Home | History | Annotate | Line # | Download | only in arm32
bus_dma.c revision 1.126
      1 /*	$NetBSD: bus_dma.c,v 1.126 2020/12/04 07:12:57 skrll Exp $	*/
      2 
      3 /*-
      4  * Copyright (c) 1996, 1997, 1998, 2020 The NetBSD Foundation, Inc.
      5  * All rights reserved.
      6  *
      7  * This code is derived from software contributed to The NetBSD Foundation
      8  * by Jason R. Thorpe of the Numerical Aerospace Simulation Facility,
      9  * NASA Ames Research Center.
     10  *
     11  * Redistribution and use in source and binary forms, with or without
     12  * modification, are permitted provided that the following conditions
     13  * are met:
     14  * 1. Redistributions of source code must retain the above copyright
     15  *    notice, this list of conditions and the following disclaimer.
     16  * 2. Redistributions in binary form must reproduce the above copyright
     17  *    notice, this list of conditions and the following disclaimer in the
     18  *    documentation and/or other materials provided with the distribution.
     19  *
     20  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     21  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     22  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     23  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     24  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     25  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     26  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     27  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     28  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     29  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     30  * POSSIBILITY OF SUCH DAMAGE.
     31  */
     32 
     33 #define _ARM32_BUS_DMA_PRIVATE
     34 
     35 #include "opt_arm_bus_space.h"
     36 #include "opt_cputypes.h"
     37 
     38 #include <sys/cdefs.h>
     39 __KERNEL_RCSID(0, "$NetBSD: bus_dma.c,v 1.126 2020/12/04 07:12:57 skrll Exp $");
     40 
     41 #include <sys/param.h>
     42 
     43 #include <sys/bus.h>
     44 #include <sys/cpu.h>
     45 #include <sys/kmem.h>
     46 #include <sys/mbuf.h>
     47 
     48 #include <uvm/uvm.h>
     49 
     50 #include <arm/cpuconf.h>
     51 #include <arm/cpufunc.h>
     52 
     53 #ifdef __HAVE_MM_MD_DIRECT_MAPPED_PHYS
     54 #include <dev/mm.h>
     55 #endif
     56 
     57 #ifdef BUSDMA_COUNTERS
     58 static struct evcnt bus_dma_creates =
     59 	EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL, "busdma", "creates");
     60 static struct evcnt bus_dma_bounced_creates =
     61 	EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL, "busdma", "bounced creates");
     62 static struct evcnt bus_dma_loads =
     63 	EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL, "busdma", "loads");
     64 static struct evcnt bus_dma_bounced_loads =
     65 	EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL, "busdma", "bounced loads");
     66 static struct evcnt bus_dma_coherent_loads =
     67 	EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL, "busdma", "coherent loads");
     68 static struct evcnt bus_dma_read_bounces =
     69 	EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL, "busdma", "read bounces");
     70 static struct evcnt bus_dma_write_bounces =
     71 	EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL, "busdma", "write bounces");
     72 static struct evcnt bus_dma_bounced_unloads =
     73 	EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL, "busdma", "bounced unloads");
     74 static struct evcnt bus_dma_unloads =
     75 	EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL, "busdma", "unloads");
     76 static struct evcnt bus_dma_bounced_destroys =
     77 	EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL, "busdma", "bounced destroys");
     78 static struct evcnt bus_dma_destroys =
     79 	EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL, "busdma", "destroys");
     80 static struct evcnt bus_dma_sync_prereadwrite =
     81 	EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL, "busdma", "sync prereadwrite");
     82 static struct evcnt bus_dma_sync_preread_begin =
     83 	EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL, "busdma", "sync preread begin");
     84 static struct evcnt bus_dma_sync_preread =
     85 	EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL, "busdma", "sync preread");
     86 static struct evcnt bus_dma_sync_preread_tail =
     87 	EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL, "busdma", "sync preread tail");
     88 static struct evcnt bus_dma_sync_prewrite =
     89 	EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL, "busdma", "sync prewrite");
     90 static struct evcnt bus_dma_sync_postread =
     91 	EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL, "busdma", "sync postread");
     92 static struct evcnt bus_dma_sync_postreadwrite =
     93 	EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL, "busdma", "sync postreadwrite");
     94 static struct evcnt bus_dma_sync_postwrite =
     95 	EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL, "busdma", "sync postwrite");
     96 
     97 EVCNT_ATTACH_STATIC(bus_dma_creates);
     98 EVCNT_ATTACH_STATIC(bus_dma_bounced_creates);
     99 EVCNT_ATTACH_STATIC(bus_dma_loads);
    100 EVCNT_ATTACH_STATIC(bus_dma_bounced_loads);
    101 EVCNT_ATTACH_STATIC(bus_dma_coherent_loads);
    102 EVCNT_ATTACH_STATIC(bus_dma_read_bounces);
    103 EVCNT_ATTACH_STATIC(bus_dma_write_bounces);
    104 EVCNT_ATTACH_STATIC(bus_dma_unloads);
    105 EVCNT_ATTACH_STATIC(bus_dma_bounced_unloads);
    106 EVCNT_ATTACH_STATIC(bus_dma_destroys);
    107 EVCNT_ATTACH_STATIC(bus_dma_bounced_destroys);
    108 EVCNT_ATTACH_STATIC(bus_dma_sync_prereadwrite);
    109 EVCNT_ATTACH_STATIC(bus_dma_sync_preread_begin);
    110 EVCNT_ATTACH_STATIC(bus_dma_sync_preread);
    111 EVCNT_ATTACH_STATIC(bus_dma_sync_preread_tail);
    112 EVCNT_ATTACH_STATIC(bus_dma_sync_prewrite);
    113 EVCNT_ATTACH_STATIC(bus_dma_sync_postread);
    114 EVCNT_ATTACH_STATIC(bus_dma_sync_postreadwrite);
    115 EVCNT_ATTACH_STATIC(bus_dma_sync_postwrite);
    116 
    117 #define	STAT_INCR(x)	(bus_dma_ ## x.ev_count++)
    118 #else
    119 #define	STAT_INCR(x)	__nothing
    120 #endif
    121 
    122 int	_bus_dmamap_load_buffer(bus_dma_tag_t, bus_dmamap_t, void *,
    123 	    bus_size_t, struct vmspace *, int);
    124 
    125 /*
    126  * Check to see if the specified page is in an allowed DMA range.
    127  */
    128 static inline struct arm32_dma_range *
    129 _bus_dma_paddr_inrange(struct arm32_dma_range *ranges, int nranges,
    130     bus_addr_t curaddr)
    131 {
    132 	struct arm32_dma_range *dr;
    133 	int i;
    134 
    135 	for (i = 0, dr = ranges; i < nranges; i++, dr++) {
    136 		if (curaddr >= dr->dr_sysbase &&
    137 		    curaddr < (dr->dr_sysbase + dr->dr_len))
    138 			return dr;
    139 	}
    140 
    141 	return NULL;
    142 }
    143 
    144 /*
    145  * Check to see if the specified busaddr is in an allowed DMA range.
    146  */
    147 static inline paddr_t
    148 _bus_dma_busaddr_to_paddr(bus_dma_tag_t t, bus_addr_t curaddr)
    149 {
    150 	struct arm32_dma_range *dr;
    151 	u_int i;
    152 
    153 	if (t->_nranges == 0)
    154 		return curaddr;
    155 
    156 	for (i = 0, dr = t->_ranges; i < t->_nranges; i++, dr++) {
    157 		if (dr->dr_busbase <= curaddr
    158 		    && curaddr < dr->dr_busbase + dr->dr_len)
    159 			return curaddr - dr->dr_busbase + dr->dr_sysbase;
    160 	}
    161 	panic("%s: curaddr %#lx not in range", __func__, curaddr);
    162 }
    163 
    164 /*
    165  * Common function to load the specified physical address into the
    166  * DMA map, coalescing segments and boundary checking as necessary.
    167  */
    168 static int
    169 _bus_dmamap_load_paddr(bus_dma_tag_t t, bus_dmamap_t map,
    170     bus_addr_t paddr, bus_size_t size, bool coherent)
    171 {
    172 	bus_dma_segment_t * const segs = map->dm_segs;
    173 	int nseg = map->dm_nsegs;
    174 	bus_addr_t lastaddr;
    175 	bus_addr_t bmask = ~(map->_dm_boundary - 1);
    176 	bus_addr_t curaddr;
    177 	bus_size_t sgsize;
    178 	uint32_t _ds_flags = coherent ? _BUS_DMAMAP_COHERENT : 0;
    179 
    180 	if (nseg > 0)
    181 		lastaddr = segs[nseg - 1].ds_addr + segs[nseg - 1].ds_len;
    182 	else
    183 		lastaddr = 0xdead;
    184 
    185  again:
    186 	sgsize = size;
    187 
    188 	/* Make sure we're in an allowed DMA range. */
    189 	if (t->_ranges != NULL) {
    190 		/* XXX cache last result? */
    191 		const struct arm32_dma_range * const dr =
    192 		    _bus_dma_paddr_inrange(t->_ranges, t->_nranges, paddr);
    193 		if (dr == NULL)
    194 			return EINVAL;
    195 
    196 		/*
    197 		 * If this region is coherent, mark the segment as coherent.
    198 		 */
    199 		_ds_flags |= dr->dr_flags & _BUS_DMAMAP_COHERENT;
    200 
    201 		/*
    202 		 * In a valid DMA range.  Translate the physical
    203 		 * memory address to an address in the DMA window.
    204 		 */
    205 		curaddr = (paddr - dr->dr_sysbase) + dr->dr_busbase;
    206 #if 0
    207 		printf("%p: %#lx: range %#lx/%#lx/%#lx/%#x: %#x <-- %#lx\n",
    208 		    t, paddr, dr->dr_sysbase, dr->dr_busbase,
    209 		    dr->dr_len, dr->dr_flags, _ds_flags, curaddr);
    210 #endif
    211 	} else
    212 		curaddr = paddr;
    213 
    214 	/*
    215 	 * Make sure we don't cross any boundaries.
    216 	 */
    217 	if (map->_dm_boundary > 0) {
    218 		bus_addr_t baddr;	/* next boundary address */
    219 
    220 		baddr = (curaddr + map->_dm_boundary) & bmask;
    221 		if (sgsize > (baddr - curaddr))
    222 			sgsize = (baddr - curaddr);
    223 	}
    224 
    225 	/*
    226 	 * Insert chunk into a segment, coalescing with the
    227 	 * previous segment if possible.
    228 	 */
    229 	if (nseg > 0 && curaddr == lastaddr &&
    230 	    segs[nseg - 1].ds_len + sgsize <= map->dm_maxsegsz &&
    231 	    ((segs[nseg - 1]._ds_flags ^ _ds_flags) & _BUS_DMAMAP_COHERENT) == 0 &&
    232 	    (map->_dm_boundary == 0 ||
    233 	     (segs[nseg - 1].ds_addr & bmask) == (curaddr & bmask))) {
    234 	     	/* coalesce */
    235 		segs[nseg - 1].ds_len += sgsize;
    236 	} else if (nseg >= map->_dm_segcnt) {
    237 		return EFBIG;
    238 	} else {
    239 		/* new segment */
    240 		segs[nseg].ds_addr = curaddr;
    241 		segs[nseg].ds_len = sgsize;
    242 		segs[nseg]._ds_flags = _ds_flags;
    243 		nseg++;
    244 	}
    245 
    246 	lastaddr = curaddr + sgsize;
    247 
    248 	paddr += sgsize;
    249 	size -= sgsize;
    250 	if (size > 0)
    251 		goto again;
    252 
    253 	map->_dm_flags &= (_ds_flags & _BUS_DMAMAP_COHERENT);
    254 	map->dm_nsegs = nseg;
    255 	return 0;
    256 }
    257 
    258 static int _bus_dma_uiomove(void *buf, struct uio *uio, size_t n,
    259 	    int direction);
    260 
    261 #ifdef _ARM32_NEED_BUS_DMA_BOUNCE
    262 static int _bus_dma_alloc_bouncebuf(bus_dma_tag_t t, bus_dmamap_t map,
    263 	    bus_size_t size, int flags);
    264 static void _bus_dma_free_bouncebuf(bus_dma_tag_t t, bus_dmamap_t map);
    265 
    266 static int
    267 _bus_dma_load_bouncebuf(bus_dma_tag_t t, bus_dmamap_t map, void *buf,
    268 	size_t buflen, int buftype, int flags)
    269 {
    270 	struct arm32_bus_dma_cookie * const cookie = map->_dm_cookie;
    271 	struct vmspace * const vm = vmspace_kernel();
    272 	int error;
    273 
    274 	KASSERT(cookie != NULL);
    275 	KASSERT(cookie->id_flags & _BUS_DMA_MIGHT_NEED_BOUNCE);
    276 
    277 	/*
    278 	 * Allocate bounce pages, if necessary.
    279 	 */
    280 	if ((cookie->id_flags & _BUS_DMA_HAS_BOUNCE) == 0) {
    281 		error = _bus_dma_alloc_bouncebuf(t, map, buflen, flags);
    282 		if (error)
    283 			return error;
    284 	}
    285 
    286 	/*
    287 	 * Cache a pointer to the caller's buffer and load the DMA map
    288 	 * with the bounce buffer.
    289 	 */
    290 	cookie->id_origbuf = buf;
    291 	cookie->id_origbuflen = buflen;
    292 	error = _bus_dmamap_load_buffer(t, map, cookie->id_bouncebuf,
    293 	    buflen, vm, flags);
    294 	if (error)
    295 		return error;
    296 
    297 	STAT_INCR(bounced_loads);
    298 	map->dm_mapsize = buflen;
    299 	map->_dm_vmspace = vm;
    300 	map->_dm_buftype = buftype;
    301 
    302 	/* ...so _bus_dmamap_sync() knows we're bouncing */
    303 	map->_dm_flags |= _BUS_DMAMAP_IS_BOUNCING;
    304 	cookie->id_flags |= _BUS_DMA_IS_BOUNCING;
    305 	return 0;
    306 }
    307 #endif /* _ARM32_NEED_BUS_DMA_BOUNCE */
    308 
    309 /*
    310  * Common function for DMA map creation.  May be called by bus-specific
    311  * DMA map creation functions.
    312  */
    313 int
    314 _bus_dmamap_create(bus_dma_tag_t t, bus_size_t size, int nsegments,
    315     bus_size_t maxsegsz, bus_size_t boundary, int flags, bus_dmamap_t *dmamp)
    316 {
    317 	struct arm32_bus_dmamap *map;
    318 	void *mapstore;
    319 	int error = 0;
    320 
    321 #ifdef DEBUG_DMA
    322 	printf("dmamap_create: t=%p size=%lx nseg=%x msegsz=%lx boundary=%lx"
    323 	    " flags=%x\n", t, size, nsegments, maxsegsz, boundary, flags);
    324 #endif	/* DEBUG_DMA */
    325 
    326 	/*
    327 	 * Allocate and initialize the DMA map.  The end of the map
    328 	 * is a variable-sized array of segments, so we allocate enough
    329 	 * room for them in one shot.
    330 	 *
    331 	 * Note we don't preserve the WAITOK or NOWAIT flags.  Preservation
    332 	 * of ALLOCNOW notifies others that we've reserved these resources,
    333 	 * and they are not to be freed.
    334 	 *
    335 	 * The bus_dmamap_t includes one bus_dma_segment_t, hence
    336 	 * the (nsegments - 1).
    337 	 */
    338 	const size_t mapsize = sizeof(struct arm32_bus_dmamap) +
    339 	    (sizeof(bus_dma_segment_t) * (nsegments - 1));
    340 	const int zallocflags = (flags & BUS_DMA_NOWAIT) ? KM_NOSLEEP : KM_SLEEP;
    341 	if ((mapstore = kmem_intr_zalloc(mapsize, zallocflags)) == NULL)
    342 		return ENOMEM;
    343 
    344 	map = (struct arm32_bus_dmamap *)mapstore;
    345 	map->_dm_size = size;
    346 	map->_dm_segcnt = nsegments;
    347 	map->_dm_maxmaxsegsz = maxsegsz;
    348 	map->_dm_boundary = boundary;
    349 	map->_dm_flags = flags & ~(BUS_DMA_WAITOK|BUS_DMA_NOWAIT);
    350 	map->_dm_origbuf = NULL;
    351 	map->_dm_buftype = _BUS_DMA_BUFTYPE_INVALID;
    352 	map->_dm_vmspace = vmspace_kernel();
    353 	map->_dm_cookie = NULL;
    354 	map->dm_maxsegsz = maxsegsz;
    355 	map->dm_mapsize = 0;		/* no valid mappings */
    356 	map->dm_nsegs = 0;
    357 
    358 #ifdef _ARM32_NEED_BUS_DMA_BOUNCE
    359 	struct arm32_bus_dma_cookie *cookie;
    360 	int cookieflags;
    361 	void *cookiestore;
    362 
    363 	cookieflags = 0;
    364 
    365 	if (t->_may_bounce != NULL) {
    366 		error = (*t->_may_bounce)(t, map, flags, &cookieflags);
    367 		if (error != 0)
    368 			goto out;
    369 	}
    370 
    371 	if (t->_ranges != NULL)
    372 		cookieflags |= _BUS_DMA_MIGHT_NEED_BOUNCE;
    373 
    374 	if ((cookieflags & _BUS_DMA_MIGHT_NEED_BOUNCE) == 0) {
    375 		STAT_INCR(creates);
    376 		*dmamp = map;
    377 		return 0;
    378 	}
    379 
    380 	const size_t cookiesize = sizeof(struct arm32_bus_dma_cookie) +
    381 	    (sizeof(bus_dma_segment_t) * map->_dm_segcnt);
    382 
    383 	/*
    384 	 * Allocate our cookie.
    385 	 */
    386 	if ((cookiestore = kmem_intr_zalloc(cookiesize, zallocflags)) == NULL) {
    387 		error = ENOMEM;
    388 		goto out;
    389 	}
    390 	cookie = (struct arm32_bus_dma_cookie *)cookiestore;
    391 	cookie->id_flags = cookieflags;
    392 	map->_dm_cookie = cookie;
    393 	STAT_INCR(bounced_creates);
    394 
    395 	error = _bus_dma_alloc_bouncebuf(t, map, size, flags);
    396  out:
    397 	if (error)
    398 		_bus_dmamap_destroy(t, map);
    399 	else
    400 		*dmamp = map;
    401 #else
    402 	*dmamp = map;
    403 	STAT_INCR(creates);
    404 #endif /* _ARM32_NEED_BUS_DMA_BOUNCE */
    405 #ifdef DEBUG_DMA
    406 	printf("dmamap_create:map=%p\n", map);
    407 #endif	/* DEBUG_DMA */
    408 	return error;
    409 }
    410 
    411 /*
    412  * Common function for DMA map destruction.  May be called by bus-specific
    413  * DMA map destruction functions.
    414  */
    415 void
    416 _bus_dmamap_destroy(bus_dma_tag_t t, bus_dmamap_t map)
    417 {
    418 
    419 #ifdef DEBUG_DMA
    420 	printf("dmamap_destroy: t=%p map=%p\n", t, map);
    421 #endif	/* DEBUG_DMA */
    422 #ifdef _ARM32_NEED_BUS_DMA_BOUNCE
    423 	struct arm32_bus_dma_cookie *cookie = map->_dm_cookie;
    424 
    425 	/*
    426 	 * Free any bounce pages this map might hold.
    427 	 */
    428 	if (cookie != NULL) {
    429 		const size_t cookiesize = sizeof(struct arm32_bus_dma_cookie) +
    430 		    (sizeof(bus_dma_segment_t) * map->_dm_segcnt);
    431 
    432 		if (cookie->id_flags & _BUS_DMA_IS_BOUNCING)
    433 			STAT_INCR(bounced_unloads);
    434 		map->dm_nsegs = 0;
    435 		if (cookie->id_flags & _BUS_DMA_HAS_BOUNCE)
    436 			_bus_dma_free_bouncebuf(t, map);
    437 		STAT_INCR(bounced_destroys);
    438 		kmem_intr_free(cookie, cookiesize);
    439 	} else
    440 #endif
    441 	STAT_INCR(destroys);
    442 
    443 	if (map->dm_nsegs > 0)
    444 		STAT_INCR(unloads);
    445 
    446 	const size_t mapsize = sizeof(struct arm32_bus_dmamap) +
    447 	    (sizeof(bus_dma_segment_t) * (map->_dm_segcnt - 1));
    448 	kmem_intr_free(map, mapsize);
    449 }
    450 
    451 /*
    452  * Common function for loading a DMA map with a linear buffer.  May
    453  * be called by bus-specific DMA map load functions.
    454  */
    455 int
    456 _bus_dmamap_load(bus_dma_tag_t t, bus_dmamap_t map, void *buf,
    457     bus_size_t buflen, struct proc *p, int flags)
    458 {
    459 	struct vmspace *vm;
    460 	int error;
    461 
    462 #ifdef DEBUG_DMA
    463 	printf("dmamap_load: t=%p map=%p buf=%p len=%lx p=%p f=%d\n",
    464 	    t, map, buf, buflen, p, flags);
    465 #endif	/* DEBUG_DMA */
    466 
    467 	if (map->dm_nsegs > 0) {
    468 #ifdef _ARM32_NEED_BUS_DMA_BOUNCE
    469 		struct arm32_bus_dma_cookie *cookie = map->_dm_cookie;
    470 		if (cookie != NULL) {
    471 			if (cookie->id_flags & _BUS_DMA_IS_BOUNCING) {
    472 				STAT_INCR(bounced_unloads);
    473 				cookie->id_flags &= ~_BUS_DMA_IS_BOUNCING;
    474 				map->_dm_flags &= ~_BUS_DMAMAP_IS_BOUNCING;
    475 			}
    476 		} else
    477 #endif
    478 		STAT_INCR(unloads);
    479 	}
    480 
    481 	/*
    482 	 * Make sure that on error condition we return "no valid mappings".
    483 	 */
    484 	map->dm_mapsize = 0;
    485 	map->dm_nsegs = 0;
    486 	map->_dm_buftype = _BUS_DMA_BUFTYPE_INVALID;
    487 	KASSERTMSG(map->dm_maxsegsz <= map->_dm_maxmaxsegsz,
    488 	    "dm_maxsegsz %lu _dm_maxmaxsegsz %lu",
    489 	    map->dm_maxsegsz, map->_dm_maxmaxsegsz);
    490 
    491 	if (buflen > map->_dm_size)
    492 		return EINVAL;
    493 
    494 	if (p != NULL) {
    495 		vm = p->p_vmspace;
    496 	} else {
    497 		vm = vmspace_kernel();
    498 	}
    499 
    500 	/* _bus_dmamap_load_buffer() clears this if we're not... */
    501 	map->_dm_flags |= _BUS_DMAMAP_COHERENT;
    502 
    503 	error = _bus_dmamap_load_buffer(t, map, buf, buflen, vm, flags);
    504 	if (error == 0) {
    505 		map->dm_mapsize = buflen;
    506 		map->_dm_vmspace = vm;
    507 		map->_dm_origbuf = buf;
    508 		map->_dm_buftype = _BUS_DMA_BUFTYPE_LINEAR;
    509 		if (map->_dm_flags & _BUS_DMAMAP_COHERENT) {
    510 			STAT_INCR(coherent_loads);
    511 		} else {
    512 			STAT_INCR(loads);
    513 		}
    514 		return 0;
    515 	}
    516 #ifdef _ARM32_NEED_BUS_DMA_BOUNCE
    517 	struct arm32_bus_dma_cookie * const cookie = map->_dm_cookie;
    518 	if (cookie != NULL && (cookie->id_flags & _BUS_DMA_MIGHT_NEED_BOUNCE)) {
    519 		error = _bus_dma_load_bouncebuf(t, map, buf, buflen,
    520 		    _BUS_DMA_BUFTYPE_LINEAR, flags);
    521 	}
    522 #endif
    523 	return error;
    524 }
    525 
    526 /*
    527  * Like _bus_dmamap_load(), but for mbufs.
    528  */
    529 int
    530 _bus_dmamap_load_mbuf(bus_dma_tag_t t, bus_dmamap_t map, struct mbuf *m0,
    531     int flags)
    532 {
    533 	struct mbuf *m;
    534 	int error;
    535 
    536 #ifdef DEBUG_DMA
    537 	printf("dmamap_load_mbuf: t=%p map=%p m0=%p f=%d\n",
    538 	    t, map, m0, flags);
    539 #endif	/* DEBUG_DMA */
    540 
    541 	if (map->dm_nsegs > 0) {
    542 #ifdef _ARM32_NEED_BUS_DMA_BOUNCE
    543 		struct arm32_bus_dma_cookie *cookie = map->_dm_cookie;
    544 		if (cookie != NULL) {
    545 			if (cookie->id_flags & _BUS_DMA_IS_BOUNCING) {
    546 				STAT_INCR(bounced_unloads);
    547 				cookie->id_flags &= ~_BUS_DMA_IS_BOUNCING;
    548 				map->_dm_flags &= ~_BUS_DMAMAP_IS_BOUNCING;
    549 			}
    550 		} else
    551 #endif
    552 		STAT_INCR(unloads);
    553 	}
    554 
    555 	/*
    556 	 * Make sure that on error condition we return "no valid mappings."
    557 	 */
    558 	map->dm_mapsize = 0;
    559 	map->dm_nsegs = 0;
    560 	map->_dm_buftype = _BUS_DMA_BUFTYPE_INVALID;
    561 	KASSERTMSG(map->dm_maxsegsz <= map->_dm_maxmaxsegsz,
    562 	    "dm_maxsegsz %lu _dm_maxmaxsegsz %lu",
    563 	    map->dm_maxsegsz, map->_dm_maxmaxsegsz);
    564 
    565 	KASSERT(m0->m_flags & M_PKTHDR);
    566 
    567 	if (m0->m_pkthdr.len > map->_dm_size)
    568 		return EINVAL;
    569 
    570 	/* _bus_dmamap_load_paddr() clears this if we're not... */
    571 	map->_dm_flags |= _BUS_DMAMAP_COHERENT;
    572 
    573 	error = 0;
    574 	for (m = m0; m != NULL && error == 0; m = m->m_next) {
    575 		int offset;
    576 		int remainbytes;
    577 		const struct vm_page * const *pgs;
    578 		paddr_t paddr;
    579 		int size;
    580 
    581 		if (m->m_len == 0)
    582 			continue;
    583 		/*
    584 		 * Don't allow reads in read-only mbufs.
    585 		 */
    586 		if (M_ROMAP(m) && (flags & BUS_DMA_READ)) {
    587 			error = EFAULT;
    588 			break;
    589 		}
    590 		switch (m->m_flags & (M_EXT|M_EXT_CLUSTER|M_EXT_PAGES)) {
    591 		case M_EXT|M_EXT_CLUSTER:
    592 			/* XXX KDASSERT */
    593 			KASSERT(m->m_ext.ext_paddr != M_PADDR_INVALID);
    594 			paddr = m->m_ext.ext_paddr +
    595 			    (m->m_data - m->m_ext.ext_buf);
    596 			size = m->m_len;
    597 			error = _bus_dmamap_load_paddr(t, map, paddr, size,
    598 			    false);
    599 			break;
    600 
    601 		case M_EXT|M_EXT_PAGES:
    602 			KASSERT(m->m_ext.ext_buf <= m->m_data);
    603 			KASSERT(m->m_data <=
    604 			    m->m_ext.ext_buf + m->m_ext.ext_size);
    605 
    606 			offset = (vaddr_t)m->m_data -
    607 			    trunc_page((vaddr_t)m->m_ext.ext_buf);
    608 			remainbytes = m->m_len;
    609 
    610 			/* skip uninteresting pages */
    611 			pgs = (const struct vm_page * const *)
    612 			    m->m_ext.ext_pgs + (offset >> PAGE_SHIFT);
    613 
    614 			offset &= PAGE_MASK;	/* offset in the first page */
    615 
    616 			/* load each page */
    617 			while (remainbytes > 0) {
    618 				const struct vm_page *pg;
    619 
    620 				size = MIN(remainbytes, PAGE_SIZE - offset);
    621 
    622 				pg = *pgs++;
    623 				KASSERT(pg);
    624 				paddr = VM_PAGE_TO_PHYS(pg) + offset;
    625 
    626 				error = _bus_dmamap_load_paddr(t, map,
    627 				    paddr, size, false);
    628 				if (error)
    629 					break;
    630 				offset = 0;
    631 				remainbytes -= size;
    632 			}
    633 			break;
    634 
    635 		case 0:
    636 			paddr = m->m_paddr + M_BUFOFFSET(m) +
    637 			    (m->m_data - M_BUFADDR(m));
    638 			size = m->m_len;
    639 			error = _bus_dmamap_load_paddr(t, map, paddr, size,
    640 			    false);
    641 			break;
    642 
    643 		default:
    644 			error = _bus_dmamap_load_buffer(t, map, m->m_data,
    645 			    m->m_len, vmspace_kernel(), flags);
    646 		}
    647 	}
    648 	if (error == 0) {
    649 		map->dm_mapsize = m0->m_pkthdr.len;
    650 		map->_dm_origbuf = m0;
    651 		map->_dm_buftype = _BUS_DMA_BUFTYPE_MBUF;
    652 		map->_dm_vmspace = vmspace_kernel();	/* always kernel */
    653 		if (map->_dm_flags & _BUS_DMAMAP_COHERENT) {
    654 			STAT_INCR(coherent_loads);
    655 		} else {
    656 			STAT_INCR(loads);
    657 		}
    658 		return 0;
    659 	}
    660 #ifdef _ARM32_NEED_BUS_DMA_BOUNCE
    661 	struct arm32_bus_dma_cookie * const cookie = map->_dm_cookie;
    662 	if (cookie != NULL && (cookie->id_flags & _BUS_DMA_MIGHT_NEED_BOUNCE)) {
    663 		error = _bus_dma_load_bouncebuf(t, map, m0, m0->m_pkthdr.len,
    664 		    _BUS_DMA_BUFTYPE_MBUF, flags);
    665 	}
    666 #endif
    667 	return error;
    668 }
    669 
    670 /*
    671  * Like _bus_dmamap_load(), but for uios.
    672  */
    673 int
    674 _bus_dmamap_load_uio(bus_dma_tag_t t, bus_dmamap_t map, struct uio *uio,
    675     int flags)
    676 {
    677 	bus_size_t minlen, resid;
    678 	struct iovec *iov;
    679 	void *addr;
    680 	int i, error;
    681 
    682 	/*
    683 	 * Make sure that on error condition we return "no valid mappings."
    684 	 */
    685 	map->dm_mapsize = 0;
    686 	map->dm_nsegs = 0;
    687 	KASSERTMSG(map->dm_maxsegsz <= map->_dm_maxmaxsegsz,
    688 	    "dm_maxsegsz %lu _dm_maxmaxsegsz %lu",
    689 	    map->dm_maxsegsz, map->_dm_maxmaxsegsz);
    690 
    691 	resid = uio->uio_resid;
    692 	iov = uio->uio_iov;
    693 
    694 	/* _bus_dmamap_load_buffer() clears this if we're not... */
    695 	map->_dm_flags |= _BUS_DMAMAP_COHERENT;
    696 
    697 	error = 0;
    698 	for (i = 0; i < uio->uio_iovcnt && resid != 0 && error == 0; i++) {
    699 		/*
    700 		 * Now at the first iovec to load.  Load each iovec
    701 		 * until we have exhausted the residual count.
    702 		 */
    703 		minlen = resid < iov[i].iov_len ? resid : iov[i].iov_len;
    704 		addr = (void *)iov[i].iov_base;
    705 
    706 		error = _bus_dmamap_load_buffer(t, map, addr, minlen,
    707 		    uio->uio_vmspace, flags);
    708 
    709 		resid -= minlen;
    710 	}
    711 	if (error == 0) {
    712 		map->dm_mapsize = uio->uio_resid;
    713 		map->_dm_origbuf = uio;
    714 		map->_dm_buftype = _BUS_DMA_BUFTYPE_UIO;
    715 		map->_dm_vmspace = uio->uio_vmspace;
    716 		if (map->_dm_flags & _BUS_DMAMAP_COHERENT) {
    717 			STAT_INCR(coherent_loads);
    718 		} else {
    719 			STAT_INCR(loads);
    720 		}
    721 	}
    722 	return error;
    723 }
    724 
    725 /*
    726  * Like _bus_dmamap_load(), but for raw memory allocated with
    727  * bus_dmamem_alloc().
    728  */
    729 int
    730 _bus_dmamap_load_raw(bus_dma_tag_t t, bus_dmamap_t map,
    731     bus_dma_segment_t *segs, int nsegs, bus_size_t size0, int flags)
    732 {
    733 
    734 	bus_size_t size;
    735 	int i, error = 0;
    736 
    737 	/*
    738 	 * Make sure that on error conditions we return "no valid mappings."
    739 	 */
    740 	map->dm_mapsize = 0;
    741 	map->dm_nsegs = 0;
    742 	KASSERT(map->dm_maxsegsz <= map->_dm_maxmaxsegsz);
    743 
    744 	if (size0 > map->_dm_size)
    745 		return EINVAL;
    746 
    747 	for (i = 0, size = size0; i < nsegs && size > 0; i++) {
    748 		bus_dma_segment_t *ds = &segs[i];
    749 		bus_size_t sgsize;
    750 
    751 		sgsize = MIN(ds->ds_len, size);
    752 		if (sgsize == 0)
    753 			continue;
    754 		const bool coherent =
    755 		    (ds->_ds_flags & _BUS_DMAMAP_COHERENT) != 0;
    756 		error = _bus_dmamap_load_paddr(t, map, ds->ds_addr,
    757 		    sgsize, coherent);
    758 		if (error != 0)
    759 			break;
    760 		size -= sgsize;
    761 	}
    762 
    763 	if (error != 0) {
    764 		map->dm_mapsize = 0;
    765 		map->dm_nsegs = 0;
    766 		return error;
    767 	}
    768 
    769 	/* XXX TBD bounce */
    770 
    771 	map->dm_mapsize = size0;
    772 	map->_dm_origbuf = NULL;
    773 	map->_dm_buftype = _BUS_DMA_BUFTYPE_RAW;
    774 	map->_dm_vmspace = NULL;
    775 	return 0;
    776 }
    777 
    778 /*
    779  * Common function for unloading a DMA map.  May be called by
    780  * bus-specific DMA map unload functions.
    781  */
    782 void
    783 _bus_dmamap_unload(bus_dma_tag_t t, bus_dmamap_t map)
    784 {
    785 
    786 #ifdef DEBUG_DMA
    787 	printf("dmamap_unload: t=%p map=%p\n", t, map);
    788 #endif	/* DEBUG_DMA */
    789 
    790 	/*
    791 	 * No resources to free; just mark the mappings as
    792 	 * invalid.
    793 	 */
    794 	map->dm_mapsize = 0;
    795 	map->dm_nsegs = 0;
    796 	map->_dm_origbuf = NULL;
    797 	map->_dm_buftype = _BUS_DMA_BUFTYPE_INVALID;
    798 	map->_dm_vmspace = NULL;
    799 }
    800 
    801 static void
    802 _bus_dmamap_sync_segment(vaddr_t va, paddr_t pa, vsize_t len, int ops,
    803     bool readonly_p)
    804 {
    805 
    806 #if defined(ARM_MMU_EXTENDED)
    807 	/*
    808 	 * No optimisations are available for readonly mbufs on armv6+, so
    809 	 * assume it's not readonly from here on.
    810 	 *
    811  	 * See the comment in _bus_dmamap_sync_mbuf
    812 	 */
    813 	readonly_p = false;
    814 #endif
    815 
    816 	KASSERTMSG((va & PAGE_MASK) == (pa & PAGE_MASK),
    817 	    "va %#lx pa %#lx", va, pa);
    818 #if 0
    819 	printf("sync_segment: va=%#lx pa=%#lx len=%#lx ops=%#x ro=%d\n",
    820 	    va, pa, len, ops, readonly_p);
    821 #endif
    822 
    823 	switch (ops) {
    824 	case BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE:
    825 		if (!readonly_p) {
    826 			STAT_INCR(sync_prereadwrite);
    827 			cpu_dcache_wbinv_range(va, len);
    828 			cpu_sdcache_wbinv_range(va, pa, len);
    829 			break;
    830 		}
    831 		/* FALLTHROUGH */
    832 
    833 	case BUS_DMASYNC_PREREAD: {
    834 		const size_t line_size = arm_dcache_align;
    835 		const size_t line_mask = arm_dcache_align_mask;
    836 		vsize_t misalignment = va & line_mask;
    837 		if (misalignment) {
    838 			va -= misalignment;
    839 			pa -= misalignment;
    840 			len += misalignment;
    841 			STAT_INCR(sync_preread_begin);
    842 			cpu_dcache_wbinv_range(va, line_size);
    843 			cpu_sdcache_wbinv_range(va, pa, line_size);
    844 			if (len <= line_size)
    845 				break;
    846 			va += line_size;
    847 			pa += line_size;
    848 			len -= line_size;
    849 		}
    850 		misalignment = len & line_mask;
    851 		len -= misalignment;
    852 		if (len > 0) {
    853 			STAT_INCR(sync_preread);
    854 			cpu_dcache_inv_range(va, len);
    855 			cpu_sdcache_inv_range(va, pa, len);
    856 		}
    857 		if (misalignment) {
    858 			va += len;
    859 			pa += len;
    860 			STAT_INCR(sync_preread_tail);
    861 			cpu_dcache_wbinv_range(va, line_size);
    862 			cpu_sdcache_wbinv_range(va, pa, line_size);
    863 		}
    864 		break;
    865 	}
    866 
    867 	case BUS_DMASYNC_PREWRITE:
    868 		STAT_INCR(sync_prewrite);
    869 		cpu_dcache_wb_range(va, len);
    870 		cpu_sdcache_wb_range(va, pa, len);
    871 		break;
    872 
    873 #if defined(CPU_CORTEX) || defined(CPU_ARMV8)
    874 
    875 	/*
    876 	 * Cortex CPUs can do speculative loads so we need to clean the cache
    877 	 * after a DMA read to deal with any speculatively loaded cache lines.
    878 	 * Since these can't be dirty, we can just invalidate them and don't
    879 	 * have to worry about having to write back their contents.
    880 	 */
    881 	case BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE:
    882 		STAT_INCR(sync_postreadwrite);
    883 		cpu_dcache_inv_range(va, len);
    884 		cpu_sdcache_inv_range(va, pa, len);
    885 		break;
    886 
    887 	case BUS_DMASYNC_POSTREAD:
    888 		STAT_INCR(sync_postread);
    889 		cpu_dcache_inv_range(va, len);
    890 		cpu_sdcache_inv_range(va, pa, len);
    891 		break;
    892 #endif
    893 	}
    894 }
    895 
    896 static inline void
    897 _bus_dmamap_sync_linear(bus_dma_tag_t t, bus_dmamap_t map, bus_addr_t offset,
    898     bus_size_t len, int ops)
    899 {
    900 	bus_dma_segment_t *ds = map->dm_segs;
    901 	vaddr_t va = (vaddr_t) map->_dm_origbuf;
    902 #ifdef _ARM32_NEED_BUS_DMA_BOUNCE
    903 	if (map->_dm_flags & _BUS_DMAMAP_IS_BOUNCING) {
    904 		struct arm32_bus_dma_cookie * const cookie = map->_dm_cookie;
    905 		va = (vaddr_t) cookie->id_bouncebuf;
    906 	}
    907 #endif
    908 
    909 	while (len > 0) {
    910 		while (offset >= ds->ds_len) {
    911 			offset -= ds->ds_len;
    912 			va += ds->ds_len;
    913 			ds++;
    914 		}
    915 
    916 		paddr_t pa = _bus_dma_busaddr_to_paddr(t, ds->ds_addr + offset);
    917 		size_t seglen = uimin(len, ds->ds_len - offset);
    918 
    919 		if ((ds->_ds_flags & _BUS_DMAMAP_COHERENT) == 0)
    920 			_bus_dmamap_sync_segment(va + offset, pa, seglen, ops,
    921 			    false);
    922 
    923 		offset += seglen;
    924 		len -= seglen;
    925 	}
    926 }
    927 
    928 static inline void
    929 _bus_dmamap_sync_mbuf(bus_dma_tag_t t, bus_dmamap_t map, bus_size_t offset,
    930     bus_size_t len, int ops)
    931 {
    932 	bus_dma_segment_t *ds = map->dm_segs;
    933 	struct mbuf *m = map->_dm_origbuf;
    934 	bus_size_t voff = offset;
    935 	bus_size_t ds_off = offset;
    936 
    937 	while (len > 0) {
    938 		/* Find the current dma segment */
    939 		while (ds_off >= ds->ds_len) {
    940 			ds_off -= ds->ds_len;
    941 			ds++;
    942 		}
    943 		/* Find the current mbuf. */
    944 		while (voff >= m->m_len) {
    945 			voff -= m->m_len;
    946 			m = m->m_next;
    947 		}
    948 
    949 		/*
    950 		 * Now at the first mbuf to sync; nail each one until
    951 		 * we have exhausted the length.
    952 		 */
    953 		vsize_t seglen = uimin(len, uimin(m->m_len - voff, ds->ds_len - ds_off));
    954 		vaddr_t va = mtod(m, vaddr_t) + voff;
    955 		paddr_t pa = _bus_dma_busaddr_to_paddr(t, ds->ds_addr + ds_off);
    956 
    957 		/*
    958 		 * We can save a lot of work here if we know the mapping
    959 		 * is read-only at the MMU and we aren't using the armv6+
    960 		 * MMU:
    961 		 *
    962 		 * If a mapping is read-only, no dirty cache blocks will
    963 		 * exist for it.  If a writable mapping was made read-only,
    964 		 * we know any dirty cache lines for the range will have
    965 		 * been cleaned for us already.  Therefore, if the upper
    966 		 * layer can tell us we have a read-only mapping, we can
    967 		 * skip all cache cleaning.
    968 		 *
    969 		 * NOTE: This only works if we know the pmap cleans pages
    970 		 * before making a read-write -> read-only transition.  If
    971 		 * this ever becomes non-true (e.g. Physically Indexed
    972 		 * cache), this will have to be revisited.
    973 		 */
    974 
    975 		if ((ds->_ds_flags & _BUS_DMAMAP_COHERENT) == 0) {
    976 			/*
    977 			 * If we are doing preread (DMAing into the mbuf),
    978 			 * this mbuf better not be readonly,
    979 			 */
    980 			KASSERT(!(ops & BUS_DMASYNC_PREREAD) || !M_ROMAP(m));
    981 			_bus_dmamap_sync_segment(va, pa, seglen, ops,
    982 			    M_ROMAP(m));
    983 		}
    984 		voff += seglen;
    985 		ds_off += seglen;
    986 		len -= seglen;
    987 	}
    988 }
    989 
    990 static inline void
    991 _bus_dmamap_sync_uio(bus_dma_tag_t t, bus_dmamap_t map, bus_addr_t offset,
    992     bus_size_t len, int ops)
    993 {
    994 	bus_dma_segment_t *ds = map->dm_segs;
    995 	struct uio *uio = map->_dm_origbuf;
    996 	struct iovec *iov = uio->uio_iov;
    997 	bus_size_t voff = offset;
    998 	bus_size_t ds_off = offset;
    999 
   1000 	while (len > 0) {
   1001 		/* Find the current dma segment */
   1002 		while (ds_off >= ds->ds_len) {
   1003 			ds_off -= ds->ds_len;
   1004 			ds++;
   1005 		}
   1006 
   1007 		/* Find the current iovec. */
   1008 		while (voff >= iov->iov_len) {
   1009 			voff -= iov->iov_len;
   1010 			iov++;
   1011 		}
   1012 
   1013 		/*
   1014 		 * Now at the first iovec to sync; nail each one until
   1015 		 * we have exhausted the length.
   1016 		 */
   1017 		vsize_t seglen = uimin(len, uimin(iov->iov_len - voff, ds->ds_len - ds_off));
   1018 		vaddr_t va = (vaddr_t) iov->iov_base + voff;
   1019 		paddr_t pa = _bus_dma_busaddr_to_paddr(t, ds->ds_addr + ds_off);
   1020 
   1021 		if ((ds->_ds_flags & _BUS_DMAMAP_COHERENT) == 0)
   1022 			_bus_dmamap_sync_segment(va, pa, seglen, ops, false);
   1023 
   1024 		voff += seglen;
   1025 		ds_off += seglen;
   1026 		len -= seglen;
   1027 	}
   1028 }
   1029 
   1030 /*
   1031  * Common function for DMA map synchronization.  May be called
   1032  * by bus-specific DMA map synchronization functions.
   1033  *
   1034  * XXX Should have separate versions for write-through vs.
   1035  * XXX write-back caches.  We currently assume write-back
   1036  * XXX here, which is not as efficient as it could be for
   1037  * XXX the write-through case.
   1038  */
   1039 void
   1040 _bus_dmamap_sync(bus_dma_tag_t t, bus_dmamap_t map, bus_addr_t offset,
   1041     bus_size_t len, int ops)
   1042 {
   1043 #ifdef DEBUG_DMA
   1044 	printf("dmamap_sync: t=%p map=%p offset=%lx len=%lx ops=%x\n",
   1045 	    t, map, offset, len, ops);
   1046 #endif	/* DEBUG_DMA */
   1047 
   1048 	/*
   1049 	 * Mixing of PRE and POST operations is not allowed.
   1050 	 */
   1051 	if ((ops & (BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE)) != 0 &&
   1052 	    (ops & (BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE)) != 0)
   1053 		panic("%s: mix PRE and POST", __func__);
   1054 
   1055 	KASSERTMSG(offset < map->dm_mapsize,
   1056 	    "offset %lu mapsize %lu",
   1057 	    offset, map->dm_mapsize);
   1058 	KASSERTMSG(len > 0 && offset + len <= map->dm_mapsize,
   1059 	    "len %lu offset %lu mapsize %lu",
   1060 	    len, offset, map->dm_mapsize);
   1061 
   1062 	/*
   1063 	 * For a virtually-indexed write-back cache, we need
   1064 	 * to do the following things:
   1065 	 *
   1066 	 *	PREREAD -- Invalidate the D-cache.  We do this
   1067 	 *	here in case a write-back is required by the back-end.
   1068 	 *
   1069 	 *	PREWRITE -- Write-back the D-cache.  Note that if
   1070 	 *	we are doing a PREREAD|PREWRITE, we can collapse
   1071 	 *	the whole thing into a single Wb-Inv.
   1072 	 *
   1073 	 *	POSTREAD -- Re-invalidate the D-cache in case speculative
   1074 	 *	memory accesses caused cachelines to become valid with now
   1075 	 *	invalid data.
   1076 	 *
   1077 	 *	POSTWRITE -- Nothing.
   1078 	 */
   1079 #ifdef _ARM32_NEED_BUS_DMA_BOUNCE
   1080 	const bool bouncing = (map->_dm_flags & _BUS_DMAMAP_IS_BOUNCING);
   1081 #else
   1082 	const bool bouncing = false;
   1083 #endif
   1084 
   1085 	const int pre_ops = ops & (BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
   1086 #if defined(CPU_CORTEX) || defined(CPU_ARMV8)
   1087 	const int post_ops = ops & (BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
   1088 #else
   1089 	const int post_ops = 0;
   1090 #endif
   1091 	if (pre_ops == 0 && post_ops == 0)
   1092 		return;
   1093 
   1094 	if (post_ops == BUS_DMASYNC_POSTWRITE) {
   1095 		KASSERT(pre_ops == 0);
   1096 		STAT_INCR(sync_postwrite);
   1097 		return;
   1098 	}
   1099 
   1100 	KASSERTMSG(bouncing || pre_ops != 0 || (post_ops & BUS_DMASYNC_POSTREAD),
   1101 	    "pre_ops %#x post_ops %#x", pre_ops, post_ops);
   1102 
   1103 	if (bouncing && (ops & BUS_DMASYNC_PREWRITE)) {
   1104 		struct arm32_bus_dma_cookie * const cookie = map->_dm_cookie;
   1105 		STAT_INCR(write_bounces);
   1106 		char * const dataptr = (char *)cookie->id_bouncebuf + offset;
   1107 		/*
   1108 		 * Copy the caller's buffer to the bounce buffer.
   1109 		 */
   1110 		switch (map->_dm_buftype) {
   1111 		case _BUS_DMA_BUFTYPE_LINEAR:
   1112 			memcpy(dataptr, cookie->id_origlinearbuf + offset, len);
   1113 			break;
   1114 
   1115 		case _BUS_DMA_BUFTYPE_MBUF:
   1116 			m_copydata(cookie->id_origmbuf, offset, len, dataptr);
   1117 			break;
   1118 
   1119 		case _BUS_DMA_BUFTYPE_UIO:
   1120 			_bus_dma_uiomove(dataptr, cookie->id_origuio, len,
   1121 			    UIO_WRITE);
   1122 			break;
   1123 
   1124 #ifdef DIAGNOSTIC
   1125 		case _BUS_DMA_BUFTYPE_RAW:
   1126 			panic("%s:(pre): _BUS_DMA_BUFTYPE_RAW", __func__);
   1127 			break;
   1128 
   1129 		case _BUS_DMA_BUFTYPE_INVALID:
   1130 			panic("%s(pre): _BUS_DMA_BUFTYPE_INVALID", __func__);
   1131 			break;
   1132 
   1133 		default:
   1134 			panic("%s(pre): map %p: unknown buffer type %d\n",
   1135 			    __func__, map, map->_dm_buftype);
   1136 			break;
   1137 #endif /* DIAGNOSTIC */
   1138 		}
   1139 	}
   1140 
   1141 	/* Skip cache frobbing if mapping was COHERENT */
   1142 	if ((map->_dm_flags & _BUS_DMAMAP_COHERENT)) {
   1143 		switch (ops) {
   1144 		case BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE:
   1145 			STAT_INCR(sync_prereadwrite);
   1146 			break;
   1147 
   1148 		case BUS_DMASYNC_PREREAD:
   1149 			STAT_INCR(sync_preread);
   1150 			break;
   1151 
   1152 		case BUS_DMASYNC_PREWRITE:
   1153 			STAT_INCR(sync_prewrite);
   1154 			break;
   1155 
   1156 		case BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE:
   1157 			STAT_INCR(sync_postreadwrite);
   1158 			break;
   1159 
   1160 		case BUS_DMASYNC_POSTREAD:
   1161 			STAT_INCR(sync_postread);
   1162 			break;
   1163 
   1164 		/* BUS_DMASYNC_POSTWRITE was aleady handled as a fastpath */
   1165 		}
   1166 		/*
   1167 		 * Drain the write buffer of DMA operators.
   1168 		 * 1) when cpu->device (prewrite)
   1169 		 * 2) when device->cpu (postread)
   1170 		 */
   1171 		if ((pre_ops & BUS_DMASYNC_PREWRITE) || (post_ops & BUS_DMASYNC_POSTREAD))
   1172 			cpu_drain_writebuf();
   1173 
   1174 		/*
   1175 		 * Only thing left to do for COHERENT mapping is copy from bounce
   1176 		 * in the POSTREAD case.
   1177 		 */
   1178 		if (bouncing && (post_ops & BUS_DMASYNC_POSTREAD))
   1179 			goto bounce_it;
   1180 
   1181 		return;
   1182 	}
   1183 
   1184 #if !defined( ARM_MMU_EXTENDED)
   1185 	/*
   1186 	 * If the mapping belongs to a non-kernel vmspace, and the
   1187 	 * vmspace has not been active since the last time a full
   1188 	 * cache flush was performed, we don't need to do anything.
   1189 	 */
   1190 	if (__predict_false(!VMSPACE_IS_KERNEL_P(map->_dm_vmspace) &&
   1191 	    vm_map_pmap(&map->_dm_vmspace->vm_map)->pm_cstate.cs_cache_d == 0))
   1192 		return;
   1193 #endif
   1194 
   1195 	int buftype = map->_dm_buftype;
   1196 	if (bouncing) {
   1197 		buftype = _BUS_DMA_BUFTYPE_LINEAR;
   1198 	}
   1199 
   1200 	switch (buftype) {
   1201 	case _BUS_DMA_BUFTYPE_LINEAR:
   1202 	case _BUS_DMA_BUFTYPE_RAW:
   1203 		_bus_dmamap_sync_linear(t, map, offset, len, ops);
   1204 		break;
   1205 
   1206 	case _BUS_DMA_BUFTYPE_MBUF:
   1207 		_bus_dmamap_sync_mbuf(t, map, offset, len, ops);
   1208 		break;
   1209 
   1210 	case _BUS_DMA_BUFTYPE_UIO:
   1211 		_bus_dmamap_sync_uio(t, map, offset, len, ops);
   1212 		break;
   1213 
   1214 	case _BUS_DMA_BUFTYPE_INVALID:
   1215 		panic("%s: _BUS_DMA_BUFTYPE_INVALID", __func__);
   1216 		break;
   1217 
   1218 	default:
   1219 		panic("%s: map %p: unknown buffer type %d\n", __func__, map,
   1220 		    map->_dm_buftype);
   1221 	}
   1222 
   1223 	/* Drain the write buffer. */
   1224 	cpu_drain_writebuf();
   1225 
   1226 	if (!bouncing || (ops & BUS_DMASYNC_POSTREAD) == 0)
   1227 		return;
   1228 
   1229   bounce_it:
   1230 	STAT_INCR(read_bounces);
   1231 
   1232 	struct arm32_bus_dma_cookie * const cookie = map->_dm_cookie;
   1233 	char * const dataptr = (char *)cookie->id_bouncebuf + offset;
   1234 	/*
   1235 	 * Copy the bounce buffer to the caller's buffer.
   1236 	 */
   1237 	switch (map->_dm_buftype) {
   1238 	case _BUS_DMA_BUFTYPE_LINEAR:
   1239 		memcpy(cookie->id_origlinearbuf + offset, dataptr, len);
   1240 		break;
   1241 
   1242 	case _BUS_DMA_BUFTYPE_MBUF:
   1243 		m_copyback(cookie->id_origmbuf, offset, len, dataptr);
   1244 		break;
   1245 
   1246 	case _BUS_DMA_BUFTYPE_UIO:
   1247 		_bus_dma_uiomove(dataptr, cookie->id_origuio, len, UIO_READ);
   1248 		break;
   1249 
   1250 #ifdef DIAGNOSTIC
   1251 	case _BUS_DMA_BUFTYPE_RAW:
   1252 		panic("%s(post): _BUS_DMA_BUFTYPE_RAW", __func__);
   1253 		break;
   1254 
   1255 	case _BUS_DMA_BUFTYPE_INVALID:
   1256 		panic("%s(post): _BUS_DMA_BUFTYPE_INVALID", __func__);
   1257 		break;
   1258 
   1259 	default:
   1260 		panic("%s(post): map %p: unknown buffer type %d\n", __func__,
   1261 		    map, map->_dm_buftype);
   1262 		break;
   1263 #endif
   1264 	}
   1265 }
   1266 
   1267 /*
   1268  * Common function for DMA-safe memory allocation.  May be called
   1269  * by bus-specific DMA memory allocation functions.
   1270  */
   1271 
   1272 extern paddr_t physical_start;
   1273 extern paddr_t physical_end;
   1274 
   1275 int
   1276 _bus_dmamem_alloc(bus_dma_tag_t t, bus_size_t size, bus_size_t alignment,
   1277     bus_size_t boundary, bus_dma_segment_t *segs, int nsegs, int *rsegs,
   1278     int flags)
   1279 {
   1280 	struct arm32_dma_range *dr;
   1281 	int error, i;
   1282 
   1283 #ifdef DEBUG_DMA
   1284 	printf("dmamem_alloc t=%p size=%lx align=%lx boundary=%lx "
   1285 	    "segs=%p nsegs=%x rsegs=%p flags=%x\n", t, size, alignment,
   1286 	    boundary, segs, nsegs, rsegs, flags);
   1287 #endif
   1288 
   1289 	if ((dr = t->_ranges) != NULL) {
   1290 		error = ENOMEM;
   1291 		for (i = 0; i < t->_nranges; i++, dr++) {
   1292 			if (dr->dr_len == 0
   1293 			    || (dr->dr_flags & _BUS_DMAMAP_NOALLOC))
   1294 				continue;
   1295 			error = _bus_dmamem_alloc_range(t, size, alignment,
   1296 			    boundary, segs, nsegs, rsegs, flags,
   1297 			    trunc_page(dr->dr_sysbase),
   1298 			    trunc_page(dr->dr_sysbase + dr->dr_len));
   1299 			if (error == 0)
   1300 				break;
   1301 		}
   1302 	} else {
   1303 		error = _bus_dmamem_alloc_range(t, size, alignment, boundary,
   1304 		    segs, nsegs, rsegs, flags, trunc_page(physical_start),
   1305 		    trunc_page(physical_end));
   1306 	}
   1307 
   1308 #ifdef DEBUG_DMA
   1309 	printf("dmamem_alloc: =%d\n", error);
   1310 #endif
   1311 
   1312 	return error;
   1313 }
   1314 
   1315 /*
   1316  * Common function for freeing DMA-safe memory.  May be called by
   1317  * bus-specific DMA memory free functions.
   1318  */
   1319 void
   1320 _bus_dmamem_free(bus_dma_tag_t t, bus_dma_segment_t *segs, int nsegs)
   1321 {
   1322 	struct vm_page *m;
   1323 	bus_addr_t addr;
   1324 	struct pglist mlist;
   1325 	int curseg;
   1326 
   1327 #ifdef DEBUG_DMA
   1328 	printf("dmamem_free: t=%p segs=%p nsegs=%x\n", t, segs, nsegs);
   1329 #endif	/* DEBUG_DMA */
   1330 
   1331 	/*
   1332 	 * Build a list of pages to free back to the VM system.
   1333 	 */
   1334 	TAILQ_INIT(&mlist);
   1335 	for (curseg = 0; curseg < nsegs; curseg++) {
   1336 		for (addr = segs[curseg].ds_addr;
   1337 		    addr < (segs[curseg].ds_addr + segs[curseg].ds_len);
   1338 		    addr += PAGE_SIZE) {
   1339 			m = PHYS_TO_VM_PAGE(addr);
   1340 			TAILQ_INSERT_TAIL(&mlist, m, pageq.queue);
   1341 		}
   1342 	}
   1343 	uvm_pglistfree(&mlist);
   1344 }
   1345 
   1346 /*
   1347  * Common function for mapping DMA-safe memory.  May be called by
   1348  * bus-specific DMA memory map functions.
   1349  */
   1350 int
   1351 _bus_dmamem_map(bus_dma_tag_t t, bus_dma_segment_t *segs, int nsegs,
   1352     size_t size, void **kvap, int flags)
   1353 {
   1354 	vaddr_t va;
   1355 	paddr_t pa;
   1356 	int curseg;
   1357 	const uvm_flag_t kmflags = UVM_KMF_VAONLY
   1358 	    | ((flags & BUS_DMA_NOWAIT) != 0 ? UVM_KMF_NOWAIT : 0);
   1359 	vsize_t align = 0;
   1360 
   1361 #ifdef DEBUG_DMA
   1362 	printf("dmamem_map: t=%p segs=%p nsegs=%x size=%lx flags=%x\n", t,
   1363 	    segs, nsegs, (unsigned long)size, flags);
   1364 #endif	/* DEBUG_DMA */
   1365 
   1366 #ifdef PMAP_MAP_POOLPAGE
   1367 	/*
   1368 	 * If all of memory is mapped, and we are mapping a single physically
   1369 	 * contiguous area then this area is already mapped.  Let's see if we
   1370 	 * avoid having a separate mapping for it.
   1371 	 */
   1372 	if (nsegs == 1 && (flags & BUS_DMA_PREFETCHABLE) == 0) {
   1373 		/*
   1374 		 * If this is a non-COHERENT mapping, then the existing kernel
   1375 		 * mapping is already compatible with it.
   1376 		 */
   1377 		bool direct_mapable = (flags & BUS_DMA_COHERENT) == 0;
   1378 		pa = segs[0].ds_addr;
   1379 
   1380 		/*
   1381 		 * This is a COHERENT mapping which, unless this address is in
   1382 		 * a COHERENT dma range, will not be compatible.
   1383 		 */
   1384 		if (t->_ranges != NULL) {
   1385 			const struct arm32_dma_range * const dr =
   1386 			    _bus_dma_paddr_inrange(t->_ranges, t->_nranges, pa);
   1387 			if (dr != NULL
   1388 			    && (dr->dr_flags & _BUS_DMAMAP_COHERENT)) {
   1389 				direct_mapable = true;
   1390 			}
   1391 		}
   1392 
   1393 #ifdef PMAP_NEED_ALLOC_POOLPAGE
   1394 		/*
   1395 		 * The page can only be direct mapped if was allocated out
   1396 		 * of the arm poolpage vm freelist.
   1397 		 */
   1398 		uvm_physseg_t upm = uvm_physseg_find(atop(pa), NULL);
   1399 		KASSERT(uvm_physseg_valid_p(upm));
   1400 		if (direct_mapable) {
   1401 			direct_mapable =
   1402 			    (arm_poolpage_vmfreelist == uvm_physseg_get_free_list(upm));
   1403 		}
   1404 #endif
   1405 
   1406 		if (direct_mapable) {
   1407 			*kvap = (void *)PMAP_MAP_POOLPAGE(pa);
   1408 #ifdef DEBUG_DMA
   1409 			printf("dmamem_map: =%p\n", *kvap);
   1410 #endif	/* DEBUG_DMA */
   1411 			return 0;
   1412 		}
   1413 	}
   1414 #endif
   1415 
   1416 	size = round_page(size);
   1417 
   1418 #ifdef PMAP_MAPSIZE1
   1419 	if (size >= PMAP_MAPSIZE1)
   1420 		align = PMAP_MAPSIZE1;
   1421 
   1422 #ifdef PMAP_MAPSIZE2
   1423 
   1424 #if PMAP_MAPSIZE1 > PMAP_MAPSIZE2
   1425 #error PMAP_MAPSIZE1 must be smaller than PMAP_MAPSIZE2
   1426 #endif
   1427 
   1428 	if (size >= PMAP_MAPSIZE2)
   1429 		align = PMAP_MAPSIZE2;
   1430 
   1431 #ifdef PMAP_MAPSIZE3
   1432 
   1433 #if PMAP_MAPSIZE2 > PMAP_MAPSIZE3
   1434 #error PMAP_MAPSIZE2 must be smaller than PMAP_MAPSIZE3
   1435 #endif
   1436 
   1437 	if (size >= PMAP_MAPSIZE3)
   1438 		align = PMAP_MAPSIZE3;
   1439 #endif
   1440 #endif
   1441 #endif
   1442 
   1443 	va = uvm_km_alloc(kernel_map, size, align, kmflags);
   1444 	if (__predict_false(va == 0 && align > 0)) {
   1445 		align = 0;
   1446 		va = uvm_km_alloc(kernel_map, size, 0, kmflags);
   1447 	}
   1448 
   1449 	if (va == 0)
   1450 		return ENOMEM;
   1451 
   1452 	*kvap = (void *)va;
   1453 
   1454 	for (curseg = 0; curseg < nsegs; curseg++) {
   1455 		for (pa = segs[curseg].ds_addr;
   1456 		    pa < (segs[curseg].ds_addr + segs[curseg].ds_len);
   1457 		    pa += PAGE_SIZE, va += PAGE_SIZE, size -= PAGE_SIZE) {
   1458 			bool uncached = (flags & BUS_DMA_COHERENT);
   1459 			bool prefetchable = (flags & BUS_DMA_PREFETCHABLE);
   1460 #ifdef DEBUG_DMA
   1461 			printf("wiring p%lx to v%lx", pa, va);
   1462 #endif	/* DEBUG_DMA */
   1463 			if (size == 0)
   1464 				panic("_bus_dmamem_map: size botch");
   1465 
   1466 			const struct arm32_dma_range * const dr =
   1467 			    _bus_dma_paddr_inrange(t->_ranges, t->_nranges, pa);
   1468 			/*
   1469 			 * If this dma region is coherent then there is
   1470 			 * no need for an uncached mapping.
   1471 			 */
   1472 			if (dr != NULL
   1473 			    && (dr->dr_flags & _BUS_DMAMAP_COHERENT)) {
   1474 				uncached = false;
   1475 			}
   1476 
   1477 			u_int pmap_flags = PMAP_WIRED;
   1478 			if (prefetchable)
   1479 				pmap_flags |= PMAP_WRITE_COMBINE;
   1480 			else if (uncached)
   1481 				pmap_flags |= PMAP_NOCACHE;
   1482 
   1483 			pmap_kenter_pa(va, pa, VM_PROT_READ | VM_PROT_WRITE,
   1484 			    pmap_flags);
   1485 		}
   1486 	}
   1487 	pmap_update(pmap_kernel());
   1488 #ifdef DEBUG_DMA
   1489 	printf("dmamem_map: =%p\n", *kvap);
   1490 #endif	/* DEBUG_DMA */
   1491 	return 0;
   1492 }
   1493 
   1494 /*
   1495  * Common function for unmapping DMA-safe memory.  May be called by
   1496  * bus-specific DMA memory unmapping functions.
   1497  */
   1498 void
   1499 _bus_dmamem_unmap(bus_dma_tag_t t, void *kva, size_t size)
   1500 {
   1501 
   1502 #ifdef DEBUG_DMA
   1503 	printf("dmamem_unmap: t=%p kva=%p size=%zx\n", t, kva, size);
   1504 #endif	/* DEBUG_DMA */
   1505 	KASSERTMSG(((uintptr_t)kva & PAGE_MASK) == 0,
   1506 	    "kva %p (%#"PRIxPTR")", kva, ((uintptr_t)kva & PAGE_MASK));
   1507 
   1508 #ifdef __HAVE_MM_MD_DIRECT_MAPPED_PHYS
   1509 	/*
   1510 	 * Check to see if this used direct mapped memory.  Get its physical
   1511 	 * address and try to map it.  If the resultant matches the kva, then
   1512 	 * it was and so we can just return since we have nothing to free up.
   1513 	 */
   1514 	paddr_t pa;
   1515 	vaddr_t va;
   1516 	(void)pmap_extract(pmap_kernel(), (vaddr_t)kva, &pa);
   1517 	if (mm_md_direct_mapped_phys(pa, &va) && va == (vaddr_t)kva)
   1518 		return;
   1519 #endif
   1520 
   1521 	size = round_page(size);
   1522 	pmap_kremove((vaddr_t)kva, size);
   1523 	pmap_update(pmap_kernel());
   1524 	uvm_km_free(kernel_map, (vaddr_t)kva, size, UVM_KMF_VAONLY);
   1525 }
   1526 
   1527 /*
   1528  * Common functin for mmap(2)'ing DMA-safe memory.  May be called by
   1529  * bus-specific DMA mmap(2)'ing functions.
   1530  */
   1531 paddr_t
   1532 _bus_dmamem_mmap(bus_dma_tag_t t, bus_dma_segment_t *segs, int nsegs,
   1533     off_t off, int prot, int flags)
   1534 {
   1535 	paddr_t map_flags;
   1536 	int i;
   1537 
   1538 	for (i = 0; i < nsegs; i++) {
   1539 		KASSERTMSG((off & PAGE_MASK) == 0,
   1540 		    "off %#jx (%#x)", (uintmax_t)off, (int)off & PAGE_MASK);
   1541 		KASSERTMSG((segs[i].ds_addr & PAGE_MASK) == 0,
   1542 		    "ds_addr %#lx (%#x)", segs[i].ds_addr,
   1543 		    (int)segs[i].ds_addr & PAGE_MASK);
   1544 		KASSERTMSG((segs[i].ds_len & PAGE_MASK) == 0,
   1545 		    "ds_len %#lx (%#x)", segs[i].ds_addr,
   1546 		    (int)segs[i].ds_addr & PAGE_MASK);
   1547 		if (off >= segs[i].ds_len) {
   1548 			off -= segs[i].ds_len;
   1549 			continue;
   1550 		}
   1551 
   1552 		map_flags = 0;
   1553 		if (flags & BUS_DMA_PREFETCHABLE)
   1554 			map_flags |= ARM_MMAP_WRITECOMBINE;
   1555 
   1556 		return arm_btop((u_long)segs[i].ds_addr + off) | map_flags;
   1557 
   1558 	}
   1559 
   1560 	/* Page not found. */
   1561 	return -1;
   1562 }
   1563 
   1564 /**********************************************************************
   1565  * DMA utility functions
   1566  **********************************************************************/
   1567 
   1568 /*
   1569  * Utility function to load a linear buffer.  lastaddrp holds state
   1570  * between invocations (for multiple-buffer loads).  segp contains
   1571  * the starting segment on entrace, and the ending segment on exit.
   1572  * first indicates if this is the first invocation of this function.
   1573  */
   1574 int
   1575 _bus_dmamap_load_buffer(bus_dma_tag_t t, bus_dmamap_t map, void *buf,
   1576     bus_size_t buflen, struct vmspace *vm, int flags)
   1577 {
   1578 	bus_size_t sgsize;
   1579 	bus_addr_t curaddr;
   1580 	vaddr_t vaddr = (vaddr_t)buf;
   1581 	int error;
   1582 	pmap_t pmap;
   1583 
   1584 #ifdef DEBUG_DMA
   1585 	printf("_bus_dmamem_load_buffer(buf=%p, len=%lx, flags=%d)\n",
   1586 	    buf, buflen, flags);
   1587 #endif	/* DEBUG_DMA */
   1588 
   1589 	pmap = vm_map_pmap(&vm->vm_map);
   1590 
   1591 	while (buflen > 0) {
   1592 		/*
   1593 		 * Get the physical address for this segment.
   1594 		 *
   1595 		 */
   1596 		bool coherent;
   1597 		pmap_extract_coherency(pmap, vaddr, &curaddr, &coherent);
   1598 
   1599 		KASSERTMSG((vaddr & PAGE_MASK) == (curaddr & PAGE_MASK),
   1600 		    "va %#lx curaddr %#lx", vaddr, curaddr);
   1601 
   1602 		/*
   1603 		 * Compute the segment size, and adjust counts.
   1604 		 */
   1605 		sgsize = PAGE_SIZE - ((u_long)vaddr & PGOFSET);
   1606 		if (buflen < sgsize)
   1607 			sgsize = buflen;
   1608 
   1609 		error = _bus_dmamap_load_paddr(t, map, curaddr, sgsize,
   1610 		    coherent);
   1611 		if (error)
   1612 			return error;
   1613 
   1614 		vaddr += sgsize;
   1615 		buflen -= sgsize;
   1616 	}
   1617 
   1618 	return 0;
   1619 }
   1620 
   1621 /*
   1622  * Allocate physical memory from the given physical address range.
   1623  * Called by DMA-safe memory allocation methods.
   1624  */
   1625 int
   1626 _bus_dmamem_alloc_range(bus_dma_tag_t t, bus_size_t size, bus_size_t alignment,
   1627     bus_size_t boundary, bus_dma_segment_t *segs, int nsegs, int *rsegs,
   1628     int flags, paddr_t low, paddr_t high)
   1629 {
   1630 	paddr_t curaddr, lastaddr;
   1631 	struct vm_page *m;
   1632 	struct pglist mlist;
   1633 	int curseg, error;
   1634 
   1635 	KASSERTMSG(boundary == 0 || (boundary & (boundary - 1)) == 0,
   1636 	    "invalid boundary %#lx", boundary);
   1637 
   1638 #ifdef DEBUG_DMA
   1639 	printf("alloc_range: t=%p size=%lx align=%lx boundary=%lx segs=%p nsegs=%x rsegs=%p flags=%x lo=%lx hi=%lx\n",
   1640 	    t, size, alignment, boundary, segs, nsegs, rsegs, flags, low, high);
   1641 #endif	/* DEBUG_DMA */
   1642 
   1643 	/* Always round the size. */
   1644 	size = round_page(size);
   1645 
   1646 	/*
   1647 	 * We accept boundaries < size, splitting in multiple segments
   1648 	 * if needed. uvm_pglistalloc does not, so compute an appropriate
   1649 	 * boundary: next power of 2 >= size
   1650 	 */
   1651 	bus_size_t uboundary = boundary;
   1652 	if (uboundary <= PAGE_SIZE) {
   1653 		uboundary = 0;
   1654 	} else {
   1655 		while (uboundary < size) {
   1656 			uboundary <<= 1;
   1657 		}
   1658 	}
   1659 
   1660 	/*
   1661 	 * Allocate pages from the VM system.
   1662 	 */
   1663 	error = uvm_pglistalloc(size, low, high, alignment, uboundary,
   1664 	    &mlist, nsegs, (flags & BUS_DMA_NOWAIT) == 0);
   1665 	if (error)
   1666 		return error;
   1667 
   1668 	/*
   1669 	 * Compute the location, size, and number of segments actually
   1670 	 * returned by the VM code.
   1671 	 */
   1672 	m = TAILQ_FIRST(&mlist);
   1673 	curseg = 0;
   1674 	lastaddr = segs[curseg].ds_addr = VM_PAGE_TO_PHYS(m);
   1675 	segs[curseg].ds_len = PAGE_SIZE;
   1676 #ifdef DEBUG_DMA
   1677 		printf("alloc: page %lx\n", lastaddr);
   1678 #endif	/* DEBUG_DMA */
   1679 	m = TAILQ_NEXT(m, pageq.queue);
   1680 
   1681 	for (; m != NULL; m = TAILQ_NEXT(m, pageq.queue)) {
   1682 		curaddr = VM_PAGE_TO_PHYS(m);
   1683 		KASSERTMSG(low <= curaddr && curaddr < high,
   1684 		    "uvm_pglistalloc returned non-sensicaladdress %#lx "
   1685 		    "(low=%#lx, high=%#lx\n", curaddr, low, high);
   1686 #ifdef DEBUG_DMA
   1687 		printf("alloc: page %lx\n", curaddr);
   1688 #endif	/* DEBUG_DMA */
   1689 		if (curaddr == lastaddr + PAGE_SIZE
   1690 		    && (lastaddr & boundary) == (curaddr & boundary))
   1691 			segs[curseg].ds_len += PAGE_SIZE;
   1692 		else {
   1693 			curseg++;
   1694 			if (curseg >= nsegs) {
   1695 				uvm_pglistfree(&mlist);
   1696 				return EFBIG;
   1697 			}
   1698 			segs[curseg].ds_addr = curaddr;
   1699 			segs[curseg].ds_len = PAGE_SIZE;
   1700 		}
   1701 		lastaddr = curaddr;
   1702 	}
   1703 
   1704 	*rsegs = curseg + 1;
   1705 
   1706 	return 0;
   1707 }
   1708 
   1709 /*
   1710  * Check if a memory region intersects with a DMA range, and return the
   1711  * page-rounded intersection if it does.
   1712  */
   1713 int
   1714 arm32_dma_range_intersect(struct arm32_dma_range *ranges, int nranges,
   1715     paddr_t pa, psize_t size, paddr_t *pap, psize_t *sizep)
   1716 {
   1717 	struct arm32_dma_range *dr;
   1718 	int i;
   1719 
   1720 	if (ranges == NULL)
   1721 		return 0;
   1722 
   1723 	for (i = 0, dr = ranges; i < nranges; i++, dr++) {
   1724 		if (dr->dr_sysbase <= pa &&
   1725 		    pa < (dr->dr_sysbase + dr->dr_len)) {
   1726 			/*
   1727 			 * Beginning of region intersects with this range.
   1728 			 */
   1729 			*pap = trunc_page(pa);
   1730 			*sizep = round_page(uimin(pa + size,
   1731 			    dr->dr_sysbase + dr->dr_len) - pa);
   1732 			return 1;
   1733 		}
   1734 		if (pa < dr->dr_sysbase && dr->dr_sysbase < (pa + size)) {
   1735 			/*
   1736 			 * End of region intersects with this range.
   1737 			 */
   1738 			*pap = trunc_page(dr->dr_sysbase);
   1739 			*sizep = round_page(uimin((pa + size) - dr->dr_sysbase,
   1740 			    dr->dr_len));
   1741 			return 1;
   1742 		}
   1743 	}
   1744 
   1745 	/* No intersection found. */
   1746 	return 0;
   1747 }
   1748 
   1749 #ifdef _ARM32_NEED_BUS_DMA_BOUNCE
   1750 static int
   1751 _bus_dma_alloc_bouncebuf(bus_dma_tag_t t, bus_dmamap_t map,
   1752     bus_size_t size, int flags)
   1753 {
   1754 	struct arm32_bus_dma_cookie *cookie = map->_dm_cookie;
   1755 	int error = 0;
   1756 
   1757 	KASSERT(cookie != NULL);
   1758 
   1759 	cookie->id_bouncebuflen = round_page(size);
   1760 	error = _bus_dmamem_alloc(t, cookie->id_bouncebuflen,
   1761 	    PAGE_SIZE, map->_dm_boundary, cookie->id_bouncesegs,
   1762 	    map->_dm_segcnt, &cookie->id_nbouncesegs, flags);
   1763 	if (error == 0) {
   1764 		error = _bus_dmamem_map(t, cookie->id_bouncesegs,
   1765 		    cookie->id_nbouncesegs, cookie->id_bouncebuflen,
   1766 		    (void **)&cookie->id_bouncebuf, flags);
   1767 		if (error) {
   1768 			_bus_dmamem_free(t, cookie->id_bouncesegs,
   1769 			    cookie->id_nbouncesegs);
   1770 			cookie->id_bouncebuflen = 0;
   1771 			cookie->id_nbouncesegs = 0;
   1772 		} else {
   1773 			cookie->id_flags |= _BUS_DMA_HAS_BOUNCE;
   1774 		}
   1775 	} else {
   1776 		cookie->id_bouncebuflen = 0;
   1777 		cookie->id_nbouncesegs = 0;
   1778 	}
   1779 
   1780 	return error;
   1781 }
   1782 
   1783 static void
   1784 _bus_dma_free_bouncebuf(bus_dma_tag_t t, bus_dmamap_t map)
   1785 {
   1786 	struct arm32_bus_dma_cookie *cookie = map->_dm_cookie;
   1787 
   1788 	KASSERT(cookie != NULL);
   1789 
   1790 	_bus_dmamem_unmap(t, cookie->id_bouncebuf, cookie->id_bouncebuflen);
   1791 	_bus_dmamem_free(t, cookie->id_bouncesegs, cookie->id_nbouncesegs);
   1792 	cookie->id_bouncebuflen = 0;
   1793 	cookie->id_nbouncesegs = 0;
   1794 	cookie->id_flags &= ~_BUS_DMA_HAS_BOUNCE;
   1795 }
   1796 #endif /* _ARM32_NEED_BUS_DMA_BOUNCE */
   1797 
   1798 /*
   1799  * This function does the same as uiomove, but takes an explicit
   1800  * direction, and does not update the uio structure.
   1801  */
   1802 static int
   1803 _bus_dma_uiomove(void *buf, struct uio *uio, size_t n, int direction)
   1804 {
   1805 	struct iovec *iov;
   1806 	int error;
   1807 	struct vmspace *vm;
   1808 	char *cp;
   1809 	size_t resid, cnt;
   1810 	int i;
   1811 
   1812 	iov = uio->uio_iov;
   1813 	vm = uio->uio_vmspace;
   1814 	cp = buf;
   1815 	resid = n;
   1816 
   1817 	for (i = 0; i < uio->uio_iovcnt && resid > 0; i++) {
   1818 		iov = &uio->uio_iov[i];
   1819 		if (iov->iov_len == 0)
   1820 			continue;
   1821 		cnt = MIN(resid, iov->iov_len);
   1822 
   1823 		if (!VMSPACE_IS_KERNEL_P(vm)) {
   1824 			preempt_point();
   1825 		}
   1826 		if (direction == UIO_READ) {
   1827 			error = copyout_vmspace(vm, cp, iov->iov_base, cnt);
   1828 		} else {
   1829 			error = copyin_vmspace(vm, iov->iov_base, cp, cnt);
   1830 		}
   1831 		if (error)
   1832 			return error;
   1833 		cp += cnt;
   1834 		resid -= cnt;
   1835 	}
   1836 	return 0;
   1837 }
   1838 
   1839 int
   1840 _bus_dmatag_subregion(bus_dma_tag_t tag, bus_addr_t min_addr,
   1841     bus_addr_t max_addr, bus_dma_tag_t *newtag, int flags)
   1842 {
   1843 	if (min_addr >= max_addr)
   1844 		return EOPNOTSUPP;
   1845 
   1846 #ifdef _ARM32_NEED_BUS_DMA_BOUNCE
   1847 	struct arm32_dma_range *dr;
   1848 	bool psubset = true;
   1849 	size_t nranges = 0;
   1850 	size_t i;
   1851 	for (i = 0, dr = tag->_ranges; i < tag->_nranges; i++, dr++) {
   1852 		/*
   1853 		 * If the new {min,max}_addr are narrower than any of the
   1854 		 * ranges in the parent tag then we need a new tag;
   1855 		 * otherwise the parent tag is a subset of the new
   1856 		 * range and can continue to be used.
   1857 		 */
   1858 		if (min_addr > dr->dr_sysbase
   1859 		    || max_addr < dr->dr_sysbase + dr->dr_len - 1) {
   1860 			psubset = false;
   1861 		}
   1862 		if (min_addr <= dr->dr_sysbase + dr->dr_len
   1863 		    && max_addr >= dr->dr_sysbase) {
   1864 			nranges++;
   1865 		}
   1866 	}
   1867 	if (nranges == 0) {
   1868 		nranges = 1;
   1869 		psubset = false;
   1870 	}
   1871 	if (psubset) {
   1872 		*newtag = tag;
   1873 		/* if the tag must be freed, add a reference */
   1874 		if (tag->_tag_needs_free)
   1875 			(tag->_tag_needs_free)++;
   1876 		return 0;
   1877 	}
   1878 
   1879 	const size_t tagsize = sizeof(*tag) + nranges * sizeof(*dr);
   1880 	if ((*newtag = kmem_intr_zalloc(tagsize,
   1881 	    (flags & BUS_DMA_NOWAIT) ? KM_NOSLEEP : KM_SLEEP)) == NULL)
   1882 		return ENOMEM;
   1883 
   1884 	dr = (void *)(*newtag + 1);
   1885 	**newtag = *tag;
   1886 	(*newtag)->_tag_needs_free = 1;
   1887 	(*newtag)->_ranges = dr;
   1888 	(*newtag)->_nranges = nranges;
   1889 
   1890 	if (tag->_ranges == NULL) {
   1891 		dr->dr_sysbase = min_addr;
   1892 		dr->dr_busbase = min_addr;
   1893 		dr->dr_len = max_addr + 1 - min_addr;
   1894 	} else {
   1895 		struct arm32_dma_range *pdr;
   1896 
   1897 		for (i = 0, pdr = tag->_ranges; i < tag->_nranges; i++, pdr++) {
   1898 			KASSERT(nranges != 0);
   1899 
   1900 			if (min_addr > pdr->dr_sysbase + pdr->dr_len
   1901 			    || max_addr < pdr->dr_sysbase) {
   1902 				/*
   1903 				 * this range doesn't overlap with new limits,
   1904 				 * so skip.
   1905 				 */
   1906 				continue;
   1907 			}
   1908 			/*
   1909 			 * Copy the range and adjust to fit within the new
   1910 			 * limits
   1911 			 */
   1912 			dr[0] = pdr[0];
   1913 			if (dr->dr_sysbase < min_addr) {
   1914 				psize_t diff = min_addr - dr->dr_sysbase;
   1915 				dr->dr_busbase += diff;
   1916 				dr->dr_len -= diff;
   1917 				dr->dr_sysbase += diff;
   1918 			}
   1919 			if (max_addr <= dr->dr_sysbase + dr->dr_len - 1) {
   1920 				dr->dr_len = max_addr + 1 - dr->dr_sysbase;
   1921 			}
   1922 			dr++;
   1923 			nranges--;
   1924 		}
   1925 	}
   1926 
   1927 	return 0;
   1928 #else
   1929 	return EOPNOTSUPP;
   1930 #endif /* _ARM32_NEED_BUS_DMA_BOUNCE */
   1931 }
   1932 
   1933 void
   1934 _bus_dmatag_destroy(bus_dma_tag_t tag)
   1935 {
   1936 #ifdef _ARM32_NEED_BUS_DMA_BOUNCE
   1937 	switch (tag->_tag_needs_free) {
   1938 	case 0:
   1939 		break;				/* not allocated with kmem */
   1940 	case 1: {
   1941 		const size_t tagsize = sizeof(*tag)
   1942 		    + tag->_nranges * sizeof(*tag->_ranges);
   1943 		kmem_intr_free(tag, tagsize);	/* last reference to tag */
   1944 		break;
   1945 	}
   1946 	default:
   1947 		(tag->_tag_needs_free)--;	/* one less reference */
   1948 	}
   1949 #endif
   1950 }
   1951