Home | History | Annotate | Line # | Download | only in arm32
bus_dma.c revision 1.128
      1 /*	$NetBSD: bus_dma.c,v 1.128 2020/12/20 10:34:33 jmcneill Exp $	*/
      2 
      3 /*-
      4  * Copyright (c) 1996, 1997, 1998, 2020 The NetBSD Foundation, Inc.
      5  * All rights reserved.
      6  *
      7  * This code is derived from software contributed to The NetBSD Foundation
      8  * by Jason R. Thorpe of the Numerical Aerospace Simulation Facility,
      9  * NASA Ames Research Center.
     10  *
     11  * Redistribution and use in source and binary forms, with or without
     12  * modification, are permitted provided that the following conditions
     13  * are met:
     14  * 1. Redistributions of source code must retain the above copyright
     15  *    notice, this list of conditions and the following disclaimer.
     16  * 2. Redistributions in binary form must reproduce the above copyright
     17  *    notice, this list of conditions and the following disclaimer in the
     18  *    documentation and/or other materials provided with the distribution.
     19  *
     20  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     21  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     22  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     23  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     24  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     25  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     26  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     27  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     28  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     29  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     30  * POSSIBILITY OF SUCH DAMAGE.
     31  */
     32 
     33 #define _ARM32_BUS_DMA_PRIVATE
     34 
     35 #include "opt_arm_bus_space.h"
     36 #include "opt_cputypes.h"
     37 
     38 #include <sys/cdefs.h>
     39 __KERNEL_RCSID(0, "$NetBSD: bus_dma.c,v 1.128 2020/12/20 10:34:33 jmcneill Exp $");
     40 
     41 #include <sys/param.h>
     42 
     43 #include <sys/bus.h>
     44 #include <sys/cpu.h>
     45 #include <sys/kmem.h>
     46 #include <sys/mbuf.h>
     47 
     48 #include <uvm/uvm.h>
     49 
     50 #include <arm/cpuconf.h>
     51 #include <arm/cpufunc.h>
     52 
     53 #ifdef __HAVE_MM_MD_DIRECT_MAPPED_PHYS
     54 #include <dev/mm.h>
     55 #endif
     56 
     57 #ifdef BUSDMA_COUNTERS
     58 static struct evcnt bus_dma_creates =
     59 	EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL, "busdma", "creates");
     60 static struct evcnt bus_dma_bounced_creates =
     61 	EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL, "busdma", "bounced creates");
     62 static struct evcnt bus_dma_loads =
     63 	EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL, "busdma", "loads");
     64 static struct evcnt bus_dma_bounced_loads =
     65 	EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL, "busdma", "bounced loads");
     66 static struct evcnt bus_dma_coherent_loads =
     67 	EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL, "busdma", "coherent loads");
     68 static struct evcnt bus_dma_read_bounces =
     69 	EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL, "busdma", "read bounces");
     70 static struct evcnt bus_dma_write_bounces =
     71 	EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL, "busdma", "write bounces");
     72 static struct evcnt bus_dma_bounced_unloads =
     73 	EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL, "busdma", "bounced unloads");
     74 static struct evcnt bus_dma_unloads =
     75 	EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL, "busdma", "unloads");
     76 static struct evcnt bus_dma_bounced_destroys =
     77 	EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL, "busdma", "bounced destroys");
     78 static struct evcnt bus_dma_destroys =
     79 	EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL, "busdma", "destroys");
     80 static struct evcnt bus_dma_sync_prereadwrite =
     81 	EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL, "busdma", "sync prereadwrite");
     82 static struct evcnt bus_dma_sync_preread_begin =
     83 	EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL, "busdma", "sync preread begin");
     84 static struct evcnt bus_dma_sync_preread =
     85 	EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL, "busdma", "sync preread");
     86 static struct evcnt bus_dma_sync_preread_tail =
     87 	EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL, "busdma", "sync preread tail");
     88 static struct evcnt bus_dma_sync_prewrite =
     89 	EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL, "busdma", "sync prewrite");
     90 static struct evcnt bus_dma_sync_postread =
     91 	EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL, "busdma", "sync postread");
     92 static struct evcnt bus_dma_sync_postreadwrite =
     93 	EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL, "busdma", "sync postreadwrite");
     94 static struct evcnt bus_dma_sync_postwrite =
     95 	EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL, "busdma", "sync postwrite");
     96 
     97 EVCNT_ATTACH_STATIC(bus_dma_creates);
     98 EVCNT_ATTACH_STATIC(bus_dma_bounced_creates);
     99 EVCNT_ATTACH_STATIC(bus_dma_loads);
    100 EVCNT_ATTACH_STATIC(bus_dma_bounced_loads);
    101 EVCNT_ATTACH_STATIC(bus_dma_coherent_loads);
    102 EVCNT_ATTACH_STATIC(bus_dma_read_bounces);
    103 EVCNT_ATTACH_STATIC(bus_dma_write_bounces);
    104 EVCNT_ATTACH_STATIC(bus_dma_unloads);
    105 EVCNT_ATTACH_STATIC(bus_dma_bounced_unloads);
    106 EVCNT_ATTACH_STATIC(bus_dma_destroys);
    107 EVCNT_ATTACH_STATIC(bus_dma_bounced_destroys);
    108 EVCNT_ATTACH_STATIC(bus_dma_sync_prereadwrite);
    109 EVCNT_ATTACH_STATIC(bus_dma_sync_preread_begin);
    110 EVCNT_ATTACH_STATIC(bus_dma_sync_preread);
    111 EVCNT_ATTACH_STATIC(bus_dma_sync_preread_tail);
    112 EVCNT_ATTACH_STATIC(bus_dma_sync_prewrite);
    113 EVCNT_ATTACH_STATIC(bus_dma_sync_postread);
    114 EVCNT_ATTACH_STATIC(bus_dma_sync_postreadwrite);
    115 EVCNT_ATTACH_STATIC(bus_dma_sync_postwrite);
    116 
    117 #define	STAT_INCR(x)	(bus_dma_ ## x.ev_count++)
    118 #else
    119 #define	STAT_INCR(x)	__nothing
    120 #endif
    121 
    122 int	_bus_dmamap_load_buffer(bus_dma_tag_t, bus_dmamap_t, void *,
    123 	    bus_size_t, struct vmspace *, int);
    124 
    125 /*
    126  * Check to see if the specified page is in an allowed DMA range.
    127  */
    128 static inline struct arm32_dma_range *
    129 _bus_dma_paddr_inrange(struct arm32_dma_range *ranges, int nranges,
    130     bus_addr_t curaddr)
    131 {
    132 	struct arm32_dma_range *dr;
    133 	int i;
    134 
    135 	for (i = 0, dr = ranges; i < nranges; i++, dr++) {
    136 		if (curaddr >= dr->dr_sysbase &&
    137 		    curaddr < (dr->dr_sysbase + dr->dr_len))
    138 			return dr;
    139 	}
    140 
    141 	return NULL;
    142 }
    143 
    144 /*
    145  * Check to see if the specified busaddr is in an allowed DMA range.
    146  */
    147 static inline paddr_t
    148 _bus_dma_busaddr_to_paddr(bus_dma_tag_t t, bus_addr_t curaddr)
    149 {
    150 	struct arm32_dma_range *dr;
    151 	u_int i;
    152 
    153 	if (t->_nranges == 0)
    154 		return curaddr;
    155 
    156 	for (i = 0, dr = t->_ranges; i < t->_nranges; i++, dr++) {
    157 		if (dr->dr_busbase <= curaddr
    158 		    && curaddr < dr->dr_busbase + dr->dr_len)
    159 			return curaddr - dr->dr_busbase + dr->dr_sysbase;
    160 	}
    161 	panic("%s: curaddr %#lx not in range", __func__, curaddr);
    162 }
    163 
    164 /*
    165  * Common function to load the specified physical address into the
    166  * DMA map, coalescing segments and boundary checking as necessary.
    167  */
    168 static int
    169 _bus_dmamap_load_paddr(bus_dma_tag_t t, bus_dmamap_t map,
    170     bus_addr_t paddr, bus_size_t size, bool coherent)
    171 {
    172 	bus_dma_segment_t * const segs = map->dm_segs;
    173 	int nseg = map->dm_nsegs;
    174 	bus_addr_t lastaddr;
    175 	bus_addr_t bmask = ~(map->_dm_boundary - 1);
    176 	bus_addr_t curaddr;
    177 	bus_size_t sgsize;
    178 	uint32_t _ds_flags = coherent ? _BUS_DMAMAP_COHERENT : 0;
    179 
    180 	if (nseg > 0)
    181 		lastaddr = segs[nseg - 1].ds_addr + segs[nseg - 1].ds_len;
    182 	else
    183 		lastaddr = 0xdead;
    184 
    185  again:
    186 	sgsize = size;
    187 
    188 	/* Make sure we're in an allowed DMA range. */
    189 	if (t->_ranges != NULL) {
    190 		/* XXX cache last result? */
    191 		const struct arm32_dma_range * const dr =
    192 		    _bus_dma_paddr_inrange(t->_ranges, t->_nranges, paddr);
    193 		if (dr == NULL)
    194 			return EINVAL;
    195 
    196 		/*
    197 		 * If this region is coherent, mark the segment as coherent.
    198 		 */
    199 		_ds_flags |= dr->dr_flags & _BUS_DMAMAP_COHERENT;
    200 
    201 		/*
    202 		 * In a valid DMA range.  Translate the physical
    203 		 * memory address to an address in the DMA window.
    204 		 */
    205 		curaddr = (paddr - dr->dr_sysbase) + dr->dr_busbase;
    206 #if 0
    207 		printf("%p: %#lx: range %#lx/%#lx/%#lx/%#x: %#x <-- %#lx\n",
    208 		    t, paddr, dr->dr_sysbase, dr->dr_busbase,
    209 		    dr->dr_len, dr->dr_flags, _ds_flags, curaddr);
    210 #endif
    211 	} else
    212 		curaddr = paddr;
    213 
    214 	/*
    215 	 * Make sure we don't cross any boundaries.
    216 	 */
    217 	if (map->_dm_boundary > 0) {
    218 		bus_addr_t baddr;	/* next boundary address */
    219 
    220 		baddr = (curaddr + map->_dm_boundary) & bmask;
    221 		if (sgsize > (baddr - curaddr))
    222 			sgsize = (baddr - curaddr);
    223 	}
    224 
    225 	/*
    226 	 * Insert chunk into a segment, coalescing with the
    227 	 * previous segment if possible.
    228 	 */
    229 	if (nseg > 0 && curaddr == lastaddr &&
    230 	    segs[nseg - 1].ds_len + sgsize <= map->dm_maxsegsz &&
    231 	    ((segs[nseg - 1]._ds_flags ^ _ds_flags) & _BUS_DMAMAP_COHERENT) == 0 &&
    232 	    (map->_dm_boundary == 0 ||
    233 	     (segs[nseg - 1].ds_addr & bmask) == (curaddr & bmask))) {
    234 	     	/* coalesce */
    235 		segs[nseg - 1].ds_len += sgsize;
    236 	} else if (nseg >= map->_dm_segcnt) {
    237 		return EFBIG;
    238 	} else {
    239 		/* new segment */
    240 		segs[nseg].ds_addr = curaddr;
    241 		segs[nseg].ds_len = sgsize;
    242 		segs[nseg]._ds_flags = _ds_flags;
    243 		nseg++;
    244 	}
    245 
    246 	lastaddr = curaddr + sgsize;
    247 
    248 	paddr += sgsize;
    249 	size -= sgsize;
    250 	if (size > 0)
    251 		goto again;
    252 
    253 	map->_dm_flags &= (_ds_flags & _BUS_DMAMAP_COHERENT);
    254 	map->dm_nsegs = nseg;
    255 	return 0;
    256 }
    257 
    258 static int _bus_dma_uiomove(void *buf, struct uio *uio, size_t n,
    259 	    int direction);
    260 
    261 #ifdef _ARM32_NEED_BUS_DMA_BOUNCE
    262 static int _bus_dma_alloc_bouncebuf(bus_dma_tag_t t, bus_dmamap_t map,
    263 	    bus_size_t size, int flags);
    264 static void _bus_dma_free_bouncebuf(bus_dma_tag_t t, bus_dmamap_t map);
    265 
    266 static int
    267 _bus_dma_load_bouncebuf(bus_dma_tag_t t, bus_dmamap_t map, void *buf,
    268 	size_t buflen, int buftype, int flags)
    269 {
    270 	struct arm32_bus_dma_cookie * const cookie = map->_dm_cookie;
    271 	struct vmspace * const vm = vmspace_kernel();
    272 	int error;
    273 
    274 	KASSERT(cookie != NULL);
    275 	KASSERT(cookie->id_flags & _BUS_DMA_MIGHT_NEED_BOUNCE);
    276 
    277 	/*
    278 	 * Allocate bounce pages, if necessary.
    279 	 */
    280 	if ((cookie->id_flags & _BUS_DMA_HAS_BOUNCE) == 0) {
    281 		error = _bus_dma_alloc_bouncebuf(t, map, buflen, flags);
    282 		if (error)
    283 			return error;
    284 	}
    285 
    286 	/*
    287 	 * Cache a pointer to the caller's buffer and load the DMA map
    288 	 * with the bounce buffer.
    289 	 */
    290 	cookie->id_origbuf = buf;
    291 	cookie->id_origbuflen = buflen;
    292 	error = _bus_dmamap_load_buffer(t, map, cookie->id_bouncebuf,
    293 	    buflen, vm, flags);
    294 	if (error)
    295 		return error;
    296 
    297 	STAT_INCR(bounced_loads);
    298 	map->dm_mapsize = buflen;
    299 	map->_dm_vmspace = vm;
    300 	map->_dm_buftype = buftype;
    301 
    302 	/* ...so _bus_dmamap_sync() knows we're bouncing */
    303 	map->_dm_flags |= _BUS_DMAMAP_IS_BOUNCING;
    304 	cookie->id_flags |= _BUS_DMA_IS_BOUNCING;
    305 	return 0;
    306 }
    307 #endif /* _ARM32_NEED_BUS_DMA_BOUNCE */
    308 
    309 /*
    310  * Common function for DMA map creation.  May be called by bus-specific
    311  * DMA map creation functions.
    312  */
    313 int
    314 _bus_dmamap_create(bus_dma_tag_t t, bus_size_t size, int nsegments,
    315     bus_size_t maxsegsz, bus_size_t boundary, int flags, bus_dmamap_t *dmamp)
    316 {
    317 	struct arm32_bus_dmamap *map;
    318 	void *mapstore;
    319 	int error = 0;
    320 
    321 #ifdef DEBUG_DMA
    322 	printf("dmamap_create: t=%p size=%lx nseg=%x msegsz=%lx boundary=%lx"
    323 	    " flags=%x\n", t, size, nsegments, maxsegsz, boundary, flags);
    324 #endif	/* DEBUG_DMA */
    325 
    326 	/*
    327 	 * Allocate and initialize the DMA map.  The end of the map
    328 	 * is a variable-sized array of segments, so we allocate enough
    329 	 * room for them in one shot.
    330 	 *
    331 	 * Note we don't preserve the WAITOK or NOWAIT flags.  Preservation
    332 	 * of ALLOCNOW notifies others that we've reserved these resources,
    333 	 * and they are not to be freed.
    334 	 *
    335 	 * The bus_dmamap_t includes one bus_dma_segment_t, hence
    336 	 * the (nsegments - 1).
    337 	 */
    338 	const size_t mapsize = sizeof(struct arm32_bus_dmamap) +
    339 	    (sizeof(bus_dma_segment_t) * (nsegments - 1));
    340 	const int zallocflags = (flags & BUS_DMA_NOWAIT) ? KM_NOSLEEP : KM_SLEEP;
    341 	if ((mapstore = kmem_intr_zalloc(mapsize, zallocflags)) == NULL)
    342 		return ENOMEM;
    343 
    344 	map = (struct arm32_bus_dmamap *)mapstore;
    345 	map->_dm_size = size;
    346 	map->_dm_segcnt = nsegments;
    347 	map->_dm_maxmaxsegsz = maxsegsz;
    348 	map->_dm_boundary = boundary;
    349 	map->_dm_flags = flags & ~(BUS_DMA_WAITOK|BUS_DMA_NOWAIT);
    350 	map->_dm_origbuf = NULL;
    351 	map->_dm_buftype = _BUS_DMA_BUFTYPE_INVALID;
    352 	map->_dm_vmspace = vmspace_kernel();
    353 	map->_dm_cookie = NULL;
    354 	map->dm_maxsegsz = maxsegsz;
    355 	map->dm_mapsize = 0;		/* no valid mappings */
    356 	map->dm_nsegs = 0;
    357 
    358 #ifdef _ARM32_NEED_BUS_DMA_BOUNCE
    359 	struct arm32_bus_dma_cookie *cookie;
    360 	int cookieflags;
    361 	void *cookiestore;
    362 
    363 	cookieflags = 0;
    364 
    365 	if (t->_may_bounce != NULL) {
    366 		error = (*t->_may_bounce)(t, map, flags, &cookieflags);
    367 		if (error != 0)
    368 			goto out;
    369 	}
    370 
    371 	if (t->_ranges != NULL) {
    372 		/*
    373 		 * If ranges are defined, we may have to bounce. The only
    374 		 * exception is if there is exactly one range that covers
    375 		 * all of physical memory.
    376 		 */
    377 		switch (t->_nranges) {
    378 		case 1:
    379 			if (t->_ranges[0].dr_sysbase == 0 &&
    380 			    t->_ranges[0].dr_len == UINTPTR_MAX) {
    381 				break;
    382 			}
    383 			/* FALLTHROUGH */
    384 		default:
    385 			cookieflags |= _BUS_DMA_MIGHT_NEED_BOUNCE;
    386 		}
    387 	}
    388 
    389 	if ((cookieflags & _BUS_DMA_MIGHT_NEED_BOUNCE) == 0) {
    390 		STAT_INCR(creates);
    391 		*dmamp = map;
    392 		return 0;
    393 	}
    394 
    395 	const size_t cookiesize = sizeof(struct arm32_bus_dma_cookie) +
    396 	    (sizeof(bus_dma_segment_t) * map->_dm_segcnt);
    397 
    398 	/*
    399 	 * Allocate our cookie.
    400 	 */
    401 	if ((cookiestore = kmem_intr_zalloc(cookiesize, zallocflags)) == NULL) {
    402 		error = ENOMEM;
    403 		goto out;
    404 	}
    405 	cookie = (struct arm32_bus_dma_cookie *)cookiestore;
    406 	cookie->id_flags = cookieflags;
    407 	map->_dm_cookie = cookie;
    408 	STAT_INCR(bounced_creates);
    409 
    410 	error = _bus_dma_alloc_bouncebuf(t, map, size, flags);
    411  out:
    412 	if (error)
    413 		_bus_dmamap_destroy(t, map);
    414 	else
    415 		*dmamp = map;
    416 #else
    417 	*dmamp = map;
    418 	STAT_INCR(creates);
    419 #endif /* _ARM32_NEED_BUS_DMA_BOUNCE */
    420 #ifdef DEBUG_DMA
    421 	printf("dmamap_create:map=%p\n", map);
    422 #endif	/* DEBUG_DMA */
    423 	return error;
    424 }
    425 
    426 /*
    427  * Common function for DMA map destruction.  May be called by bus-specific
    428  * DMA map destruction functions.
    429  */
    430 void
    431 _bus_dmamap_destroy(bus_dma_tag_t t, bus_dmamap_t map)
    432 {
    433 
    434 #ifdef DEBUG_DMA
    435 	printf("dmamap_destroy: t=%p map=%p\n", t, map);
    436 #endif	/* DEBUG_DMA */
    437 #ifdef _ARM32_NEED_BUS_DMA_BOUNCE
    438 	struct arm32_bus_dma_cookie *cookie = map->_dm_cookie;
    439 
    440 	/*
    441 	 * Free any bounce pages this map might hold.
    442 	 */
    443 	if (cookie != NULL) {
    444 		const size_t cookiesize = sizeof(struct arm32_bus_dma_cookie) +
    445 		    (sizeof(bus_dma_segment_t) * map->_dm_segcnt);
    446 
    447 		if (cookie->id_flags & _BUS_DMA_IS_BOUNCING)
    448 			STAT_INCR(bounced_unloads);
    449 		map->dm_nsegs = 0;
    450 		if (cookie->id_flags & _BUS_DMA_HAS_BOUNCE)
    451 			_bus_dma_free_bouncebuf(t, map);
    452 		STAT_INCR(bounced_destroys);
    453 		kmem_intr_free(cookie, cookiesize);
    454 	} else
    455 #endif
    456 	STAT_INCR(destroys);
    457 
    458 	if (map->dm_nsegs > 0)
    459 		STAT_INCR(unloads);
    460 
    461 	const size_t mapsize = sizeof(struct arm32_bus_dmamap) +
    462 	    (sizeof(bus_dma_segment_t) * (map->_dm_segcnt - 1));
    463 	kmem_intr_free(map, mapsize);
    464 }
    465 
    466 /*
    467  * Common function for loading a DMA map with a linear buffer.  May
    468  * be called by bus-specific DMA map load functions.
    469  */
    470 int
    471 _bus_dmamap_load(bus_dma_tag_t t, bus_dmamap_t map, void *buf,
    472     bus_size_t buflen, struct proc *p, int flags)
    473 {
    474 	struct vmspace *vm;
    475 	int error;
    476 
    477 #ifdef DEBUG_DMA
    478 	printf("dmamap_load: t=%p map=%p buf=%p len=%lx p=%p f=%d\n",
    479 	    t, map, buf, buflen, p, flags);
    480 #endif	/* DEBUG_DMA */
    481 
    482 	if (map->dm_nsegs > 0) {
    483 #ifdef _ARM32_NEED_BUS_DMA_BOUNCE
    484 		struct arm32_bus_dma_cookie *cookie = map->_dm_cookie;
    485 		if (cookie != NULL) {
    486 			if (cookie->id_flags & _BUS_DMA_IS_BOUNCING) {
    487 				STAT_INCR(bounced_unloads);
    488 				cookie->id_flags &= ~_BUS_DMA_IS_BOUNCING;
    489 				map->_dm_flags &= ~_BUS_DMAMAP_IS_BOUNCING;
    490 			}
    491 		} else
    492 #endif
    493 		STAT_INCR(unloads);
    494 	}
    495 
    496 	/*
    497 	 * Make sure that on error condition we return "no valid mappings".
    498 	 */
    499 	map->dm_mapsize = 0;
    500 	map->dm_nsegs = 0;
    501 	map->_dm_buftype = _BUS_DMA_BUFTYPE_INVALID;
    502 	KASSERTMSG(map->dm_maxsegsz <= map->_dm_maxmaxsegsz,
    503 	    "dm_maxsegsz %lu _dm_maxmaxsegsz %lu",
    504 	    map->dm_maxsegsz, map->_dm_maxmaxsegsz);
    505 
    506 	if (buflen > map->_dm_size)
    507 		return EINVAL;
    508 
    509 	if (p != NULL) {
    510 		vm = p->p_vmspace;
    511 	} else {
    512 		vm = vmspace_kernel();
    513 	}
    514 
    515 	/* _bus_dmamap_load_buffer() clears this if we're not... */
    516 	map->_dm_flags |= _BUS_DMAMAP_COHERENT;
    517 
    518 	error = _bus_dmamap_load_buffer(t, map, buf, buflen, vm, flags);
    519 	if (error == 0) {
    520 		map->dm_mapsize = buflen;
    521 		map->_dm_vmspace = vm;
    522 		map->_dm_origbuf = buf;
    523 		map->_dm_buftype = _BUS_DMA_BUFTYPE_LINEAR;
    524 		if (map->_dm_flags & _BUS_DMAMAP_COHERENT) {
    525 			STAT_INCR(coherent_loads);
    526 		} else {
    527 			STAT_INCR(loads);
    528 		}
    529 		return 0;
    530 	}
    531 #ifdef _ARM32_NEED_BUS_DMA_BOUNCE
    532 	struct arm32_bus_dma_cookie * const cookie = map->_dm_cookie;
    533 	if (cookie != NULL && (cookie->id_flags & _BUS_DMA_MIGHT_NEED_BOUNCE)) {
    534 		error = _bus_dma_load_bouncebuf(t, map, buf, buflen,
    535 		    _BUS_DMA_BUFTYPE_LINEAR, flags);
    536 	}
    537 #endif
    538 	return error;
    539 }
    540 
    541 /*
    542  * Like _bus_dmamap_load(), but for mbufs.
    543  */
    544 int
    545 _bus_dmamap_load_mbuf(bus_dma_tag_t t, bus_dmamap_t map, struct mbuf *m0,
    546     int flags)
    547 {
    548 	struct mbuf *m;
    549 	int error;
    550 
    551 #ifdef DEBUG_DMA
    552 	printf("dmamap_load_mbuf: t=%p map=%p m0=%p f=%d\n",
    553 	    t, map, m0, flags);
    554 #endif	/* DEBUG_DMA */
    555 
    556 	if (map->dm_nsegs > 0) {
    557 #ifdef _ARM32_NEED_BUS_DMA_BOUNCE
    558 		struct arm32_bus_dma_cookie *cookie = map->_dm_cookie;
    559 		if (cookie != NULL) {
    560 			if (cookie->id_flags & _BUS_DMA_IS_BOUNCING) {
    561 				STAT_INCR(bounced_unloads);
    562 				cookie->id_flags &= ~_BUS_DMA_IS_BOUNCING;
    563 				map->_dm_flags &= ~_BUS_DMAMAP_IS_BOUNCING;
    564 			}
    565 		} else
    566 #endif
    567 		STAT_INCR(unloads);
    568 	}
    569 
    570 	/*
    571 	 * Make sure that on error condition we return "no valid mappings."
    572 	 */
    573 	map->dm_mapsize = 0;
    574 	map->dm_nsegs = 0;
    575 	map->_dm_buftype = _BUS_DMA_BUFTYPE_INVALID;
    576 	KASSERTMSG(map->dm_maxsegsz <= map->_dm_maxmaxsegsz,
    577 	    "dm_maxsegsz %lu _dm_maxmaxsegsz %lu",
    578 	    map->dm_maxsegsz, map->_dm_maxmaxsegsz);
    579 
    580 	KASSERT(m0->m_flags & M_PKTHDR);
    581 
    582 	if (m0->m_pkthdr.len > map->_dm_size)
    583 		return EINVAL;
    584 
    585 	/* _bus_dmamap_load_paddr() clears this if we're not... */
    586 	map->_dm_flags |= _BUS_DMAMAP_COHERENT;
    587 
    588 	error = 0;
    589 	for (m = m0; m != NULL && error == 0; m = m->m_next) {
    590 		int offset;
    591 		int remainbytes;
    592 		const struct vm_page * const *pgs;
    593 		paddr_t paddr;
    594 		int size;
    595 
    596 		if (m->m_len == 0)
    597 			continue;
    598 		/*
    599 		 * Don't allow reads in read-only mbufs.
    600 		 */
    601 		if (M_ROMAP(m) && (flags & BUS_DMA_READ)) {
    602 			error = EFAULT;
    603 			break;
    604 		}
    605 		switch (m->m_flags & (M_EXT|M_EXT_CLUSTER|M_EXT_PAGES)) {
    606 		case M_EXT|M_EXT_CLUSTER:
    607 			/* XXX KDASSERT */
    608 			KASSERT(m->m_ext.ext_paddr != M_PADDR_INVALID);
    609 			paddr = m->m_ext.ext_paddr +
    610 			    (m->m_data - m->m_ext.ext_buf);
    611 			size = m->m_len;
    612 			error = _bus_dmamap_load_paddr(t, map, paddr, size,
    613 			    false);
    614 			break;
    615 
    616 		case M_EXT|M_EXT_PAGES:
    617 			KASSERT(m->m_ext.ext_buf <= m->m_data);
    618 			KASSERT(m->m_data <=
    619 			    m->m_ext.ext_buf + m->m_ext.ext_size);
    620 
    621 			offset = (vaddr_t)m->m_data -
    622 			    trunc_page((vaddr_t)m->m_ext.ext_buf);
    623 			remainbytes = m->m_len;
    624 
    625 			/* skip uninteresting pages */
    626 			pgs = (const struct vm_page * const *)
    627 			    m->m_ext.ext_pgs + (offset >> PAGE_SHIFT);
    628 
    629 			offset &= PAGE_MASK;	/* offset in the first page */
    630 
    631 			/* load each page */
    632 			while (remainbytes > 0) {
    633 				const struct vm_page *pg;
    634 
    635 				size = MIN(remainbytes, PAGE_SIZE - offset);
    636 
    637 				pg = *pgs++;
    638 				KASSERT(pg);
    639 				paddr = VM_PAGE_TO_PHYS(pg) + offset;
    640 
    641 				error = _bus_dmamap_load_paddr(t, map,
    642 				    paddr, size, false);
    643 				if (error)
    644 					break;
    645 				offset = 0;
    646 				remainbytes -= size;
    647 			}
    648 			break;
    649 
    650 		case 0:
    651 			paddr = m->m_paddr + M_BUFOFFSET(m) +
    652 			    (m->m_data - M_BUFADDR(m));
    653 			size = m->m_len;
    654 			error = _bus_dmamap_load_paddr(t, map, paddr, size,
    655 			    false);
    656 			break;
    657 
    658 		default:
    659 			error = _bus_dmamap_load_buffer(t, map, m->m_data,
    660 			    m->m_len, vmspace_kernel(), flags);
    661 		}
    662 	}
    663 	if (error == 0) {
    664 		map->dm_mapsize = m0->m_pkthdr.len;
    665 		map->_dm_origbuf = m0;
    666 		map->_dm_buftype = _BUS_DMA_BUFTYPE_MBUF;
    667 		map->_dm_vmspace = vmspace_kernel();	/* always kernel */
    668 		if (map->_dm_flags & _BUS_DMAMAP_COHERENT) {
    669 			STAT_INCR(coherent_loads);
    670 		} else {
    671 			STAT_INCR(loads);
    672 		}
    673 		return 0;
    674 	}
    675 #ifdef _ARM32_NEED_BUS_DMA_BOUNCE
    676 	struct arm32_bus_dma_cookie * const cookie = map->_dm_cookie;
    677 	if (cookie != NULL && (cookie->id_flags & _BUS_DMA_MIGHT_NEED_BOUNCE)) {
    678 		error = _bus_dma_load_bouncebuf(t, map, m0, m0->m_pkthdr.len,
    679 		    _BUS_DMA_BUFTYPE_MBUF, flags);
    680 	}
    681 #endif
    682 	return error;
    683 }
    684 
    685 /*
    686  * Like _bus_dmamap_load(), but for uios.
    687  */
    688 int
    689 _bus_dmamap_load_uio(bus_dma_tag_t t, bus_dmamap_t map, struct uio *uio,
    690     int flags)
    691 {
    692 	bus_size_t minlen, resid;
    693 	struct iovec *iov;
    694 	void *addr;
    695 	int i, error;
    696 
    697 	/*
    698 	 * Make sure that on error condition we return "no valid mappings."
    699 	 */
    700 	map->dm_mapsize = 0;
    701 	map->dm_nsegs = 0;
    702 	KASSERTMSG(map->dm_maxsegsz <= map->_dm_maxmaxsegsz,
    703 	    "dm_maxsegsz %lu _dm_maxmaxsegsz %lu",
    704 	    map->dm_maxsegsz, map->_dm_maxmaxsegsz);
    705 
    706 	resid = uio->uio_resid;
    707 	iov = uio->uio_iov;
    708 
    709 	/* _bus_dmamap_load_buffer() clears this if we're not... */
    710 	map->_dm_flags |= _BUS_DMAMAP_COHERENT;
    711 
    712 	error = 0;
    713 	for (i = 0; i < uio->uio_iovcnt && resid != 0 && error == 0; i++) {
    714 		/*
    715 		 * Now at the first iovec to load.  Load each iovec
    716 		 * until we have exhausted the residual count.
    717 		 */
    718 		minlen = resid < iov[i].iov_len ? resid : iov[i].iov_len;
    719 		addr = (void *)iov[i].iov_base;
    720 
    721 		error = _bus_dmamap_load_buffer(t, map, addr, minlen,
    722 		    uio->uio_vmspace, flags);
    723 
    724 		resid -= minlen;
    725 	}
    726 	if (error == 0) {
    727 		map->dm_mapsize = uio->uio_resid;
    728 		map->_dm_origbuf = uio;
    729 		map->_dm_buftype = _BUS_DMA_BUFTYPE_UIO;
    730 		map->_dm_vmspace = uio->uio_vmspace;
    731 		if (map->_dm_flags & _BUS_DMAMAP_COHERENT) {
    732 			STAT_INCR(coherent_loads);
    733 		} else {
    734 			STAT_INCR(loads);
    735 		}
    736 	}
    737 	return error;
    738 }
    739 
    740 /*
    741  * Like _bus_dmamap_load(), but for raw memory allocated with
    742  * bus_dmamem_alloc().
    743  */
    744 int
    745 _bus_dmamap_load_raw(bus_dma_tag_t t, bus_dmamap_t map,
    746     bus_dma_segment_t *segs, int nsegs, bus_size_t size0, int flags)
    747 {
    748 
    749 	bus_size_t size;
    750 	int i, error = 0;
    751 
    752 	/*
    753 	 * Make sure that on error conditions we return "no valid mappings."
    754 	 */
    755 	map->dm_mapsize = 0;
    756 	map->dm_nsegs = 0;
    757 	KASSERT(map->dm_maxsegsz <= map->_dm_maxmaxsegsz);
    758 
    759 	if (size0 > map->_dm_size)
    760 		return EINVAL;
    761 
    762 	for (i = 0, size = size0; i < nsegs && size > 0; i++) {
    763 		bus_dma_segment_t *ds = &segs[i];
    764 		bus_size_t sgsize;
    765 
    766 		sgsize = MIN(ds->ds_len, size);
    767 		if (sgsize == 0)
    768 			continue;
    769 		const bool coherent =
    770 		    (ds->_ds_flags & _BUS_DMAMAP_COHERENT) != 0;
    771 		error = _bus_dmamap_load_paddr(t, map, ds->ds_addr,
    772 		    sgsize, coherent);
    773 		if (error != 0)
    774 			break;
    775 		size -= sgsize;
    776 	}
    777 
    778 	if (error != 0) {
    779 		map->dm_mapsize = 0;
    780 		map->dm_nsegs = 0;
    781 		return error;
    782 	}
    783 
    784 	/* XXX TBD bounce */
    785 
    786 	map->dm_mapsize = size0;
    787 	map->_dm_origbuf = NULL;
    788 	map->_dm_buftype = _BUS_DMA_BUFTYPE_RAW;
    789 	map->_dm_vmspace = NULL;
    790 	return 0;
    791 }
    792 
    793 /*
    794  * Common function for unloading a DMA map.  May be called by
    795  * bus-specific DMA map unload functions.
    796  */
    797 void
    798 _bus_dmamap_unload(bus_dma_tag_t t, bus_dmamap_t map)
    799 {
    800 
    801 #ifdef DEBUG_DMA
    802 	printf("dmamap_unload: t=%p map=%p\n", t, map);
    803 #endif	/* DEBUG_DMA */
    804 
    805 	/*
    806 	 * No resources to free; just mark the mappings as
    807 	 * invalid.
    808 	 */
    809 	map->dm_mapsize = 0;
    810 	map->dm_nsegs = 0;
    811 	map->_dm_origbuf = NULL;
    812 	map->_dm_buftype = _BUS_DMA_BUFTYPE_INVALID;
    813 	map->_dm_vmspace = NULL;
    814 }
    815 
    816 static void
    817 _bus_dmamap_sync_segment(vaddr_t va, paddr_t pa, vsize_t len, int ops,
    818     bool readonly_p)
    819 {
    820 
    821 #if defined(ARM_MMU_EXTENDED)
    822 	/*
    823 	 * No optimisations are available for readonly mbufs on armv6+, so
    824 	 * assume it's not readonly from here on.
    825 	 *
    826  	 * See the comment in _bus_dmamap_sync_mbuf
    827 	 */
    828 	readonly_p = false;
    829 #endif
    830 
    831 	KASSERTMSG((va & PAGE_MASK) == (pa & PAGE_MASK),
    832 	    "va %#lx pa %#lx", va, pa);
    833 #if 0
    834 	printf("sync_segment: va=%#lx pa=%#lx len=%#lx ops=%#x ro=%d\n",
    835 	    va, pa, len, ops, readonly_p);
    836 #endif
    837 
    838 	switch (ops) {
    839 	case BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE:
    840 		if (!readonly_p) {
    841 			STAT_INCR(sync_prereadwrite);
    842 			cpu_dcache_wbinv_range(va, len);
    843 			cpu_sdcache_wbinv_range(va, pa, len);
    844 			break;
    845 		}
    846 		/* FALLTHROUGH */
    847 
    848 	case BUS_DMASYNC_PREREAD: {
    849 		const size_t line_size = arm_dcache_align;
    850 		const size_t line_mask = arm_dcache_align_mask;
    851 		vsize_t misalignment = va & line_mask;
    852 		if (misalignment) {
    853 			va -= misalignment;
    854 			pa -= misalignment;
    855 			len += misalignment;
    856 			STAT_INCR(sync_preread_begin);
    857 			cpu_dcache_wbinv_range(va, line_size);
    858 			cpu_sdcache_wbinv_range(va, pa, line_size);
    859 			if (len <= line_size)
    860 				break;
    861 			va += line_size;
    862 			pa += line_size;
    863 			len -= line_size;
    864 		}
    865 		misalignment = len & line_mask;
    866 		len -= misalignment;
    867 		if (len > 0) {
    868 			STAT_INCR(sync_preread);
    869 			cpu_dcache_inv_range(va, len);
    870 			cpu_sdcache_inv_range(va, pa, len);
    871 		}
    872 		if (misalignment) {
    873 			va += len;
    874 			pa += len;
    875 			STAT_INCR(sync_preread_tail);
    876 			cpu_dcache_wbinv_range(va, line_size);
    877 			cpu_sdcache_wbinv_range(va, pa, line_size);
    878 		}
    879 		break;
    880 	}
    881 
    882 	case BUS_DMASYNC_PREWRITE:
    883 		STAT_INCR(sync_prewrite);
    884 		cpu_dcache_wb_range(va, len);
    885 		cpu_sdcache_wb_range(va, pa, len);
    886 		break;
    887 
    888 #if defined(CPU_CORTEX) || defined(CPU_ARMV8)
    889 
    890 	/*
    891 	 * Cortex CPUs can do speculative loads so we need to clean the cache
    892 	 * after a DMA read to deal with any speculatively loaded cache lines.
    893 	 * Since these can't be dirty, we can just invalidate them and don't
    894 	 * have to worry about having to write back their contents.
    895 	 */
    896 	case BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE:
    897 		STAT_INCR(sync_postreadwrite);
    898 		cpu_dcache_inv_range(va, len);
    899 		cpu_sdcache_inv_range(va, pa, len);
    900 		break;
    901 
    902 	case BUS_DMASYNC_POSTREAD:
    903 		STAT_INCR(sync_postread);
    904 		cpu_dcache_inv_range(va, len);
    905 		cpu_sdcache_inv_range(va, pa, len);
    906 		break;
    907 #endif
    908 	}
    909 }
    910 
    911 static inline void
    912 _bus_dmamap_sync_linear(bus_dma_tag_t t, bus_dmamap_t map, bus_addr_t offset,
    913     bus_size_t len, int ops)
    914 {
    915 	bus_dma_segment_t *ds = map->dm_segs;
    916 	vaddr_t va = (vaddr_t) map->_dm_origbuf;
    917 #ifdef _ARM32_NEED_BUS_DMA_BOUNCE
    918 	if (map->_dm_flags & _BUS_DMAMAP_IS_BOUNCING) {
    919 		struct arm32_bus_dma_cookie * const cookie = map->_dm_cookie;
    920 		va = (vaddr_t) cookie->id_bouncebuf;
    921 	}
    922 #endif
    923 
    924 	while (len > 0) {
    925 		while (offset >= ds->ds_len) {
    926 			offset -= ds->ds_len;
    927 			va += ds->ds_len;
    928 			ds++;
    929 		}
    930 
    931 		paddr_t pa = _bus_dma_busaddr_to_paddr(t, ds->ds_addr + offset);
    932 		size_t seglen = uimin(len, ds->ds_len - offset);
    933 
    934 		if ((ds->_ds_flags & _BUS_DMAMAP_COHERENT) == 0)
    935 			_bus_dmamap_sync_segment(va + offset, pa, seglen, ops,
    936 			    false);
    937 
    938 		offset += seglen;
    939 		len -= seglen;
    940 	}
    941 }
    942 
    943 static inline void
    944 _bus_dmamap_sync_mbuf(bus_dma_tag_t t, bus_dmamap_t map, bus_size_t offset,
    945     bus_size_t len, int ops)
    946 {
    947 	bus_dma_segment_t *ds = map->dm_segs;
    948 	struct mbuf *m = map->_dm_origbuf;
    949 	bus_size_t voff = offset;
    950 	bus_size_t ds_off = offset;
    951 
    952 	while (len > 0) {
    953 		/* Find the current dma segment */
    954 		while (ds_off >= ds->ds_len) {
    955 			ds_off -= ds->ds_len;
    956 			ds++;
    957 		}
    958 		/* Find the current mbuf. */
    959 		while (voff >= m->m_len) {
    960 			voff -= m->m_len;
    961 			m = m->m_next;
    962 		}
    963 
    964 		/*
    965 		 * Now at the first mbuf to sync; nail each one until
    966 		 * we have exhausted the length.
    967 		 */
    968 		vsize_t seglen = uimin(len, uimin(m->m_len - voff, ds->ds_len - ds_off));
    969 		vaddr_t va = mtod(m, vaddr_t) + voff;
    970 		paddr_t pa = _bus_dma_busaddr_to_paddr(t, ds->ds_addr + ds_off);
    971 
    972 		/*
    973 		 * We can save a lot of work here if we know the mapping
    974 		 * is read-only at the MMU and we aren't using the armv6+
    975 		 * MMU:
    976 		 *
    977 		 * If a mapping is read-only, no dirty cache blocks will
    978 		 * exist for it.  If a writable mapping was made read-only,
    979 		 * we know any dirty cache lines for the range will have
    980 		 * been cleaned for us already.  Therefore, if the upper
    981 		 * layer can tell us we have a read-only mapping, we can
    982 		 * skip all cache cleaning.
    983 		 *
    984 		 * NOTE: This only works if we know the pmap cleans pages
    985 		 * before making a read-write -> read-only transition.  If
    986 		 * this ever becomes non-true (e.g. Physically Indexed
    987 		 * cache), this will have to be revisited.
    988 		 */
    989 
    990 		if ((ds->_ds_flags & _BUS_DMAMAP_COHERENT) == 0) {
    991 			/*
    992 			 * If we are doing preread (DMAing into the mbuf),
    993 			 * this mbuf better not be readonly,
    994 			 */
    995 			KASSERT(!(ops & BUS_DMASYNC_PREREAD) || !M_ROMAP(m));
    996 			_bus_dmamap_sync_segment(va, pa, seglen, ops,
    997 			    M_ROMAP(m));
    998 		}
    999 		voff += seglen;
   1000 		ds_off += seglen;
   1001 		len -= seglen;
   1002 	}
   1003 }
   1004 
   1005 static inline void
   1006 _bus_dmamap_sync_uio(bus_dma_tag_t t, bus_dmamap_t map, bus_addr_t offset,
   1007     bus_size_t len, int ops)
   1008 {
   1009 	bus_dma_segment_t *ds = map->dm_segs;
   1010 	struct uio *uio = map->_dm_origbuf;
   1011 	struct iovec *iov = uio->uio_iov;
   1012 	bus_size_t voff = offset;
   1013 	bus_size_t ds_off = offset;
   1014 
   1015 	while (len > 0) {
   1016 		/* Find the current dma segment */
   1017 		while (ds_off >= ds->ds_len) {
   1018 			ds_off -= ds->ds_len;
   1019 			ds++;
   1020 		}
   1021 
   1022 		/* Find the current iovec. */
   1023 		while (voff >= iov->iov_len) {
   1024 			voff -= iov->iov_len;
   1025 			iov++;
   1026 		}
   1027 
   1028 		/*
   1029 		 * Now at the first iovec to sync; nail each one until
   1030 		 * we have exhausted the length.
   1031 		 */
   1032 		vsize_t seglen = uimin(len, uimin(iov->iov_len - voff, ds->ds_len - ds_off));
   1033 		vaddr_t va = (vaddr_t) iov->iov_base + voff;
   1034 		paddr_t pa = _bus_dma_busaddr_to_paddr(t, ds->ds_addr + ds_off);
   1035 
   1036 		if ((ds->_ds_flags & _BUS_DMAMAP_COHERENT) == 0)
   1037 			_bus_dmamap_sync_segment(va, pa, seglen, ops, false);
   1038 
   1039 		voff += seglen;
   1040 		ds_off += seglen;
   1041 		len -= seglen;
   1042 	}
   1043 }
   1044 
   1045 /*
   1046  * Common function for DMA map synchronization.  May be called
   1047  * by bus-specific DMA map synchronization functions.
   1048  *
   1049  * XXX Should have separate versions for write-through vs.
   1050  * XXX write-back caches.  We currently assume write-back
   1051  * XXX here, which is not as efficient as it could be for
   1052  * XXX the write-through case.
   1053  */
   1054 void
   1055 _bus_dmamap_sync(bus_dma_tag_t t, bus_dmamap_t map, bus_addr_t offset,
   1056     bus_size_t len, int ops)
   1057 {
   1058 #ifdef DEBUG_DMA
   1059 	printf("dmamap_sync: t=%p map=%p offset=%lx len=%lx ops=%x\n",
   1060 	    t, map, offset, len, ops);
   1061 #endif	/* DEBUG_DMA */
   1062 
   1063 	/*
   1064 	 * Mixing of PRE and POST operations is not allowed.
   1065 	 */
   1066 	if ((ops & (BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE)) != 0 &&
   1067 	    (ops & (BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE)) != 0)
   1068 		panic("%s: mix PRE and POST", __func__);
   1069 
   1070 	KASSERTMSG(offset < map->dm_mapsize,
   1071 	    "offset %lu mapsize %lu",
   1072 	    offset, map->dm_mapsize);
   1073 	KASSERTMSG(len > 0 && offset + len <= map->dm_mapsize,
   1074 	    "len %lu offset %lu mapsize %lu",
   1075 	    len, offset, map->dm_mapsize);
   1076 
   1077 	/*
   1078 	 * For a virtually-indexed write-back cache, we need
   1079 	 * to do the following things:
   1080 	 *
   1081 	 *	PREREAD -- Invalidate the D-cache.  We do this
   1082 	 *	here in case a write-back is required by the back-end.
   1083 	 *
   1084 	 *	PREWRITE -- Write-back the D-cache.  Note that if
   1085 	 *	we are doing a PREREAD|PREWRITE, we can collapse
   1086 	 *	the whole thing into a single Wb-Inv.
   1087 	 *
   1088 	 *	POSTREAD -- Re-invalidate the D-cache in case speculative
   1089 	 *	memory accesses caused cachelines to become valid with now
   1090 	 *	invalid data.
   1091 	 *
   1092 	 *	POSTWRITE -- Nothing.
   1093 	 */
   1094 #ifdef _ARM32_NEED_BUS_DMA_BOUNCE
   1095 	const bool bouncing = (map->_dm_flags & _BUS_DMAMAP_IS_BOUNCING);
   1096 #else
   1097 	const bool bouncing = false;
   1098 #endif
   1099 
   1100 	const int pre_ops = ops & (BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
   1101 #if defined(CPU_CORTEX) || defined(CPU_ARMV8)
   1102 	const int post_ops = ops & (BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
   1103 #else
   1104 	const int post_ops = 0;
   1105 #endif
   1106 	if (pre_ops == 0 && post_ops == 0)
   1107 		return;
   1108 
   1109 	if (post_ops == BUS_DMASYNC_POSTWRITE) {
   1110 		KASSERT(pre_ops == 0);
   1111 		STAT_INCR(sync_postwrite);
   1112 		return;
   1113 	}
   1114 
   1115 	KASSERTMSG(bouncing || pre_ops != 0 || (post_ops & BUS_DMASYNC_POSTREAD),
   1116 	    "pre_ops %#x post_ops %#x", pre_ops, post_ops);
   1117 
   1118 	if (bouncing && (ops & BUS_DMASYNC_PREWRITE)) {
   1119 		struct arm32_bus_dma_cookie * const cookie = map->_dm_cookie;
   1120 		STAT_INCR(write_bounces);
   1121 		char * const dataptr = (char *)cookie->id_bouncebuf + offset;
   1122 		/*
   1123 		 * Copy the caller's buffer to the bounce buffer.
   1124 		 */
   1125 		switch (map->_dm_buftype) {
   1126 		case _BUS_DMA_BUFTYPE_LINEAR:
   1127 			memcpy(dataptr, cookie->id_origlinearbuf + offset, len);
   1128 			break;
   1129 
   1130 		case _BUS_DMA_BUFTYPE_MBUF:
   1131 			m_copydata(cookie->id_origmbuf, offset, len, dataptr);
   1132 			break;
   1133 
   1134 		case _BUS_DMA_BUFTYPE_UIO:
   1135 			_bus_dma_uiomove(dataptr, cookie->id_origuio, len,
   1136 			    UIO_WRITE);
   1137 			break;
   1138 
   1139 #ifdef DIAGNOSTIC
   1140 		case _BUS_DMA_BUFTYPE_RAW:
   1141 			panic("%s:(pre): _BUS_DMA_BUFTYPE_RAW", __func__);
   1142 			break;
   1143 
   1144 		case _BUS_DMA_BUFTYPE_INVALID:
   1145 			panic("%s(pre): _BUS_DMA_BUFTYPE_INVALID", __func__);
   1146 			break;
   1147 
   1148 		default:
   1149 			panic("%s(pre): map %p: unknown buffer type %d\n",
   1150 			    __func__, map, map->_dm_buftype);
   1151 			break;
   1152 #endif /* DIAGNOSTIC */
   1153 		}
   1154 	}
   1155 
   1156 	/* Skip cache frobbing if mapping was COHERENT */
   1157 	if ((map->_dm_flags & _BUS_DMAMAP_COHERENT)) {
   1158 		switch (ops) {
   1159 		case BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE:
   1160 			STAT_INCR(sync_prereadwrite);
   1161 			break;
   1162 
   1163 		case BUS_DMASYNC_PREREAD:
   1164 			STAT_INCR(sync_preread);
   1165 			break;
   1166 
   1167 		case BUS_DMASYNC_PREWRITE:
   1168 			STAT_INCR(sync_prewrite);
   1169 			break;
   1170 
   1171 		case BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE:
   1172 			STAT_INCR(sync_postreadwrite);
   1173 			break;
   1174 
   1175 		case BUS_DMASYNC_POSTREAD:
   1176 			STAT_INCR(sync_postread);
   1177 			break;
   1178 
   1179 		/* BUS_DMASYNC_POSTWRITE was aleady handled as a fastpath */
   1180 		}
   1181 		/*
   1182 		 * Drain the write buffer of DMA operators.
   1183 		 * 1) when cpu->device (prewrite)
   1184 		 * 2) when device->cpu (postread)
   1185 		 */
   1186 		if ((pre_ops & BUS_DMASYNC_PREWRITE) || (post_ops & BUS_DMASYNC_POSTREAD))
   1187 			cpu_drain_writebuf();
   1188 
   1189 		/*
   1190 		 * Only thing left to do for COHERENT mapping is copy from bounce
   1191 		 * in the POSTREAD case.
   1192 		 */
   1193 		if (bouncing && (post_ops & BUS_DMASYNC_POSTREAD))
   1194 			goto bounce_it;
   1195 
   1196 		return;
   1197 	}
   1198 
   1199 #if !defined(ARM_MMU_EXTENDED)
   1200 	/*
   1201 	 * If the mapping belongs to a non-kernel vmspace, and the
   1202 	 * vmspace has not been active since the last time a full
   1203 	 * cache flush was performed, we don't need to do anything.
   1204 	 */
   1205 	if (__predict_false(!VMSPACE_IS_KERNEL_P(map->_dm_vmspace) &&
   1206 	    vm_map_pmap(&map->_dm_vmspace->vm_map)->pm_cstate.cs_cache_d == 0))
   1207 		return;
   1208 #endif
   1209 
   1210 	int buftype = map->_dm_buftype;
   1211 	if (bouncing) {
   1212 		buftype = _BUS_DMA_BUFTYPE_LINEAR;
   1213 	}
   1214 
   1215 	switch (buftype) {
   1216 	case _BUS_DMA_BUFTYPE_LINEAR:
   1217 	case _BUS_DMA_BUFTYPE_RAW:
   1218 		_bus_dmamap_sync_linear(t, map, offset, len, ops);
   1219 		break;
   1220 
   1221 	case _BUS_DMA_BUFTYPE_MBUF:
   1222 		_bus_dmamap_sync_mbuf(t, map, offset, len, ops);
   1223 		break;
   1224 
   1225 	case _BUS_DMA_BUFTYPE_UIO:
   1226 		_bus_dmamap_sync_uio(t, map, offset, len, ops);
   1227 		break;
   1228 
   1229 	case _BUS_DMA_BUFTYPE_INVALID:
   1230 		panic("%s: _BUS_DMA_BUFTYPE_INVALID", __func__);
   1231 		break;
   1232 
   1233 	default:
   1234 		panic("%s: map %p: unknown buffer type %d\n", __func__, map,
   1235 		    map->_dm_buftype);
   1236 	}
   1237 
   1238 	/* Drain the write buffer. */
   1239 	cpu_drain_writebuf();
   1240 
   1241 	if (!bouncing || (ops & BUS_DMASYNC_POSTREAD) == 0)
   1242 		return;
   1243 
   1244   bounce_it:
   1245 	STAT_INCR(read_bounces);
   1246 
   1247 	struct arm32_bus_dma_cookie * const cookie = map->_dm_cookie;
   1248 	char * const dataptr = (char *)cookie->id_bouncebuf + offset;
   1249 	/*
   1250 	 * Copy the bounce buffer to the caller's buffer.
   1251 	 */
   1252 	switch (map->_dm_buftype) {
   1253 	case _BUS_DMA_BUFTYPE_LINEAR:
   1254 		memcpy(cookie->id_origlinearbuf + offset, dataptr, len);
   1255 		break;
   1256 
   1257 	case _BUS_DMA_BUFTYPE_MBUF:
   1258 		m_copyback(cookie->id_origmbuf, offset, len, dataptr);
   1259 		break;
   1260 
   1261 	case _BUS_DMA_BUFTYPE_UIO:
   1262 		_bus_dma_uiomove(dataptr, cookie->id_origuio, len, UIO_READ);
   1263 		break;
   1264 
   1265 #ifdef DIAGNOSTIC
   1266 	case _BUS_DMA_BUFTYPE_RAW:
   1267 		panic("%s(post): _BUS_DMA_BUFTYPE_RAW", __func__);
   1268 		break;
   1269 
   1270 	case _BUS_DMA_BUFTYPE_INVALID:
   1271 		panic("%s(post): _BUS_DMA_BUFTYPE_INVALID", __func__);
   1272 		break;
   1273 
   1274 	default:
   1275 		panic("%s(post): map %p: unknown buffer type %d\n", __func__,
   1276 		    map, map->_dm_buftype);
   1277 		break;
   1278 #endif
   1279 	}
   1280 }
   1281 
   1282 /*
   1283  * Common function for DMA-safe memory allocation.  May be called
   1284  * by bus-specific DMA memory allocation functions.
   1285  */
   1286 
   1287 extern paddr_t physical_start;
   1288 extern paddr_t physical_end;
   1289 
   1290 int
   1291 _bus_dmamem_alloc(bus_dma_tag_t t, bus_size_t size, bus_size_t alignment,
   1292     bus_size_t boundary, bus_dma_segment_t *segs, int nsegs, int *rsegs,
   1293     int flags)
   1294 {
   1295 	struct arm32_dma_range *dr;
   1296 	int error, i;
   1297 
   1298 #ifdef DEBUG_DMA
   1299 	printf("dmamem_alloc t=%p size=%lx align=%lx boundary=%lx "
   1300 	    "segs=%p nsegs=%x rsegs=%p flags=%x\n", t, size, alignment,
   1301 	    boundary, segs, nsegs, rsegs, flags);
   1302 #endif
   1303 
   1304 	if ((dr = t->_ranges) != NULL) {
   1305 		error = ENOMEM;
   1306 		for (i = 0; i < t->_nranges; i++, dr++) {
   1307 			if (dr->dr_len == 0
   1308 			    || (dr->dr_flags & _BUS_DMAMAP_NOALLOC))
   1309 				continue;
   1310 			error = _bus_dmamem_alloc_range(t, size, alignment,
   1311 			    boundary, segs, nsegs, rsegs, flags,
   1312 			    trunc_page(dr->dr_sysbase),
   1313 			    trunc_page(dr->dr_sysbase + dr->dr_len));
   1314 			if (error == 0)
   1315 				break;
   1316 		}
   1317 	} else {
   1318 		error = _bus_dmamem_alloc_range(t, size, alignment, boundary,
   1319 		    segs, nsegs, rsegs, flags, trunc_page(physical_start),
   1320 		    trunc_page(physical_end));
   1321 	}
   1322 
   1323 #ifdef DEBUG_DMA
   1324 	printf("dmamem_alloc: =%d\n", error);
   1325 #endif
   1326 
   1327 	return error;
   1328 }
   1329 
   1330 /*
   1331  * Common function for freeing DMA-safe memory.  May be called by
   1332  * bus-specific DMA memory free functions.
   1333  */
   1334 void
   1335 _bus_dmamem_free(bus_dma_tag_t t, bus_dma_segment_t *segs, int nsegs)
   1336 {
   1337 	struct vm_page *m;
   1338 	bus_addr_t addr;
   1339 	struct pglist mlist;
   1340 	int curseg;
   1341 
   1342 #ifdef DEBUG_DMA
   1343 	printf("dmamem_free: t=%p segs=%p nsegs=%x\n", t, segs, nsegs);
   1344 #endif	/* DEBUG_DMA */
   1345 
   1346 	/*
   1347 	 * Build a list of pages to free back to the VM system.
   1348 	 */
   1349 	TAILQ_INIT(&mlist);
   1350 	for (curseg = 0; curseg < nsegs; curseg++) {
   1351 		for (addr = segs[curseg].ds_addr;
   1352 		    addr < (segs[curseg].ds_addr + segs[curseg].ds_len);
   1353 		    addr += PAGE_SIZE) {
   1354 			m = PHYS_TO_VM_PAGE(addr);
   1355 			TAILQ_INSERT_TAIL(&mlist, m, pageq.queue);
   1356 		}
   1357 	}
   1358 	uvm_pglistfree(&mlist);
   1359 }
   1360 
   1361 /*
   1362  * Common function for mapping DMA-safe memory.  May be called by
   1363  * bus-specific DMA memory map functions.
   1364  */
   1365 int
   1366 _bus_dmamem_map(bus_dma_tag_t t, bus_dma_segment_t *segs, int nsegs,
   1367     size_t size, void **kvap, int flags)
   1368 {
   1369 	vaddr_t va;
   1370 	paddr_t pa;
   1371 	int curseg;
   1372 	const uvm_flag_t kmflags = UVM_KMF_VAONLY
   1373 	    | ((flags & BUS_DMA_NOWAIT) != 0 ? UVM_KMF_NOWAIT : 0);
   1374 	vsize_t align = 0;
   1375 
   1376 #ifdef DEBUG_DMA
   1377 	printf("dmamem_map: t=%p segs=%p nsegs=%x size=%lx flags=%x\n", t,
   1378 	    segs, nsegs, (unsigned long)size, flags);
   1379 #endif	/* DEBUG_DMA */
   1380 
   1381 #ifdef PMAP_MAP_POOLPAGE
   1382 	/*
   1383 	 * If all of memory is mapped, and we are mapping a single physically
   1384 	 * contiguous area then this area is already mapped.  Let's see if we
   1385 	 * avoid having a separate mapping for it.
   1386 	 */
   1387 	if (nsegs == 1 && (flags & BUS_DMA_PREFETCHABLE) == 0) {
   1388 		/*
   1389 		 * If this is a non-COHERENT mapping, then the existing kernel
   1390 		 * mapping is already compatible with it.
   1391 		 */
   1392 		bool direct_mapable = (flags & BUS_DMA_COHERENT) == 0;
   1393 		pa = segs[0].ds_addr;
   1394 
   1395 		/*
   1396 		 * This is a COHERENT mapping which, unless this address is in
   1397 		 * a COHERENT dma range, will not be compatible.
   1398 		 */
   1399 		if (t->_ranges != NULL) {
   1400 			const struct arm32_dma_range * const dr =
   1401 			    _bus_dma_paddr_inrange(t->_ranges, t->_nranges, pa);
   1402 			if (dr != NULL
   1403 			    && (dr->dr_flags & _BUS_DMAMAP_COHERENT)) {
   1404 				direct_mapable = true;
   1405 			}
   1406 		}
   1407 
   1408 #ifdef PMAP_NEED_ALLOC_POOLPAGE
   1409 		/*
   1410 		 * The page can only be direct mapped if was allocated out
   1411 		 * of the arm poolpage vm freelist.
   1412 		 */
   1413 		uvm_physseg_t upm = uvm_physseg_find(atop(pa), NULL);
   1414 		KASSERT(uvm_physseg_valid_p(upm));
   1415 		if (direct_mapable) {
   1416 			direct_mapable =
   1417 			    (arm_poolpage_vmfreelist == uvm_physseg_get_free_list(upm));
   1418 		}
   1419 #endif
   1420 
   1421 		if (direct_mapable) {
   1422 			*kvap = (void *)PMAP_MAP_POOLPAGE(pa);
   1423 #ifdef DEBUG_DMA
   1424 			printf("dmamem_map: =%p\n", *kvap);
   1425 #endif	/* DEBUG_DMA */
   1426 			return 0;
   1427 		}
   1428 	}
   1429 #endif
   1430 
   1431 	size = round_page(size);
   1432 
   1433 #ifdef PMAP_MAPSIZE1
   1434 	if (size >= PMAP_MAPSIZE1)
   1435 		align = PMAP_MAPSIZE1;
   1436 
   1437 #ifdef PMAP_MAPSIZE2
   1438 
   1439 #if PMAP_MAPSIZE1 > PMAP_MAPSIZE2
   1440 #error PMAP_MAPSIZE1 must be smaller than PMAP_MAPSIZE2
   1441 #endif
   1442 
   1443 	if (size >= PMAP_MAPSIZE2)
   1444 		align = PMAP_MAPSIZE2;
   1445 
   1446 #ifdef PMAP_MAPSIZE3
   1447 
   1448 #if PMAP_MAPSIZE2 > PMAP_MAPSIZE3
   1449 #error PMAP_MAPSIZE2 must be smaller than PMAP_MAPSIZE3
   1450 #endif
   1451 
   1452 	if (size >= PMAP_MAPSIZE3)
   1453 		align = PMAP_MAPSIZE3;
   1454 #endif
   1455 #endif
   1456 #endif
   1457 
   1458 	va = uvm_km_alloc(kernel_map, size, align, kmflags);
   1459 	if (__predict_false(va == 0 && align > 0)) {
   1460 		align = 0;
   1461 		va = uvm_km_alloc(kernel_map, size, 0, kmflags);
   1462 	}
   1463 
   1464 	if (va == 0)
   1465 		return ENOMEM;
   1466 
   1467 	*kvap = (void *)va;
   1468 
   1469 	for (curseg = 0; curseg < nsegs; curseg++) {
   1470 		for (pa = segs[curseg].ds_addr;
   1471 		    pa < (segs[curseg].ds_addr + segs[curseg].ds_len);
   1472 		    pa += PAGE_SIZE, va += PAGE_SIZE, size -= PAGE_SIZE) {
   1473 			bool uncached = (flags & BUS_DMA_COHERENT);
   1474 			bool prefetchable = (flags & BUS_DMA_PREFETCHABLE);
   1475 #ifdef DEBUG_DMA
   1476 			printf("wiring p%lx to v%lx", pa, va);
   1477 #endif	/* DEBUG_DMA */
   1478 			if (size == 0)
   1479 				panic("_bus_dmamem_map: size botch");
   1480 
   1481 			const struct arm32_dma_range * const dr =
   1482 			    _bus_dma_paddr_inrange(t->_ranges, t->_nranges, pa);
   1483 			/*
   1484 			 * If this dma region is coherent then there is
   1485 			 * no need for an uncached mapping.
   1486 			 */
   1487 			if (dr != NULL
   1488 			    && (dr->dr_flags & _BUS_DMAMAP_COHERENT)) {
   1489 				uncached = false;
   1490 			}
   1491 
   1492 			u_int pmap_flags = PMAP_WIRED;
   1493 			if (prefetchable)
   1494 				pmap_flags |= PMAP_WRITE_COMBINE;
   1495 			else if (uncached)
   1496 				pmap_flags |= PMAP_NOCACHE;
   1497 
   1498 			pmap_kenter_pa(va, pa, VM_PROT_READ | VM_PROT_WRITE,
   1499 			    pmap_flags);
   1500 		}
   1501 	}
   1502 	pmap_update(pmap_kernel());
   1503 #ifdef DEBUG_DMA
   1504 	printf("dmamem_map: =%p\n", *kvap);
   1505 #endif	/* DEBUG_DMA */
   1506 	return 0;
   1507 }
   1508 
   1509 /*
   1510  * Common function for unmapping DMA-safe memory.  May be called by
   1511  * bus-specific DMA memory unmapping functions.
   1512  */
   1513 void
   1514 _bus_dmamem_unmap(bus_dma_tag_t t, void *kva, size_t size)
   1515 {
   1516 
   1517 #ifdef DEBUG_DMA
   1518 	printf("dmamem_unmap: t=%p kva=%p size=%zx\n", t, kva, size);
   1519 #endif	/* DEBUG_DMA */
   1520 	KASSERTMSG(((uintptr_t)kva & PAGE_MASK) == 0,
   1521 	    "kva %p (%#"PRIxPTR")", kva, ((uintptr_t)kva & PAGE_MASK));
   1522 
   1523 #ifdef __HAVE_MM_MD_DIRECT_MAPPED_PHYS
   1524 	/*
   1525 	 * Check to see if this used direct mapped memory.  Get its physical
   1526 	 * address and try to map it.  If the resultant matches the kva, then
   1527 	 * it was and so we can just return since we have nothing to free up.
   1528 	 */
   1529 	paddr_t pa;
   1530 	vaddr_t va;
   1531 	(void)pmap_extract(pmap_kernel(), (vaddr_t)kva, &pa);
   1532 	if (mm_md_direct_mapped_phys(pa, &va) && va == (vaddr_t)kva)
   1533 		return;
   1534 #endif
   1535 
   1536 	size = round_page(size);
   1537 	pmap_kremove((vaddr_t)kva, size);
   1538 	pmap_update(pmap_kernel());
   1539 	uvm_km_free(kernel_map, (vaddr_t)kva, size, UVM_KMF_VAONLY);
   1540 }
   1541 
   1542 /*
   1543  * Common functin for mmap(2)'ing DMA-safe memory.  May be called by
   1544  * bus-specific DMA mmap(2)'ing functions.
   1545  */
   1546 paddr_t
   1547 _bus_dmamem_mmap(bus_dma_tag_t t, bus_dma_segment_t *segs, int nsegs,
   1548     off_t off, int prot, int flags)
   1549 {
   1550 	paddr_t map_flags;
   1551 	int i;
   1552 
   1553 	for (i = 0; i < nsegs; i++) {
   1554 		KASSERTMSG((off & PAGE_MASK) == 0,
   1555 		    "off %#jx (%#x)", (uintmax_t)off, (int)off & PAGE_MASK);
   1556 		KASSERTMSG((segs[i].ds_addr & PAGE_MASK) == 0,
   1557 		    "ds_addr %#lx (%#x)", segs[i].ds_addr,
   1558 		    (int)segs[i].ds_addr & PAGE_MASK);
   1559 		KASSERTMSG((segs[i].ds_len & PAGE_MASK) == 0,
   1560 		    "ds_len %#lx (%#x)", segs[i].ds_addr,
   1561 		    (int)segs[i].ds_addr & PAGE_MASK);
   1562 		if (off >= segs[i].ds_len) {
   1563 			off -= segs[i].ds_len;
   1564 			continue;
   1565 		}
   1566 
   1567 		map_flags = 0;
   1568 		if (flags & BUS_DMA_PREFETCHABLE)
   1569 			map_flags |= ARM_MMAP_WRITECOMBINE;
   1570 
   1571 		return arm_btop((u_long)segs[i].ds_addr + off) | map_flags;
   1572 
   1573 	}
   1574 
   1575 	/* Page not found. */
   1576 	return -1;
   1577 }
   1578 
   1579 /**********************************************************************
   1580  * DMA utility functions
   1581  **********************************************************************/
   1582 
   1583 /*
   1584  * Utility function to load a linear buffer.  lastaddrp holds state
   1585  * between invocations (for multiple-buffer loads).  segp contains
   1586  * the starting segment on entrace, and the ending segment on exit.
   1587  * first indicates if this is the first invocation of this function.
   1588  */
   1589 int
   1590 _bus_dmamap_load_buffer(bus_dma_tag_t t, bus_dmamap_t map, void *buf,
   1591     bus_size_t buflen, struct vmspace *vm, int flags)
   1592 {
   1593 	bus_size_t sgsize;
   1594 	bus_addr_t curaddr;
   1595 	vaddr_t vaddr = (vaddr_t)buf;
   1596 	int error;
   1597 	pmap_t pmap;
   1598 
   1599 #ifdef DEBUG_DMA
   1600 	printf("_bus_dmamem_load_buffer(buf=%p, len=%lx, flags=%d)\n",
   1601 	    buf, buflen, flags);
   1602 #endif	/* DEBUG_DMA */
   1603 
   1604 	pmap = vm_map_pmap(&vm->vm_map);
   1605 
   1606 	while (buflen > 0) {
   1607 		/*
   1608 		 * Get the physical address for this segment.
   1609 		 *
   1610 		 */
   1611 		bool coherent;
   1612 		pmap_extract_coherency(pmap, vaddr, &curaddr, &coherent);
   1613 
   1614 		KASSERTMSG((vaddr & PAGE_MASK) == (curaddr & PAGE_MASK),
   1615 		    "va %#lx curaddr %#lx", vaddr, curaddr);
   1616 
   1617 		/*
   1618 		 * Compute the segment size, and adjust counts.
   1619 		 */
   1620 		sgsize = PAGE_SIZE - ((u_long)vaddr & PGOFSET);
   1621 		if (buflen < sgsize)
   1622 			sgsize = buflen;
   1623 
   1624 		error = _bus_dmamap_load_paddr(t, map, curaddr, sgsize,
   1625 		    coherent);
   1626 		if (error)
   1627 			return error;
   1628 
   1629 		vaddr += sgsize;
   1630 		buflen -= sgsize;
   1631 	}
   1632 
   1633 	return 0;
   1634 }
   1635 
   1636 /*
   1637  * Allocate physical memory from the given physical address range.
   1638  * Called by DMA-safe memory allocation methods.
   1639  */
   1640 int
   1641 _bus_dmamem_alloc_range(bus_dma_tag_t t, bus_size_t size, bus_size_t alignment,
   1642     bus_size_t boundary, bus_dma_segment_t *segs, int nsegs, int *rsegs,
   1643     int flags, paddr_t low, paddr_t high)
   1644 {
   1645 	paddr_t curaddr, lastaddr;
   1646 	struct vm_page *m;
   1647 	struct pglist mlist;
   1648 	int curseg, error;
   1649 
   1650 	KASSERTMSG(boundary == 0 || (boundary & (boundary - 1)) == 0,
   1651 	    "invalid boundary %#lx", boundary);
   1652 
   1653 #ifdef DEBUG_DMA
   1654 	printf("alloc_range: t=%p size=%lx align=%lx boundary=%lx segs=%p nsegs=%x rsegs=%p flags=%x lo=%lx hi=%lx\n",
   1655 	    t, size, alignment, boundary, segs, nsegs, rsegs, flags, low, high);
   1656 #endif	/* DEBUG_DMA */
   1657 
   1658 	/* Always round the size. */
   1659 	size = round_page(size);
   1660 
   1661 	/*
   1662 	 * We accept boundaries < size, splitting in multiple segments
   1663 	 * if needed. uvm_pglistalloc does not, so compute an appropriate
   1664 	 * boundary: next power of 2 >= size
   1665 	 */
   1666 	bus_size_t uboundary = boundary;
   1667 	if (uboundary <= PAGE_SIZE) {
   1668 		uboundary = 0;
   1669 	} else {
   1670 		while (uboundary < size) {
   1671 			uboundary <<= 1;
   1672 		}
   1673 	}
   1674 
   1675 	/*
   1676 	 * Allocate pages from the VM system.
   1677 	 */
   1678 	error = uvm_pglistalloc(size, low, high, alignment, uboundary,
   1679 	    &mlist, nsegs, (flags & BUS_DMA_NOWAIT) == 0);
   1680 	if (error)
   1681 		return error;
   1682 
   1683 	/*
   1684 	 * Compute the location, size, and number of segments actually
   1685 	 * returned by the VM code.
   1686 	 */
   1687 	m = TAILQ_FIRST(&mlist);
   1688 	curseg = 0;
   1689 	lastaddr = segs[curseg].ds_addr = VM_PAGE_TO_PHYS(m);
   1690 	segs[curseg].ds_len = PAGE_SIZE;
   1691 #ifdef DEBUG_DMA
   1692 		printf("alloc: page %lx\n", lastaddr);
   1693 #endif	/* DEBUG_DMA */
   1694 	m = TAILQ_NEXT(m, pageq.queue);
   1695 
   1696 	for (; m != NULL; m = TAILQ_NEXT(m, pageq.queue)) {
   1697 		curaddr = VM_PAGE_TO_PHYS(m);
   1698 		KASSERTMSG(low <= curaddr && curaddr < high,
   1699 		    "uvm_pglistalloc returned non-sensicaladdress %#lx "
   1700 		    "(low=%#lx, high=%#lx\n", curaddr, low, high);
   1701 #ifdef DEBUG_DMA
   1702 		printf("alloc: page %lx\n", curaddr);
   1703 #endif	/* DEBUG_DMA */
   1704 		if (curaddr == lastaddr + PAGE_SIZE
   1705 		    && (lastaddr & boundary) == (curaddr & boundary))
   1706 			segs[curseg].ds_len += PAGE_SIZE;
   1707 		else {
   1708 			curseg++;
   1709 			if (curseg >= nsegs) {
   1710 				uvm_pglistfree(&mlist);
   1711 				return EFBIG;
   1712 			}
   1713 			segs[curseg].ds_addr = curaddr;
   1714 			segs[curseg].ds_len = PAGE_SIZE;
   1715 		}
   1716 		lastaddr = curaddr;
   1717 	}
   1718 
   1719 	*rsegs = curseg + 1;
   1720 
   1721 	return 0;
   1722 }
   1723 
   1724 /*
   1725  * Check if a memory region intersects with a DMA range, and return the
   1726  * page-rounded intersection if it does.
   1727  */
   1728 int
   1729 arm32_dma_range_intersect(struct arm32_dma_range *ranges, int nranges,
   1730     paddr_t pa, psize_t size, paddr_t *pap, psize_t *sizep)
   1731 {
   1732 	struct arm32_dma_range *dr;
   1733 	int i;
   1734 
   1735 	if (ranges == NULL)
   1736 		return 0;
   1737 
   1738 	for (i = 0, dr = ranges; i < nranges; i++, dr++) {
   1739 		if (dr->dr_sysbase <= pa &&
   1740 		    pa < (dr->dr_sysbase + dr->dr_len)) {
   1741 			/*
   1742 			 * Beginning of region intersects with this range.
   1743 			 */
   1744 			*pap = trunc_page(pa);
   1745 			*sizep = round_page(uimin(pa + size,
   1746 			    dr->dr_sysbase + dr->dr_len) - pa);
   1747 			return 1;
   1748 		}
   1749 		if (pa < dr->dr_sysbase && dr->dr_sysbase < (pa + size)) {
   1750 			/*
   1751 			 * End of region intersects with this range.
   1752 			 */
   1753 			*pap = trunc_page(dr->dr_sysbase);
   1754 			*sizep = round_page(uimin((pa + size) - dr->dr_sysbase,
   1755 			    dr->dr_len));
   1756 			return 1;
   1757 		}
   1758 	}
   1759 
   1760 	/* No intersection found. */
   1761 	return 0;
   1762 }
   1763 
   1764 #ifdef _ARM32_NEED_BUS_DMA_BOUNCE
   1765 static int
   1766 _bus_dma_alloc_bouncebuf(bus_dma_tag_t t, bus_dmamap_t map,
   1767     bus_size_t size, int flags)
   1768 {
   1769 	struct arm32_bus_dma_cookie *cookie = map->_dm_cookie;
   1770 	int error = 0;
   1771 
   1772 	KASSERT(cookie != NULL);
   1773 
   1774 	cookie->id_bouncebuflen = round_page(size);
   1775 	error = _bus_dmamem_alloc(t, cookie->id_bouncebuflen,
   1776 	    PAGE_SIZE, map->_dm_boundary, cookie->id_bouncesegs,
   1777 	    map->_dm_segcnt, &cookie->id_nbouncesegs, flags);
   1778 	if (error == 0) {
   1779 		error = _bus_dmamem_map(t, cookie->id_bouncesegs,
   1780 		    cookie->id_nbouncesegs, cookie->id_bouncebuflen,
   1781 		    (void **)&cookie->id_bouncebuf, flags);
   1782 		if (error) {
   1783 			_bus_dmamem_free(t, cookie->id_bouncesegs,
   1784 			    cookie->id_nbouncesegs);
   1785 			cookie->id_bouncebuflen = 0;
   1786 			cookie->id_nbouncesegs = 0;
   1787 		} else {
   1788 			cookie->id_flags |= _BUS_DMA_HAS_BOUNCE;
   1789 		}
   1790 	} else {
   1791 		cookie->id_bouncebuflen = 0;
   1792 		cookie->id_nbouncesegs = 0;
   1793 	}
   1794 
   1795 	return error;
   1796 }
   1797 
   1798 static void
   1799 _bus_dma_free_bouncebuf(bus_dma_tag_t t, bus_dmamap_t map)
   1800 {
   1801 	struct arm32_bus_dma_cookie *cookie = map->_dm_cookie;
   1802 
   1803 	KASSERT(cookie != NULL);
   1804 
   1805 	_bus_dmamem_unmap(t, cookie->id_bouncebuf, cookie->id_bouncebuflen);
   1806 	_bus_dmamem_free(t, cookie->id_bouncesegs, cookie->id_nbouncesegs);
   1807 	cookie->id_bouncebuflen = 0;
   1808 	cookie->id_nbouncesegs = 0;
   1809 	cookie->id_flags &= ~_BUS_DMA_HAS_BOUNCE;
   1810 }
   1811 #endif /* _ARM32_NEED_BUS_DMA_BOUNCE */
   1812 
   1813 /*
   1814  * This function does the same as uiomove, but takes an explicit
   1815  * direction, and does not update the uio structure.
   1816  */
   1817 static int
   1818 _bus_dma_uiomove(void *buf, struct uio *uio, size_t n, int direction)
   1819 {
   1820 	struct iovec *iov;
   1821 	int error;
   1822 	struct vmspace *vm;
   1823 	char *cp;
   1824 	size_t resid, cnt;
   1825 	int i;
   1826 
   1827 	iov = uio->uio_iov;
   1828 	vm = uio->uio_vmspace;
   1829 	cp = buf;
   1830 	resid = n;
   1831 
   1832 	for (i = 0; i < uio->uio_iovcnt && resid > 0; i++) {
   1833 		iov = &uio->uio_iov[i];
   1834 		if (iov->iov_len == 0)
   1835 			continue;
   1836 		cnt = MIN(resid, iov->iov_len);
   1837 
   1838 		if (!VMSPACE_IS_KERNEL_P(vm)) {
   1839 			preempt_point();
   1840 		}
   1841 		if (direction == UIO_READ) {
   1842 			error = copyout_vmspace(vm, cp, iov->iov_base, cnt);
   1843 		} else {
   1844 			error = copyin_vmspace(vm, iov->iov_base, cp, cnt);
   1845 		}
   1846 		if (error)
   1847 			return error;
   1848 		cp += cnt;
   1849 		resid -= cnt;
   1850 	}
   1851 	return 0;
   1852 }
   1853 
   1854 int
   1855 _bus_dmatag_subregion(bus_dma_tag_t tag, bus_addr_t min_addr,
   1856     bus_addr_t max_addr, bus_dma_tag_t *newtag, int flags)
   1857 {
   1858 	if (min_addr >= max_addr)
   1859 		return EOPNOTSUPP;
   1860 
   1861 #ifdef _ARM32_NEED_BUS_DMA_BOUNCE
   1862 	struct arm32_dma_range *dr;
   1863 	bool psubset = true;
   1864 	size_t nranges = 0;
   1865 	size_t i;
   1866 	for (i = 0, dr = tag->_ranges; i < tag->_nranges; i++, dr++) {
   1867 		/*
   1868 		 * If the new {min,max}_addr are narrower than any of the
   1869 		 * ranges in the parent tag then we need a new tag;
   1870 		 * otherwise the parent tag is a subset of the new
   1871 		 * range and can continue to be used.
   1872 		 */
   1873 		if (min_addr > dr->dr_sysbase
   1874 		    || max_addr < dr->dr_sysbase + dr->dr_len - 1) {
   1875 			psubset = false;
   1876 		}
   1877 		if (min_addr <= dr->dr_sysbase + dr->dr_len
   1878 		    && max_addr >= dr->dr_sysbase) {
   1879 			nranges++;
   1880 		}
   1881 	}
   1882 	if (nranges == 0) {
   1883 		nranges = 1;
   1884 		psubset = false;
   1885 	}
   1886 	if (psubset) {
   1887 		*newtag = tag;
   1888 		/* if the tag must be freed, add a reference */
   1889 		if (tag->_tag_needs_free)
   1890 			(tag->_tag_needs_free)++;
   1891 		return 0;
   1892 	}
   1893 
   1894 	const size_t tagsize = sizeof(*tag) + nranges * sizeof(*dr);
   1895 	if ((*newtag = kmem_intr_zalloc(tagsize,
   1896 	    (flags & BUS_DMA_NOWAIT) ? KM_NOSLEEP : KM_SLEEP)) == NULL)
   1897 		return ENOMEM;
   1898 
   1899 	dr = (void *)(*newtag + 1);
   1900 	**newtag = *tag;
   1901 	(*newtag)->_tag_needs_free = 1;
   1902 	(*newtag)->_ranges = dr;
   1903 	(*newtag)->_nranges = nranges;
   1904 
   1905 	if (tag->_ranges == NULL) {
   1906 		dr->dr_sysbase = min_addr;
   1907 		dr->dr_busbase = min_addr;
   1908 		dr->dr_len = max_addr + 1 - min_addr;
   1909 	} else {
   1910 		struct arm32_dma_range *pdr;
   1911 
   1912 		for (i = 0, pdr = tag->_ranges; i < tag->_nranges; i++, pdr++) {
   1913 			KASSERT(nranges != 0);
   1914 
   1915 			if (min_addr > pdr->dr_sysbase + pdr->dr_len
   1916 			    || max_addr < pdr->dr_sysbase) {
   1917 				/*
   1918 				 * this range doesn't overlap with new limits,
   1919 				 * so skip.
   1920 				 */
   1921 				continue;
   1922 			}
   1923 			/*
   1924 			 * Copy the range and adjust to fit within the new
   1925 			 * limits
   1926 			 */
   1927 			dr[0] = pdr[0];
   1928 			if (dr->dr_sysbase < min_addr) {
   1929 				psize_t diff = min_addr - dr->dr_sysbase;
   1930 				dr->dr_busbase += diff;
   1931 				dr->dr_len -= diff;
   1932 				dr->dr_sysbase += diff;
   1933 			}
   1934 			if (max_addr <= dr->dr_sysbase + dr->dr_len - 1) {
   1935 				dr->dr_len = max_addr + 1 - dr->dr_sysbase;
   1936 			}
   1937 			dr++;
   1938 			nranges--;
   1939 		}
   1940 	}
   1941 
   1942 	return 0;
   1943 #else
   1944 	return EOPNOTSUPP;
   1945 #endif /* _ARM32_NEED_BUS_DMA_BOUNCE */
   1946 }
   1947 
   1948 void
   1949 _bus_dmatag_destroy(bus_dma_tag_t tag)
   1950 {
   1951 #ifdef _ARM32_NEED_BUS_DMA_BOUNCE
   1952 	switch (tag->_tag_needs_free) {
   1953 	case 0:
   1954 		break;				/* not allocated with kmem */
   1955 	case 1: {
   1956 		const size_t tagsize = sizeof(*tag)
   1957 		    + tag->_nranges * sizeof(*tag->_ranges);
   1958 		kmem_intr_free(tag, tagsize);	/* last reference to tag */
   1959 		break;
   1960 	}
   1961 	default:
   1962 		(tag->_tag_needs_free)--;	/* one less reference */
   1963 	}
   1964 #endif
   1965 }
   1966