {
1253 error = ENOMEM;
1254 for (i = 0; i < t->_nranges; i++, dr++) {
1255 if (dr->dr_len == 0
1256 || (dr->dr_flags & _BUS_DMAMAP_NOALLOC))
1257 continue;
1258 error = _bus_dmamem_alloc_range(t, size, alignment,
1259 boundary, segs, nsegs, rsegs, flags,
1260 trunc_page(dr->dr_sysbase),
1261 trunc_page(dr->dr_sysbase + dr->dr_len));
1262 if (error == 0)
1263 break;
1264 }
1265 } else {
1266 error = _bus_dmamem_alloc_range(t, size, alignment, boundary,
1267 segs, nsegs, rsegs, flags, trunc_page(physical_start),
1268 trunc_page(physical_end));
1269 }
1270
1271 #ifdef DEBUG_DMA
1272 printf("dmamem_alloc: =%d\n", error);
1273 #endif
1274
1275 return error;
1276 }
1277
1278 /*
1279 * Common function for freeing DMA-safe memory. May be called by
1280 * bus-specific DMA memory free functions.
1281 */
1282 void
1283 _bus_dmamem_free(bus_dma_tag_t t, bus_dma_segment_t *segs, int nsegs)
1284 {
1285 struct vm_page *m;
1286 bus_addr_t addr;
1287 struct pglist mlist;
1288 int curseg;
1289
1290 #ifdef DEBUG_DMA
1291 printf("dmamem_free: t=%p segs=%p nsegs=%x\n", t, segs, nsegs);
1292 #endif /* DEBUG_DMA */
1293
1294 /*
1295 * Build a list of pages to free back to the VM system.
1296 */
1297 TAILQ_INIT(&mlist);
1298 for (curseg = 0; curseg < nsegs; curseg++) {
1299 for (addr = segs[curseg].ds_addr;
1300 addr < (segs[curseg].ds_addr + segs[curseg].ds_len);
1301 addr += PAGE_SIZE) {
1302 m = PHYS_TO_VM_PAGE(addr);
1303 TAILQ_INSERT_TAIL(&mlist, m, pageq.queue);
1304 }
1305 }
1306 uvm_pglistfree(&mlist);
1307 }
1308
1309 /*
1310 * Common function for mapping DMA-safe memory. May be called by
1311 * bus-specific DMA memory map functions.
1312 */
1313 int
1314 _bus_dmamem_map(bus_dma_tag_t t, bus_dma_segment_t *segs, int nsegs,
1315 size_t size, void **kvap, int flags)
1316 {
1317 vaddr_t va;
1318 paddr_t pa;
1319 int curseg;
1320 const uvm_flag_t kmflags = UVM_KMF_VAONLY
1321 | ((flags & BUS_DMA_NOWAIT) != 0 ? UVM_KMF_NOWAIT : 0);
1322 vsize_t align = 0;
1323
1324 #ifdef DEBUG_DMA
1325 printf("dmamem_map: t=%p segs=%p nsegs=%x size=%lx flags=%x\n", t,
1326 segs, nsegs, (unsigned long)size, flags);
1327 #endif /* DEBUG_DMA */
1328
1329 #ifdef PMAP_MAP_POOLPAGE
1330 /*
1331 * If all of memory is mapped, and we are mapping a single physically
1332 * contiguous area then this area is already mapped. Let's see if we
1333 * avoid having a separate mapping for it.
1334 */
1335 if (nsegs == 1) {
1336 /*
1337 * If this is a non-COHERENT mapping, then the existing kernel
1338 * mapping is already compatible with it.
1339 */
1340 bool direct_mapable = (flags & BUS_DMA_COHERENT) == 0;
1341 pa = segs[0].ds_addr;
1342
1343 /*
1344 * This is a COHERENT mapping which, unless this address is in
1345 * a COHERENT dma range, will not be compatible.
1346 */
1347 if (t->_ranges != NULL) {
1348 const struct arm32_dma_range * const dr =
1349 _bus_dma_paddr_inrange(t->_ranges, t->_nranges, pa);
1350 if (dr != NULL
1351 && (dr->dr_flags & _BUS_DMAMAP_COHERENT)) {
1352 direct_mapable = true;
1353 }
1354 }
1355
1356 #ifdef PMAP_NEED_ALLOC_POOLPAGE
1357 /*
1358 * The page can only be direct mapped if was allocated out
1359 * of the arm poolpage vm freelist.
1360 */
1361 uvm_physseg_t upm = uvm_physseg_find(atop(pa), NULL);
1362 KASSERT(uvm_physseg_valid_p(upm));
1363 if (direct_mapable) {
1364 direct_mapable =
1365 (arm_poolpage_vmfreelist == uvm_physseg_get_free_list(upm));
1366 }
1367 #endif
1368
1369 if (direct_mapable) {
1370 *kvap = (void *)PMAP_MAP_POOLPAGE(pa);
1371 #ifdef DEBUG_DMA
1372 printf("dmamem_map: =%p\n", *kvap);
1373 #endif /* DEBUG_DMA */
1374 return 0;
1375 }
1376 }
1377 #endif
1378
1379 size = round_page(size);
1380
1381 #ifdef PMAP_MAPSIZE1
1382 if (size >= PMAP_MAPSIZE1)
1383 align = PMAP_MAPSIZE1;
1384
1385 #ifdef PMAP_MAPSIZE2
1386
1387 #if PMAP_MAPSIZE1 > PMAP_MAPSIZE2
1388 #error PMAP_MAPSIZE1 must be smaller than PMAP_MAPSIZE2
1389 #endif
1390
1391 if (size >= PMAP_MAPSIZE2)
1392 align = PMAP_MAPSIZE2;
1393
1394 #ifdef PMAP_MAPSIZE3
1395
1396 #if PMAP_MAPSIZE2 > PMAP_MAPSIZE3
1397 #error PMAP_MAPSIZE2 must be smaller than PMAP_MAPSIZE3
1398 #endif
1399
1400 if (size >= PMAP_MAPSIZE3)
1401 align = PMAP_MAPSIZE3;
1402 #endif
1403 #endif
1404 #endif
1405
1406 va = uvm_km_alloc(kernel_map, size, align, kmflags);
1407 if (__predict_false(va == 0 && align > 0)) {
1408 align = 0;
1409 va = uvm_km_alloc(kernel_map, size, 0, kmflags);
1410 }
1411
1412 if (va == 0)
1413 return ENOMEM;
1414
1415 *kvap = (void *)va;
1416
1417 for (curseg = 0; curseg < nsegs; curseg++) {
1418 for (pa = segs[curseg].ds_addr;
1419 pa < (segs[curseg].ds_addr + segs[curseg].ds_len);
1420 pa += PAGE_SIZE, va += PAGE_SIZE, size -= PAGE_SIZE) {
1421 bool uncached = (flags & BUS_DMA_COHERENT);
1422 #ifdef DEBUG_DMA
1423 printf("wiring p%lx to v%lx", pa, va);
1424 #endif /* DEBUG_DMA */
1425 if (size == 0)
1426 panic("_bus_dmamem_map: size botch");
1427
1428 const struct arm32_dma_range * const dr =
1429 _bus_dma_paddr_inrange(t->_ranges, t->_nranges, pa);
1430 /*
1431 * If this dma region is coherent then there is
1432 * no need for an uncached mapping.
1433 */
1434 if (dr != NULL
1435 && (dr->dr_flags & _BUS_DMAMAP_COHERENT)) {
1436 uncached = false;
1437 }
1438
1439 pmap_kenter_pa(va, pa, VM_PROT_READ | VM_PROT_WRITE,
1440 PMAP_WIRED | (uncached ? PMAP_NOCACHE : 0));
1441 }
1442 }
1443 pmap_update(pmap_kernel());
1444 #ifdef DEBUG_DMA
1445 printf("dmamem_map: =%p\n", *kvap);
1446 #endif /* DEBUG_DMA */
1447 return 0;
1448 }
1449
1450 /*
1451 * Common function for unmapping DMA-safe memory. May be called by
1452 * bus-specific DMA memory unmapping functions.
1453 */
1454 void
1455 _bus_dmamem_unmap(bus_dma_tag_t t, void *kva, size_t size)
1456 {
1457
1458 #ifdef DEBUG_DMA
1459 printf("dmamem_unmap: t=%p kva=%p size=%zx\n", t, kva, size);
1460 #endif /* DEBUG_DMA */
1461 KASSERTMSG(((uintptr_t)kva & PAGE_MASK) == 0,
1462 "kva %p (%#"PRIxPTR")", kva, ((uintptr_t)kva & PAGE_MASK));
1463
1464 #ifdef __HAVE_MM_MD_DIRECT_MAPPED_PHYS
1465 /*
1466 * Check to see if this used direct mapped memory. Get its physical
1467 * address and try to map it. If the resultant matches the kva, then
1468 * it was and so we can just return since we have nothing to free up.
1469 */
1470 paddr_t pa;
1471 vaddr_t va;
1472 (void)pmap_extract(pmap_kernel(), (vaddr_t)kva, &pa);
1473 if (mm_md_direct_mapped_phys(pa, &va) && va == (vaddr_t)kva)
1474 return;
1475 #endif
1476
1477 size = round_page(size);
1478 pmap_kremove((vaddr_t)kva, size);
1479 pmap_update(pmap_kernel());
1480 uvm_km_free(kernel_map, (vaddr_t)kva, size, UVM_KMF_VAONLY);
1481 }
1482
1483 /*
1484 * Common functin for mmap(2)'ing DMA-safe memory. May be called by
1485 * bus-specific DMA mmap(2)'ing functions.
1486 */
1487 paddr_t
1488 _bus_dmamem_mmap(bus_dma_tag_t t, bus_dma_segment_t *segs, int nsegs,
1489 off_t off, int prot, int flags)
1490 {
1491 paddr_t map_flags;
1492 int i;
1493
1494 for (i = 0; i < nsegs; i++) {
1495 KASSERTMSG((off & PAGE_MASK) == 0,
1496 "off %#jx (%#x)", (uintmax_t)off, (int)off & PAGE_MASK);
1497 KASSERTMSG((segs[i].ds_addr & PAGE_MASK) == 0,
1498 "ds_addr %#lx (%#x)", segs[i].ds_addr,
1499 (int)segs[i].ds_addr & PAGE_MASK);
1500 KASSERTMSG((segs[i].ds_len & PAGE_MASK) == 0,
1501 "ds_len %#lx (%#x)", segs[i].ds_addr,
1502 (int)segs[i].ds_addr & PAGE_MASK);
1503 if (off >= segs[i].ds_len) {
1504 off -= segs[i].ds_len;
1505 continue;
1506 }
1507
1508 map_flags = 0;
1509 if (flags & BUS_DMA_PREFETCHABLE)
1510 map_flags |= ARM_MMAP_WRITECOMBINE;
1511
1512 return arm_btop((u_long)segs[i].ds_addr + off) | map_flags;
1513
1514 }
1515
1516 /* Page not found. */
1517 return -1;
1518 }
1519
1520 /**********************************************************************
1521 * DMA utility functions
1522 **********************************************************************/
1523
1524 /*
1525 * Utility function to load a linear buffer. lastaddrp holds state
1526 * between invocations (for multiple-buffer loads). segp contains
1527 * the starting segment on entrace, and the ending segment on exit.
1528 * first indicates if this is the first invocation of this function.
1529 */
1530 int
1531 _bus_dmamap_load_buffer(bus_dma_tag_t t, bus_dmamap_t map, void *buf,
1532 bus_size_t buflen, struct vmspace *vm, int flags)
1533 {
1534 bus_size_t sgsize;
1535 bus_addr_t curaddr;
1536 vaddr_t vaddr = (vaddr_t)buf;
1537 int error;
1538 pmap_t pmap;
1539
1540 #ifdef DEBUG_DMA
1541 printf("_bus_dmamem_load_buffer(buf=%p, len=%lx, flags=%d)\n",
1542 buf, buflen, flags);
1543 #endif /* DEBUG_DMA */
1544
1545 pmap = vm_map_pmap(&vm->vm_map);
1546
1547 while (buflen > 0) {
1548 /*
1549 * Get the physical address for this segment.
1550 *
1551 */
1552 bool coherent;
1553 pmap_extract_coherency(pmap, vaddr, &curaddr, &coherent);
1554
1555 KASSERTMSG((vaddr & PAGE_MASK) == (curaddr & PAGE_MASK),
1556 "va %#lx curaddr %#lx", vaddr, curaddr);
1557
1558 /*
1559 * Compute the segment size, and adjust counts.
1560 */
1561 sgsize = PAGE_SIZE - ((u_long)vaddr & PGOFSET);
1562 if (buflen < sgsize)
1563 sgsize = buflen;
1564
1565 error = _bus_dmamap_load_paddr(t, map, curaddr, sgsize,
1566 coherent);
1567 if (error)
1568 return error;
1569
1570 vaddr += sgsize;
1571 buflen -= sgsize;
1572 }
1573
1574 return 0;
1575 }
1576
1577 /*
1578 * Allocate physical memory from the given physical address range.
1579 * Called by DMA-safe memory allocation methods.
1580 */
1581 int
1582 _bus_dmamem_alloc_range(bus_dma_tag_t t, bus_size_t size, bus_size_t alignment,
1583 bus_size_t boundary, bus_dma_segment_t *segs, int nsegs, int *rsegs,
1584 int flags, paddr_t low, paddr_t high)
1585 {
1586 paddr_t curaddr, lastaddr;
1587 struct vm_page *m;
1588 struct pglist mlist;
1589 int curseg, error;
1590
1591 KASSERTMSG(boundary == 0 || (boundary & (boundary - 1)) == 0,
1592 "invalid boundary %#lx", boundary);
1593
1594 #ifdef DEBUG_DMA
1595 printf("alloc_range: t=%p size=%lx align=%lx boundary=%lx segs=%p nsegs=%x rsegs=%p flags=%x lo=%lx hi=%lx\n",
1596 t, size, alignment, boundary, segs, nsegs, rsegs, flags, low, high);
1597 #endif /* DEBUG_DMA */
1598
1599 /* Always round the size. */
1600 size = round_page(size);
1601
1602 /*
1603 * We accept boundaries < size, splitting in multiple segments
1604 * if needed. uvm_pglistalloc does not, so compute an appropriate
1605 * boundary: next power of 2 >= size
1606 */
1607 bus_size_t uboundary = boundary;
1608 if (uboundary <= PAGE_SIZE) {
1609 uboundary = 0;
1610 } else {
1611 while (uboundary < size) {
1612 uboundary <<= 1;
1613 }
1614 }
1615
1616 /*
1617 * Allocate pages from the VM system.
1618 */
1619 error = uvm_pglistalloc(size, low, high, alignment, uboundary,
1620 &mlist, nsegs, (flags & BUS_DMA_NOWAIT) == 0);
1621 if (error)
1622 return error;
1623
1624 /*
1625 * Compute the location, size, and number of segments actually
1626 * returned by the VM code.
1627 */
1628 m = TAILQ_FIRST(&mlist);
1629 curseg = 0;
1630 lastaddr = segs[curseg].ds_addr = VM_PAGE_TO_PHYS(m);
1631 segs[curseg].ds_len = PAGE_SIZE;
1632 #ifdef DEBUG_DMA
1633 printf("alloc: page %lx\n", lastaddr);
1634 #endif /* DEBUG_DMA */
1635 m = TAILQ_NEXT(m, pageq.queue);
1636
1637 for (; m != NULL; m = TAILQ_NEXT(m, pageq.queue)) {
1638 curaddr = VM_PAGE_TO_PHYS(m);
1639 KASSERTMSG(low <= curaddr && curaddr < high,
1640 "uvm_pglistalloc returned non-sensicaladdress %#lx "
1641 "(low=%#lx, high=%#lx\n", curaddr, low, high);
1642 #ifdef DEBUG_DMA
1643 printf("alloc: page %lx\n", curaddr);
1644 #endif /* DEBUG_DMA */
1645 if (curaddr == lastaddr + PAGE_SIZE
1646 && (lastaddr & boundary) == (curaddr & boundary))
1647 segs[curseg].ds_len += PAGE_SIZE;
1648 else {
1649 curseg++;
1650 if (curseg >= nsegs) {
1651 uvm_pglistfree(&mlist);
1652 return EFBIG;
1653 }
1654 segs[curseg].ds_addr = curaddr;
1655 segs[curseg].ds_len = PAGE_SIZE;
1656 }
1657 lastaddr = curaddr;
1658 }
1659
1660 *rsegs = curseg + 1;
1661
1662 return 0;
1663 }
1664
1665 /*
1666 * Check if a memory region intersects with a DMA range, and return the
1667 * page-rounded intersection if it does.
1668 */
1669 int
1670 arm32_dma_range_intersect(struct arm32_dma_range *ranges, int nranges,
1671 paddr_t pa, psize_t size, paddr_t *pap, psize_t *sizep)
1672 {
1673 struct arm32_dma_range *dr;
1674 int i;
1675
1676 if (ranges == NULL)
1677 return 0;
1678
1679 for (i = 0, dr = ranges; i < nranges; i++, dr++) {
1680 if (dr->dr_sysbase <= pa &&
1681 pa < (dr->dr_sysbase + dr->dr_len)) {
1682 /*
1683 * Beginning of region intersects with this range.
1684 */
1685 *pap = trunc_page(pa);
1686 *sizep = round_page(uimin(pa + size,
1687 dr->dr_sysbase + dr->dr_len) - pa);
1688 return 1;
1689 }
1690 if (pa < dr->dr_sysbase && dr->dr_sysbase < (pa + size)) {
1691 /*
1692 * End of region intersects with this range.
1693 */
1694 *pap = trunc_page(dr->dr_sysbase);
1695 *sizep = round_page(uimin((pa + size) - dr->dr_sysbase,
1696 dr->dr_len));
1697 return 1;
1698 }
1699 }
1700
1701 /* No intersection found. */
1702 return 0;
1703 }
1704
1705 #ifdef _ARM32_NEED_BUS_DMA_BOUNCE
1706 static int
1707 _bus_dma_alloc_bouncebuf(bus_dma_tag_t t, bus_dmamap_t map,
1708 bus_size_t size, int flags)
1709 {
1710 struct arm32_bus_dma_cookie *cookie = map->_dm_cookie;
1711 int error = 0;
1712
1713 KASSERT(cookie != NULL);
1714
1715 cookie->id_bouncebuflen = round_page(size);
1716 error = _bus_dmamem_alloc(t, cookie->id_bouncebuflen,
1717 PAGE_SIZE, map->_dm_boundary, cookie->id_bouncesegs,
1718 map->_dm_segcnt, &cookie->id_nbouncesegs, flags);
1719 if (error == 0) {
1720 error = _bus_dmamem_map(t, cookie->id_bouncesegs,
1721 cookie->id_nbouncesegs, cookie->id_bouncebuflen,
1722 (void **)&cookie->id_bouncebuf, flags);
1723 if (error) {
1724 _bus_dmamem_free(t, cookie->id_bouncesegs,
1725 cookie->id_nbouncesegs);
1726 cookie->id_bouncebuflen = 0;
1727 cookie->id_nbouncesegs = 0;
1728 } else {
1729 cookie->id_flags |= _BUS_DMA_HAS_BOUNCE;
1730 }
1731 } else {
1732 cookie->id_bouncebuflen = 0;
1733 cookie->id_nbouncesegs = 0;
1734 }
1735
1736 return error;
1737 }
1738
1739 static void
1740 _bus_dma_free_bouncebuf(bus_dma_tag_t t, bus_dmamap_t map)
1741 {
1742 struct arm32_bus_dma_cookie *cookie = map->_dm_cookie;
1743
1744 KASSERT(cookie != NULL);
1745
1746 _bus_dmamem_unmap(t, cookie->id_bouncebuf, cookie->id_bouncebuflen);
1747 _bus_dmamem_free(t, cookie->id_bouncesegs, cookie->id_nbouncesegs);
1748 cookie->id_bouncebuflen = 0;
1749 cookie->id_nbouncesegs = 0;
1750 cookie->id_flags &= ~_BUS_DMA_HAS_BOUNCE;
1751 }
1752
1753 /*
1754 * This function does the same as uiomove, but takes an explicit
1755 * direction, and does not update the uio structure.
1756 */
1757 static int
1758 _bus_dma_uiomove(void *buf, struct uio *uio, size_t n, int direction)
1759 {
1760 struct iovec *iov;
1761 int error;
1762 struct vmspace *vm;
1763 char *cp;
1764 size_t resid, cnt;
1765 int i;
1766
1767 iov = uio->uio_iov;
1768 vm = uio->uio_vmspace;
1769 cp = buf;
1770 resid = n;
1771
1772 for (i = 0; i < uio->uio_iovcnt && resid > 0; i++) {
1773 iov = &uio->uio_iov[i];
1774 if (iov->iov_len == 0)
1775 continue;
1776 cnt = MIN(resid, iov->iov_len);
1777
1778 if (!VMSPACE_IS_KERNEL_P(vm) &&
1779 (curlwp->l_cpu->ci_schedstate.spc_flags & SPCF_SHOULDYIELD)
1780 != 0) {
1781 preempt();
1782 }
1783 if (direction == UIO_READ) {
1784 error = copyout_vmspace(vm, cp, iov->iov_base, cnt);
1785 } else {
1786 error = copyin_vmspace(vm, iov->iov_base, cp, cnt);
1787 }
1788 if (error)
1789 return error;
1790 cp += cnt;
1791 resid -= cnt;
1792 }
1793 return 0;
1794 }
1795 #endif /* _ARM32_NEED_BUS_DMA_BOUNCE */
1796
1797 int
1798 _bus_dmatag_subregion(bus_dma_tag_t tag, bus_addr_t min_addr,
1799 bus_addr_t max_addr, bus_dma_tag_t *newtag, int flags)
1800 {
1801
1802 #ifdef _ARM32_NEED_BUS_DMA_BOUNCE
1803 struct arm32_dma_range *dr;
1804 bool subset = false;
1805 size_t nranges = 0;
1806 size_t i;
1807 for (i = 0, dr = tag->_ranges; i < tag->_nranges; i++, dr++) {
1808 if (dr->dr_sysbase <= min_addr
1809 && max_addr <= dr->dr_sysbase + dr->dr_len - 1) {
1810 subset = true;
1811 }
1812 if (min_addr <= dr->dr_sysbase + dr->dr_len
1813 && max_addr >= dr->dr_sysbase) {
1814 nranges++;
1815 }
1816 }
1817 if (subset) {
1818 *newtag = tag;
1819 /* if the tag must be freed, add a reference */
1820 if (tag->_tag_needs_free)
1821 (tag->_tag_needs_free)++;
1822 return 0;
1823 }
1824 if (nranges == 0) {
1825 nranges = 1;
1826 }
1827
1828 const size_t tagsize = sizeof(*tag) + nranges * sizeof(*dr);
1829 if ((*newtag = kmem_intr_zalloc(tagsize,
1830 (flags & BUS_DMA_NOWAIT) ? KM_NOSLEEP : KM_SLEEP)) == NULL)
1831 return ENOMEM;
1832
1833 dr = (void *)(*newtag + 1);
1834 **newtag = *tag;
1835 (*newtag)->_tag_needs_free = 1;
1836 (*newtag)->_ranges = dr;
1837 (*newtag)->_nranges = nranges;
1838
1839 if (tag->_ranges == NULL) {
1840 dr->dr_sysbase = min_addr;
1841 dr->dr_busbase = min_addr;
1842 dr->dr_len = max_addr + 1 - min_addr;
1843 } else {
1844 for (i = 0; i < nranges; i++) {
1845 if (min_addr > dr->dr_sysbase + dr->dr_len
1846 || max_addr < dr->dr_sysbase)
1847 continue;
1848 dr[0] = tag->_ranges[i];
1849 if (dr->dr_sysbase < min_addr) {
1850 psize_t diff = min_addr - dr->dr_sysbase;
1851 dr->dr_busbase += diff;
1852 dr->dr_len -= diff;
1853 dr->dr_sysbase += diff;
1854 }
1855 if (max_addr != 0xffffffff
1856 && max_addr + 1 < dr->dr_sysbase + dr->dr_len) {
1857 dr->dr_len = max_addr + 1 - dr->dr_sysbase;
1858 }
1859 dr++;
1860 }
1861 }
1862
1863 return 0;
1864 #else
1865 return EOPNOTSUPP;
1866 #endif /* _ARM32_NEED_BUS_DMA_BOUNCE */
1867 }
1868
1869 void
1870 _bus_dmatag_destroy(bus_dma_tag_t tag)
1871 {
1872 #ifdef _ARM32_NEED_BUS_DMA_BOUNCE
1873 switch (tag->_tag_needs_free) {
1874 case 0:
1875 break; /* not allocated with kmem */
1876 case 1: {
1877 const size_t tagsize = sizeof(*tag)
1878 + tag->_nranges * sizeof(*tag->_ranges);
1879 kmem_intr_free(tag, tagsize); /* last reference to tag */
1880 break;
1881 }
1882 default:
1883 (tag->_tag_needs_free)--; /* one less reference */
1884 }
1885 #endif
1886 }
1887