bus_dma.c revision 1.117 1 /* $NetBSD: bus_dma.c,v 1.117 2019/11/05 09:57:47 jmcneill Exp $ */
2
3 /*-
4 * Copyright (c) 1996, 1997, 1998 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Jason R. Thorpe of the Numerical Aerospace Simulation Facility,
9 * NASA Ames Research Center.
10 *
11 * Redistribution and use in source and binary forms, with or without
12 * modification, are permitted provided that the following conditions
13 * are met:
14 * 1. Redistributions of source code must retain the above copyright
15 * notice, this list of conditions and the following disclaimer.
16 * 2. Redistributions in binary form must reproduce the above copyright
17 * notice, this list of conditions and the following disclaimer in the
18 * documentation and/or other materials provided with the distribution.
19 *
20 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
21 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
22 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
23 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
24 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
25 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
26 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
27 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
28 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
29 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
30 * POSSIBILITY OF SUCH DAMAGE.
31 */
32
33 #define _ARM32_BUS_DMA_PRIVATE
34
35 #include "opt_arm_bus_space.h"
36 #include "opt_cputypes.h"
37
38 #include <sys/cdefs.h>
39 __KERNEL_RCSID(0, "$NetBSD: bus_dma.c,v 1.117 2019/11/05 09:57:47 jmcneill Exp $");
40
41 #include <sys/param.h>
42 #include <sys/bus.h>
43 #include <sys/cpu.h>
44 #include <sys/kmem.h>
45 #include <sys/mbuf.h>
46
47 #include <uvm/uvm.h>
48
49 #include <arm/cpuconf.h>
50 #include <arm/cpufunc.h>
51
52 #ifdef __HAVE_MM_MD_DIRECT_MAPPED_PHYS
53 #include <dev/mm.h>
54 #endif
55
56 #ifdef BUSDMA_COUNTERS
57 static struct evcnt bus_dma_creates =
58 EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL, "busdma", "creates");
59 static struct evcnt bus_dma_bounced_creates =
60 EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL, "busdma", "bounced creates");
61 static struct evcnt bus_dma_loads =
62 EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL, "busdma", "loads");
63 static struct evcnt bus_dma_bounced_loads =
64 EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL, "busdma", "bounced loads");
65 static struct evcnt bus_dma_coherent_loads =
66 EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL, "busdma", "coherent loads");
67 static struct evcnt bus_dma_read_bounces =
68 EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL, "busdma", "read bounces");
69 static struct evcnt bus_dma_write_bounces =
70 EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL, "busdma", "write bounces");
71 static struct evcnt bus_dma_bounced_unloads =
72 EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL, "busdma", "bounced unloads");
73 static struct evcnt bus_dma_unloads =
74 EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL, "busdma", "unloads");
75 static struct evcnt bus_dma_bounced_destroys =
76 EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL, "busdma", "bounced destroys");
77 static struct evcnt bus_dma_destroys =
78 EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL, "busdma", "destroys");
79 static struct evcnt bus_dma_sync_prereadwrite =
80 EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL, "busdma", "sync prereadwrite");
81 static struct evcnt bus_dma_sync_preread_begin =
82 EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL, "busdma", "sync preread begin");
83 static struct evcnt bus_dma_sync_preread =
84 EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL, "busdma", "sync preread");
85 static struct evcnt bus_dma_sync_preread_tail =
86 EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL, "busdma", "sync preread tail");
87 static struct evcnt bus_dma_sync_prewrite =
88 EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL, "busdma", "sync prewrite");
89 static struct evcnt bus_dma_sync_postread =
90 EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL, "busdma", "sync postread");
91 static struct evcnt bus_dma_sync_postreadwrite =
92 EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL, "busdma", "sync postreadwrite");
93 static struct evcnt bus_dma_sync_postwrite =
94 EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL, "busdma", "sync postwrite");
95
96 EVCNT_ATTACH_STATIC(bus_dma_creates);
97 EVCNT_ATTACH_STATIC(bus_dma_bounced_creates);
98 EVCNT_ATTACH_STATIC(bus_dma_loads);
99 EVCNT_ATTACH_STATIC(bus_dma_bounced_loads);
100 EVCNT_ATTACH_STATIC(bus_dma_coherent_loads);
101 EVCNT_ATTACH_STATIC(bus_dma_read_bounces);
102 EVCNT_ATTACH_STATIC(bus_dma_write_bounces);
103 EVCNT_ATTACH_STATIC(bus_dma_unloads);
104 EVCNT_ATTACH_STATIC(bus_dma_bounced_unloads);
105 EVCNT_ATTACH_STATIC(bus_dma_destroys);
106 EVCNT_ATTACH_STATIC(bus_dma_bounced_destroys);
107 EVCNT_ATTACH_STATIC(bus_dma_sync_prereadwrite);
108 EVCNT_ATTACH_STATIC(bus_dma_sync_preread_begin);
109 EVCNT_ATTACH_STATIC(bus_dma_sync_preread);
110 EVCNT_ATTACH_STATIC(bus_dma_sync_preread_tail);
111 EVCNT_ATTACH_STATIC(bus_dma_sync_prewrite);
112 EVCNT_ATTACH_STATIC(bus_dma_sync_postread);
113 EVCNT_ATTACH_STATIC(bus_dma_sync_postreadwrite);
114 EVCNT_ATTACH_STATIC(bus_dma_sync_postwrite);
115
116 #define STAT_INCR(x) (bus_dma_ ## x.ev_count++)
117 #else
118 #define STAT_INCR(x) __nothing
119 #endif
120
121 int _bus_dmamap_load_buffer(bus_dma_tag_t, bus_dmamap_t, void *,
122 bus_size_t, struct vmspace *, int);
123
124 /*
125 * Check to see if the specified page is in an allowed DMA range.
126 */
127 static inline struct arm32_dma_range *
128 _bus_dma_paddr_inrange(struct arm32_dma_range *ranges, int nranges,
129 bus_addr_t curaddr)
130 {
131 struct arm32_dma_range *dr;
132 int i;
133
134 for (i = 0, dr = ranges; i < nranges; i++, dr++) {
135 if (curaddr >= dr->dr_sysbase &&
136 curaddr < (dr->dr_sysbase + dr->dr_len))
137 return dr;
138 }
139
140 return NULL;
141 }
142
143 /*
144 * Check to see if the specified busaddr is in an allowed DMA range.
145 */
146 static inline paddr_t
147 _bus_dma_busaddr_to_paddr(bus_dma_tag_t t, bus_addr_t curaddr)
148 {
149 struct arm32_dma_range *dr;
150 u_int i;
151
152 if (t->_nranges == 0)
153 return curaddr;
154
155 for (i = 0, dr = t->_ranges; i < t->_nranges; i++, dr++) {
156 if (dr->dr_busbase <= curaddr
157 && curaddr < dr->dr_busbase + dr->dr_len)
158 return curaddr - dr->dr_busbase + dr->dr_sysbase;
159 }
160 panic("%s: curaddr %#lx not in range", __func__, curaddr);
161 }
162
163 /*
164 * Common function to load the specified physical address into the
165 * DMA map, coalescing segments and boundary checking as necessary.
166 */
167 static int
168 _bus_dmamap_load_paddr(bus_dma_tag_t t, bus_dmamap_t map,
169 bus_addr_t paddr, bus_size_t size, bool coherent)
170 {
171 bus_dma_segment_t * const segs = map->dm_segs;
172 int nseg = map->dm_nsegs;
173 bus_addr_t lastaddr;
174 bus_addr_t bmask = ~(map->_dm_boundary - 1);
175 bus_addr_t curaddr;
176 bus_size_t sgsize;
177 uint32_t _ds_flags = coherent ? _BUS_DMAMAP_COHERENT : 0;
178
179 if (nseg > 0)
180 lastaddr = segs[nseg - 1].ds_addr + segs[nseg - 1].ds_len;
181 else
182 lastaddr = 0xdead;
183
184 again:
185 sgsize = size;
186
187 /* Make sure we're in an allowed DMA range. */
188 if (t->_ranges != NULL) {
189 /* XXX cache last result? */
190 const struct arm32_dma_range * const dr =
191 _bus_dma_paddr_inrange(t->_ranges, t->_nranges, paddr);
192 if (dr == NULL)
193 return EINVAL;
194
195 /*
196 * If this region is coherent, mark the segment as coherent.
197 */
198 _ds_flags |= dr->dr_flags & _BUS_DMAMAP_COHERENT;
199
200 /*
201 * In a valid DMA range. Translate the physical
202 * memory address to an address in the DMA window.
203 */
204 curaddr = (paddr - dr->dr_sysbase) + dr->dr_busbase;
205 #if 0
206 printf("%p: %#lx: range %#lx/%#lx/%#lx/%#x: %#x <-- %#lx\n",
207 t, paddr, dr->dr_sysbase, dr->dr_busbase,
208 dr->dr_len, dr->dr_flags, _ds_flags, curaddr);
209 #endif
210 } else
211 curaddr = paddr;
212
213 /*
214 * Make sure we don't cross any boundaries.
215 */
216 if (map->_dm_boundary > 0) {
217 bus_addr_t baddr; /* next boundary address */
218
219 baddr = (curaddr + map->_dm_boundary) & bmask;
220 if (sgsize > (baddr - curaddr))
221 sgsize = (baddr - curaddr);
222 }
223
224 /*
225 * Insert chunk into a segment, coalescing with the
226 * previous segment if possible.
227 */
228 if (nseg > 0 && curaddr == lastaddr &&
229 segs[nseg - 1].ds_len + sgsize <= map->dm_maxsegsz &&
230 ((segs[nseg - 1]._ds_flags ^ _ds_flags) & _BUS_DMAMAP_COHERENT) == 0 &&
231 (map->_dm_boundary == 0 ||
232 (segs[nseg - 1].ds_addr & bmask) == (curaddr & bmask))) {
233 /* coalesce */
234 segs[nseg - 1].ds_len += sgsize;
235 } else if (nseg >= map->_dm_segcnt) {
236 return EFBIG;
237 } else {
238 /* new segment */
239 segs[nseg].ds_addr = curaddr;
240 segs[nseg].ds_len = sgsize;
241 segs[nseg]._ds_flags = _ds_flags;
242 nseg++;
243 }
244
245 lastaddr = curaddr + sgsize;
246
247 paddr += sgsize;
248 size -= sgsize;
249 if (size > 0)
250 goto again;
251
252 map->_dm_flags &= (_ds_flags & _BUS_DMAMAP_COHERENT);
253 map->dm_nsegs = nseg;
254 return 0;
255 }
256
257 static int _bus_dma_uiomove(void *buf, struct uio *uio, size_t n,
258 int direction);
259
260 #ifdef _ARM32_NEED_BUS_DMA_BOUNCE
261 static int _bus_dma_alloc_bouncebuf(bus_dma_tag_t t, bus_dmamap_t map,
262 bus_size_t size, int flags);
263 static void _bus_dma_free_bouncebuf(bus_dma_tag_t t, bus_dmamap_t map);
264
265 static int
266 _bus_dma_load_bouncebuf(bus_dma_tag_t t, bus_dmamap_t map, void *buf,
267 size_t buflen, int buftype, int flags)
268 {
269 struct arm32_bus_dma_cookie * const cookie = map->_dm_cookie;
270 struct vmspace * const vm = vmspace_kernel();
271 int error;
272
273 KASSERT(cookie != NULL);
274 KASSERT(cookie->id_flags & _BUS_DMA_MIGHT_NEED_BOUNCE);
275
276 /*
277 * Allocate bounce pages, if necessary.
278 */
279 if ((cookie->id_flags & _BUS_DMA_HAS_BOUNCE) == 0) {
280 error = _bus_dma_alloc_bouncebuf(t, map, buflen, flags);
281 if (error)
282 return error;
283 }
284
285 /*
286 * Cache a pointer to the caller's buffer and load the DMA map
287 * with the bounce buffer.
288 */
289 cookie->id_origbuf = buf;
290 cookie->id_origbuflen = buflen;
291 error = _bus_dmamap_load_buffer(t, map, cookie->id_bouncebuf,
292 buflen, vm, flags);
293 if (error)
294 return error;
295
296 STAT_INCR(bounced_loads);
297 map->dm_mapsize = buflen;
298 map->_dm_vmspace = vm;
299 map->_dm_buftype = buftype;
300
301 /* ...so _bus_dmamap_sync() knows we're bouncing */
302 map->_dm_flags |= _BUS_DMAMAP_IS_BOUNCING;
303 cookie->id_flags |= _BUS_DMA_IS_BOUNCING;
304 return 0;
305 }
306 #endif /* _ARM32_NEED_BUS_DMA_BOUNCE */
307
308 /*
309 * Common function for DMA map creation. May be called by bus-specific
310 * DMA map creation functions.
311 */
312 int
313 _bus_dmamap_create(bus_dma_tag_t t, bus_size_t size, int nsegments,
314 bus_size_t maxsegsz, bus_size_t boundary, int flags, bus_dmamap_t *dmamp)
315 {
316 struct arm32_bus_dmamap *map;
317 void *mapstore;
318
319 #ifdef DEBUG_DMA
320 printf("dmamap_create: t=%p size=%lx nseg=%x msegsz=%lx boundary=%lx"
321 " flags=%x\n", t, size, nsegments, maxsegsz, boundary, flags);
322 #endif /* DEBUG_DMA */
323
324 /*
325 * Allocate and initialize the DMA map. The end of the map
326 * is a variable-sized array of segments, so we allocate enough
327 * room for them in one shot.
328 *
329 * Note we don't preserve the WAITOK or NOWAIT flags. Preservation
330 * of ALLOCNOW notifies others that we've reserved these resources,
331 * and they are not to be freed.
332 *
333 * The bus_dmamap_t includes one bus_dma_segment_t, hence
334 * the (nsegments - 1).
335 */
336 const size_t mapsize = sizeof(struct arm32_bus_dmamap) +
337 (sizeof(bus_dma_segment_t) * (nsegments - 1));
338 const int zallocflags = (flags & BUS_DMA_NOWAIT) ? KM_NOSLEEP : KM_SLEEP;
339 if ((mapstore = kmem_intr_zalloc(mapsize, zallocflags)) == NULL)
340 return ENOMEM;
341
342 map = (struct arm32_bus_dmamap *)mapstore;
343 map->_dm_size = size;
344 map->_dm_segcnt = nsegments;
345 map->_dm_maxmaxsegsz = maxsegsz;
346 map->_dm_boundary = boundary;
347 map->_dm_flags = flags & ~(BUS_DMA_WAITOK|BUS_DMA_NOWAIT);
348 map->_dm_origbuf = NULL;
349 map->_dm_buftype = _BUS_DMA_BUFTYPE_INVALID;
350 map->_dm_vmspace = vmspace_kernel();
351 map->_dm_cookie = NULL;
352 map->dm_maxsegsz = maxsegsz;
353 map->dm_mapsize = 0; /* no valid mappings */
354 map->dm_nsegs = 0;
355
356 #ifdef _ARM32_NEED_BUS_DMA_BOUNCE
357 struct arm32_bus_dma_cookie *cookie;
358 int cookieflags;
359 void *cookiestore;
360 int error;
361
362 cookieflags = 0;
363
364 if (t->_may_bounce != NULL) {
365 error = (*t->_may_bounce)(t, map, flags, &cookieflags);
366 if (error != 0)
367 goto out;
368 }
369
370 if (t->_ranges != NULL)
371 cookieflags |= _BUS_DMA_MIGHT_NEED_BOUNCE;
372
373 if ((cookieflags & _BUS_DMA_MIGHT_NEED_BOUNCE) == 0) {
374 STAT_INCR(creates);
375 *dmamp = map;
376 return 0;
377 }
378
379 const size_t cookiesize = sizeof(struct arm32_bus_dma_cookie) +
380 (sizeof(bus_dma_segment_t) * map->_dm_segcnt);
381
382 /*
383 * Allocate our cookie.
384 */
385 if ((cookiestore = kmem_intr_zalloc(cookiesize, zallocflags)) == NULL) {
386 error = ENOMEM;
387 goto out;
388 }
389 cookie = (struct arm32_bus_dma_cookie *)cookiestore;
390 cookie->id_flags = cookieflags;
391 map->_dm_cookie = cookie;
392 STAT_INCR(bounced_creates);
393
394 error = _bus_dma_alloc_bouncebuf(t, map, size, flags);
395 out:
396 if (error)
397 _bus_dmamap_destroy(t, map);
398 else
399 *dmamp = map;
400 #else
401 *dmamp = map;
402 STAT_INCR(creates);
403 #endif /* _ARM32_NEED_BUS_DMA_BOUNCE */
404 #ifdef DEBUG_DMA
405 printf("dmamap_create:map=%p\n", map);
406 #endif /* DEBUG_DMA */
407 return 0;
408 }
409
410 /*
411 * Common function for DMA map destruction. May be called by bus-specific
412 * DMA map destruction functions.
413 */
414 void
415 _bus_dmamap_destroy(bus_dma_tag_t t, bus_dmamap_t map)
416 {
417
418 #ifdef DEBUG_DMA
419 printf("dmamap_destroy: t=%p map=%p\n", t, map);
420 #endif /* DEBUG_DMA */
421 #ifdef _ARM32_NEED_BUS_DMA_BOUNCE
422 struct arm32_bus_dma_cookie *cookie = map->_dm_cookie;
423
424 /*
425 * Free any bounce pages this map might hold.
426 */
427 if (cookie != NULL) {
428 const size_t cookiesize = sizeof(struct arm32_bus_dma_cookie) +
429 (sizeof(bus_dma_segment_t) * map->_dm_segcnt);
430
431 if (cookie->id_flags & _BUS_DMA_IS_BOUNCING)
432 STAT_INCR(bounced_unloads);
433 map->dm_nsegs = 0;
434 if (cookie->id_flags & _BUS_DMA_HAS_BOUNCE)
435 _bus_dma_free_bouncebuf(t, map);
436 STAT_INCR(bounced_destroys);
437 kmem_intr_free(cookie, cookiesize);
438 } else
439 #endif
440 STAT_INCR(destroys);
441
442 if (map->dm_nsegs > 0)
443 STAT_INCR(unloads);
444
445 const size_t mapsize = sizeof(struct arm32_bus_dmamap) +
446 (sizeof(bus_dma_segment_t) * (map->_dm_segcnt - 1));
447 kmem_intr_free(map, mapsize);
448 }
449
450 /*
451 * Common function for loading a DMA map with a linear buffer. May
452 * be called by bus-specific DMA map load functions.
453 */
454 int
455 _bus_dmamap_load(bus_dma_tag_t t, bus_dmamap_t map, void *buf,
456 bus_size_t buflen, struct proc *p, int flags)
457 {
458 struct vmspace *vm;
459 int error;
460
461 #ifdef DEBUG_DMA
462 printf("dmamap_load: t=%p map=%p buf=%p len=%lx p=%p f=%d\n",
463 t, map, buf, buflen, p, flags);
464 #endif /* DEBUG_DMA */
465
466 if (map->dm_nsegs > 0) {
467 #ifdef _ARM32_NEED_BUS_DMA_BOUNCE
468 struct arm32_bus_dma_cookie *cookie = map->_dm_cookie;
469 if (cookie != NULL) {
470 if (cookie->id_flags & _BUS_DMA_IS_BOUNCING) {
471 STAT_INCR(bounced_unloads);
472 cookie->id_flags &= ~_BUS_DMA_IS_BOUNCING;
473 map->_dm_flags &= ~_BUS_DMAMAP_IS_BOUNCING;
474 }
475 } else
476 #endif
477 STAT_INCR(unloads);
478 }
479
480 /*
481 * Make sure that on error condition we return "no valid mappings".
482 */
483 map->dm_mapsize = 0;
484 map->dm_nsegs = 0;
485 map->_dm_buftype = _BUS_DMA_BUFTYPE_INVALID;
486 KASSERTMSG(map->dm_maxsegsz <= map->_dm_maxmaxsegsz,
487 "dm_maxsegsz %lu _dm_maxmaxsegsz %lu",
488 map->dm_maxsegsz, map->_dm_maxmaxsegsz);
489
490 if (buflen > map->_dm_size)
491 return EINVAL;
492
493 if (p != NULL) {
494 vm = p->p_vmspace;
495 } else {
496 vm = vmspace_kernel();
497 }
498
499 /* _bus_dmamap_load_buffer() clears this if we're not... */
500 map->_dm_flags |= _BUS_DMAMAP_COHERENT;
501
502 error = _bus_dmamap_load_buffer(t, map, buf, buflen, vm, flags);
503 if (error == 0) {
504 map->dm_mapsize = buflen;
505 map->_dm_vmspace = vm;
506 map->_dm_origbuf = buf;
507 map->_dm_buftype = _BUS_DMA_BUFTYPE_LINEAR;
508 if (map->_dm_flags & _BUS_DMAMAP_COHERENT) {
509 STAT_INCR(coherent_loads);
510 } else {
511 STAT_INCR(loads);
512 }
513 return 0;
514 }
515 #ifdef _ARM32_NEED_BUS_DMA_BOUNCE
516 struct arm32_bus_dma_cookie * const cookie = map->_dm_cookie;
517 if (cookie != NULL && (cookie->id_flags & _BUS_DMA_MIGHT_NEED_BOUNCE)) {
518 error = _bus_dma_load_bouncebuf(t, map, buf, buflen,
519 _BUS_DMA_BUFTYPE_LINEAR, flags);
520 }
521 #endif
522 return error;
523 }
524
525 /*
526 * Like _bus_dmamap_load(), but for mbufs.
527 */
528 int
529 _bus_dmamap_load_mbuf(bus_dma_tag_t t, bus_dmamap_t map, struct mbuf *m0,
530 int flags)
531 {
532 struct mbuf *m;
533 int error;
534
535 #ifdef DEBUG_DMA
536 printf("dmamap_load_mbuf: t=%p map=%p m0=%p f=%d\n",
537 t, map, m0, flags);
538 #endif /* DEBUG_DMA */
539
540 if (map->dm_nsegs > 0) {
541 #ifdef _ARM32_NEED_BUS_DMA_BOUNCE
542 struct arm32_bus_dma_cookie *cookie = map->_dm_cookie;
543 if (cookie != NULL) {
544 if (cookie->id_flags & _BUS_DMA_IS_BOUNCING) {
545 STAT_INCR(bounced_unloads);
546 cookie->id_flags &= ~_BUS_DMA_IS_BOUNCING;
547 map->_dm_flags &= ~_BUS_DMAMAP_IS_BOUNCING;
548 }
549 } else
550 #endif
551 STAT_INCR(unloads);
552 }
553
554 /*
555 * Make sure that on error condition we return "no valid mappings."
556 */
557 map->dm_mapsize = 0;
558 map->dm_nsegs = 0;
559 map->_dm_buftype = _BUS_DMA_BUFTYPE_INVALID;
560 KASSERTMSG(map->dm_maxsegsz <= map->_dm_maxmaxsegsz,
561 "dm_maxsegsz %lu _dm_maxmaxsegsz %lu",
562 map->dm_maxsegsz, map->_dm_maxmaxsegsz);
563
564 KASSERT(m0->m_flags & M_PKTHDR);
565
566 if (m0->m_pkthdr.len > map->_dm_size)
567 return EINVAL;
568
569 /* _bus_dmamap_load_paddr() clears this if we're not... */
570 map->_dm_flags |= _BUS_DMAMAP_COHERENT;
571
572 error = 0;
573 for (m = m0; m != NULL && error == 0; m = m->m_next) {
574 int offset;
575 int remainbytes;
576 const struct vm_page * const *pgs;
577 paddr_t paddr;
578 int size;
579
580 if (m->m_len == 0)
581 continue;
582 /*
583 * Don't allow reads in read-only mbufs.
584 */
585 if (M_ROMAP(m) && (flags & BUS_DMA_READ)) {
586 error = EFAULT;
587 break;
588 }
589 switch (m->m_flags & (M_EXT|M_EXT_CLUSTER|M_EXT_PAGES)) {
590 case M_EXT|M_EXT_CLUSTER:
591 /* XXX KDASSERT */
592 KASSERT(m->m_ext.ext_paddr != M_PADDR_INVALID);
593 paddr = m->m_ext.ext_paddr +
594 (m->m_data - m->m_ext.ext_buf);
595 size = m->m_len;
596 error = _bus_dmamap_load_paddr(t, map, paddr, size,
597 false);
598 break;
599
600 case M_EXT|M_EXT_PAGES:
601 KASSERT(m->m_ext.ext_buf <= m->m_data);
602 KASSERT(m->m_data <=
603 m->m_ext.ext_buf + m->m_ext.ext_size);
604
605 offset = (vaddr_t)m->m_data -
606 trunc_page((vaddr_t)m->m_ext.ext_buf);
607 remainbytes = m->m_len;
608
609 /* skip uninteresting pages */
610 pgs = (const struct vm_page * const *)
611 m->m_ext.ext_pgs + (offset >> PAGE_SHIFT);
612
613 offset &= PAGE_MASK; /* offset in the first page */
614
615 /* load each page */
616 while (remainbytes > 0) {
617 const struct vm_page *pg;
618
619 size = MIN(remainbytes, PAGE_SIZE - offset);
620
621 pg = *pgs++;
622 KASSERT(pg);
623 paddr = VM_PAGE_TO_PHYS(pg) + offset;
624
625 error = _bus_dmamap_load_paddr(t, map,
626 paddr, size, false);
627 if (error)
628 break;
629 offset = 0;
630 remainbytes -= size;
631 }
632 break;
633
634 case 0:
635 paddr = m->m_paddr + M_BUFOFFSET(m) +
636 (m->m_data - M_BUFADDR(m));
637 size = m->m_len;
638 error = _bus_dmamap_load_paddr(t, map, paddr, size,
639 false);
640 break;
641
642 default:
643 error = _bus_dmamap_load_buffer(t, map, m->m_data,
644 m->m_len, vmspace_kernel(), flags);
645 }
646 }
647 if (error == 0) {
648 map->dm_mapsize = m0->m_pkthdr.len;
649 map->_dm_origbuf = m0;
650 map->_dm_buftype = _BUS_DMA_BUFTYPE_MBUF;
651 map->_dm_vmspace = vmspace_kernel(); /* always kernel */
652 if (map->_dm_flags & _BUS_DMAMAP_COHERENT) {
653 STAT_INCR(coherent_loads);
654 } else {
655 STAT_INCR(loads);
656 }
657 return 0;
658 }
659 #ifdef _ARM32_NEED_BUS_DMA_BOUNCE
660 struct arm32_bus_dma_cookie * const cookie = map->_dm_cookie;
661 if (cookie != NULL && (cookie->id_flags & _BUS_DMA_MIGHT_NEED_BOUNCE)) {
662 error = _bus_dma_load_bouncebuf(t, map, m0, m0->m_pkthdr.len,
663 _BUS_DMA_BUFTYPE_MBUF, flags);
664 }
665 #endif
666 return error;
667 }
668
669 /*
670 * Like _bus_dmamap_load(), but for uios.
671 */
672 int
673 _bus_dmamap_load_uio(bus_dma_tag_t t, bus_dmamap_t map, struct uio *uio,
674 int flags)
675 {
676 bus_size_t minlen, resid;
677 struct iovec *iov;
678 void *addr;
679 int i, error;
680
681 /*
682 * Make sure that on error condition we return "no valid mappings."
683 */
684 map->dm_mapsize = 0;
685 map->dm_nsegs = 0;
686 KASSERTMSG(map->dm_maxsegsz <= map->_dm_maxmaxsegsz,
687 "dm_maxsegsz %lu _dm_maxmaxsegsz %lu",
688 map->dm_maxsegsz, map->_dm_maxmaxsegsz);
689
690 resid = uio->uio_resid;
691 iov = uio->uio_iov;
692
693 /* _bus_dmamap_load_buffer() clears this if we're not... */
694 map->_dm_flags |= _BUS_DMAMAP_COHERENT;
695
696 error = 0;
697 for (i = 0; i < uio->uio_iovcnt && resid != 0 && error == 0; i++) {
698 /*
699 * Now at the first iovec to load. Load each iovec
700 * until we have exhausted the residual count.
701 */
702 minlen = resid < iov[i].iov_len ? resid : iov[i].iov_len;
703 addr = (void *)iov[i].iov_base;
704
705 error = _bus_dmamap_load_buffer(t, map, addr, minlen,
706 uio->uio_vmspace, flags);
707
708 resid -= minlen;
709 }
710 if (error == 0) {
711 map->dm_mapsize = uio->uio_resid;
712 map->_dm_origbuf = uio;
713 map->_dm_buftype = _BUS_DMA_BUFTYPE_UIO;
714 map->_dm_vmspace = uio->uio_vmspace;
715 if (map->_dm_flags & _BUS_DMAMAP_COHERENT) {
716 STAT_INCR(coherent_loads);
717 } else {
718 STAT_INCR(loads);
719 }
720 }
721 return error;
722 }
723
724 /*
725 * Like _bus_dmamap_load(), but for raw memory allocated with
726 * bus_dmamem_alloc().
727 */
728 int
729 _bus_dmamap_load_raw(bus_dma_tag_t t, bus_dmamap_t map,
730 bus_dma_segment_t *segs, int nsegs, bus_size_t size0, int flags)
731 {
732
733 bus_size_t size;
734 int i, error = 0;
735
736 /*
737 * Make sure that on error conditions we return "no valid mappings."
738 */
739 map->dm_mapsize = 0;
740 map->dm_nsegs = 0;
741 KASSERT(map->dm_maxsegsz <= map->_dm_maxmaxsegsz);
742
743 if (size0 > map->_dm_size)
744 return EINVAL;
745
746 for (i = 0, size = size0; i < nsegs && size > 0; i++) {
747 bus_dma_segment_t *ds = &segs[i];
748 bus_size_t sgsize;
749
750 sgsize = MIN(ds->ds_len, size);
751 if (sgsize == 0)
752 continue;
753 const bool coherent =
754 (ds->_ds_flags & _BUS_DMAMAP_COHERENT) != 0;
755 error = _bus_dmamap_load_paddr(t, map, ds->ds_addr,
756 sgsize, coherent);
757 if (error != 0)
758 break;
759 size -= sgsize;
760 }
761
762 if (error != 0) {
763 map->dm_mapsize = 0;
764 map->dm_nsegs = 0;
765 return error;
766 }
767
768 /* XXX TBD bounce */
769
770 map->dm_mapsize = size0;
771 map->_dm_origbuf = NULL;
772 map->_dm_buftype = _BUS_DMA_BUFTYPE_RAW;
773 map->_dm_vmspace = NULL;
774 return 0;
775 }
776
777 /*
778 * Common function for unloading a DMA map. May be called by
779 * bus-specific DMA map unload functions.
780 */
781 void
782 _bus_dmamap_unload(bus_dma_tag_t t, bus_dmamap_t map)
783 {
784
785 #ifdef DEBUG_DMA
786 printf("dmamap_unload: t=%p map=%p\n", t, map);
787 #endif /* DEBUG_DMA */
788
789 /*
790 * No resources to free; just mark the mappings as
791 * invalid.
792 */
793 map->dm_mapsize = 0;
794 map->dm_nsegs = 0;
795 map->_dm_origbuf = NULL;
796 map->_dm_buftype = _BUS_DMA_BUFTYPE_INVALID;
797 map->_dm_vmspace = NULL;
798 }
799
800 static void
801 _bus_dmamap_sync_segment(vaddr_t va, paddr_t pa, vsize_t len, int ops,
802 bool readonly_p)
803 {
804
805 #if defined(ARM_MMU_EXTENDED)
806 /*
807 * No optimisations are available for readonly mbufs on armv6+, so
808 * assume it's not readonly from here on.
809 *
810 * See the comment in _bus_dmamap_sync_mbuf
811 */
812 readonly_p = false;
813 #endif
814
815 KASSERTMSG((va & PAGE_MASK) == (pa & PAGE_MASK),
816 "va %#lx pa %#lx", va, pa);
817 #if 0
818 printf("sync_segment: va=%#lx pa=%#lx len=%#lx ops=%#x ro=%d\n",
819 va, pa, len, ops, readonly_p);
820 #endif
821
822 switch (ops) {
823 case BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE:
824 if (!readonly_p) {
825 STAT_INCR(sync_prereadwrite);
826 cpu_dcache_wbinv_range(va, len);
827 cpu_sdcache_wbinv_range(va, pa, len);
828 break;
829 }
830 /* FALLTHROUGH */
831
832 case BUS_DMASYNC_PREREAD: {
833 const size_t line_size = arm_dcache_align;
834 const size_t line_mask = arm_dcache_align_mask;
835 vsize_t misalignment = va & line_mask;
836 if (misalignment) {
837 va -= misalignment;
838 pa -= misalignment;
839 len += misalignment;
840 STAT_INCR(sync_preread_begin);
841 cpu_dcache_wbinv_range(va, line_size);
842 cpu_sdcache_wbinv_range(va, pa, line_size);
843 if (len <= line_size)
844 break;
845 va += line_size;
846 pa += line_size;
847 len -= line_size;
848 }
849 misalignment = len & line_mask;
850 len -= misalignment;
851 if (len > 0) {
852 STAT_INCR(sync_preread);
853 cpu_dcache_inv_range(va, len);
854 cpu_sdcache_inv_range(va, pa, len);
855 }
856 if (misalignment) {
857 va += len;
858 pa += len;
859 STAT_INCR(sync_preread_tail);
860 cpu_dcache_wbinv_range(va, line_size);
861 cpu_sdcache_wbinv_range(va, pa, line_size);
862 }
863 break;
864 }
865
866 case BUS_DMASYNC_PREWRITE:
867 STAT_INCR(sync_prewrite);
868 cpu_dcache_wb_range(va, len);
869 cpu_sdcache_wb_range(va, pa, len);
870 break;
871
872 #if defined(CPU_CORTEX) || defined(CPU_ARMV8)
873
874 /*
875 * Cortex CPUs can do speculative loads so we need to clean the cache
876 * after a DMA read to deal with any speculatively loaded cache lines.
877 * Since these can't be dirty, we can just invalidate them and don't
878 * have to worry about having to write back their contents.
879 */
880 case BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE:
881 STAT_INCR(sync_postreadwrite);
882 cpu_dcache_inv_range(va, len);
883 cpu_sdcache_inv_range(va, pa, len);
884 break;
885 case BUS_DMASYNC_POSTREAD:
886 STAT_INCR(sync_postread);
887 cpu_dcache_inv_range(va, len);
888 cpu_sdcache_inv_range(va, pa, len);
889 break;
890 #endif
891 }
892 }
893
894 static inline void
895 _bus_dmamap_sync_linear(bus_dma_tag_t t, bus_dmamap_t map, bus_addr_t offset,
896 bus_size_t len, int ops)
897 {
898 bus_dma_segment_t *ds = map->dm_segs;
899 vaddr_t va = (vaddr_t) map->_dm_origbuf;
900 #ifdef _ARM32_NEED_BUS_DMA_BOUNCE
901 if (map->_dm_flags & _BUS_DMAMAP_IS_BOUNCING) {
902 struct arm32_bus_dma_cookie * const cookie = map->_dm_cookie;
903 va = (vaddr_t) cookie->id_bouncebuf;
904 }
905 #endif
906
907 while (len > 0) {
908 while (offset >= ds->ds_len) {
909 offset -= ds->ds_len;
910 va += ds->ds_len;
911 ds++;
912 }
913
914 paddr_t pa = _bus_dma_busaddr_to_paddr(t, ds->ds_addr + offset);
915 size_t seglen = uimin(len, ds->ds_len - offset);
916
917 if ((ds->_ds_flags & _BUS_DMAMAP_COHERENT) == 0)
918 _bus_dmamap_sync_segment(va + offset, pa, seglen, ops,
919 false);
920
921 offset += seglen;
922 len -= seglen;
923 }
924 }
925
926 static inline void
927 _bus_dmamap_sync_mbuf(bus_dma_tag_t t, bus_dmamap_t map, bus_size_t offset,
928 bus_size_t len, int ops)
929 {
930 bus_dma_segment_t *ds = map->dm_segs;
931 struct mbuf *m = map->_dm_origbuf;
932 bus_size_t voff = offset;
933 bus_size_t ds_off = offset;
934
935 while (len > 0) {
936 /* Find the current dma segment */
937 while (ds_off >= ds->ds_len) {
938 ds_off -= ds->ds_len;
939 ds++;
940 }
941 /* Find the current mbuf. */
942 while (voff >= m->m_len) {
943 voff -= m->m_len;
944 m = m->m_next;
945 }
946
947 /*
948 * Now at the first mbuf to sync; nail each one until
949 * we have exhausted the length.
950 */
951 vsize_t seglen = uimin(len, uimin(m->m_len - voff, ds->ds_len - ds_off));
952 vaddr_t va = mtod(m, vaddr_t) + voff;
953 paddr_t pa = _bus_dma_busaddr_to_paddr(t, ds->ds_addr + ds_off);
954
955 /*
956 * We can save a lot of work here if we know the mapping
957 * is read-only at the MMU and we aren't using the armv6+
958 * MMU:
959 *
960 * If a mapping is read-only, no dirty cache blocks will
961 * exist for it. If a writable mapping was made read-only,
962 * we know any dirty cache lines for the range will have
963 * been cleaned for us already. Therefore, if the upper
964 * layer can tell us we have a read-only mapping, we can
965 * skip all cache cleaning.
966 *
967 * NOTE: This only works if we know the pmap cleans pages
968 * before making a read-write -> read-only transition. If
969 * this ever becomes non-true (e.g. Physically Indexed
970 * cache), this will have to be revisited.
971 */
972
973 if ((ds->_ds_flags & _BUS_DMAMAP_COHERENT) == 0) {
974 /*
975 * If we are doing preread (DMAing into the mbuf),
976 * this mbuf better not be readonly,
977 */
978 KASSERT(!(ops & BUS_DMASYNC_PREREAD) || !M_ROMAP(m));
979 _bus_dmamap_sync_segment(va, pa, seglen, ops,
980 M_ROMAP(m));
981 }
982 voff += seglen;
983 ds_off += seglen;
984 len -= seglen;
985 }
986 }
987
988 static inline void
989 _bus_dmamap_sync_uio(bus_dma_tag_t t, bus_dmamap_t map, bus_addr_t offset,
990 bus_size_t len, int ops)
991 {
992 bus_dma_segment_t *ds = map->dm_segs;
993 struct uio *uio = map->_dm_origbuf;
994 struct iovec *iov = uio->uio_iov;
995 bus_size_t voff = offset;
996 bus_size_t ds_off = offset;
997
998 while (len > 0) {
999 /* Find the current dma segment */
1000 while (ds_off >= ds->ds_len) {
1001 ds_off -= ds->ds_len;
1002 ds++;
1003 }
1004
1005 /* Find the current iovec. */
1006 while (voff >= iov->iov_len) {
1007 voff -= iov->iov_len;
1008 iov++;
1009 }
1010
1011 /*
1012 * Now at the first iovec to sync; nail each one until
1013 * we have exhausted the length.
1014 */
1015 vsize_t seglen = uimin(len, uimin(iov->iov_len - voff, ds->ds_len - ds_off));
1016 vaddr_t va = (vaddr_t) iov->iov_base + voff;
1017 paddr_t pa = _bus_dma_busaddr_to_paddr(t, ds->ds_addr + ds_off);
1018
1019 if ((ds->_ds_flags & _BUS_DMAMAP_COHERENT) == 0)
1020 _bus_dmamap_sync_segment(va, pa, seglen, ops, false);
1021
1022 voff += seglen;
1023 ds_off += seglen;
1024 len -= seglen;
1025 }
1026 }
1027
1028 /*
1029 * Common function for DMA map synchronization. May be called
1030 * by bus-specific DMA map synchronization functions.
1031 *
1032 * XXX Should have separate versions for write-through vs.
1033 * XXX write-back caches. We currently assume write-back
1034 * XXX here, which is not as efficient as it could be for
1035 * XXX the write-through case.
1036 */
1037 void
1038 _bus_dmamap_sync(bus_dma_tag_t t, bus_dmamap_t map, bus_addr_t offset,
1039 bus_size_t len, int ops)
1040 {
1041 #ifdef DEBUG_DMA
1042 printf("dmamap_sync: t=%p map=%p offset=%lx len=%lx ops=%x\n",
1043 t, map, offset, len, ops);
1044 #endif /* DEBUG_DMA */
1045
1046 /*
1047 * Mixing of PRE and POST operations is not allowed.
1048 */
1049 if ((ops & (BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE)) != 0 &&
1050 (ops & (BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE)) != 0)
1051 panic("_bus_dmamap_sync: mix PRE and POST");
1052
1053 KASSERTMSG(offset < map->dm_mapsize,
1054 "offset %lu mapsize %lu",
1055 offset, map->dm_mapsize);
1056 KASSERTMSG(len > 0 && offset + len <= map->dm_mapsize,
1057 "len %lu offset %lu mapsize %lu",
1058 len, offset, map->dm_mapsize);
1059
1060 /*
1061 * For a virtually-indexed write-back cache, we need
1062 * to do the following things:
1063 *
1064 * PREREAD -- Invalidate the D-cache. We do this
1065 * here in case a write-back is required by the back-end.
1066 *
1067 * PREWRITE -- Write-back the D-cache. Note that if
1068 * we are doing a PREREAD|PREWRITE, we can collapse
1069 * the whole thing into a single Wb-Inv.
1070 *
1071 * POSTREAD -- Re-invalidate the D-cache in case speculative
1072 * memory accesses caused cachelines to become valid with now
1073 * invalid data.
1074 *
1075 * POSTWRITE -- Nothing.
1076 */
1077 #ifdef _ARM32_NEED_BUS_DMA_BOUNCE
1078 const bool bouncing = (map->_dm_flags & _BUS_DMAMAP_IS_BOUNCING);
1079 #else
1080 const bool bouncing = false;
1081 #endif
1082
1083 const int pre_ops = ops & (BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1084 #if defined(CPU_CORTEX) || defined(CPU_ARMV8)
1085 const int post_ops = ops & (BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1086 #else
1087 const int post_ops = 0;
1088 #endif
1089 if (pre_ops == 0 && post_ops == 0)
1090 return;
1091
1092 if (post_ops == BUS_DMASYNC_POSTWRITE) {
1093 KASSERT(pre_ops == 0);
1094 STAT_INCR(sync_postwrite);
1095 return;
1096 }
1097
1098 KASSERTMSG(bouncing || pre_ops != 0 || (post_ops & BUS_DMASYNC_POSTREAD),
1099 "pre_ops %#x post_ops %#x", pre_ops, post_ops);
1100
1101 if (bouncing && (ops & BUS_DMASYNC_PREWRITE)) {
1102 struct arm32_bus_dma_cookie * const cookie = map->_dm_cookie;
1103 STAT_INCR(write_bounces);
1104 char * const dataptr = (char *)cookie->id_bouncebuf + offset;
1105 /*
1106 * Copy the caller's buffer to the bounce buffer.
1107 */
1108 switch (map->_dm_buftype) {
1109 case _BUS_DMA_BUFTYPE_LINEAR:
1110 memcpy(dataptr, cookie->id_origlinearbuf + offset, len);
1111 break;
1112 case _BUS_DMA_BUFTYPE_MBUF:
1113 m_copydata(cookie->id_origmbuf, offset, len, dataptr);
1114 break;
1115 case _BUS_DMA_BUFTYPE_UIO:
1116 _bus_dma_uiomove(dataptr, cookie->id_origuio, len, UIO_WRITE);
1117 break;
1118 #ifdef DIAGNOSTIC
1119 case _BUS_DMA_BUFTYPE_RAW:
1120 panic("_bus_dmamap_sync(pre): _BUS_DMA_BUFTYPE_RAW");
1121 break;
1122
1123 case _BUS_DMA_BUFTYPE_INVALID:
1124 panic("_bus_dmamap_sync(pre): _BUS_DMA_BUFTYPE_INVALID");
1125 break;
1126
1127 default:
1128 panic("_bus_dmamap_sync(pre): map %p: unknown buffer type %d\n",
1129 map, map->_dm_buftype);
1130 break;
1131 #endif /* DIAGNOSTIC */
1132 }
1133 }
1134
1135 /* Skip cache frobbing if mapping was COHERENT */
1136 if ((map->_dm_flags & _BUS_DMAMAP_COHERENT)) {
1137 /*
1138 * Drain the write buffer of DMA operators.
1139 * 1) when cpu->device (prewrite)
1140 * 2) when device->cpu (postread)
1141 */
1142 if ((pre_ops & BUS_DMASYNC_PREWRITE) || (post_ops & BUS_DMASYNC_POSTREAD))
1143 cpu_drain_writebuf();
1144
1145 /*
1146 * Only thing left to do for COHERENT mapping is copy from bounce
1147 * in the POSTREAD case.
1148 */
1149 if (bouncing && (post_ops & BUS_DMASYNC_POSTREAD))
1150 goto bounce_it;
1151
1152 return;
1153 }
1154
1155 #if !defined( ARM_MMU_EXTENDED)
1156 /*
1157 * If the mapping belongs to a non-kernel vmspace, and the
1158 * vmspace has not been active since the last time a full
1159 * cache flush was performed, we don't need to do anything.
1160 */
1161 if (__predict_false(!VMSPACE_IS_KERNEL_P(map->_dm_vmspace) &&
1162 vm_map_pmap(&map->_dm_vmspace->vm_map)->pm_cstate.cs_cache_d == 0))
1163 return;
1164 #endif
1165
1166 int buftype = map->_dm_buftype;
1167 if (bouncing) {
1168 buftype = _BUS_DMA_BUFTYPE_LINEAR;
1169 }
1170
1171 switch (buftype) {
1172 case _BUS_DMA_BUFTYPE_LINEAR:
1173 case _BUS_DMA_BUFTYPE_RAW:
1174 _bus_dmamap_sync_linear(t, map, offset, len, ops);
1175 break;
1176
1177 case _BUS_DMA_BUFTYPE_MBUF:
1178 _bus_dmamap_sync_mbuf(t, map, offset, len, ops);
1179 break;
1180
1181 case _BUS_DMA_BUFTYPE_UIO:
1182 _bus_dmamap_sync_uio(t, map, offset, len, ops);
1183 break;
1184
1185 case _BUS_DMA_BUFTYPE_INVALID:
1186 panic("_bus_dmamap_sync: _BUS_DMA_BUFTYPE_INVALID");
1187 break;
1188
1189 default:
1190 panic("_bus_dmamap_sync: map %p: unknown buffer type %d\n",
1191 map, map->_dm_buftype);
1192 }
1193
1194 /* Drain the write buffer. */
1195 cpu_drain_writebuf();
1196
1197 if (!bouncing || (ops & BUS_DMASYNC_POSTREAD) == 0)
1198 return;
1199
1200 bounce_it:
1201 STAT_INCR(read_bounces);
1202
1203 struct arm32_bus_dma_cookie * const cookie = map->_dm_cookie;
1204 char * const dataptr = (char *)cookie->id_bouncebuf + offset;
1205 /*
1206 * Copy the bounce buffer to the caller's buffer.
1207 */
1208 switch (map->_dm_buftype) {
1209 case _BUS_DMA_BUFTYPE_LINEAR:
1210 memcpy(cookie->id_origlinearbuf + offset, dataptr, len);
1211 break;
1212
1213 case _BUS_DMA_BUFTYPE_MBUF:
1214 m_copyback(cookie->id_origmbuf, offset, len, dataptr);
1215 break;
1216
1217 case _BUS_DMA_BUFTYPE_UIO:
1218 _bus_dma_uiomove(dataptr, cookie->id_origuio, len, UIO_READ);
1219 break;
1220 #ifdef DIAGNOSTIC
1221 case _BUS_DMA_BUFTYPE_RAW:
1222 panic("_bus_dmamap_sync(post): _BUS_DMA_BUFTYPE_RAW");
1223 break;
1224
1225 case _BUS_DMA_BUFTYPE_INVALID:
1226 panic("_bus_dmamap_sync(post): _BUS_DMA_BUFTYPE_INVALID");
1227 break;
1228
1229 default:
1230 panic("_bus_dmamap_sync(post): map %p: unknown buffer type %d\n",
1231 map, map->_dm_buftype);
1232 break;
1233 #endif
1234 }
1235 }
1236
1237 /*
1238 * Common function for DMA-safe memory allocation. May be called
1239 * by bus-specific DMA memory allocation functions.
1240 */
1241
1242 extern paddr_t physical_start;
1243 extern paddr_t physical_end;
1244
1245 int
1246 _bus_dmamem_alloc(bus_dma_tag_t t, bus_size_t size, bus_size_t alignment,
1247 bus_size_t boundary, bus_dma_segment_t *segs, int nsegs, int *rsegs,
1248 int flags)
1249 {
1250 struct arm32_dma_range *dr;
1251 int error, i;
1252
1253 #ifdef DEBUG_DMA
1254 printf("dmamem_alloc t=%p size=%lx align=%lx boundary=%lx "
1255 "segs=%p nsegs=%x rsegs=%p flags=%x\n", t, size, alignment,
1256 boundary, segs, nsegs, rsegs, flags);
1257 #endif
1258
1259 if ((dr = t->_ranges) != NULL) {
1260 error = ENOMEM;
1261 for (i = 0; i < t->_nranges; i++, dr++) {
1262 if (dr->dr_len == 0
1263 || (dr->dr_flags & _BUS_DMAMAP_NOALLOC))
1264 continue;
1265 error = _bus_dmamem_alloc_range(t, size, alignment,
1266 boundary, segs, nsegs, rsegs, flags,
1267 trunc_page(dr->dr_sysbase),
1268 trunc_page(dr->dr_sysbase + dr->dr_len));
1269 if (error == 0)
1270 break;
1271 }
1272 } else {
1273 error = _bus_dmamem_alloc_range(t, size, alignment, boundary,
1274 segs, nsegs, rsegs, flags, trunc_page(physical_start),
1275 trunc_page(physical_end));
1276 }
1277
1278 #ifdef DEBUG_DMA
1279 printf("dmamem_alloc: =%d\n", error);
1280 #endif
1281
1282 return error;
1283 }
1284
1285 /*
1286 * Common function for freeing DMA-safe memory. May be called by
1287 * bus-specific DMA memory free functions.
1288 */
1289 void
1290 _bus_dmamem_free(bus_dma_tag_t t, bus_dma_segment_t *segs, int nsegs)
1291 {
1292 struct vm_page *m;
1293 bus_addr_t addr;
1294 struct pglist mlist;
1295 int curseg;
1296
1297 #ifdef DEBUG_DMA
1298 printf("dmamem_free: t=%p segs=%p nsegs=%x\n", t, segs, nsegs);
1299 #endif /* DEBUG_DMA */
1300
1301 /*
1302 * Build a list of pages to free back to the VM system.
1303 */
1304 TAILQ_INIT(&mlist);
1305 for (curseg = 0; curseg < nsegs; curseg++) {
1306 for (addr = segs[curseg].ds_addr;
1307 addr < (segs[curseg].ds_addr + segs[curseg].ds_len);
1308 addr += PAGE_SIZE) {
1309 m = PHYS_TO_VM_PAGE(addr);
1310 TAILQ_INSERT_TAIL(&mlist, m, pageq.queue);
1311 }
1312 }
1313 uvm_pglistfree(&mlist);
1314 }
1315
1316 /*
1317 * Common function for mapping DMA-safe memory. May be called by
1318 * bus-specific DMA memory map functions.
1319 */
1320 int
1321 _bus_dmamem_map(bus_dma_tag_t t, bus_dma_segment_t *segs, int nsegs,
1322 size_t size, void **kvap, int flags)
1323 {
1324 vaddr_t va;
1325 paddr_t pa;
1326 int curseg;
1327 const uvm_flag_t kmflags = UVM_KMF_VAONLY
1328 | ((flags & BUS_DMA_NOWAIT) != 0 ? UVM_KMF_NOWAIT : 0);
1329 vsize_t align = 0;
1330
1331 #ifdef DEBUG_DMA
1332 printf("dmamem_map: t=%p segs=%p nsegs=%x size=%lx flags=%x\n", t,
1333 segs, nsegs, (unsigned long)size, flags);
1334 #endif /* DEBUG_DMA */
1335
1336 #ifdef PMAP_MAP_POOLPAGE
1337 /*
1338 * If all of memory is mapped, and we are mapping a single physically
1339 * contiguous area then this area is already mapped. Let's see if we
1340 * avoid having a separate mapping for it.
1341 */
1342 if (nsegs == 1) {
1343 /*
1344 * If this is a non-COHERENT mapping, then the existing kernel
1345 * mapping is already compatible with it.
1346 */
1347 bool direct_mapable = (flags & BUS_DMA_COHERENT) == 0;
1348 pa = segs[0].ds_addr;
1349
1350 /*
1351 * This is a COHERENT mapping which, unless this address is in
1352 * a COHERENT dma range, will not be compatible.
1353 */
1354 if (t->_ranges != NULL) {
1355 const struct arm32_dma_range * const dr =
1356 _bus_dma_paddr_inrange(t->_ranges, t->_nranges, pa);
1357 if (dr != NULL
1358 && (dr->dr_flags & _BUS_DMAMAP_COHERENT)) {
1359 direct_mapable = true;
1360 }
1361 }
1362
1363 #ifdef PMAP_NEED_ALLOC_POOLPAGE
1364 /*
1365 * The page can only be direct mapped if was allocated out
1366 * of the arm poolpage vm freelist.
1367 */
1368 uvm_physseg_t upm = uvm_physseg_find(atop(pa), NULL);
1369 KASSERT(uvm_physseg_valid_p(upm));
1370 if (direct_mapable) {
1371 direct_mapable =
1372 (arm_poolpage_vmfreelist == uvm_physseg_get_free_list(upm));
1373 }
1374 #endif
1375
1376 if (direct_mapable) {
1377 *kvap = (void *)PMAP_MAP_POOLPAGE(pa);
1378 #ifdef DEBUG_DMA
1379 printf("dmamem_map: =%p\n", *kvap);
1380 #endif /* DEBUG_DMA */
1381 return 0;
1382 }
1383 }
1384 #endif
1385
1386 size = round_page(size);
1387
1388 #ifdef PMAP_MAPSIZE1
1389 if (size >= PMAP_MAPSIZE1)
1390 align = PMAP_MAPSIZE1;
1391
1392 #ifdef PMAP_MAPSIZE2
1393
1394 #if PMAP_MAPSIZE1 > PMAP_MAPSIZE2
1395 #error PMAP_MAPSIZE1 must be smaller than PMAP_MAPSIZE2
1396 #endif
1397
1398 if (size >= PMAP_MAPSIZE2)
1399 align = PMAP_MAPSIZE2;
1400
1401 #ifdef PMAP_MAPSIZE3
1402
1403 #if PMAP_MAPSIZE2 > PMAP_MAPSIZE3
1404 #error PMAP_MAPSIZE2 must be smaller than PMAP_MAPSIZE3
1405 #endif
1406
1407 if (size >= PMAP_MAPSIZE3)
1408 align = PMAP_MAPSIZE3;
1409 #endif
1410 #endif
1411 #endif
1412
1413 va = uvm_km_alloc(kernel_map, size, align, kmflags);
1414 if (__predict_false(va == 0 && align > 0)) {
1415 align = 0;
1416 va = uvm_km_alloc(kernel_map, size, 0, kmflags);
1417 }
1418
1419 if (va == 0)
1420 return ENOMEM;
1421
1422 *kvap = (void *)va;
1423
1424 for (curseg = 0; curseg < nsegs; curseg++) {
1425 for (pa = segs[curseg].ds_addr;
1426 pa < (segs[curseg].ds_addr + segs[curseg].ds_len);
1427 pa += PAGE_SIZE, va += PAGE_SIZE, size -= PAGE_SIZE) {
1428 bool uncached = (flags & BUS_DMA_COHERENT);
1429 bool prefetchable = (flags & BUS_DMA_PREFETCHABLE);
1430 #ifdef DEBUG_DMA
1431 printf("wiring p%lx to v%lx", pa, va);
1432 #endif /* DEBUG_DMA */
1433 if (size == 0)
1434 panic("_bus_dmamem_map: size botch");
1435
1436 const struct arm32_dma_range * const dr =
1437 _bus_dma_paddr_inrange(t->_ranges, t->_nranges, pa);
1438 /*
1439 * If this dma region is coherent then there is
1440 * no need for an uncached mapping.
1441 */
1442 if (dr != NULL
1443 && (dr->dr_flags & _BUS_DMAMAP_COHERENT)) {
1444 uncached = false;
1445 }
1446
1447 u_int pmap_flags = PMAP_WIRED;
1448 if (prefetchable)
1449 pmap_flags |= PMAP_WRITE_COMBINE;
1450 else if (uncached)
1451 pmap_flags |= PMAP_NOCACHE;
1452
1453 pmap_kenter_pa(va, pa, VM_PROT_READ | VM_PROT_WRITE,
1454 pmap_flags);
1455 }
1456 }
1457 pmap_update(pmap_kernel());
1458 #ifdef DEBUG_DMA
1459 printf("dmamem_map: =%p\n", *kvap);
1460 #endif /* DEBUG_DMA */
1461 return 0;
1462 }
1463
1464 /*
1465 * Common function for unmapping DMA-safe memory. May be called by
1466 * bus-specific DMA memory unmapping functions.
1467 */
1468 void
1469 _bus_dmamem_unmap(bus_dma_tag_t t, void *kva, size_t size)
1470 {
1471
1472 #ifdef DEBUG_DMA
1473 printf("dmamem_unmap: t=%p kva=%p size=%zx\n", t, kva, size);
1474 #endif /* DEBUG_DMA */
1475 KASSERTMSG(((uintptr_t)kva & PAGE_MASK) == 0,
1476 "kva %p (%#"PRIxPTR")", kva, ((uintptr_t)kva & PAGE_MASK));
1477
1478 #ifdef __HAVE_MM_MD_DIRECT_MAPPED_PHYS
1479 /*
1480 * Check to see if this used direct mapped memory. Get its physical
1481 * address and try to map it. If the resultant matches the kva, then
1482 * it was and so we can just return since we have nothing to free up.
1483 */
1484 paddr_t pa;
1485 vaddr_t va;
1486 (void)pmap_extract(pmap_kernel(), (vaddr_t)kva, &pa);
1487 if (mm_md_direct_mapped_phys(pa, &va) && va == (vaddr_t)kva)
1488 return;
1489 #endif
1490
1491 size = round_page(size);
1492 pmap_kremove((vaddr_t)kva, size);
1493 pmap_update(pmap_kernel());
1494 uvm_km_free(kernel_map, (vaddr_t)kva, size, UVM_KMF_VAONLY);
1495 }
1496
1497 /*
1498 * Common functin for mmap(2)'ing DMA-safe memory. May be called by
1499 * bus-specific DMA mmap(2)'ing functions.
1500 */
1501 paddr_t
1502 _bus_dmamem_mmap(bus_dma_tag_t t, bus_dma_segment_t *segs, int nsegs,
1503 off_t off, int prot, int flags)
1504 {
1505 paddr_t map_flags;
1506 int i;
1507
1508 for (i = 0; i < nsegs; i++) {
1509 KASSERTMSG((off & PAGE_MASK) == 0,
1510 "off %#jx (%#x)", (uintmax_t)off, (int)off & PAGE_MASK);
1511 KASSERTMSG((segs[i].ds_addr & PAGE_MASK) == 0,
1512 "ds_addr %#lx (%#x)", segs[i].ds_addr,
1513 (int)segs[i].ds_addr & PAGE_MASK);
1514 KASSERTMSG((segs[i].ds_len & PAGE_MASK) == 0,
1515 "ds_len %#lx (%#x)", segs[i].ds_addr,
1516 (int)segs[i].ds_addr & PAGE_MASK);
1517 if (off >= segs[i].ds_len) {
1518 off -= segs[i].ds_len;
1519 continue;
1520 }
1521
1522 map_flags = 0;
1523 if (flags & BUS_DMA_PREFETCHABLE)
1524 map_flags |= ARM_MMAP_WRITECOMBINE;
1525
1526 return arm_btop((u_long)segs[i].ds_addr + off) | map_flags;
1527
1528 }
1529
1530 /* Page not found. */
1531 return -1;
1532 }
1533
1534 /**********************************************************************
1535 * DMA utility functions
1536 **********************************************************************/
1537
1538 /*
1539 * Utility function to load a linear buffer. lastaddrp holds state
1540 * between invocations (for multiple-buffer loads). segp contains
1541 * the starting segment on entrace, and the ending segment on exit.
1542 * first indicates if this is the first invocation of this function.
1543 */
1544 int
1545 _bus_dmamap_load_buffer(bus_dma_tag_t t, bus_dmamap_t map, void *buf,
1546 bus_size_t buflen, struct vmspace *vm, int flags)
1547 {
1548 bus_size_t sgsize;
1549 bus_addr_t curaddr;
1550 vaddr_t vaddr = (vaddr_t)buf;
1551 int error;
1552 pmap_t pmap;
1553
1554 #ifdef DEBUG_DMA
1555 printf("_bus_dmamem_load_buffer(buf=%p, len=%lx, flags=%d)\n",
1556 buf, buflen, flags);
1557 #endif /* DEBUG_DMA */
1558
1559 pmap = vm_map_pmap(&vm->vm_map);
1560
1561 while (buflen > 0) {
1562 /*
1563 * Get the physical address for this segment.
1564 *
1565 */
1566 bool coherent;
1567 pmap_extract_coherency(pmap, vaddr, &curaddr, &coherent);
1568
1569 KASSERTMSG((vaddr & PAGE_MASK) == (curaddr & PAGE_MASK),
1570 "va %#lx curaddr %#lx", vaddr, curaddr);
1571
1572 /*
1573 * Compute the segment size, and adjust counts.
1574 */
1575 sgsize = PAGE_SIZE - ((u_long)vaddr & PGOFSET);
1576 if (buflen < sgsize)
1577 sgsize = buflen;
1578
1579 error = _bus_dmamap_load_paddr(t, map, curaddr, sgsize,
1580 coherent);
1581 if (error)
1582 return error;
1583
1584 vaddr += sgsize;
1585 buflen -= sgsize;
1586 }
1587
1588 return 0;
1589 }
1590
1591 /*
1592 * Allocate physical memory from the given physical address range.
1593 * Called by DMA-safe memory allocation methods.
1594 */
1595 int
1596 _bus_dmamem_alloc_range(bus_dma_tag_t t, bus_size_t size, bus_size_t alignment,
1597 bus_size_t boundary, bus_dma_segment_t *segs, int nsegs, int *rsegs,
1598 int flags, paddr_t low, paddr_t high)
1599 {
1600 paddr_t curaddr, lastaddr;
1601 struct vm_page *m;
1602 struct pglist mlist;
1603 int curseg, error;
1604
1605 KASSERTMSG(boundary == 0 || (boundary & (boundary - 1)) == 0,
1606 "invalid boundary %#lx", boundary);
1607
1608 #ifdef DEBUG_DMA
1609 printf("alloc_range: t=%p size=%lx align=%lx boundary=%lx segs=%p nsegs=%x rsegs=%p flags=%x lo=%lx hi=%lx\n",
1610 t, size, alignment, boundary, segs, nsegs, rsegs, flags, low, high);
1611 #endif /* DEBUG_DMA */
1612
1613 /* Always round the size. */
1614 size = round_page(size);
1615
1616 /*
1617 * We accept boundaries < size, splitting in multiple segments
1618 * if needed. uvm_pglistalloc does not, so compute an appropriate
1619 * boundary: next power of 2 >= size
1620 */
1621 bus_size_t uboundary = boundary;
1622 if (uboundary <= PAGE_SIZE) {
1623 uboundary = 0;
1624 } else {
1625 while (uboundary < size) {
1626 uboundary <<= 1;
1627 }
1628 }
1629
1630 /*
1631 * Allocate pages from the VM system.
1632 */
1633 error = uvm_pglistalloc(size, low, high, alignment, uboundary,
1634 &mlist, nsegs, (flags & BUS_DMA_NOWAIT) == 0);
1635 if (error)
1636 return error;
1637
1638 /*
1639 * Compute the location, size, and number of segments actually
1640 * returned by the VM code.
1641 */
1642 m = TAILQ_FIRST(&mlist);
1643 curseg = 0;
1644 lastaddr = segs[curseg].ds_addr = VM_PAGE_TO_PHYS(m);
1645 segs[curseg].ds_len = PAGE_SIZE;
1646 #ifdef DEBUG_DMA
1647 printf("alloc: page %lx\n", lastaddr);
1648 #endif /* DEBUG_DMA */
1649 m = TAILQ_NEXT(m, pageq.queue);
1650
1651 for (; m != NULL; m = TAILQ_NEXT(m, pageq.queue)) {
1652 curaddr = VM_PAGE_TO_PHYS(m);
1653 KASSERTMSG(low <= curaddr && curaddr < high,
1654 "uvm_pglistalloc returned non-sensicaladdress %#lx "
1655 "(low=%#lx, high=%#lx\n", curaddr, low, high);
1656 #ifdef DEBUG_DMA
1657 printf("alloc: page %lx\n", curaddr);
1658 #endif /* DEBUG_DMA */
1659 if (curaddr == lastaddr + PAGE_SIZE
1660 && (lastaddr & boundary) == (curaddr & boundary))
1661 segs[curseg].ds_len += PAGE_SIZE;
1662 else {
1663 curseg++;
1664 if (curseg >= nsegs) {
1665 uvm_pglistfree(&mlist);
1666 return EFBIG;
1667 }
1668 segs[curseg].ds_addr = curaddr;
1669 segs[curseg].ds_len = PAGE_SIZE;
1670 }
1671 lastaddr = curaddr;
1672 }
1673
1674 *rsegs = curseg + 1;
1675
1676 return 0;
1677 }
1678
1679 /*
1680 * Check if a memory region intersects with a DMA range, and return the
1681 * page-rounded intersection if it does.
1682 */
1683 int
1684 arm32_dma_range_intersect(struct arm32_dma_range *ranges, int nranges,
1685 paddr_t pa, psize_t size, paddr_t *pap, psize_t *sizep)
1686 {
1687 struct arm32_dma_range *dr;
1688 int i;
1689
1690 if (ranges == NULL)
1691 return 0;
1692
1693 for (i = 0, dr = ranges; i < nranges; i++, dr++) {
1694 if (dr->dr_sysbase <= pa &&
1695 pa < (dr->dr_sysbase + dr->dr_len)) {
1696 /*
1697 * Beginning of region intersects with this range.
1698 */
1699 *pap = trunc_page(pa);
1700 *sizep = round_page(uimin(pa + size,
1701 dr->dr_sysbase + dr->dr_len) - pa);
1702 return 1;
1703 }
1704 if (pa < dr->dr_sysbase && dr->dr_sysbase < (pa + size)) {
1705 /*
1706 * End of region intersects with this range.
1707 */
1708 *pap = trunc_page(dr->dr_sysbase);
1709 *sizep = round_page(uimin((pa + size) - dr->dr_sysbase,
1710 dr->dr_len));
1711 return 1;
1712 }
1713 }
1714
1715 /* No intersection found. */
1716 return 0;
1717 }
1718
1719 #ifdef _ARM32_NEED_BUS_DMA_BOUNCE
1720 static int
1721 _bus_dma_alloc_bouncebuf(bus_dma_tag_t t, bus_dmamap_t map,
1722 bus_size_t size, int flags)
1723 {
1724 struct arm32_bus_dma_cookie *cookie = map->_dm_cookie;
1725 int error = 0;
1726
1727 KASSERT(cookie != NULL);
1728
1729 cookie->id_bouncebuflen = round_page(size);
1730 error = _bus_dmamem_alloc(t, cookie->id_bouncebuflen,
1731 PAGE_SIZE, map->_dm_boundary, cookie->id_bouncesegs,
1732 map->_dm_segcnt, &cookie->id_nbouncesegs, flags);
1733 if (error == 0) {
1734 error = _bus_dmamem_map(t, cookie->id_bouncesegs,
1735 cookie->id_nbouncesegs, cookie->id_bouncebuflen,
1736 (void **)&cookie->id_bouncebuf, flags);
1737 if (error) {
1738 _bus_dmamem_free(t, cookie->id_bouncesegs,
1739 cookie->id_nbouncesegs);
1740 cookie->id_bouncebuflen = 0;
1741 cookie->id_nbouncesegs = 0;
1742 } else {
1743 cookie->id_flags |= _BUS_DMA_HAS_BOUNCE;
1744 }
1745 } else {
1746 cookie->id_bouncebuflen = 0;
1747 cookie->id_nbouncesegs = 0;
1748 }
1749
1750 return error;
1751 }
1752
1753 static void
1754 _bus_dma_free_bouncebuf(bus_dma_tag_t t, bus_dmamap_t map)
1755 {
1756 struct arm32_bus_dma_cookie *cookie = map->_dm_cookie;
1757
1758 KASSERT(cookie != NULL);
1759
1760 _bus_dmamem_unmap(t, cookie->id_bouncebuf, cookie->id_bouncebuflen);
1761 _bus_dmamem_free(t, cookie->id_bouncesegs, cookie->id_nbouncesegs);
1762 cookie->id_bouncebuflen = 0;
1763 cookie->id_nbouncesegs = 0;
1764 cookie->id_flags &= ~_BUS_DMA_HAS_BOUNCE;
1765 }
1766 #endif /* _ARM32_NEED_BUS_DMA_BOUNCE */
1767
1768 /*
1769 * This function does the same as uiomove, but takes an explicit
1770 * direction, and does not update the uio structure.
1771 */
1772 static int
1773 _bus_dma_uiomove(void *buf, struct uio *uio, size_t n, int direction)
1774 {
1775 struct iovec *iov;
1776 int error;
1777 struct vmspace *vm;
1778 char *cp;
1779 size_t resid, cnt;
1780 int i;
1781
1782 iov = uio->uio_iov;
1783 vm = uio->uio_vmspace;
1784 cp = buf;
1785 resid = n;
1786
1787 for (i = 0; i < uio->uio_iovcnt && resid > 0; i++) {
1788 iov = &uio->uio_iov[i];
1789 if (iov->iov_len == 0)
1790 continue;
1791 cnt = MIN(resid, iov->iov_len);
1792
1793 if (!VMSPACE_IS_KERNEL_P(vm) &&
1794 (curlwp->l_cpu->ci_schedstate.spc_flags & SPCF_SHOULDYIELD)
1795 != 0) {
1796 preempt();
1797 }
1798 if (direction == UIO_READ) {
1799 error = copyout_vmspace(vm, cp, iov->iov_base, cnt);
1800 } else {
1801 error = copyin_vmspace(vm, iov->iov_base, cp, cnt);
1802 }
1803 if (error)
1804 return error;
1805 cp += cnt;
1806 resid -= cnt;
1807 }
1808 return 0;
1809 }
1810
1811 int
1812 _bus_dmatag_subregion(bus_dma_tag_t tag, bus_addr_t min_addr,
1813 bus_addr_t max_addr, bus_dma_tag_t *newtag, int flags)
1814 {
1815
1816 #ifdef _ARM32_NEED_BUS_DMA_BOUNCE
1817 struct arm32_dma_range *dr;
1818 bool subset = false;
1819 size_t nranges = 0;
1820 size_t i;
1821 for (i = 0, dr = tag->_ranges; i < tag->_nranges; i++, dr++) {
1822 if (dr->dr_sysbase <= min_addr
1823 && max_addr <= dr->dr_sysbase + dr->dr_len - 1) {
1824 subset = true;
1825 }
1826 if (min_addr <= dr->dr_sysbase + dr->dr_len
1827 && max_addr >= dr->dr_sysbase) {
1828 nranges++;
1829 }
1830 }
1831 if (subset) {
1832 *newtag = tag;
1833 /* if the tag must be freed, add a reference */
1834 if (tag->_tag_needs_free)
1835 (tag->_tag_needs_free)++;
1836 return 0;
1837 }
1838 if (nranges == 0) {
1839 nranges = 1;
1840 }
1841
1842 const size_t tagsize = sizeof(*tag) + nranges * sizeof(*dr);
1843 if ((*newtag = kmem_intr_zalloc(tagsize,
1844 (flags & BUS_DMA_NOWAIT) ? KM_NOSLEEP : KM_SLEEP)) == NULL)
1845 return ENOMEM;
1846
1847 dr = (void *)(*newtag + 1);
1848 **newtag = *tag;
1849 (*newtag)->_tag_needs_free = 1;
1850 (*newtag)->_ranges = dr;
1851 (*newtag)->_nranges = nranges;
1852
1853 if (tag->_ranges == NULL) {
1854 dr->dr_sysbase = min_addr;
1855 dr->dr_busbase = min_addr;
1856 dr->dr_len = max_addr + 1 - min_addr;
1857 } else {
1858 for (i = 0; i < nranges; i++) {
1859 if (min_addr > dr->dr_sysbase + dr->dr_len
1860 || max_addr < dr->dr_sysbase)
1861 continue;
1862 dr[0] = tag->_ranges[i];
1863 if (dr->dr_sysbase < min_addr) {
1864 psize_t diff = min_addr - dr->dr_sysbase;
1865 dr->dr_busbase += diff;
1866 dr->dr_len -= diff;
1867 dr->dr_sysbase += diff;
1868 }
1869 if (max_addr != 0xffffffff
1870 && max_addr + 1 < dr->dr_sysbase + dr->dr_len) {
1871 dr->dr_len = max_addr + 1 - dr->dr_sysbase;
1872 }
1873 dr++;
1874 }
1875 }
1876
1877 return 0;
1878 #else
1879 return EOPNOTSUPP;
1880 #endif /* _ARM32_NEED_BUS_DMA_BOUNCE */
1881 }
1882
1883 void
1884 _bus_dmatag_destroy(bus_dma_tag_t tag)
1885 {
1886 #ifdef _ARM32_NEED_BUS_DMA_BOUNCE
1887 switch (tag->_tag_needs_free) {
1888 case 0:
1889 break; /* not allocated with kmem */
1890 case 1: {
1891 const size_t tagsize = sizeof(*tag)
1892 + tag->_nranges * sizeof(*tag->_ranges);
1893 kmem_intr_free(tag, tagsize); /* last reference to tag */
1894 break;
1895 }
1896 default:
1897 (tag->_tag_needs_free)--; /* one less reference */
1898 }
1899 #endif
1900 }
1901