bus_dma.c revision 1.122 1 /* $NetBSD: bus_dma.c,v 1.122 2020/06/20 07:10:36 skrll Exp $ */
2
3 /*-
4 * Copyright (c) 1996, 1997, 1998, 2020 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Jason R. Thorpe of the Numerical Aerospace Simulation Facility,
9 * NASA Ames Research Center.
10 *
11 * Redistribution and use in source and binary forms, with or without
12 * modification, are permitted provided that the following conditions
13 * are met:
14 * 1. Redistributions of source code must retain the above copyright
15 * notice, this list of conditions and the following disclaimer.
16 * 2. Redistributions in binary form must reproduce the above copyright
17 * notice, this list of conditions and the following disclaimer in the
18 * documentation and/or other materials provided with the distribution.
19 *
20 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
21 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
22 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
23 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
24 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
25 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
26 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
27 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
28 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
29 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
30 * POSSIBILITY OF SUCH DAMAGE.
31 */
32
33 #define _ARM32_BUS_DMA_PRIVATE
34
35 #include "opt_arm_bus_space.h"
36 #include "opt_cputypes.h"
37
38 #include <sys/cdefs.h>
39 __KERNEL_RCSID(0, "$NetBSD: bus_dma.c,v 1.122 2020/06/20 07:10:36 skrll Exp $");
40
41 #include <sys/param.h>
42
43 #include <sys/bus.h>
44 #include <sys/cpu.h>
45 #include <sys/kmem.h>
46 #include <sys/mbuf.h>
47
48 #include <uvm/uvm.h>
49
50 #include <arm/cpuconf.h>
51 #include <arm/cpufunc.h>
52
53 #ifdef __HAVE_MM_MD_DIRECT_MAPPED_PHYS
54 #include <dev/mm.h>
55 #endif
56
57 #ifdef BUSDMA_COUNTERS
58 static struct evcnt bus_dma_creates =
59 EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL, "busdma", "creates");
60 static struct evcnt bus_dma_bounced_creates =
61 EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL, "busdma", "bounced creates");
62 static struct evcnt bus_dma_loads =
63 EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL, "busdma", "loads");
64 static struct evcnt bus_dma_bounced_loads =
65 EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL, "busdma", "bounced loads");
66 static struct evcnt bus_dma_coherent_loads =
67 EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL, "busdma", "coherent loads");
68 static struct evcnt bus_dma_read_bounces =
69 EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL, "busdma", "read bounces");
70 static struct evcnt bus_dma_write_bounces =
71 EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL, "busdma", "write bounces");
72 static struct evcnt bus_dma_bounced_unloads =
73 EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL, "busdma", "bounced unloads");
74 static struct evcnt bus_dma_unloads =
75 EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL, "busdma", "unloads");
76 static struct evcnt bus_dma_bounced_destroys =
77 EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL, "busdma", "bounced destroys");
78 static struct evcnt bus_dma_destroys =
79 EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL, "busdma", "destroys");
80 static struct evcnt bus_dma_sync_prereadwrite =
81 EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL, "busdma", "sync prereadwrite");
82 static struct evcnt bus_dma_sync_preread_begin =
83 EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL, "busdma", "sync preread begin");
84 static struct evcnt bus_dma_sync_preread =
85 EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL, "busdma", "sync preread");
86 static struct evcnt bus_dma_sync_preread_tail =
87 EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL, "busdma", "sync preread tail");
88 static struct evcnt bus_dma_sync_prewrite =
89 EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL, "busdma", "sync prewrite");
90 static struct evcnt bus_dma_sync_postread =
91 EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL, "busdma", "sync postread");
92 static struct evcnt bus_dma_sync_postreadwrite =
93 EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL, "busdma", "sync postreadwrite");
94 static struct evcnt bus_dma_sync_postwrite =
95 EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL, "busdma", "sync postwrite");
96
97 EVCNT_ATTACH_STATIC(bus_dma_creates);
98 EVCNT_ATTACH_STATIC(bus_dma_bounced_creates);
99 EVCNT_ATTACH_STATIC(bus_dma_loads);
100 EVCNT_ATTACH_STATIC(bus_dma_bounced_loads);
101 EVCNT_ATTACH_STATIC(bus_dma_coherent_loads);
102 EVCNT_ATTACH_STATIC(bus_dma_read_bounces);
103 EVCNT_ATTACH_STATIC(bus_dma_write_bounces);
104 EVCNT_ATTACH_STATIC(bus_dma_unloads);
105 EVCNT_ATTACH_STATIC(bus_dma_bounced_unloads);
106 EVCNT_ATTACH_STATIC(bus_dma_destroys);
107 EVCNT_ATTACH_STATIC(bus_dma_bounced_destroys);
108 EVCNT_ATTACH_STATIC(bus_dma_sync_prereadwrite);
109 EVCNT_ATTACH_STATIC(bus_dma_sync_preread_begin);
110 EVCNT_ATTACH_STATIC(bus_dma_sync_preread);
111 EVCNT_ATTACH_STATIC(bus_dma_sync_preread_tail);
112 EVCNT_ATTACH_STATIC(bus_dma_sync_prewrite);
113 EVCNT_ATTACH_STATIC(bus_dma_sync_postread);
114 EVCNT_ATTACH_STATIC(bus_dma_sync_postreadwrite);
115 EVCNT_ATTACH_STATIC(bus_dma_sync_postwrite);
116
117 #define STAT_INCR(x) (bus_dma_ ## x.ev_count++)
118 #else
119 #define STAT_INCR(x) __nothing
120 #endif
121
122 int _bus_dmamap_load_buffer(bus_dma_tag_t, bus_dmamap_t, void *,
123 bus_size_t, struct vmspace *, int);
124
125 /*
126 * Check to see if the specified page is in an allowed DMA range.
127 */
128 static inline struct arm32_dma_range *
129 _bus_dma_paddr_inrange(struct arm32_dma_range *ranges, int nranges,
130 bus_addr_t curaddr)
131 {
132 struct arm32_dma_range *dr;
133 int i;
134
135 for (i = 0, dr = ranges; i < nranges; i++, dr++) {
136 if (curaddr >= dr->dr_sysbase &&
137 curaddr < (dr->dr_sysbase + dr->dr_len))
138 return dr;
139 }
140
141 return NULL;
142 }
143
144 /*
145 * Check to see if the specified busaddr is in an allowed DMA range.
146 */
147 static inline paddr_t
148 _bus_dma_busaddr_to_paddr(bus_dma_tag_t t, bus_addr_t curaddr)
149 {
150 struct arm32_dma_range *dr;
151 u_int i;
152
153 if (t->_nranges == 0)
154 return curaddr;
155
156 for (i = 0, dr = t->_ranges; i < t->_nranges; i++, dr++) {
157 if (dr->dr_busbase <= curaddr
158 && curaddr < dr->dr_busbase + dr->dr_len)
159 return curaddr - dr->dr_busbase + dr->dr_sysbase;
160 }
161 panic("%s: curaddr %#lx not in range", __func__, curaddr);
162 }
163
164 /*
165 * Common function to load the specified physical address into the
166 * DMA map, coalescing segments and boundary checking as necessary.
167 */
168 static int
169 _bus_dmamap_load_paddr(bus_dma_tag_t t, bus_dmamap_t map,
170 bus_addr_t paddr, bus_size_t size, bool coherent)
171 {
172 bus_dma_segment_t * const segs = map->dm_segs;
173 int nseg = map->dm_nsegs;
174 bus_addr_t lastaddr;
175 bus_addr_t bmask = ~(map->_dm_boundary - 1);
176 bus_addr_t curaddr;
177 bus_size_t sgsize;
178 uint32_t _ds_flags = coherent ? _BUS_DMAMAP_COHERENT : 0;
179
180 if (nseg > 0)
181 lastaddr = segs[nseg - 1].ds_addr + segs[nseg - 1].ds_len;
182 else
183 lastaddr = 0xdead;
184
185 again:
186 sgsize = size;
187
188 /* Make sure we're in an allowed DMA range. */
189 if (t->_ranges != NULL) {
190 /* XXX cache last result? */
191 const struct arm32_dma_range * const dr =
192 _bus_dma_paddr_inrange(t->_ranges, t->_nranges, paddr);
193 if (dr == NULL)
194 return EINVAL;
195
196 /*
197 * If this region is coherent, mark the segment as coherent.
198 */
199 _ds_flags |= dr->dr_flags & _BUS_DMAMAP_COHERENT;
200
201 /*
202 * In a valid DMA range. Translate the physical
203 * memory address to an address in the DMA window.
204 */
205 curaddr = (paddr - dr->dr_sysbase) + dr->dr_busbase;
206 #if 0
207 printf("%p: %#lx: range %#lx/%#lx/%#lx/%#x: %#x <-- %#lx\n",
208 t, paddr, dr->dr_sysbase, dr->dr_busbase,
209 dr->dr_len, dr->dr_flags, _ds_flags, curaddr);
210 #endif
211 } else
212 curaddr = paddr;
213
214 /*
215 * Make sure we don't cross any boundaries.
216 */
217 if (map->_dm_boundary > 0) {
218 bus_addr_t baddr; /* next boundary address */
219
220 baddr = (curaddr + map->_dm_boundary) & bmask;
221 if (sgsize > (baddr - curaddr))
222 sgsize = (baddr - curaddr);
223 }
224
225 /*
226 * Insert chunk into a segment, coalescing with the
227 * previous segment if possible.
228 */
229 if (nseg > 0 && curaddr == lastaddr &&
230 segs[nseg - 1].ds_len + sgsize <= map->dm_maxsegsz &&
231 ((segs[nseg - 1]._ds_flags ^ _ds_flags) & _BUS_DMAMAP_COHERENT) == 0 &&
232 (map->_dm_boundary == 0 ||
233 (segs[nseg - 1].ds_addr & bmask) == (curaddr & bmask))) {
234 /* coalesce */
235 segs[nseg - 1].ds_len += sgsize;
236 } else if (nseg >= map->_dm_segcnt) {
237 return EFBIG;
238 } else {
239 /* new segment */
240 segs[nseg].ds_addr = curaddr;
241 segs[nseg].ds_len = sgsize;
242 segs[nseg]._ds_flags = _ds_flags;
243 nseg++;
244 }
245
246 lastaddr = curaddr + sgsize;
247
248 paddr += sgsize;
249 size -= sgsize;
250 if (size > 0)
251 goto again;
252
253 map->_dm_flags &= (_ds_flags & _BUS_DMAMAP_COHERENT);
254 map->dm_nsegs = nseg;
255 return 0;
256 }
257
258 static int _bus_dma_uiomove(void *buf, struct uio *uio, size_t n,
259 int direction);
260
261 #ifdef _ARM32_NEED_BUS_DMA_BOUNCE
262 static int _bus_dma_alloc_bouncebuf(bus_dma_tag_t t, bus_dmamap_t map,
263 bus_size_t size, int flags);
264 static void _bus_dma_free_bouncebuf(bus_dma_tag_t t, bus_dmamap_t map);
265
266 static int
267 _bus_dma_load_bouncebuf(bus_dma_tag_t t, bus_dmamap_t map, void *buf,
268 size_t buflen, int buftype, int flags)
269 {
270 struct arm32_bus_dma_cookie * const cookie = map->_dm_cookie;
271 struct vmspace * const vm = vmspace_kernel();
272 int error;
273
274 KASSERT(cookie != NULL);
275 KASSERT(cookie->id_flags & _BUS_DMA_MIGHT_NEED_BOUNCE);
276
277 /*
278 * Allocate bounce pages, if necessary.
279 */
280 if ((cookie->id_flags & _BUS_DMA_HAS_BOUNCE) == 0) {
281 error = _bus_dma_alloc_bouncebuf(t, map, buflen, flags);
282 if (error)
283 return error;
284 }
285
286 /*
287 * Cache a pointer to the caller's buffer and load the DMA map
288 * with the bounce buffer.
289 */
290 cookie->id_origbuf = buf;
291 cookie->id_origbuflen = buflen;
292 error = _bus_dmamap_load_buffer(t, map, cookie->id_bouncebuf,
293 buflen, vm, flags);
294 if (error)
295 return error;
296
297 STAT_INCR(bounced_loads);
298 map->dm_mapsize = buflen;
299 map->_dm_vmspace = vm;
300 map->_dm_buftype = buftype;
301
302 /* ...so _bus_dmamap_sync() knows we're bouncing */
303 map->_dm_flags |= _BUS_DMAMAP_IS_BOUNCING;
304 cookie->id_flags |= _BUS_DMA_IS_BOUNCING;
305 return 0;
306 }
307 #endif /* _ARM32_NEED_BUS_DMA_BOUNCE */
308
309 /*
310 * Common function for DMA map creation. May be called by bus-specific
311 * DMA map creation functions.
312 */
313 int
314 _bus_dmamap_create(bus_dma_tag_t t, bus_size_t size, int nsegments,
315 bus_size_t maxsegsz, bus_size_t boundary, int flags, bus_dmamap_t *dmamp)
316 {
317 struct arm32_bus_dmamap *map;
318 void *mapstore;
319 int error = 0;
320
321 #ifdef DEBUG_DMA
322 printf("dmamap_create: t=%p size=%lx nseg=%x msegsz=%lx boundary=%lx"
323 " flags=%x\n", t, size, nsegments, maxsegsz, boundary, flags);
324 #endif /* DEBUG_DMA */
325
326 /*
327 * Allocate and initialize the DMA map. The end of the map
328 * is a variable-sized array of segments, so we allocate enough
329 * room for them in one shot.
330 *
331 * Note we don't preserve the WAITOK or NOWAIT flags. Preservation
332 * of ALLOCNOW notifies others that we've reserved these resources,
333 * and they are not to be freed.
334 *
335 * The bus_dmamap_t includes one bus_dma_segment_t, hence
336 * the (nsegments - 1).
337 */
338 const size_t mapsize = sizeof(struct arm32_bus_dmamap) +
339 (sizeof(bus_dma_segment_t) * (nsegments - 1));
340 const int zallocflags = (flags & BUS_DMA_NOWAIT) ? KM_NOSLEEP : KM_SLEEP;
341 if ((mapstore = kmem_intr_zalloc(mapsize, zallocflags)) == NULL)
342 return ENOMEM;
343
344 map = (struct arm32_bus_dmamap *)mapstore;
345 map->_dm_size = size;
346 map->_dm_segcnt = nsegments;
347 map->_dm_maxmaxsegsz = maxsegsz;
348 map->_dm_boundary = boundary;
349 map->_dm_flags = flags & ~(BUS_DMA_WAITOK|BUS_DMA_NOWAIT);
350 map->_dm_origbuf = NULL;
351 map->_dm_buftype = _BUS_DMA_BUFTYPE_INVALID;
352 map->_dm_vmspace = vmspace_kernel();
353 map->_dm_cookie = NULL;
354 map->dm_maxsegsz = maxsegsz;
355 map->dm_mapsize = 0; /* no valid mappings */
356 map->dm_nsegs = 0;
357
358 #ifdef _ARM32_NEED_BUS_DMA_BOUNCE
359 struct arm32_bus_dma_cookie *cookie;
360 int cookieflags;
361 void *cookiestore;
362
363 cookieflags = 0;
364
365 if (t->_may_bounce != NULL) {
366 error = (*t->_may_bounce)(t, map, flags, &cookieflags);
367 if (error != 0)
368 goto out;
369 }
370
371 if (t->_ranges != NULL)
372 cookieflags |= _BUS_DMA_MIGHT_NEED_BOUNCE;
373
374 if ((cookieflags & _BUS_DMA_MIGHT_NEED_BOUNCE) == 0) {
375 STAT_INCR(creates);
376 *dmamp = map;
377 return 0;
378 }
379
380 const size_t cookiesize = sizeof(struct arm32_bus_dma_cookie) +
381 (sizeof(bus_dma_segment_t) * map->_dm_segcnt);
382
383 /*
384 * Allocate our cookie.
385 */
386 if ((cookiestore = kmem_intr_zalloc(cookiesize, zallocflags)) == NULL) {
387 error = ENOMEM;
388 goto out;
389 }
390 cookie = (struct arm32_bus_dma_cookie *)cookiestore;
391 cookie->id_flags = cookieflags;
392 map->_dm_cookie = cookie;
393 STAT_INCR(bounced_creates);
394
395 error = _bus_dma_alloc_bouncebuf(t, map, size, flags);
396 out:
397 if (error)
398 _bus_dmamap_destroy(t, map);
399 else
400 *dmamp = map;
401 #else
402 *dmamp = map;
403 STAT_INCR(creates);
404 #endif /* _ARM32_NEED_BUS_DMA_BOUNCE */
405 #ifdef DEBUG_DMA
406 printf("dmamap_create:map=%p\n", map);
407 #endif /* DEBUG_DMA */
408 return error;
409 }
410
411 /*
412 * Common function for DMA map destruction. May be called by bus-specific
413 * DMA map destruction functions.
414 */
415 void
416 _bus_dmamap_destroy(bus_dma_tag_t t, bus_dmamap_t map)
417 {
418
419 #ifdef DEBUG_DMA
420 printf("dmamap_destroy: t=%p map=%p\n", t, map);
421 #endif /* DEBUG_DMA */
422 #ifdef _ARM32_NEED_BUS_DMA_BOUNCE
423 struct arm32_bus_dma_cookie *cookie = map->_dm_cookie;
424
425 /*
426 * Free any bounce pages this map might hold.
427 */
428 if (cookie != NULL) {
429 const size_t cookiesize = sizeof(struct arm32_bus_dma_cookie) +
430 (sizeof(bus_dma_segment_t) * map->_dm_segcnt);
431
432 if (cookie->id_flags & _BUS_DMA_IS_BOUNCING)
433 STAT_INCR(bounced_unloads);
434 map->dm_nsegs = 0;
435 if (cookie->id_flags & _BUS_DMA_HAS_BOUNCE)
436 _bus_dma_free_bouncebuf(t, map);
437 STAT_INCR(bounced_destroys);
438 kmem_intr_free(cookie, cookiesize);
439 } else
440 #endif
441 STAT_INCR(destroys);
442
443 if (map->dm_nsegs > 0)
444 STAT_INCR(unloads);
445
446 const size_t mapsize = sizeof(struct arm32_bus_dmamap) +
447 (sizeof(bus_dma_segment_t) * (map->_dm_segcnt - 1));
448 kmem_intr_free(map, mapsize);
449 }
450
451 /*
452 * Common function for loading a DMA map with a linear buffer. May
453 * be called by bus-specific DMA map load functions.
454 */
455 int
456 _bus_dmamap_load(bus_dma_tag_t t, bus_dmamap_t map, void *buf,
457 bus_size_t buflen, struct proc *p, int flags)
458 {
459 struct vmspace *vm;
460 int error;
461
462 #ifdef DEBUG_DMA
463 printf("dmamap_load: t=%p map=%p buf=%p len=%lx p=%p f=%d\n",
464 t, map, buf, buflen, p, flags);
465 #endif /* DEBUG_DMA */
466
467 if (map->dm_nsegs > 0) {
468 #ifdef _ARM32_NEED_BUS_DMA_BOUNCE
469 struct arm32_bus_dma_cookie *cookie = map->_dm_cookie;
470 if (cookie != NULL) {
471 if (cookie->id_flags & _BUS_DMA_IS_BOUNCING) {
472 STAT_INCR(bounced_unloads);
473 cookie->id_flags &= ~_BUS_DMA_IS_BOUNCING;
474 map->_dm_flags &= ~_BUS_DMAMAP_IS_BOUNCING;
475 }
476 } else
477 #endif
478 STAT_INCR(unloads);
479 }
480
481 /*
482 * Make sure that on error condition we return "no valid mappings".
483 */
484 map->dm_mapsize = 0;
485 map->dm_nsegs = 0;
486 map->_dm_buftype = _BUS_DMA_BUFTYPE_INVALID;
487 KASSERTMSG(map->dm_maxsegsz <= map->_dm_maxmaxsegsz,
488 "dm_maxsegsz %lu _dm_maxmaxsegsz %lu",
489 map->dm_maxsegsz, map->_dm_maxmaxsegsz);
490
491 if (buflen > map->_dm_size)
492 return EINVAL;
493
494 if (p != NULL) {
495 vm = p->p_vmspace;
496 } else {
497 vm = vmspace_kernel();
498 }
499
500 /* _bus_dmamap_load_buffer() clears this if we're not... */
501 map->_dm_flags |= _BUS_DMAMAP_COHERENT;
502
503 error = _bus_dmamap_load_buffer(t, map, buf, buflen, vm, flags);
504 if (error == 0) {
505 map->dm_mapsize = buflen;
506 map->_dm_vmspace = vm;
507 map->_dm_origbuf = buf;
508 map->_dm_buftype = _BUS_DMA_BUFTYPE_LINEAR;
509 if (map->_dm_flags & _BUS_DMAMAP_COHERENT) {
510 STAT_INCR(coherent_loads);
511 } else {
512 STAT_INCR(loads);
513 }
514 return 0;
515 }
516 #ifdef _ARM32_NEED_BUS_DMA_BOUNCE
517 struct arm32_bus_dma_cookie * const cookie = map->_dm_cookie;
518 if (cookie != NULL && (cookie->id_flags & _BUS_DMA_MIGHT_NEED_BOUNCE)) {
519 error = _bus_dma_load_bouncebuf(t, map, buf, buflen,
520 _BUS_DMA_BUFTYPE_LINEAR, flags);
521 }
522 #endif
523 return error;
524 }
525
526 /*
527 * Like _bus_dmamap_load(), but for mbufs.
528 */
529 int
530 _bus_dmamap_load_mbuf(bus_dma_tag_t t, bus_dmamap_t map, struct mbuf *m0,
531 int flags)
532 {
533 struct mbuf *m;
534 int error;
535
536 #ifdef DEBUG_DMA
537 printf("dmamap_load_mbuf: t=%p map=%p m0=%p f=%d\n",
538 t, map, m0, flags);
539 #endif /* DEBUG_DMA */
540
541 if (map->dm_nsegs > 0) {
542 #ifdef _ARM32_NEED_BUS_DMA_BOUNCE
543 struct arm32_bus_dma_cookie *cookie = map->_dm_cookie;
544 if (cookie != NULL) {
545 if (cookie->id_flags & _BUS_DMA_IS_BOUNCING) {
546 STAT_INCR(bounced_unloads);
547 cookie->id_flags &= ~_BUS_DMA_IS_BOUNCING;
548 map->_dm_flags &= ~_BUS_DMAMAP_IS_BOUNCING;
549 }
550 } else
551 #endif
552 STAT_INCR(unloads);
553 }
554
555 /*
556 * Make sure that on error condition we return "no valid mappings."
557 */
558 map->dm_mapsize = 0;
559 map->dm_nsegs = 0;
560 map->_dm_buftype = _BUS_DMA_BUFTYPE_INVALID;
561 KASSERTMSG(map->dm_maxsegsz <= map->_dm_maxmaxsegsz,
562 "dm_maxsegsz %lu _dm_maxmaxsegsz %lu",
563 map->dm_maxsegsz, map->_dm_maxmaxsegsz);
564
565 KASSERT(m0->m_flags & M_PKTHDR);
566
567 if (m0->m_pkthdr.len > map->_dm_size)
568 return EINVAL;
569
570 /* _bus_dmamap_load_paddr() clears this if we're not... */
571 map->_dm_flags |= _BUS_DMAMAP_COHERENT;
572
573 error = 0;
574 for (m = m0; m != NULL && error == 0; m = m->m_next) {
575 int offset;
576 int remainbytes;
577 const struct vm_page * const *pgs;
578 paddr_t paddr;
579 int size;
580
581 if (m->m_len == 0)
582 continue;
583 /*
584 * Don't allow reads in read-only mbufs.
585 */
586 if (M_ROMAP(m) && (flags & BUS_DMA_READ)) {
587 error = EFAULT;
588 break;
589 }
590 switch (m->m_flags & (M_EXT|M_EXT_CLUSTER|M_EXT_PAGES)) {
591 case M_EXT|M_EXT_CLUSTER:
592 /* XXX KDASSERT */
593 KASSERT(m->m_ext.ext_paddr != M_PADDR_INVALID);
594 paddr = m->m_ext.ext_paddr +
595 (m->m_data - m->m_ext.ext_buf);
596 size = m->m_len;
597 error = _bus_dmamap_load_paddr(t, map, paddr, size,
598 false);
599 break;
600
601 case M_EXT|M_EXT_PAGES:
602 KASSERT(m->m_ext.ext_buf <= m->m_data);
603 KASSERT(m->m_data <=
604 m->m_ext.ext_buf + m->m_ext.ext_size);
605
606 offset = (vaddr_t)m->m_data -
607 trunc_page((vaddr_t)m->m_ext.ext_buf);
608 remainbytes = m->m_len;
609
610 /* skip uninteresting pages */
611 pgs = (const struct vm_page * const *)
612 m->m_ext.ext_pgs + (offset >> PAGE_SHIFT);
613
614 offset &= PAGE_MASK; /* offset in the first page */
615
616 /* load each page */
617 while (remainbytes > 0) {
618 const struct vm_page *pg;
619
620 size = MIN(remainbytes, PAGE_SIZE - offset);
621
622 pg = *pgs++;
623 KASSERT(pg);
624 paddr = VM_PAGE_TO_PHYS(pg) + offset;
625
626 error = _bus_dmamap_load_paddr(t, map,
627 paddr, size, false);
628 if (error)
629 break;
630 offset = 0;
631 remainbytes -= size;
632 }
633 break;
634
635 case 0:
636 paddr = m->m_paddr + M_BUFOFFSET(m) +
637 (m->m_data - M_BUFADDR(m));
638 size = m->m_len;
639 error = _bus_dmamap_load_paddr(t, map, paddr, size,
640 false);
641 break;
642
643 default:
644 error = _bus_dmamap_load_buffer(t, map, m->m_data,
645 m->m_len, vmspace_kernel(), flags);
646 }
647 }
648 if (error == 0) {
649 map->dm_mapsize = m0->m_pkthdr.len;
650 map->_dm_origbuf = m0;
651 map->_dm_buftype = _BUS_DMA_BUFTYPE_MBUF;
652 map->_dm_vmspace = vmspace_kernel(); /* always kernel */
653 if (map->_dm_flags & _BUS_DMAMAP_COHERENT) {
654 STAT_INCR(coherent_loads);
655 } else {
656 STAT_INCR(loads);
657 }
658 return 0;
659 }
660 #ifdef _ARM32_NEED_BUS_DMA_BOUNCE
661 struct arm32_bus_dma_cookie * const cookie = map->_dm_cookie;
662 if (cookie != NULL && (cookie->id_flags & _BUS_DMA_MIGHT_NEED_BOUNCE)) {
663 error = _bus_dma_load_bouncebuf(t, map, m0, m0->m_pkthdr.len,
664 _BUS_DMA_BUFTYPE_MBUF, flags);
665 }
666 #endif
667 return error;
668 }
669
670 /*
671 * Like _bus_dmamap_load(), but for uios.
672 */
673 int
674 _bus_dmamap_load_uio(bus_dma_tag_t t, bus_dmamap_t map, struct uio *uio,
675 int flags)
676 {
677 bus_size_t minlen, resid;
678 struct iovec *iov;
679 void *addr;
680 int i, error;
681
682 /*
683 * Make sure that on error condition we return "no valid mappings."
684 */
685 map->dm_mapsize = 0;
686 map->dm_nsegs = 0;
687 KASSERTMSG(map->dm_maxsegsz <= map->_dm_maxmaxsegsz,
688 "dm_maxsegsz %lu _dm_maxmaxsegsz %lu",
689 map->dm_maxsegsz, map->_dm_maxmaxsegsz);
690
691 resid = uio->uio_resid;
692 iov = uio->uio_iov;
693
694 /* _bus_dmamap_load_buffer() clears this if we're not... */
695 map->_dm_flags |= _BUS_DMAMAP_COHERENT;
696
697 error = 0;
698 for (i = 0; i < uio->uio_iovcnt && resid != 0 && error == 0; i++) {
699 /*
700 * Now at the first iovec to load. Load each iovec
701 * until we have exhausted the residual count.
702 */
703 minlen = resid < iov[i].iov_len ? resid : iov[i].iov_len;
704 addr = (void *)iov[i].iov_base;
705
706 error = _bus_dmamap_load_buffer(t, map, addr, minlen,
707 uio->uio_vmspace, flags);
708
709 resid -= minlen;
710 }
711 if (error == 0) {
712 map->dm_mapsize = uio->uio_resid;
713 map->_dm_origbuf = uio;
714 map->_dm_buftype = _BUS_DMA_BUFTYPE_UIO;
715 map->_dm_vmspace = uio->uio_vmspace;
716 if (map->_dm_flags & _BUS_DMAMAP_COHERENT) {
717 STAT_INCR(coherent_loads);
718 } else {
719 STAT_INCR(loads);
720 }
721 }
722 return error;
723 }
724
725 /*
726 * Like _bus_dmamap_load(), but for raw memory allocated with
727 * bus_dmamem_alloc().
728 */
729 int
730 _bus_dmamap_load_raw(bus_dma_tag_t t, bus_dmamap_t map,
731 bus_dma_segment_t *segs, int nsegs, bus_size_t size0, int flags)
732 {
733
734 bus_size_t size;
735 int i, error = 0;
736
737 /*
738 * Make sure that on error conditions we return "no valid mappings."
739 */
740 map->dm_mapsize = 0;
741 map->dm_nsegs = 0;
742 KASSERT(map->dm_maxsegsz <= map->_dm_maxmaxsegsz);
743
744 if (size0 > map->_dm_size)
745 return EINVAL;
746
747 for (i = 0, size = size0; i < nsegs && size > 0; i++) {
748 bus_dma_segment_t *ds = &segs[i];
749 bus_size_t sgsize;
750
751 sgsize = MIN(ds->ds_len, size);
752 if (sgsize == 0)
753 continue;
754 const bool coherent =
755 (ds->_ds_flags & _BUS_DMAMAP_COHERENT) != 0;
756 error = _bus_dmamap_load_paddr(t, map, ds->ds_addr,
757 sgsize, coherent);
758 if (error != 0)
759 break;
760 size -= sgsize;
761 }
762
763 if (error != 0) {
764 map->dm_mapsize = 0;
765 map->dm_nsegs = 0;
766 return error;
767 }
768
769 /* XXX TBD bounce */
770
771 map->dm_mapsize = size0;
772 map->_dm_origbuf = NULL;
773 map->_dm_buftype = _BUS_DMA_BUFTYPE_RAW;
774 map->_dm_vmspace = NULL;
775 return 0;
776 }
777
778 /*
779 * Common function for unloading a DMA map. May be called by
780 * bus-specific DMA map unload functions.
781 */
782 void
783 _bus_dmamap_unload(bus_dma_tag_t t, bus_dmamap_t map)
784 {
785
786 #ifdef DEBUG_DMA
787 printf("dmamap_unload: t=%p map=%p\n", t, map);
788 #endif /* DEBUG_DMA */
789
790 /*
791 * No resources to free; just mark the mappings as
792 * invalid.
793 */
794 map->dm_mapsize = 0;
795 map->dm_nsegs = 0;
796 map->_dm_origbuf = NULL;
797 map->_dm_buftype = _BUS_DMA_BUFTYPE_INVALID;
798 map->_dm_vmspace = NULL;
799 }
800
801 static void
802 _bus_dmamap_sync_segment(vaddr_t va, paddr_t pa, vsize_t len, int ops,
803 bool readonly_p)
804 {
805
806 #if defined(ARM_MMU_EXTENDED)
807 /*
808 * No optimisations are available for readonly mbufs on armv6+, so
809 * assume it's not readonly from here on.
810 *
811 * See the comment in _bus_dmamap_sync_mbuf
812 */
813 readonly_p = false;
814 #endif
815
816 KASSERTMSG((va & PAGE_MASK) == (pa & PAGE_MASK),
817 "va %#lx pa %#lx", va, pa);
818 #if 0
819 printf("sync_segment: va=%#lx pa=%#lx len=%#lx ops=%#x ro=%d\n",
820 va, pa, len, ops, readonly_p);
821 #endif
822
823 switch (ops) {
824 case BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE:
825 if (!readonly_p) {
826 STAT_INCR(sync_prereadwrite);
827 cpu_dcache_wbinv_range(va, len);
828 cpu_sdcache_wbinv_range(va, pa, len);
829 break;
830 }
831 /* FALLTHROUGH */
832
833 case BUS_DMASYNC_PREREAD: {
834 const size_t line_size = arm_dcache_align;
835 const size_t line_mask = arm_dcache_align_mask;
836 vsize_t misalignment = va & line_mask;
837 if (misalignment) {
838 va -= misalignment;
839 pa -= misalignment;
840 len += misalignment;
841 STAT_INCR(sync_preread_begin);
842 cpu_dcache_wbinv_range(va, line_size);
843 cpu_sdcache_wbinv_range(va, pa, line_size);
844 if (len <= line_size)
845 break;
846 va += line_size;
847 pa += line_size;
848 len -= line_size;
849 }
850 misalignment = len & line_mask;
851 len -= misalignment;
852 if (len > 0) {
853 STAT_INCR(sync_preread);
854 cpu_dcache_inv_range(va, len);
855 cpu_sdcache_inv_range(va, pa, len);
856 }
857 if (misalignment) {
858 va += len;
859 pa += len;
860 STAT_INCR(sync_preread_tail);
861 cpu_dcache_wbinv_range(va, line_size);
862 cpu_sdcache_wbinv_range(va, pa, line_size);
863 }
864 break;
865 }
866
867 case BUS_DMASYNC_PREWRITE:
868 STAT_INCR(sync_prewrite);
869 cpu_dcache_wb_range(va, len);
870 cpu_sdcache_wb_range(va, pa, len);
871 break;
872
873 #if defined(CPU_CORTEX) || defined(CPU_ARMV8)
874
875 /*
876 * Cortex CPUs can do speculative loads so we need to clean the cache
877 * after a DMA read to deal with any speculatively loaded cache lines.
878 * Since these can't be dirty, we can just invalidate them and don't
879 * have to worry about having to write back their contents.
880 */
881 case BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE:
882 STAT_INCR(sync_postreadwrite);
883 cpu_dcache_inv_range(va, len);
884 cpu_sdcache_inv_range(va, pa, len);
885 break;
886 case BUS_DMASYNC_POSTREAD:
887 STAT_INCR(sync_postread);
888 cpu_dcache_inv_range(va, len);
889 cpu_sdcache_inv_range(va, pa, len);
890 break;
891 #endif
892 }
893 }
894
895 static inline void
896 _bus_dmamap_sync_linear(bus_dma_tag_t t, bus_dmamap_t map, bus_addr_t offset,
897 bus_size_t len, int ops)
898 {
899 bus_dma_segment_t *ds = map->dm_segs;
900 vaddr_t va = (vaddr_t) map->_dm_origbuf;
901 #ifdef _ARM32_NEED_BUS_DMA_BOUNCE
902 if (map->_dm_flags & _BUS_DMAMAP_IS_BOUNCING) {
903 struct arm32_bus_dma_cookie * const cookie = map->_dm_cookie;
904 va = (vaddr_t) cookie->id_bouncebuf;
905 }
906 #endif
907
908 while (len > 0) {
909 while (offset >= ds->ds_len) {
910 offset -= ds->ds_len;
911 va += ds->ds_len;
912 ds++;
913 }
914
915 paddr_t pa = _bus_dma_busaddr_to_paddr(t, ds->ds_addr + offset);
916 size_t seglen = uimin(len, ds->ds_len - offset);
917
918 if ((ds->_ds_flags & _BUS_DMAMAP_COHERENT) == 0)
919 _bus_dmamap_sync_segment(va + offset, pa, seglen, ops,
920 false);
921
922 offset += seglen;
923 len -= seglen;
924 }
925 }
926
927 static inline void
928 _bus_dmamap_sync_mbuf(bus_dma_tag_t t, bus_dmamap_t map, bus_size_t offset,
929 bus_size_t len, int ops)
930 {
931 bus_dma_segment_t *ds = map->dm_segs;
932 struct mbuf *m = map->_dm_origbuf;
933 bus_size_t voff = offset;
934 bus_size_t ds_off = offset;
935
936 while (len > 0) {
937 /* Find the current dma segment */
938 while (ds_off >= ds->ds_len) {
939 ds_off -= ds->ds_len;
940 ds++;
941 }
942 /* Find the current mbuf. */
943 while (voff >= m->m_len) {
944 voff -= m->m_len;
945 m = m->m_next;
946 }
947
948 /*
949 * Now at the first mbuf to sync; nail each one until
950 * we have exhausted the length.
951 */
952 vsize_t seglen = uimin(len, uimin(m->m_len - voff, ds->ds_len - ds_off));
953 vaddr_t va = mtod(m, vaddr_t) + voff;
954 paddr_t pa = _bus_dma_busaddr_to_paddr(t, ds->ds_addr + ds_off);
955
956 /*
957 * We can save a lot of work here if we know the mapping
958 * is read-only at the MMU and we aren't using the armv6+
959 * MMU:
960 *
961 * If a mapping is read-only, no dirty cache blocks will
962 * exist for it. If a writable mapping was made read-only,
963 * we know any dirty cache lines for the range will have
964 * been cleaned for us already. Therefore, if the upper
965 * layer can tell us we have a read-only mapping, we can
966 * skip all cache cleaning.
967 *
968 * NOTE: This only works if we know the pmap cleans pages
969 * before making a read-write -> read-only transition. If
970 * this ever becomes non-true (e.g. Physically Indexed
971 * cache), this will have to be revisited.
972 */
973
974 if ((ds->_ds_flags & _BUS_DMAMAP_COHERENT) == 0) {
975 /*
976 * If we are doing preread (DMAing into the mbuf),
977 * this mbuf better not be readonly,
978 */
979 KASSERT(!(ops & BUS_DMASYNC_PREREAD) || !M_ROMAP(m));
980 _bus_dmamap_sync_segment(va, pa, seglen, ops,
981 M_ROMAP(m));
982 }
983 voff += seglen;
984 ds_off += seglen;
985 len -= seglen;
986 }
987 }
988
989 static inline void
990 _bus_dmamap_sync_uio(bus_dma_tag_t t, bus_dmamap_t map, bus_addr_t offset,
991 bus_size_t len, int ops)
992 {
993 bus_dma_segment_t *ds = map->dm_segs;
994 struct uio *uio = map->_dm_origbuf;
995 struct iovec *iov = uio->uio_iov;
996 bus_size_t voff = offset;
997 bus_size_t ds_off = offset;
998
999 while (len > 0) {
1000 /* Find the current dma segment */
1001 while (ds_off >= ds->ds_len) {
1002 ds_off -= ds->ds_len;
1003 ds++;
1004 }
1005
1006 /* Find the current iovec. */
1007 while (voff >= iov->iov_len) {
1008 voff -= iov->iov_len;
1009 iov++;
1010 }
1011
1012 /*
1013 * Now at the first iovec to sync; nail each one until
1014 * we have exhausted the length.
1015 */
1016 vsize_t seglen = uimin(len, uimin(iov->iov_len - voff, ds->ds_len - ds_off));
1017 vaddr_t va = (vaddr_t) iov->iov_base + voff;
1018 paddr_t pa = _bus_dma_busaddr_to_paddr(t, ds->ds_addr + ds_off);
1019
1020 if ((ds->_ds_flags & _BUS_DMAMAP_COHERENT) == 0)
1021 _bus_dmamap_sync_segment(va, pa, seglen, ops, false);
1022
1023 voff += seglen;
1024 ds_off += seglen;
1025 len -= seglen;
1026 }
1027 }
1028
1029 /*
1030 * Common function for DMA map synchronization. May be called
1031 * by bus-specific DMA map synchronization functions.
1032 *
1033 * XXX Should have separate versions for write-through vs.
1034 * XXX write-back caches. We currently assume write-back
1035 * XXX here, which is not as efficient as it could be for
1036 * XXX the write-through case.
1037 */
1038 void
1039 _bus_dmamap_sync(bus_dma_tag_t t, bus_dmamap_t map, bus_addr_t offset,
1040 bus_size_t len, int ops)
1041 {
1042 #ifdef DEBUG_DMA
1043 printf("dmamap_sync: t=%p map=%p offset=%lx len=%lx ops=%x\n",
1044 t, map, offset, len, ops);
1045 #endif /* DEBUG_DMA */
1046
1047 /*
1048 * Mixing of PRE and POST operations is not allowed.
1049 */
1050 if ((ops & (BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE)) != 0 &&
1051 (ops & (BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE)) != 0)
1052 panic("_bus_dmamap_sync: mix PRE and POST");
1053
1054 KASSERTMSG(offset < map->dm_mapsize,
1055 "offset %lu mapsize %lu",
1056 offset, map->dm_mapsize);
1057 KASSERTMSG(len > 0 && offset + len <= map->dm_mapsize,
1058 "len %lu offset %lu mapsize %lu",
1059 len, offset, map->dm_mapsize);
1060
1061 /*
1062 * For a virtually-indexed write-back cache, we need
1063 * to do the following things:
1064 *
1065 * PREREAD -- Invalidate the D-cache. We do this
1066 * here in case a write-back is required by the back-end.
1067 *
1068 * PREWRITE -- Write-back the D-cache. Note that if
1069 * we are doing a PREREAD|PREWRITE, we can collapse
1070 * the whole thing into a single Wb-Inv.
1071 *
1072 * POSTREAD -- Re-invalidate the D-cache in case speculative
1073 * memory accesses caused cachelines to become valid with now
1074 * invalid data.
1075 *
1076 * POSTWRITE -- Nothing.
1077 */
1078 #ifdef _ARM32_NEED_BUS_DMA_BOUNCE
1079 const bool bouncing = (map->_dm_flags & _BUS_DMAMAP_IS_BOUNCING);
1080 #else
1081 const bool bouncing = false;
1082 #endif
1083
1084 const int pre_ops = ops & (BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1085 #if defined(CPU_CORTEX) || defined(CPU_ARMV8)
1086 const int post_ops = ops & (BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1087 #else
1088 const int post_ops = 0;
1089 #endif
1090 if (pre_ops == 0 && post_ops == 0)
1091 return;
1092
1093 if (post_ops == BUS_DMASYNC_POSTWRITE) {
1094 KASSERT(pre_ops == 0);
1095 STAT_INCR(sync_postwrite);
1096 return;
1097 }
1098
1099 KASSERTMSG(bouncing || pre_ops != 0 || (post_ops & BUS_DMASYNC_POSTREAD),
1100 "pre_ops %#x post_ops %#x", pre_ops, post_ops);
1101
1102 if (bouncing && (ops & BUS_DMASYNC_PREWRITE)) {
1103 struct arm32_bus_dma_cookie * const cookie = map->_dm_cookie;
1104 STAT_INCR(write_bounces);
1105 char * const dataptr = (char *)cookie->id_bouncebuf + offset;
1106 /*
1107 * Copy the caller's buffer to the bounce buffer.
1108 */
1109 switch (map->_dm_buftype) {
1110 case _BUS_DMA_BUFTYPE_LINEAR:
1111 memcpy(dataptr, cookie->id_origlinearbuf + offset, len);
1112 break;
1113 case _BUS_DMA_BUFTYPE_MBUF:
1114 m_copydata(cookie->id_origmbuf, offset, len, dataptr);
1115 break;
1116 case _BUS_DMA_BUFTYPE_UIO:
1117 _bus_dma_uiomove(dataptr, cookie->id_origuio, len, UIO_WRITE);
1118 break;
1119 #ifdef DIAGNOSTIC
1120 case _BUS_DMA_BUFTYPE_RAW:
1121 panic("_bus_dmamap_sync(pre): _BUS_DMA_BUFTYPE_RAW");
1122 break;
1123
1124 case _BUS_DMA_BUFTYPE_INVALID:
1125 panic("_bus_dmamap_sync(pre): _BUS_DMA_BUFTYPE_INVALID");
1126 break;
1127
1128 default:
1129 panic("_bus_dmamap_sync(pre): map %p: unknown buffer type %d\n",
1130 map, map->_dm_buftype);
1131 break;
1132 #endif /* DIAGNOSTIC */
1133 }
1134 }
1135
1136 /* Skip cache frobbing if mapping was COHERENT */
1137 if ((map->_dm_flags & _BUS_DMAMAP_COHERENT)) {
1138 /*
1139 * Drain the write buffer of DMA operators.
1140 * 1) when cpu->device (prewrite)
1141 * 2) when device->cpu (postread)
1142 */
1143 if ((pre_ops & BUS_DMASYNC_PREWRITE) || (post_ops & BUS_DMASYNC_POSTREAD))
1144 cpu_drain_writebuf();
1145
1146 /*
1147 * Only thing left to do for COHERENT mapping is copy from bounce
1148 * in the POSTREAD case.
1149 */
1150 if (bouncing && (post_ops & BUS_DMASYNC_POSTREAD))
1151 goto bounce_it;
1152
1153 return;
1154 }
1155
1156 #if !defined( ARM_MMU_EXTENDED)
1157 /*
1158 * If the mapping belongs to a non-kernel vmspace, and the
1159 * vmspace has not been active since the last time a full
1160 * cache flush was performed, we don't need to do anything.
1161 */
1162 if (__predict_false(!VMSPACE_IS_KERNEL_P(map->_dm_vmspace) &&
1163 vm_map_pmap(&map->_dm_vmspace->vm_map)->pm_cstate.cs_cache_d == 0))
1164 return;
1165 #endif
1166
1167 int buftype = map->_dm_buftype;
1168 if (bouncing) {
1169 buftype = _BUS_DMA_BUFTYPE_LINEAR;
1170 }
1171
1172 switch (buftype) {
1173 case _BUS_DMA_BUFTYPE_LINEAR:
1174 case _BUS_DMA_BUFTYPE_RAW:
1175 _bus_dmamap_sync_linear(t, map, offset, len, ops);
1176 break;
1177
1178 case _BUS_DMA_BUFTYPE_MBUF:
1179 _bus_dmamap_sync_mbuf(t, map, offset, len, ops);
1180 break;
1181
1182 case _BUS_DMA_BUFTYPE_UIO:
1183 _bus_dmamap_sync_uio(t, map, offset, len, ops);
1184 break;
1185
1186 case _BUS_DMA_BUFTYPE_INVALID:
1187 panic("_bus_dmamap_sync: _BUS_DMA_BUFTYPE_INVALID");
1188 break;
1189
1190 default:
1191 panic("_bus_dmamap_sync: map %p: unknown buffer type %d\n",
1192 map, map->_dm_buftype);
1193 }
1194
1195 /* Drain the write buffer. */
1196 cpu_drain_writebuf();
1197
1198 if (!bouncing || (ops & BUS_DMASYNC_POSTREAD) == 0)
1199 return;
1200
1201 bounce_it:
1202 STAT_INCR(read_bounces);
1203
1204 struct arm32_bus_dma_cookie * const cookie = map->_dm_cookie;
1205 char * const dataptr = (char *)cookie->id_bouncebuf + offset;
1206 /*
1207 * Copy the bounce buffer to the caller's buffer.
1208 */
1209 switch (map->_dm_buftype) {
1210 case _BUS_DMA_BUFTYPE_LINEAR:
1211 memcpy(cookie->id_origlinearbuf + offset, dataptr, len);
1212 break;
1213
1214 case _BUS_DMA_BUFTYPE_MBUF:
1215 m_copyback(cookie->id_origmbuf, offset, len, dataptr);
1216 break;
1217
1218 case _BUS_DMA_BUFTYPE_UIO:
1219 _bus_dma_uiomove(dataptr, cookie->id_origuio, len, UIO_READ);
1220 break;
1221 #ifdef DIAGNOSTIC
1222 case _BUS_DMA_BUFTYPE_RAW:
1223 panic("_bus_dmamap_sync(post): _BUS_DMA_BUFTYPE_RAW");
1224 break;
1225
1226 case _BUS_DMA_BUFTYPE_INVALID:
1227 panic("_bus_dmamap_sync(post): _BUS_DMA_BUFTYPE_INVALID");
1228 break;
1229
1230 default:
1231 panic("_bus_dmamap_sync(post): map %p: unknown buffer type %d\n",
1232 map, map->_dm_buftype);
1233 break;
1234 #endif
1235 }
1236 }
1237
1238 /*
1239 * Common function for DMA-safe memory allocation. May be called
1240 * by bus-specific DMA memory allocation functions.
1241 */
1242
1243 extern paddr_t physical_start;
1244 extern paddr_t physical_end;
1245
1246 int
1247 _bus_dmamem_alloc(bus_dma_tag_t t, bus_size_t size, bus_size_t alignment,
1248 bus_size_t boundary, bus_dma_segment_t *segs, int nsegs, int *rsegs,
1249 int flags)
1250 {
1251 struct arm32_dma_range *dr;
1252 int error, i;
1253
1254 #ifdef DEBUG_DMA
1255 printf("dmamem_alloc t=%p size=%lx align=%lx boundary=%lx "
1256 "segs=%p nsegs=%x rsegs=%p flags=%x\n", t, size, alignment,
1257 boundary, segs, nsegs, rsegs, flags);
1258 #endif
1259
1260 if ((dr = t->_ranges) != NULL) {
1261 error = ENOMEM;
1262 for (i = 0; i < t->_nranges; i++, dr++) {
1263 if (dr->dr_len == 0
1264 || (dr->dr_flags & _BUS_DMAMAP_NOALLOC))
1265 continue;
1266 error = _bus_dmamem_alloc_range(t, size, alignment,
1267 boundary, segs, nsegs, rsegs, flags,
1268 trunc_page(dr->dr_sysbase),
1269 trunc_page(dr->dr_sysbase + dr->dr_len));
1270 if (error == 0)
1271 break;
1272 }
1273 } else {
1274 error = _bus_dmamem_alloc_range(t, size, alignment, boundary,
1275 segs, nsegs, rsegs, flags, trunc_page(physical_start),
1276 trunc_page(physical_end));
1277 }
1278
1279 #ifdef DEBUG_DMA
1280 printf("dmamem_alloc: =%d\n", error);
1281 #endif
1282
1283 return error;
1284 }
1285
1286 /*
1287 * Common function for freeing DMA-safe memory. May be called by
1288 * bus-specific DMA memory free functions.
1289 */
1290 void
1291 _bus_dmamem_free(bus_dma_tag_t t, bus_dma_segment_t *segs, int nsegs)
1292 {
1293 struct vm_page *m;
1294 bus_addr_t addr;
1295 struct pglist mlist;
1296 int curseg;
1297
1298 #ifdef DEBUG_DMA
1299 printf("dmamem_free: t=%p segs=%p nsegs=%x\n", t, segs, nsegs);
1300 #endif /* DEBUG_DMA */
1301
1302 /*
1303 * Build a list of pages to free back to the VM system.
1304 */
1305 TAILQ_INIT(&mlist);
1306 for (curseg = 0; curseg < nsegs; curseg++) {
1307 for (addr = segs[curseg].ds_addr;
1308 addr < (segs[curseg].ds_addr + segs[curseg].ds_len);
1309 addr += PAGE_SIZE) {
1310 m = PHYS_TO_VM_PAGE(addr);
1311 TAILQ_INSERT_TAIL(&mlist, m, pageq.queue);
1312 }
1313 }
1314 uvm_pglistfree(&mlist);
1315 }
1316
1317 /*
1318 * Common function for mapping DMA-safe memory. May be called by
1319 * bus-specific DMA memory map functions.
1320 */
1321 int
1322 _bus_dmamem_map(bus_dma_tag_t t, bus_dma_segment_t *segs, int nsegs,
1323 size_t size, void **kvap, int flags)
1324 {
1325 vaddr_t va;
1326 paddr_t pa;
1327 int curseg;
1328 const uvm_flag_t kmflags = UVM_KMF_VAONLY
1329 | ((flags & BUS_DMA_NOWAIT) != 0 ? UVM_KMF_NOWAIT : 0);
1330 vsize_t align = 0;
1331
1332 #ifdef DEBUG_DMA
1333 printf("dmamem_map: t=%p segs=%p nsegs=%x size=%lx flags=%x\n", t,
1334 segs, nsegs, (unsigned long)size, flags);
1335 #endif /* DEBUG_DMA */
1336
1337 #ifdef PMAP_MAP_POOLPAGE
1338 /*
1339 * If all of memory is mapped, and we are mapping a single physically
1340 * contiguous area then this area is already mapped. Let's see if we
1341 * avoid having a separate mapping for it.
1342 */
1343 if (nsegs == 1 && (flags & BUS_DMA_PREFETCHABLE) == 0) {
1344 /*
1345 * If this is a non-COHERENT mapping, then the existing kernel
1346 * mapping is already compatible with it.
1347 */
1348 bool direct_mapable = (flags & BUS_DMA_COHERENT) == 0;
1349 pa = segs[0].ds_addr;
1350
1351 /*
1352 * This is a COHERENT mapping which, unless this address is in
1353 * a COHERENT dma range, will not be compatible.
1354 */
1355 if (t->_ranges != NULL) {
1356 const struct arm32_dma_range * const dr =
1357 _bus_dma_paddr_inrange(t->_ranges, t->_nranges, pa);
1358 if (dr != NULL
1359 && (dr->dr_flags & _BUS_DMAMAP_COHERENT)) {
1360 direct_mapable = true;
1361 }
1362 }
1363
1364 #ifdef PMAP_NEED_ALLOC_POOLPAGE
1365 /*
1366 * The page can only be direct mapped if was allocated out
1367 * of the arm poolpage vm freelist.
1368 */
1369 uvm_physseg_t upm = uvm_physseg_find(atop(pa), NULL);
1370 KASSERT(uvm_physseg_valid_p(upm));
1371 if (direct_mapable) {
1372 direct_mapable =
1373 (arm_poolpage_vmfreelist == uvm_physseg_get_free_list(upm));
1374 }
1375 #endif
1376
1377 if (direct_mapable) {
1378 *kvap = (void *)PMAP_MAP_POOLPAGE(pa);
1379 #ifdef DEBUG_DMA
1380 printf("dmamem_map: =%p\n", *kvap);
1381 #endif /* DEBUG_DMA */
1382 return 0;
1383 }
1384 }
1385 #endif
1386
1387 size = round_page(size);
1388
1389 #ifdef PMAP_MAPSIZE1
1390 if (size >= PMAP_MAPSIZE1)
1391 align = PMAP_MAPSIZE1;
1392
1393 #ifdef PMAP_MAPSIZE2
1394
1395 #if PMAP_MAPSIZE1 > PMAP_MAPSIZE2
1396 #error PMAP_MAPSIZE1 must be smaller than PMAP_MAPSIZE2
1397 #endif
1398
1399 if (size >= PMAP_MAPSIZE2)
1400 align = PMAP_MAPSIZE2;
1401
1402 #ifdef PMAP_MAPSIZE3
1403
1404 #if PMAP_MAPSIZE2 > PMAP_MAPSIZE3
1405 #error PMAP_MAPSIZE2 must be smaller than PMAP_MAPSIZE3
1406 #endif
1407
1408 if (size >= PMAP_MAPSIZE3)
1409 align = PMAP_MAPSIZE3;
1410 #endif
1411 #endif
1412 #endif
1413
1414 va = uvm_km_alloc(kernel_map, size, align, kmflags);
1415 if (__predict_false(va == 0 && align > 0)) {
1416 align = 0;
1417 va = uvm_km_alloc(kernel_map, size, 0, kmflags);
1418 }
1419
1420 if (va == 0)
1421 return ENOMEM;
1422
1423 *kvap = (void *)va;
1424
1425 for (curseg = 0; curseg < nsegs; curseg++) {
1426 for (pa = segs[curseg].ds_addr;
1427 pa < (segs[curseg].ds_addr + segs[curseg].ds_len);
1428 pa += PAGE_SIZE, va += PAGE_SIZE, size -= PAGE_SIZE) {
1429 bool uncached = (flags & BUS_DMA_COHERENT);
1430 bool prefetchable = (flags & BUS_DMA_PREFETCHABLE);
1431 #ifdef DEBUG_DMA
1432 printf("wiring p%lx to v%lx", pa, va);
1433 #endif /* DEBUG_DMA */
1434 if (size == 0)
1435 panic("_bus_dmamem_map: size botch");
1436
1437 const struct arm32_dma_range * const dr =
1438 _bus_dma_paddr_inrange(t->_ranges, t->_nranges, pa);
1439 /*
1440 * If this dma region is coherent then there is
1441 * no need for an uncached mapping.
1442 */
1443 if (dr != NULL
1444 && (dr->dr_flags & _BUS_DMAMAP_COHERENT)) {
1445 uncached = false;
1446 }
1447
1448 u_int pmap_flags = PMAP_WIRED;
1449 if (prefetchable)
1450 pmap_flags |= PMAP_WRITE_COMBINE;
1451 else if (uncached)
1452 pmap_flags |= PMAP_NOCACHE;
1453
1454 pmap_kenter_pa(va, pa, VM_PROT_READ | VM_PROT_WRITE,
1455 pmap_flags);
1456 }
1457 }
1458 pmap_update(pmap_kernel());
1459 #ifdef DEBUG_DMA
1460 printf("dmamem_map: =%p\n", *kvap);
1461 #endif /* DEBUG_DMA */
1462 return 0;
1463 }
1464
1465 /*
1466 * Common function for unmapping DMA-safe memory. May be called by
1467 * bus-specific DMA memory unmapping functions.
1468 */
1469 void
1470 _bus_dmamem_unmap(bus_dma_tag_t t, void *kva, size_t size)
1471 {
1472
1473 #ifdef DEBUG_DMA
1474 printf("dmamem_unmap: t=%p kva=%p size=%zx\n", t, kva, size);
1475 #endif /* DEBUG_DMA */
1476 KASSERTMSG(((uintptr_t)kva & PAGE_MASK) == 0,
1477 "kva %p (%#"PRIxPTR")", kva, ((uintptr_t)kva & PAGE_MASK));
1478
1479 #ifdef __HAVE_MM_MD_DIRECT_MAPPED_PHYS
1480 /*
1481 * Check to see if this used direct mapped memory. Get its physical
1482 * address and try to map it. If the resultant matches the kva, then
1483 * it was and so we can just return since we have nothing to free up.
1484 */
1485 paddr_t pa;
1486 vaddr_t va;
1487 (void)pmap_extract(pmap_kernel(), (vaddr_t)kva, &pa);
1488 if (mm_md_direct_mapped_phys(pa, &va) && va == (vaddr_t)kva)
1489 return;
1490 #endif
1491
1492 size = round_page(size);
1493 pmap_kremove((vaddr_t)kva, size);
1494 pmap_update(pmap_kernel());
1495 uvm_km_free(kernel_map, (vaddr_t)kva, size, UVM_KMF_VAONLY);
1496 }
1497
1498 /*
1499 * Common functin for mmap(2)'ing DMA-safe memory. May be called by
1500 * bus-specific DMA mmap(2)'ing functions.
1501 */
1502 paddr_t
1503 _bus_dmamem_mmap(bus_dma_tag_t t, bus_dma_segment_t *segs, int nsegs,
1504 off_t off, int prot, int flags)
1505 {
1506 paddr_t map_flags;
1507 int i;
1508
1509 for (i = 0; i < nsegs; i++) {
1510 KASSERTMSG((off & PAGE_MASK) == 0,
1511 "off %#jx (%#x)", (uintmax_t)off, (int)off & PAGE_MASK);
1512 KASSERTMSG((segs[i].ds_addr & PAGE_MASK) == 0,
1513 "ds_addr %#lx (%#x)", segs[i].ds_addr,
1514 (int)segs[i].ds_addr & PAGE_MASK);
1515 KASSERTMSG((segs[i].ds_len & PAGE_MASK) == 0,
1516 "ds_len %#lx (%#x)", segs[i].ds_addr,
1517 (int)segs[i].ds_addr & PAGE_MASK);
1518 if (off >= segs[i].ds_len) {
1519 off -= segs[i].ds_len;
1520 continue;
1521 }
1522
1523 map_flags = 0;
1524 if (flags & BUS_DMA_PREFETCHABLE)
1525 map_flags |= ARM_MMAP_WRITECOMBINE;
1526
1527 return arm_btop((u_long)segs[i].ds_addr + off) | map_flags;
1528
1529 }
1530
1531 /* Page not found. */
1532 return -1;
1533 }
1534
1535 /**********************************************************************
1536 * DMA utility functions
1537 **********************************************************************/
1538
1539 /*
1540 * Utility function to load a linear buffer. lastaddrp holds state
1541 * between invocations (for multiple-buffer loads). segp contains
1542 * the starting segment on entrace, and the ending segment on exit.
1543 * first indicates if this is the first invocation of this function.
1544 */
1545 int
1546 _bus_dmamap_load_buffer(bus_dma_tag_t t, bus_dmamap_t map, void *buf,
1547 bus_size_t buflen, struct vmspace *vm, int flags)
1548 {
1549 bus_size_t sgsize;
1550 bus_addr_t curaddr;
1551 vaddr_t vaddr = (vaddr_t)buf;
1552 int error;
1553 pmap_t pmap;
1554
1555 #ifdef DEBUG_DMA
1556 printf("_bus_dmamem_load_buffer(buf=%p, len=%lx, flags=%d)\n",
1557 buf, buflen, flags);
1558 #endif /* DEBUG_DMA */
1559
1560 pmap = vm_map_pmap(&vm->vm_map);
1561
1562 while (buflen > 0) {
1563 /*
1564 * Get the physical address for this segment.
1565 *
1566 */
1567 bool coherent;
1568 pmap_extract_coherency(pmap, vaddr, &curaddr, &coherent);
1569
1570 KASSERTMSG((vaddr & PAGE_MASK) == (curaddr & PAGE_MASK),
1571 "va %#lx curaddr %#lx", vaddr, curaddr);
1572
1573 /*
1574 * Compute the segment size, and adjust counts.
1575 */
1576 sgsize = PAGE_SIZE - ((u_long)vaddr & PGOFSET);
1577 if (buflen < sgsize)
1578 sgsize = buflen;
1579
1580 error = _bus_dmamap_load_paddr(t, map, curaddr, sgsize,
1581 coherent);
1582 if (error)
1583 return error;
1584
1585 vaddr += sgsize;
1586 buflen -= sgsize;
1587 }
1588
1589 return 0;
1590 }
1591
1592 /*
1593 * Allocate physical memory from the given physical address range.
1594 * Called by DMA-safe memory allocation methods.
1595 */
1596 int
1597 _bus_dmamem_alloc_range(bus_dma_tag_t t, bus_size_t size, bus_size_t alignment,
1598 bus_size_t boundary, bus_dma_segment_t *segs, int nsegs, int *rsegs,
1599 int flags, paddr_t low, paddr_t high)
1600 {
1601 paddr_t curaddr, lastaddr;
1602 struct vm_page *m;
1603 struct pglist mlist;
1604 int curseg, error;
1605
1606 KASSERTMSG(boundary == 0 || (boundary & (boundary - 1)) == 0,
1607 "invalid boundary %#lx", boundary);
1608
1609 #ifdef DEBUG_DMA
1610 printf("alloc_range: t=%p size=%lx align=%lx boundary=%lx segs=%p nsegs=%x rsegs=%p flags=%x lo=%lx hi=%lx\n",
1611 t, size, alignment, boundary, segs, nsegs, rsegs, flags, low, high);
1612 #endif /* DEBUG_DMA */
1613
1614 /* Always round the size. */
1615 size = round_page(size);
1616
1617 /*
1618 * We accept boundaries < size, splitting in multiple segments
1619 * if needed. uvm_pglistalloc does not, so compute an appropriate
1620 * boundary: next power of 2 >= size
1621 */
1622 bus_size_t uboundary = boundary;
1623 if (uboundary <= PAGE_SIZE) {
1624 uboundary = 0;
1625 } else {
1626 while (uboundary < size) {
1627 uboundary <<= 1;
1628 }
1629 }
1630
1631 /*
1632 * Allocate pages from the VM system.
1633 */
1634 error = uvm_pglistalloc(size, low, high, alignment, uboundary,
1635 &mlist, nsegs, (flags & BUS_DMA_NOWAIT) == 0);
1636 if (error)
1637 return error;
1638
1639 /*
1640 * Compute the location, size, and number of segments actually
1641 * returned by the VM code.
1642 */
1643 m = TAILQ_FIRST(&mlist);
1644 curseg = 0;
1645 lastaddr = segs[curseg].ds_addr = VM_PAGE_TO_PHYS(m);
1646 segs[curseg].ds_len = PAGE_SIZE;
1647 #ifdef DEBUG_DMA
1648 printf("alloc: page %lx\n", lastaddr);
1649 #endif /* DEBUG_DMA */
1650 m = TAILQ_NEXT(m, pageq.queue);
1651
1652 for (; m != NULL; m = TAILQ_NEXT(m, pageq.queue)) {
1653 curaddr = VM_PAGE_TO_PHYS(m);
1654 KASSERTMSG(low <= curaddr && curaddr < high,
1655 "uvm_pglistalloc returned non-sensicaladdress %#lx "
1656 "(low=%#lx, high=%#lx\n", curaddr, low, high);
1657 #ifdef DEBUG_DMA
1658 printf("alloc: page %lx\n", curaddr);
1659 #endif /* DEBUG_DMA */
1660 if (curaddr == lastaddr + PAGE_SIZE
1661 && (lastaddr & boundary) == (curaddr & boundary))
1662 segs[curseg].ds_len += PAGE_SIZE;
1663 else {
1664 curseg++;
1665 if (curseg >= nsegs) {
1666 uvm_pglistfree(&mlist);
1667 return EFBIG;
1668 }
1669 segs[curseg].ds_addr = curaddr;
1670 segs[curseg].ds_len = PAGE_SIZE;
1671 }
1672 lastaddr = curaddr;
1673 }
1674
1675 *rsegs = curseg + 1;
1676
1677 return 0;
1678 }
1679
1680 /*
1681 * Check if a memory region intersects with a DMA range, and return the
1682 * page-rounded intersection if it does.
1683 */
1684 int
1685 arm32_dma_range_intersect(struct arm32_dma_range *ranges, int nranges,
1686 paddr_t pa, psize_t size, paddr_t *pap, psize_t *sizep)
1687 {
1688 struct arm32_dma_range *dr;
1689 int i;
1690
1691 if (ranges == NULL)
1692 return 0;
1693
1694 for (i = 0, dr = ranges; i < nranges; i++, dr++) {
1695 if (dr->dr_sysbase <= pa &&
1696 pa < (dr->dr_sysbase + dr->dr_len)) {
1697 /*
1698 * Beginning of region intersects with this range.
1699 */
1700 *pap = trunc_page(pa);
1701 *sizep = round_page(uimin(pa + size,
1702 dr->dr_sysbase + dr->dr_len) - pa);
1703 return 1;
1704 }
1705 if (pa < dr->dr_sysbase && dr->dr_sysbase < (pa + size)) {
1706 /*
1707 * End of region intersects with this range.
1708 */
1709 *pap = trunc_page(dr->dr_sysbase);
1710 *sizep = round_page(uimin((pa + size) - dr->dr_sysbase,
1711 dr->dr_len));
1712 return 1;
1713 }
1714 }
1715
1716 /* No intersection found. */
1717 return 0;
1718 }
1719
1720 #ifdef _ARM32_NEED_BUS_DMA_BOUNCE
1721 static int
1722 _bus_dma_alloc_bouncebuf(bus_dma_tag_t t, bus_dmamap_t map,
1723 bus_size_t size, int flags)
1724 {
1725 struct arm32_bus_dma_cookie *cookie = map->_dm_cookie;
1726 int error = 0;
1727
1728 KASSERT(cookie != NULL);
1729
1730 cookie->id_bouncebuflen = round_page(size);
1731 error = _bus_dmamem_alloc(t, cookie->id_bouncebuflen,
1732 PAGE_SIZE, map->_dm_boundary, cookie->id_bouncesegs,
1733 map->_dm_segcnt, &cookie->id_nbouncesegs, flags);
1734 if (error == 0) {
1735 error = _bus_dmamem_map(t, cookie->id_bouncesegs,
1736 cookie->id_nbouncesegs, cookie->id_bouncebuflen,
1737 (void **)&cookie->id_bouncebuf, flags);
1738 if (error) {
1739 _bus_dmamem_free(t, cookie->id_bouncesegs,
1740 cookie->id_nbouncesegs);
1741 cookie->id_bouncebuflen = 0;
1742 cookie->id_nbouncesegs = 0;
1743 } else {
1744 cookie->id_flags |= _BUS_DMA_HAS_BOUNCE;
1745 }
1746 } else {
1747 cookie->id_bouncebuflen = 0;
1748 cookie->id_nbouncesegs = 0;
1749 }
1750
1751 return error;
1752 }
1753
1754 static void
1755 _bus_dma_free_bouncebuf(bus_dma_tag_t t, bus_dmamap_t map)
1756 {
1757 struct arm32_bus_dma_cookie *cookie = map->_dm_cookie;
1758
1759 KASSERT(cookie != NULL);
1760
1761 _bus_dmamem_unmap(t, cookie->id_bouncebuf, cookie->id_bouncebuflen);
1762 _bus_dmamem_free(t, cookie->id_bouncesegs, cookie->id_nbouncesegs);
1763 cookie->id_bouncebuflen = 0;
1764 cookie->id_nbouncesegs = 0;
1765 cookie->id_flags &= ~_BUS_DMA_HAS_BOUNCE;
1766 }
1767 #endif /* _ARM32_NEED_BUS_DMA_BOUNCE */
1768
1769 /*
1770 * This function does the same as uiomove, but takes an explicit
1771 * direction, and does not update the uio structure.
1772 */
1773 static int
1774 _bus_dma_uiomove(void *buf, struct uio *uio, size_t n, int direction)
1775 {
1776 struct iovec *iov;
1777 int error;
1778 struct vmspace *vm;
1779 char *cp;
1780 size_t resid, cnt;
1781 int i;
1782
1783 iov = uio->uio_iov;
1784 vm = uio->uio_vmspace;
1785 cp = buf;
1786 resid = n;
1787
1788 for (i = 0; i < uio->uio_iovcnt && resid > 0; i++) {
1789 iov = &uio->uio_iov[i];
1790 if (iov->iov_len == 0)
1791 continue;
1792 cnt = MIN(resid, iov->iov_len);
1793
1794 if (!VMSPACE_IS_KERNEL_P(vm)) {
1795 preempt_point();
1796 }
1797 if (direction == UIO_READ) {
1798 error = copyout_vmspace(vm, cp, iov->iov_base, cnt);
1799 } else {
1800 error = copyin_vmspace(vm, iov->iov_base, cp, cnt);
1801 }
1802 if (error)
1803 return error;
1804 cp += cnt;
1805 resid -= cnt;
1806 }
1807 return 0;
1808 }
1809
1810 int
1811 _bus_dmatag_subregion(bus_dma_tag_t tag, bus_addr_t min_addr,
1812 bus_addr_t max_addr, bus_dma_tag_t *newtag, int flags)
1813 {
1814
1815 #ifdef _ARM32_NEED_BUS_DMA_BOUNCE
1816 struct arm32_dma_range *dr;
1817 bool subset = false;
1818 size_t nranges = 0;
1819 size_t i;
1820 for (i = 0, dr = tag->_ranges; i < tag->_nranges; i++, dr++) {
1821 if (dr->dr_sysbase <= min_addr
1822 && max_addr <= dr->dr_sysbase + dr->dr_len - 1) {
1823 subset = true;
1824 }
1825 if (min_addr <= dr->dr_sysbase + dr->dr_len
1826 && max_addr >= dr->dr_sysbase) {
1827 nranges++;
1828 }
1829 }
1830 if (subset) {
1831 *newtag = tag;
1832 /* if the tag must be freed, add a reference */
1833 if (tag->_tag_needs_free)
1834 (tag->_tag_needs_free)++;
1835 return 0;
1836 }
1837 if (nranges == 0) {
1838 nranges = 1;
1839 }
1840
1841 const size_t tagsize = sizeof(*tag) + nranges * sizeof(*dr);
1842 if ((*newtag = kmem_intr_zalloc(tagsize,
1843 (flags & BUS_DMA_NOWAIT) ? KM_NOSLEEP : KM_SLEEP)) == NULL)
1844 return ENOMEM;
1845
1846 dr = (void *)(*newtag + 1);
1847 **newtag = *tag;
1848 (*newtag)->_tag_needs_free = 1;
1849 (*newtag)->_ranges = dr;
1850 (*newtag)->_nranges = nranges;
1851
1852 if (tag->_ranges == NULL) {
1853 dr->dr_sysbase = min_addr;
1854 dr->dr_busbase = min_addr;
1855 dr->dr_len = max_addr + 1 - min_addr;
1856 } else {
1857 for (i = 0; i < nranges; i++) {
1858 if (min_addr > dr->dr_sysbase + dr->dr_len
1859 || max_addr < dr->dr_sysbase)
1860 continue;
1861 dr[0] = tag->_ranges[i];
1862 if (dr->dr_sysbase < min_addr) {
1863 psize_t diff = min_addr - dr->dr_sysbase;
1864 dr->dr_busbase += diff;
1865 dr->dr_len -= diff;
1866 dr->dr_sysbase += diff;
1867 }
1868 if (max_addr != 0xffffffff
1869 && max_addr + 1 < dr->dr_sysbase + dr->dr_len) {
1870 dr->dr_len = max_addr + 1 - dr->dr_sysbase;
1871 }
1872 dr++;
1873 }
1874 }
1875
1876 return 0;
1877 #else
1878 return EOPNOTSUPP;
1879 #endif /* _ARM32_NEED_BUS_DMA_BOUNCE */
1880 }
1881
1882 void
1883 _bus_dmatag_destroy(bus_dma_tag_t tag)
1884 {
1885 #ifdef _ARM32_NEED_BUS_DMA_BOUNCE
1886 switch (tag->_tag_needs_free) {
1887 case 0:
1888 break; /* not allocated with kmem */
1889 case 1: {
1890 const size_t tagsize = sizeof(*tag)
1891 + tag->_nranges * sizeof(*tag->_ranges);
1892 kmem_intr_free(tag, tagsize); /* last reference to tag */
1893 break;
1894 }
1895 default:
1896 (tag->_tag_needs_free)--; /* one less reference */
1897 }
1898 #endif
1899 }
1900