bus_dma.c revision 1.130 1 /* $NetBSD: bus_dma.c,v 1.130 2021/02/07 10:19:49 skrll Exp $ */
2
3 /*-
4 * Copyright (c) 1996, 1997, 1998, 2020 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Jason R. Thorpe of the Numerical Aerospace Simulation Facility,
9 * NASA Ames Research Center.
10 *
11 * Redistribution and use in source and binary forms, with or without
12 * modification, are permitted provided that the following conditions
13 * are met:
14 * 1. Redistributions of source code must retain the above copyright
15 * notice, this list of conditions and the following disclaimer.
16 * 2. Redistributions in binary form must reproduce the above copyright
17 * notice, this list of conditions and the following disclaimer in the
18 * documentation and/or other materials provided with the distribution.
19 *
20 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
21 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
22 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
23 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
24 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
25 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
26 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
27 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
28 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
29 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
30 * POSSIBILITY OF SUCH DAMAGE.
31 */
32
33 #define _ARM32_BUS_DMA_PRIVATE
34
35 #include "opt_arm_bus_space.h"
36 #include "opt_cputypes.h"
37
38 #include <sys/cdefs.h>
39 __KERNEL_RCSID(0, "$NetBSD: bus_dma.c,v 1.130 2021/02/07 10:19:49 skrll Exp $");
40
41 #include <sys/param.h>
42
43 #include <sys/bus.h>
44 #include <sys/cpu.h>
45 #include <sys/kmem.h>
46 #include <sys/mbuf.h>
47
48 #include <uvm/uvm.h>
49
50 #include <arm/cpuconf.h>
51 #include <arm/cpufunc.h>
52
53 #ifdef __HAVE_MM_MD_DIRECT_MAPPED_PHYS
54 #include <dev/mm.h>
55 #endif
56
57 #ifdef BUSDMA_COUNTERS
58 static struct evcnt bus_dma_creates =
59 EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL, "busdma", "creates");
60 static struct evcnt bus_dma_bounced_creates =
61 EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL, "busdma", "bounced creates");
62 static struct evcnt bus_dma_loads =
63 EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL, "busdma", "loads");
64 static struct evcnt bus_dma_bounced_loads =
65 EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL, "busdma", "bounced loads");
66 static struct evcnt bus_dma_coherent_loads =
67 EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL, "busdma", "coherent loads");
68 static struct evcnt bus_dma_read_bounces =
69 EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL, "busdma", "read bounces");
70 static struct evcnt bus_dma_write_bounces =
71 EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL, "busdma", "write bounces");
72 static struct evcnt bus_dma_bounced_unloads =
73 EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL, "busdma", "bounced unloads");
74 static struct evcnt bus_dma_unloads =
75 EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL, "busdma", "unloads");
76 static struct evcnt bus_dma_bounced_destroys =
77 EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL, "busdma", "bounced destroys");
78 static struct evcnt bus_dma_destroys =
79 EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL, "busdma", "destroys");
80 static struct evcnt bus_dma_sync_prereadwrite =
81 EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL, "busdma", "sync prereadwrite");
82 static struct evcnt bus_dma_sync_preread_begin =
83 EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL, "busdma", "sync preread begin");
84 static struct evcnt bus_dma_sync_preread =
85 EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL, "busdma", "sync preread");
86 static struct evcnt bus_dma_sync_preread_tail =
87 EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL, "busdma", "sync preread tail");
88 static struct evcnt bus_dma_sync_prewrite =
89 EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL, "busdma", "sync prewrite");
90 static struct evcnt bus_dma_sync_postread =
91 EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL, "busdma", "sync postread");
92 static struct evcnt bus_dma_sync_postreadwrite =
93 EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL, "busdma", "sync postreadwrite");
94 static struct evcnt bus_dma_sync_postwrite =
95 EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL, "busdma", "sync postwrite");
96
97 static struct evcnt bus_dma_sync_coherent_prereadwrite =
98 EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL, "busdma", "sync coherent prereadwrite");
99 static struct evcnt bus_dma_sync_coherent_preread =
100 EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL, "busdma", "sync coherent preread");
101 static struct evcnt bus_dma_sync_coherent_prewrite =
102 EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL, "busdma", "sync coherent prewrite");
103 static struct evcnt bus_dma_sync_coherent_postread =
104 EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL, "busdma", "sync coherent postread");
105 static struct evcnt bus_dma_sync_coherent_postreadwrite =
106 EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL, "busdma", "sync coherent postreadwrite");
107 static struct evcnt bus_dma_sync_coherent_postwrite =
108 EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL, "busdma", "sync coherent postwrite");
109
110 EVCNT_ATTACH_STATIC(bus_dma_creates);
111 EVCNT_ATTACH_STATIC(bus_dma_bounced_creates);
112 EVCNT_ATTACH_STATIC(bus_dma_loads);
113 EVCNT_ATTACH_STATIC(bus_dma_bounced_loads);
114 EVCNT_ATTACH_STATIC(bus_dma_coherent_loads);
115 EVCNT_ATTACH_STATIC(bus_dma_read_bounces);
116 EVCNT_ATTACH_STATIC(bus_dma_write_bounces);
117 EVCNT_ATTACH_STATIC(bus_dma_unloads);
118 EVCNT_ATTACH_STATIC(bus_dma_bounced_unloads);
119 EVCNT_ATTACH_STATIC(bus_dma_destroys);
120 EVCNT_ATTACH_STATIC(bus_dma_bounced_destroys);
121 EVCNT_ATTACH_STATIC(bus_dma_sync_prereadwrite);
122 EVCNT_ATTACH_STATIC(bus_dma_sync_preread_begin);
123 EVCNT_ATTACH_STATIC(bus_dma_sync_preread);
124 EVCNT_ATTACH_STATIC(bus_dma_sync_preread_tail);
125 EVCNT_ATTACH_STATIC(bus_dma_sync_prewrite);
126 EVCNT_ATTACH_STATIC(bus_dma_sync_postread);
127 EVCNT_ATTACH_STATIC(bus_dma_sync_postreadwrite);
128 EVCNT_ATTACH_STATIC(bus_dma_sync_postwrite);
129
130 EVCNT_ATTACH_STATIC(bus_dma_sync_coherent_prereadwrite);
131 EVCNT_ATTACH_STATIC(bus_dma_sync_coherent_preread);
132 EVCNT_ATTACH_STATIC(bus_dma_sync_coherent_prewrite);
133 EVCNT_ATTACH_STATIC(bus_dma_sync_coherent_postread);
134 EVCNT_ATTACH_STATIC(bus_dma_sync_coherent_postreadwrite);
135 EVCNT_ATTACH_STATIC(bus_dma_sync_coherent_postwrite);
136
137 #define STAT_INCR(x) (bus_dma_ ## x.ev_count++)
138 #else
139 #define STAT_INCR(x) __nothing
140 #endif
141
142 int _bus_dmamap_load_buffer(bus_dma_tag_t, bus_dmamap_t, void *,
143 bus_size_t, struct vmspace *, int);
144
145 /*
146 * Check to see if the specified page is in an allowed DMA range.
147 */
148 static inline struct arm32_dma_range *
149 _bus_dma_paddr_inrange(struct arm32_dma_range *ranges, int nranges,
150 bus_addr_t curaddr)
151 {
152 struct arm32_dma_range *dr;
153 int i;
154
155 for (i = 0, dr = ranges; i < nranges; i++, dr++) {
156 if (curaddr >= dr->dr_sysbase &&
157 curaddr < (dr->dr_sysbase + dr->dr_len))
158 return dr;
159 }
160
161 return NULL;
162 }
163
164 /*
165 * Check to see if the specified busaddr is in an allowed DMA range.
166 */
167 static inline paddr_t
168 _bus_dma_busaddr_to_paddr(bus_dma_tag_t t, bus_addr_t curaddr)
169 {
170 struct arm32_dma_range *dr;
171 u_int i;
172
173 if (t->_nranges == 0)
174 return curaddr;
175
176 for (i = 0, dr = t->_ranges; i < t->_nranges; i++, dr++) {
177 if (dr->dr_busbase <= curaddr
178 && curaddr < dr->dr_busbase + dr->dr_len)
179 return curaddr - dr->dr_busbase + dr->dr_sysbase;
180 }
181 panic("%s: curaddr %#lx not in range", __func__, curaddr);
182 }
183
184 /*
185 * Common function to load the specified physical address into the
186 * DMA map, coalescing segments and boundary checking as necessary.
187 */
188 static int
189 _bus_dmamap_load_paddr(bus_dma_tag_t t, bus_dmamap_t map,
190 bus_addr_t paddr, bus_size_t size, bool coherent)
191 {
192 bus_dma_segment_t * const segs = map->dm_segs;
193 int nseg = map->dm_nsegs;
194 bus_addr_t lastaddr;
195 bus_addr_t bmask = ~(map->_dm_boundary - 1);
196 bus_addr_t curaddr;
197 bus_size_t sgsize;
198 uint32_t _ds_flags = coherent ? _BUS_DMAMAP_COHERENT : 0;
199
200 if (nseg > 0)
201 lastaddr = segs[nseg - 1].ds_addr + segs[nseg - 1].ds_len;
202 else
203 lastaddr = 0xdead;
204
205 again:
206 sgsize = size;
207
208 /* Make sure we're in an allowed DMA range. */
209 if (t->_ranges != NULL) {
210 /* XXX cache last result? */
211 const struct arm32_dma_range * const dr =
212 _bus_dma_paddr_inrange(t->_ranges, t->_nranges, paddr);
213 if (dr == NULL)
214 return EINVAL;
215
216 /*
217 * If this region is coherent, mark the segment as coherent.
218 */
219 _ds_flags |= dr->dr_flags & _BUS_DMAMAP_COHERENT;
220
221 /*
222 * In a valid DMA range. Translate the physical
223 * memory address to an address in the DMA window.
224 */
225 curaddr = (paddr - dr->dr_sysbase) + dr->dr_busbase;
226 #if 0
227 printf("%p: %#lx: range %#lx/%#lx/%#lx/%#x: %#x <-- %#lx\n",
228 t, paddr, dr->dr_sysbase, dr->dr_busbase,
229 dr->dr_len, dr->dr_flags, _ds_flags, curaddr);
230 #endif
231 } else
232 curaddr = paddr;
233
234 /*
235 * Make sure we don't cross any boundaries.
236 */
237 if (map->_dm_boundary > 0) {
238 bus_addr_t baddr; /* next boundary address */
239
240 baddr = (curaddr + map->_dm_boundary) & bmask;
241 if (sgsize > (baddr - curaddr))
242 sgsize = (baddr - curaddr);
243 }
244
245 /*
246 * Insert chunk into a segment, coalescing with the
247 * previous segment if possible.
248 */
249 if (nseg > 0 && curaddr == lastaddr &&
250 segs[nseg - 1].ds_len + sgsize <= map->dm_maxsegsz &&
251 ((segs[nseg - 1]._ds_flags ^ _ds_flags) & _BUS_DMAMAP_COHERENT) == 0 &&
252 (map->_dm_boundary == 0 ||
253 (segs[nseg - 1].ds_addr & bmask) == (curaddr & bmask))) {
254 /* coalesce */
255 segs[nseg - 1].ds_len += sgsize;
256 } else if (nseg >= map->_dm_segcnt) {
257 return EFBIG;
258 } else {
259 /* new segment */
260 segs[nseg].ds_addr = curaddr;
261 segs[nseg].ds_len = sgsize;
262 segs[nseg]._ds_flags = _ds_flags;
263 nseg++;
264 }
265
266 lastaddr = curaddr + sgsize;
267
268 paddr += sgsize;
269 size -= sgsize;
270 if (size > 0)
271 goto again;
272
273 map->_dm_flags &= (_ds_flags & _BUS_DMAMAP_COHERENT);
274 map->dm_nsegs = nseg;
275 return 0;
276 }
277
278 static int _bus_dma_uiomove(void *buf, struct uio *uio, size_t n,
279 int direction);
280
281 #ifdef _ARM32_NEED_BUS_DMA_BOUNCE
282 static int _bus_dma_alloc_bouncebuf(bus_dma_tag_t t, bus_dmamap_t map,
283 bus_size_t size, int flags);
284 static void _bus_dma_free_bouncebuf(bus_dma_tag_t t, bus_dmamap_t map);
285
286 static int
287 _bus_dma_load_bouncebuf(bus_dma_tag_t t, bus_dmamap_t map, void *buf,
288 size_t buflen, int buftype, int flags)
289 {
290 struct arm32_bus_dma_cookie * const cookie = map->_dm_cookie;
291 struct vmspace * const vm = vmspace_kernel();
292 int error;
293
294 KASSERT(cookie != NULL);
295 KASSERT(cookie->id_flags & _BUS_DMA_MIGHT_NEED_BOUNCE);
296
297 /*
298 * Allocate bounce pages, if necessary.
299 */
300 if ((cookie->id_flags & _BUS_DMA_HAS_BOUNCE) == 0) {
301 error = _bus_dma_alloc_bouncebuf(t, map, buflen, flags);
302 if (error)
303 return error;
304 }
305
306 /*
307 * Cache a pointer to the caller's buffer and load the DMA map
308 * with the bounce buffer.
309 */
310 cookie->id_origbuf = buf;
311 cookie->id_origbuflen = buflen;
312 error = _bus_dmamap_load_buffer(t, map, cookie->id_bouncebuf,
313 buflen, vm, flags);
314 if (error)
315 return error;
316
317 STAT_INCR(bounced_loads);
318 map->dm_mapsize = buflen;
319 map->_dm_vmspace = vm;
320 map->_dm_buftype = buftype;
321
322 /* ...so _bus_dmamap_sync() knows we're bouncing */
323 map->_dm_flags |= _BUS_DMAMAP_IS_BOUNCING;
324 cookie->id_flags |= _BUS_DMA_IS_BOUNCING;
325 return 0;
326 }
327 #endif /* _ARM32_NEED_BUS_DMA_BOUNCE */
328
329 /*
330 * Common function for DMA map creation. May be called by bus-specific
331 * DMA map creation functions.
332 */
333 int
334 _bus_dmamap_create(bus_dma_tag_t t, bus_size_t size, int nsegments,
335 bus_size_t maxsegsz, bus_size_t boundary, int flags, bus_dmamap_t *dmamp)
336 {
337 struct arm32_bus_dmamap *map;
338 void *mapstore;
339 int error = 0;
340
341 #ifdef DEBUG_DMA
342 printf("dmamap_create: t=%p size=%#lx nseg=%#x msegsz=%#lx boundary=%#lx"
343 " flags=%#x\n", t, size, nsegments, maxsegsz, boundary, flags);
344 #endif /* DEBUG_DMA */
345
346 /*
347 * Allocate and initialize the DMA map. The end of the map
348 * is a variable-sized array of segments, so we allocate enough
349 * room for them in one shot.
350 *
351 * Note we don't preserve the WAITOK or NOWAIT flags. Preservation
352 * of ALLOCNOW notifies others that we've reserved these resources,
353 * and they are not to be freed.
354 *
355 * The bus_dmamap_t includes one bus_dma_segment_t, hence
356 * the (nsegments - 1).
357 */
358 const size_t mapsize = sizeof(struct arm32_bus_dmamap) +
359 (sizeof(bus_dma_segment_t) * (nsegments - 1));
360 const int zallocflags = (flags & BUS_DMA_NOWAIT) ? KM_NOSLEEP : KM_SLEEP;
361 if ((mapstore = kmem_intr_zalloc(mapsize, zallocflags)) == NULL)
362 return ENOMEM;
363
364 map = (struct arm32_bus_dmamap *)mapstore;
365 map->_dm_size = size;
366 map->_dm_segcnt = nsegments;
367 map->_dm_maxmaxsegsz = maxsegsz;
368 map->_dm_boundary = boundary;
369 map->_dm_flags = flags & ~(BUS_DMA_WAITOK|BUS_DMA_NOWAIT);
370 map->_dm_origbuf = NULL;
371 map->_dm_buftype = _BUS_DMA_BUFTYPE_INVALID;
372 map->_dm_vmspace = vmspace_kernel();
373 map->_dm_cookie = NULL;
374 map->dm_maxsegsz = maxsegsz;
375 map->dm_mapsize = 0; /* no valid mappings */
376 map->dm_nsegs = 0;
377
378 #ifdef _ARM32_NEED_BUS_DMA_BOUNCE
379 struct arm32_bus_dma_cookie *cookie;
380 int cookieflags;
381 void *cookiestore;
382
383 cookieflags = 0;
384
385 if (t->_may_bounce != NULL) {
386 error = (*t->_may_bounce)(t, map, flags, &cookieflags);
387 if (error != 0)
388 goto out;
389 }
390
391 if (t->_ranges != NULL) {
392 /*
393 * If ranges are defined, we may have to bounce. The only
394 * exception is if there is exactly one range that covers
395 * all of physical memory.
396 */
397 switch (t->_nranges) {
398 case 1:
399 if (t->_ranges[0].dr_sysbase == 0 &&
400 t->_ranges[0].dr_len == UINTPTR_MAX) {
401 break;
402 }
403 /* FALLTHROUGH */
404 default:
405 cookieflags |= _BUS_DMA_MIGHT_NEED_BOUNCE;
406 }
407 }
408
409 if ((cookieflags & _BUS_DMA_MIGHT_NEED_BOUNCE) == 0) {
410 STAT_INCR(creates);
411 *dmamp = map;
412 return 0;
413 }
414
415 const size_t cookiesize = sizeof(struct arm32_bus_dma_cookie) +
416 (sizeof(bus_dma_segment_t) * map->_dm_segcnt);
417
418 /*
419 * Allocate our cookie.
420 */
421 if ((cookiestore = kmem_intr_zalloc(cookiesize, zallocflags)) == NULL) {
422 error = ENOMEM;
423 goto out;
424 }
425 cookie = (struct arm32_bus_dma_cookie *)cookiestore;
426 cookie->id_flags = cookieflags;
427 map->_dm_cookie = cookie;
428 STAT_INCR(bounced_creates);
429
430 error = _bus_dma_alloc_bouncebuf(t, map, size, flags);
431 out:
432 if (error)
433 _bus_dmamap_destroy(t, map);
434 else
435 *dmamp = map;
436 #else
437 *dmamp = map;
438 STAT_INCR(creates);
439 #endif /* _ARM32_NEED_BUS_DMA_BOUNCE */
440 #ifdef DEBUG_DMA
441 printf("dmamap_create:map=%p\n", map);
442 #endif /* DEBUG_DMA */
443 return error;
444 }
445
446 /*
447 * Common function for DMA map destruction. May be called by bus-specific
448 * DMA map destruction functions.
449 */
450 void
451 _bus_dmamap_destroy(bus_dma_tag_t t, bus_dmamap_t map)
452 {
453
454 #ifdef DEBUG_DMA
455 printf("dmamap_destroy: t=%p map=%p\n", t, map);
456 #endif /* DEBUG_DMA */
457 #ifdef _ARM32_NEED_BUS_DMA_BOUNCE
458 struct arm32_bus_dma_cookie *cookie = map->_dm_cookie;
459
460 /*
461 * Free any bounce pages this map might hold.
462 */
463 if (cookie != NULL) {
464 const size_t cookiesize = sizeof(struct arm32_bus_dma_cookie) +
465 (sizeof(bus_dma_segment_t) * map->_dm_segcnt);
466
467 if (cookie->id_flags & _BUS_DMA_IS_BOUNCING)
468 STAT_INCR(bounced_unloads);
469 map->dm_nsegs = 0;
470 if (cookie->id_flags & _BUS_DMA_HAS_BOUNCE)
471 _bus_dma_free_bouncebuf(t, map);
472 STAT_INCR(bounced_destroys);
473 kmem_intr_free(cookie, cookiesize);
474 } else
475 #endif
476 STAT_INCR(destroys);
477
478 if (map->dm_nsegs > 0)
479 STAT_INCR(unloads);
480
481 const size_t mapsize = sizeof(struct arm32_bus_dmamap) +
482 (sizeof(bus_dma_segment_t) * (map->_dm_segcnt - 1));
483 kmem_intr_free(map, mapsize);
484 }
485
486 /*
487 * Common function for loading a DMA map with a linear buffer. May
488 * be called by bus-specific DMA map load functions.
489 */
490 int
491 _bus_dmamap_load(bus_dma_tag_t t, bus_dmamap_t map, void *buf,
492 bus_size_t buflen, struct proc *p, int flags)
493 {
494 struct vmspace *vm;
495 int error;
496
497 #ifdef DEBUG_DMA
498 printf("dmamap_load: t=%p map=%p buf=%p len=%#lx p=%p f=%#x\n",
499 t, map, buf, buflen, p, flags);
500 #endif /* DEBUG_DMA */
501
502 if (map->dm_nsegs > 0) {
503 #ifdef _ARM32_NEED_BUS_DMA_BOUNCE
504 struct arm32_bus_dma_cookie *cookie = map->_dm_cookie;
505 if (cookie != NULL) {
506 if (cookie->id_flags & _BUS_DMA_IS_BOUNCING) {
507 STAT_INCR(bounced_unloads);
508 cookie->id_flags &= ~_BUS_DMA_IS_BOUNCING;
509 map->_dm_flags &= ~_BUS_DMAMAP_IS_BOUNCING;
510 }
511 } else
512 #endif
513 STAT_INCR(unloads);
514 }
515
516 /*
517 * Make sure that on error condition we return "no valid mappings".
518 */
519 map->dm_mapsize = 0;
520 map->dm_nsegs = 0;
521 map->_dm_buftype = _BUS_DMA_BUFTYPE_INVALID;
522 KASSERTMSG(map->dm_maxsegsz <= map->_dm_maxmaxsegsz,
523 "dm_maxsegsz %lu _dm_maxmaxsegsz %lu",
524 map->dm_maxsegsz, map->_dm_maxmaxsegsz);
525
526 if (buflen > map->_dm_size)
527 return EINVAL;
528
529 if (p != NULL) {
530 vm = p->p_vmspace;
531 } else {
532 vm = vmspace_kernel();
533 }
534
535 /* _bus_dmamap_load_buffer() clears this if we're not... */
536 map->_dm_flags |= _BUS_DMAMAP_COHERENT;
537
538 error = _bus_dmamap_load_buffer(t, map, buf, buflen, vm, flags);
539 if (error == 0) {
540 map->dm_mapsize = buflen;
541 map->_dm_vmspace = vm;
542 map->_dm_origbuf = buf;
543 map->_dm_buftype = _BUS_DMA_BUFTYPE_LINEAR;
544 if (map->_dm_flags & _BUS_DMAMAP_COHERENT) {
545 STAT_INCR(coherent_loads);
546 } else {
547 STAT_INCR(loads);
548 }
549 return 0;
550 }
551 #ifdef _ARM32_NEED_BUS_DMA_BOUNCE
552 struct arm32_bus_dma_cookie * const cookie = map->_dm_cookie;
553 if (cookie != NULL && (cookie->id_flags & _BUS_DMA_MIGHT_NEED_BOUNCE)) {
554 error = _bus_dma_load_bouncebuf(t, map, buf, buflen,
555 _BUS_DMA_BUFTYPE_LINEAR, flags);
556 }
557 #endif
558 return error;
559 }
560
561 /*
562 * Like _bus_dmamap_load(), but for mbufs.
563 */
564 int
565 _bus_dmamap_load_mbuf(bus_dma_tag_t t, bus_dmamap_t map, struct mbuf *m0,
566 int flags)
567 {
568 struct mbuf *m;
569 int error;
570
571 #ifdef DEBUG_DMA
572 printf("dmamap_load_mbuf: t=%p map=%p m0=%p f=%#x\n",
573 t, map, m0, flags);
574 #endif /* DEBUG_DMA */
575
576 if (map->dm_nsegs > 0) {
577 #ifdef _ARM32_NEED_BUS_DMA_BOUNCE
578 struct arm32_bus_dma_cookie *cookie = map->_dm_cookie;
579 if (cookie != NULL) {
580 if (cookie->id_flags & _BUS_DMA_IS_BOUNCING) {
581 STAT_INCR(bounced_unloads);
582 cookie->id_flags &= ~_BUS_DMA_IS_BOUNCING;
583 map->_dm_flags &= ~_BUS_DMAMAP_IS_BOUNCING;
584 }
585 } else
586 #endif
587 STAT_INCR(unloads);
588 }
589
590 /*
591 * Make sure that on error condition we return "no valid mappings."
592 */
593 map->dm_mapsize = 0;
594 map->dm_nsegs = 0;
595 map->_dm_buftype = _BUS_DMA_BUFTYPE_INVALID;
596 KASSERTMSG(map->dm_maxsegsz <= map->_dm_maxmaxsegsz,
597 "dm_maxsegsz %lu _dm_maxmaxsegsz %lu",
598 map->dm_maxsegsz, map->_dm_maxmaxsegsz);
599
600 KASSERT(m0->m_flags & M_PKTHDR);
601
602 if (m0->m_pkthdr.len > map->_dm_size)
603 return EINVAL;
604
605 /* _bus_dmamap_load_paddr() clears this if we're not... */
606 map->_dm_flags |= _BUS_DMAMAP_COHERENT;
607
608 error = 0;
609 for (m = m0; m != NULL && error == 0; m = m->m_next) {
610 int offset;
611 int remainbytes;
612 const struct vm_page * const *pgs;
613 paddr_t paddr;
614 int size;
615
616 if (m->m_len == 0)
617 continue;
618 /*
619 * Don't allow reads in read-only mbufs.
620 */
621 if (M_ROMAP(m) && (flags & BUS_DMA_READ)) {
622 error = EFAULT;
623 break;
624 }
625 switch (m->m_flags & (M_EXT|M_EXT_CLUSTER|M_EXT_PAGES)) {
626 case M_EXT|M_EXT_CLUSTER:
627 /* XXX KDASSERT */
628 KASSERT(m->m_ext.ext_paddr != M_PADDR_INVALID);
629 paddr = m->m_ext.ext_paddr +
630 (m->m_data - m->m_ext.ext_buf);
631 size = m->m_len;
632 error = _bus_dmamap_load_paddr(t, map, paddr, size,
633 false);
634 break;
635
636 case M_EXT|M_EXT_PAGES:
637 KASSERT(m->m_ext.ext_buf <= m->m_data);
638 KASSERT(m->m_data <=
639 m->m_ext.ext_buf + m->m_ext.ext_size);
640
641 offset = (vaddr_t)m->m_data -
642 trunc_page((vaddr_t)m->m_ext.ext_buf);
643 remainbytes = m->m_len;
644
645 /* skip uninteresting pages */
646 pgs = (const struct vm_page * const *)
647 m->m_ext.ext_pgs + (offset >> PAGE_SHIFT);
648
649 offset &= PAGE_MASK; /* offset in the first page */
650
651 /* load each page */
652 while (remainbytes > 0) {
653 const struct vm_page *pg;
654
655 size = MIN(remainbytes, PAGE_SIZE - offset);
656
657 pg = *pgs++;
658 KASSERT(pg);
659 paddr = VM_PAGE_TO_PHYS(pg) + offset;
660
661 error = _bus_dmamap_load_paddr(t, map,
662 paddr, size, false);
663 if (error)
664 break;
665 offset = 0;
666 remainbytes -= size;
667 }
668 break;
669
670 case 0:
671 paddr = m->m_paddr + M_BUFOFFSET(m) +
672 (m->m_data - M_BUFADDR(m));
673 size = m->m_len;
674 error = _bus_dmamap_load_paddr(t, map, paddr, size,
675 false);
676 break;
677
678 default:
679 error = _bus_dmamap_load_buffer(t, map, m->m_data,
680 m->m_len, vmspace_kernel(), flags);
681 }
682 }
683 if (error == 0) {
684 map->dm_mapsize = m0->m_pkthdr.len;
685 map->_dm_origbuf = m0;
686 map->_dm_buftype = _BUS_DMA_BUFTYPE_MBUF;
687 map->_dm_vmspace = vmspace_kernel(); /* always kernel */
688 if (map->_dm_flags & _BUS_DMAMAP_COHERENT) {
689 STAT_INCR(coherent_loads);
690 } else {
691 STAT_INCR(loads);
692 }
693 return 0;
694 }
695 #ifdef _ARM32_NEED_BUS_DMA_BOUNCE
696 struct arm32_bus_dma_cookie * const cookie = map->_dm_cookie;
697 if (cookie != NULL && (cookie->id_flags & _BUS_DMA_MIGHT_NEED_BOUNCE)) {
698 error = _bus_dma_load_bouncebuf(t, map, m0, m0->m_pkthdr.len,
699 _BUS_DMA_BUFTYPE_MBUF, flags);
700 }
701 #endif
702 return error;
703 }
704
705 /*
706 * Like _bus_dmamap_load(), but for uios.
707 */
708 int
709 _bus_dmamap_load_uio(bus_dma_tag_t t, bus_dmamap_t map, struct uio *uio,
710 int flags)
711 {
712 bus_size_t minlen, resid;
713 struct iovec *iov;
714 void *addr;
715 int i, error;
716
717 /*
718 * Make sure that on error condition we return "no valid mappings."
719 */
720 map->dm_mapsize = 0;
721 map->dm_nsegs = 0;
722 KASSERTMSG(map->dm_maxsegsz <= map->_dm_maxmaxsegsz,
723 "dm_maxsegsz %lu _dm_maxmaxsegsz %lu",
724 map->dm_maxsegsz, map->_dm_maxmaxsegsz);
725
726 resid = uio->uio_resid;
727 iov = uio->uio_iov;
728
729 /* _bus_dmamap_load_buffer() clears this if we're not... */
730 map->_dm_flags |= _BUS_DMAMAP_COHERENT;
731
732 error = 0;
733 for (i = 0; i < uio->uio_iovcnt && resid != 0 && error == 0; i++) {
734 /*
735 * Now at the first iovec to load. Load each iovec
736 * until we have exhausted the residual count.
737 */
738 minlen = resid < iov[i].iov_len ? resid : iov[i].iov_len;
739 addr = (void *)iov[i].iov_base;
740
741 error = _bus_dmamap_load_buffer(t, map, addr, minlen,
742 uio->uio_vmspace, flags);
743
744 resid -= minlen;
745 }
746 if (error == 0) {
747 map->dm_mapsize = uio->uio_resid;
748 map->_dm_origbuf = uio;
749 map->_dm_buftype = _BUS_DMA_BUFTYPE_UIO;
750 map->_dm_vmspace = uio->uio_vmspace;
751 if (map->_dm_flags & _BUS_DMAMAP_COHERENT) {
752 STAT_INCR(coherent_loads);
753 } else {
754 STAT_INCR(loads);
755 }
756 }
757 return error;
758 }
759
760 /*
761 * Like _bus_dmamap_load(), but for raw memory allocated with
762 * bus_dmamem_alloc().
763 */
764 int
765 _bus_dmamap_load_raw(bus_dma_tag_t t, bus_dmamap_t map,
766 bus_dma_segment_t *segs, int nsegs, bus_size_t size0, int flags)
767 {
768
769 bus_size_t size;
770 int i, error = 0;
771
772 /*
773 * Make sure that on error conditions we return "no valid mappings."
774 */
775 map->dm_mapsize = 0;
776 map->dm_nsegs = 0;
777 KASSERT(map->dm_maxsegsz <= map->_dm_maxmaxsegsz);
778
779 if (size0 > map->_dm_size)
780 return EINVAL;
781
782 for (i = 0, size = size0; i < nsegs && size > 0; i++) {
783 bus_dma_segment_t *ds = &segs[i];
784 bus_size_t sgsize;
785
786 sgsize = MIN(ds->ds_len, size);
787 if (sgsize == 0)
788 continue;
789 const bool coherent =
790 (ds->_ds_flags & _BUS_DMAMAP_COHERENT) != 0;
791 error = _bus_dmamap_load_paddr(t, map, ds->ds_addr,
792 sgsize, coherent);
793 if (error != 0)
794 break;
795 size -= sgsize;
796 }
797
798 if (error != 0) {
799 map->dm_mapsize = 0;
800 map->dm_nsegs = 0;
801 return error;
802 }
803
804 /* XXX TBD bounce */
805
806 map->dm_mapsize = size0;
807 map->_dm_origbuf = NULL;
808 map->_dm_buftype = _BUS_DMA_BUFTYPE_RAW;
809 map->_dm_vmspace = NULL;
810 return 0;
811 }
812
813 /*
814 * Common function for unloading a DMA map. May be called by
815 * bus-specific DMA map unload functions.
816 */
817 void
818 _bus_dmamap_unload(bus_dma_tag_t t, bus_dmamap_t map)
819 {
820
821 #ifdef DEBUG_DMA
822 printf("dmamap_unload: t=%p map=%p\n", t, map);
823 #endif /* DEBUG_DMA */
824
825 /*
826 * No resources to free; just mark the mappings as
827 * invalid.
828 */
829 map->dm_mapsize = 0;
830 map->dm_nsegs = 0;
831 map->_dm_origbuf = NULL;
832 map->_dm_buftype = _BUS_DMA_BUFTYPE_INVALID;
833 map->_dm_vmspace = NULL;
834 }
835
836 static void
837 _bus_dmamap_sync_segment(vaddr_t va, paddr_t pa, vsize_t len, int ops,
838 bool readonly_p)
839 {
840
841 #if defined(ARM_MMU_EXTENDED)
842 /*
843 * No optimisations are available for readonly mbufs on armv6+, so
844 * assume it's not readonly from here on.
845 *
846 * See the comment in _bus_dmamap_sync_mbuf
847 */
848 readonly_p = false;
849 #endif
850
851 KASSERTMSG((va & PAGE_MASK) == (pa & PAGE_MASK),
852 "va %#lx pa %#lx", va, pa);
853 #if 0
854 printf("sync_segment: va=%#lx pa=%#lx len=%#lx ops=%#x ro=%d\n",
855 va, pa, len, ops, readonly_p);
856 #endif
857
858 switch (ops) {
859 case BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE:
860 if (!readonly_p) {
861 STAT_INCR(sync_prereadwrite);
862 cpu_dcache_wbinv_range(va, len);
863 cpu_sdcache_wbinv_range(va, pa, len);
864 break;
865 }
866 /* FALLTHROUGH */
867
868 case BUS_DMASYNC_PREREAD: {
869 const size_t line_size = arm_dcache_align;
870 const size_t line_mask = arm_dcache_align_mask;
871 vsize_t misalignment = va & line_mask;
872 if (misalignment) {
873 va -= misalignment;
874 pa -= misalignment;
875 len += misalignment;
876 STAT_INCR(sync_preread_begin);
877 cpu_dcache_wbinv_range(va, line_size);
878 cpu_sdcache_wbinv_range(va, pa, line_size);
879 if (len <= line_size)
880 break;
881 va += line_size;
882 pa += line_size;
883 len -= line_size;
884 }
885 misalignment = len & line_mask;
886 len -= misalignment;
887 if (len > 0) {
888 STAT_INCR(sync_preread);
889 cpu_dcache_inv_range(va, len);
890 cpu_sdcache_inv_range(va, pa, len);
891 }
892 if (misalignment) {
893 va += len;
894 pa += len;
895 STAT_INCR(sync_preread_tail);
896 cpu_dcache_wbinv_range(va, line_size);
897 cpu_sdcache_wbinv_range(va, pa, line_size);
898 }
899 break;
900 }
901
902 case BUS_DMASYNC_PREWRITE:
903 STAT_INCR(sync_prewrite);
904 cpu_dcache_wb_range(va, len);
905 cpu_sdcache_wb_range(va, pa, len);
906 break;
907
908 #if defined(CPU_CORTEX) || defined(CPU_ARMV8)
909
910 /*
911 * Cortex CPUs can do speculative loads so we need to clean the cache
912 * after a DMA read to deal with any speculatively loaded cache lines.
913 * Since these can't be dirty, we can just invalidate them and don't
914 * have to worry about having to write back their contents.
915 */
916 case BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE:
917 STAT_INCR(sync_postreadwrite);
918 cpu_dcache_inv_range(va, len);
919 cpu_sdcache_inv_range(va, pa, len);
920 break;
921
922 case BUS_DMASYNC_POSTREAD:
923 STAT_INCR(sync_postread);
924 cpu_dcache_inv_range(va, len);
925 cpu_sdcache_inv_range(va, pa, len);
926 break;
927 #endif
928 }
929 }
930
931 static inline void
932 _bus_dmamap_sync_linear(bus_dma_tag_t t, bus_dmamap_t map, bus_addr_t offset,
933 bus_size_t len, int ops)
934 {
935 bus_dma_segment_t *ds = map->dm_segs;
936 vaddr_t va = (vaddr_t) map->_dm_origbuf;
937 #ifdef _ARM32_NEED_BUS_DMA_BOUNCE
938 if (map->_dm_flags & _BUS_DMAMAP_IS_BOUNCING) {
939 struct arm32_bus_dma_cookie * const cookie = map->_dm_cookie;
940 va = (vaddr_t) cookie->id_bouncebuf;
941 }
942 #endif
943
944 while (len > 0) {
945 while (offset >= ds->ds_len) {
946 offset -= ds->ds_len;
947 va += ds->ds_len;
948 ds++;
949 }
950
951 paddr_t pa = _bus_dma_busaddr_to_paddr(t, ds->ds_addr + offset);
952 size_t seglen = uimin(len, ds->ds_len - offset);
953
954 if ((ds->_ds_flags & _BUS_DMAMAP_COHERENT) == 0)
955 _bus_dmamap_sync_segment(va + offset, pa, seglen, ops,
956 false);
957
958 offset += seglen;
959 len -= seglen;
960 }
961 }
962
963 static inline void
964 _bus_dmamap_sync_mbuf(bus_dma_tag_t t, bus_dmamap_t map, bus_size_t offset,
965 bus_size_t len, int ops)
966 {
967 bus_dma_segment_t *ds = map->dm_segs;
968 struct mbuf *m = map->_dm_origbuf;
969 bus_size_t voff = offset;
970 bus_size_t ds_off = offset;
971
972 while (len > 0) {
973 /* Find the current dma segment */
974 while (ds_off >= ds->ds_len) {
975 ds_off -= ds->ds_len;
976 ds++;
977 }
978 /* Find the current mbuf. */
979 while (voff >= m->m_len) {
980 voff -= m->m_len;
981 m = m->m_next;
982 }
983
984 /*
985 * Now at the first mbuf to sync; nail each one until
986 * we have exhausted the length.
987 */
988 vsize_t seglen = uimin(len, uimin(m->m_len - voff, ds->ds_len - ds_off));
989 vaddr_t va = mtod(m, vaddr_t) + voff;
990 paddr_t pa = _bus_dma_busaddr_to_paddr(t, ds->ds_addr + ds_off);
991
992 /*
993 * We can save a lot of work here if we know the mapping
994 * is read-only at the MMU and we aren't using the armv6+
995 * MMU:
996 *
997 * If a mapping is read-only, no dirty cache blocks will
998 * exist for it. If a writable mapping was made read-only,
999 * we know any dirty cache lines for the range will have
1000 * been cleaned for us already. Therefore, if the upper
1001 * layer can tell us we have a read-only mapping, we can
1002 * skip all cache cleaning.
1003 *
1004 * NOTE: This only works if we know the pmap cleans pages
1005 * before making a read-write -> read-only transition. If
1006 * this ever becomes non-true (e.g. Physically Indexed
1007 * cache), this will have to be revisited.
1008 */
1009
1010 if ((ds->_ds_flags & _BUS_DMAMAP_COHERENT) == 0) {
1011 /*
1012 * If we are doing preread (DMAing into the mbuf),
1013 * this mbuf better not be readonly,
1014 */
1015 KASSERT(!(ops & BUS_DMASYNC_PREREAD) || !M_ROMAP(m));
1016 _bus_dmamap_sync_segment(va, pa, seglen, ops,
1017 M_ROMAP(m));
1018 }
1019 voff += seglen;
1020 ds_off += seglen;
1021 len -= seglen;
1022 }
1023 }
1024
1025 static inline void
1026 _bus_dmamap_sync_uio(bus_dma_tag_t t, bus_dmamap_t map, bus_addr_t offset,
1027 bus_size_t len, int ops)
1028 {
1029 bus_dma_segment_t *ds = map->dm_segs;
1030 struct uio *uio = map->_dm_origbuf;
1031 struct iovec *iov = uio->uio_iov;
1032 bus_size_t voff = offset;
1033 bus_size_t ds_off = offset;
1034
1035 while (len > 0) {
1036 /* Find the current dma segment */
1037 while (ds_off >= ds->ds_len) {
1038 ds_off -= ds->ds_len;
1039 ds++;
1040 }
1041
1042 /* Find the current iovec. */
1043 while (voff >= iov->iov_len) {
1044 voff -= iov->iov_len;
1045 iov++;
1046 }
1047
1048 /*
1049 * Now at the first iovec to sync; nail each one until
1050 * we have exhausted the length.
1051 */
1052 vsize_t seglen = uimin(len, uimin(iov->iov_len - voff, ds->ds_len - ds_off));
1053 vaddr_t va = (vaddr_t) iov->iov_base + voff;
1054 paddr_t pa = _bus_dma_busaddr_to_paddr(t, ds->ds_addr + ds_off);
1055
1056 if ((ds->_ds_flags & _BUS_DMAMAP_COHERENT) == 0)
1057 _bus_dmamap_sync_segment(va, pa, seglen, ops, false);
1058
1059 voff += seglen;
1060 ds_off += seglen;
1061 len -= seglen;
1062 }
1063 }
1064
1065 /*
1066 * Common function for DMA map synchronization. May be called
1067 * by bus-specific DMA map synchronization functions.
1068 *
1069 * XXX Should have separate versions for write-through vs.
1070 * XXX write-back caches. We currently assume write-back
1071 * XXX here, which is not as efficient as it could be for
1072 * XXX the write-through case.
1073 */
1074 void
1075 _bus_dmamap_sync(bus_dma_tag_t t, bus_dmamap_t map, bus_addr_t offset,
1076 bus_size_t len, int ops)
1077 {
1078 #ifdef DEBUG_DMA
1079 printf("dmamap_sync: t=%p map=%p offset=%#lx len=%#lx ops=%#x\n",
1080 t, map, offset, len, ops);
1081 #endif /* DEBUG_DMA */
1082
1083 /*
1084 * Mixing of PRE and POST operations is not allowed.
1085 */
1086 if ((ops & (BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE)) != 0 &&
1087 (ops & (BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE)) != 0)
1088 panic("%s: mix PRE and POST", __func__);
1089
1090 KASSERTMSG(offset < map->dm_mapsize,
1091 "offset %lu mapsize %lu",
1092 offset, map->dm_mapsize);
1093 KASSERTMSG(len > 0 && offset + len <= map->dm_mapsize,
1094 "len %lu offset %lu mapsize %lu",
1095 len, offset, map->dm_mapsize);
1096
1097 /*
1098 * For a virtually-indexed write-back cache, we need
1099 * to do the following things:
1100 *
1101 * PREREAD -- Invalidate the D-cache. We do this
1102 * here in case a write-back is required by the back-end.
1103 *
1104 * PREWRITE -- Write-back the D-cache. Note that if
1105 * we are doing a PREREAD|PREWRITE, we can collapse
1106 * the whole thing into a single Wb-Inv.
1107 *
1108 * POSTREAD -- Re-invalidate the D-cache in case speculative
1109 * memory accesses caused cachelines to become valid with now
1110 * invalid data.
1111 *
1112 * POSTWRITE -- Nothing.
1113 */
1114 #ifdef _ARM32_NEED_BUS_DMA_BOUNCE
1115 const bool bouncing = (map->_dm_flags & _BUS_DMAMAP_IS_BOUNCING);
1116 #else
1117 const bool bouncing = false;
1118 #endif
1119
1120 const int pre_ops = ops & (BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1121 #if defined(CPU_CORTEX) || defined(CPU_ARMV8)
1122 const int post_ops = ops & (BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1123 #else
1124 const int post_ops = 0;
1125 #endif
1126 if (pre_ops == 0 && post_ops == 0)
1127 return;
1128
1129 if (post_ops == BUS_DMASYNC_POSTWRITE) {
1130 KASSERT(pre_ops == 0);
1131 if ((map->_dm_flags & _BUS_DMAMAP_COHERENT)) {
1132 STAT_INCR(sync_coherent_postwrite);
1133 } else {
1134 STAT_INCR(sync_postwrite);
1135 }
1136 return;
1137 }
1138
1139 KASSERTMSG(bouncing || pre_ops != 0 || (post_ops & BUS_DMASYNC_POSTREAD),
1140 "pre_ops %#x post_ops %#x", pre_ops, post_ops);
1141
1142 if (bouncing && (ops & BUS_DMASYNC_PREWRITE)) {
1143 struct arm32_bus_dma_cookie * const cookie = map->_dm_cookie;
1144 STAT_INCR(write_bounces);
1145 char * const dataptr = (char *)cookie->id_bouncebuf + offset;
1146 /*
1147 * Copy the caller's buffer to the bounce buffer.
1148 */
1149 switch (map->_dm_buftype) {
1150 case _BUS_DMA_BUFTYPE_LINEAR:
1151 memcpy(dataptr, cookie->id_origlinearbuf + offset, len);
1152 break;
1153
1154 case _BUS_DMA_BUFTYPE_MBUF:
1155 m_copydata(cookie->id_origmbuf, offset, len, dataptr);
1156 break;
1157
1158 case _BUS_DMA_BUFTYPE_UIO:
1159 _bus_dma_uiomove(dataptr, cookie->id_origuio, len,
1160 UIO_WRITE);
1161 break;
1162
1163 #ifdef DIAGNOSTIC
1164 case _BUS_DMA_BUFTYPE_RAW:
1165 panic("%s:(pre): _BUS_DMA_BUFTYPE_RAW", __func__);
1166 break;
1167
1168 case _BUS_DMA_BUFTYPE_INVALID:
1169 panic("%s(pre): _BUS_DMA_BUFTYPE_INVALID", __func__);
1170 break;
1171
1172 default:
1173 panic("%s(pre): map %p: unknown buffer type %d\n",
1174 __func__, map, map->_dm_buftype);
1175 break;
1176 #endif /* DIAGNOSTIC */
1177 }
1178 }
1179
1180 /* Skip cache frobbing if mapping was COHERENT */
1181 if ((map->_dm_flags & _BUS_DMAMAP_COHERENT)) {
1182 switch (ops) {
1183 case BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE:
1184 STAT_INCR(sync_coherent_prereadwrite);
1185 break;
1186
1187 case BUS_DMASYNC_PREREAD:
1188 STAT_INCR(sync_coherent_preread);
1189 break;
1190
1191 case BUS_DMASYNC_PREWRITE:
1192 STAT_INCR(sync_coherent_prewrite);
1193 break;
1194
1195 case BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE:
1196 STAT_INCR(sync_coherent_postreadwrite);
1197 break;
1198
1199 case BUS_DMASYNC_POSTREAD:
1200 STAT_INCR(sync_coherent_postread);
1201 break;
1202
1203 /* BUS_DMASYNC_POSTWRITE was aleady handled as a fastpath */
1204 }
1205 /*
1206 * Drain the write buffer of DMA operators.
1207 * 1) when cpu->device (prewrite)
1208 * 2) when device->cpu (postread)
1209 */
1210 if ((pre_ops & BUS_DMASYNC_PREWRITE) || (post_ops & BUS_DMASYNC_POSTREAD))
1211 cpu_drain_writebuf();
1212
1213 /*
1214 * Only thing left to do for COHERENT mapping is copy from bounce
1215 * in the POSTREAD case.
1216 */
1217 if (bouncing && (post_ops & BUS_DMASYNC_POSTREAD))
1218 goto bounce_it;
1219
1220 return;
1221 }
1222
1223 #if !defined(ARM_MMU_EXTENDED)
1224 /*
1225 * If the mapping belongs to a non-kernel vmspace, and the
1226 * vmspace has not been active since the last time a full
1227 * cache flush was performed, we don't need to do anything.
1228 */
1229 if (__predict_false(!VMSPACE_IS_KERNEL_P(map->_dm_vmspace) &&
1230 vm_map_pmap(&map->_dm_vmspace->vm_map)->pm_cstate.cs_cache_d == 0))
1231 return;
1232 #endif
1233
1234 int buftype = map->_dm_buftype;
1235 if (bouncing) {
1236 buftype = _BUS_DMA_BUFTYPE_LINEAR;
1237 }
1238
1239 switch (buftype) {
1240 case _BUS_DMA_BUFTYPE_LINEAR:
1241 case _BUS_DMA_BUFTYPE_RAW:
1242 _bus_dmamap_sync_linear(t, map, offset, len, ops);
1243 break;
1244
1245 case _BUS_DMA_BUFTYPE_MBUF:
1246 _bus_dmamap_sync_mbuf(t, map, offset, len, ops);
1247 break;
1248
1249 case _BUS_DMA_BUFTYPE_UIO:
1250 _bus_dmamap_sync_uio(t, map, offset, len, ops);
1251 break;
1252
1253 case _BUS_DMA_BUFTYPE_INVALID:
1254 panic("%s: _BUS_DMA_BUFTYPE_INVALID", __func__);
1255 break;
1256
1257 default:
1258 panic("%s: map %p: unknown buffer type %d\n", __func__, map,
1259 map->_dm_buftype);
1260 }
1261
1262 /* Drain the write buffer. */
1263 cpu_drain_writebuf();
1264
1265 if (!bouncing || (ops & BUS_DMASYNC_POSTREAD) == 0)
1266 return;
1267
1268 bounce_it:
1269 STAT_INCR(read_bounces);
1270
1271 struct arm32_bus_dma_cookie * const cookie = map->_dm_cookie;
1272 char * const dataptr = (char *)cookie->id_bouncebuf + offset;
1273 /*
1274 * Copy the bounce buffer to the caller's buffer.
1275 */
1276 switch (map->_dm_buftype) {
1277 case _BUS_DMA_BUFTYPE_LINEAR:
1278 memcpy(cookie->id_origlinearbuf + offset, dataptr, len);
1279 break;
1280
1281 case _BUS_DMA_BUFTYPE_MBUF:
1282 m_copyback(cookie->id_origmbuf, offset, len, dataptr);
1283 break;
1284
1285 case _BUS_DMA_BUFTYPE_UIO:
1286 _bus_dma_uiomove(dataptr, cookie->id_origuio, len, UIO_READ);
1287 break;
1288
1289 #ifdef DIAGNOSTIC
1290 case _BUS_DMA_BUFTYPE_RAW:
1291 panic("%s(post): _BUS_DMA_BUFTYPE_RAW", __func__);
1292 break;
1293
1294 case _BUS_DMA_BUFTYPE_INVALID:
1295 panic("%s(post): _BUS_DMA_BUFTYPE_INVALID", __func__);
1296 break;
1297
1298 default:
1299 panic("%s(post): map %p: unknown buffer type %d\n", __func__,
1300 map, map->_dm_buftype);
1301 break;
1302 #endif
1303 }
1304 }
1305
1306 /*
1307 * Common function for DMA-safe memory allocation. May be called
1308 * by bus-specific DMA memory allocation functions.
1309 */
1310
1311 extern paddr_t physical_start;
1312 extern paddr_t physical_end;
1313
1314 int
1315 _bus_dmamem_alloc(bus_dma_tag_t t, bus_size_t size, bus_size_t alignment,
1316 bus_size_t boundary, bus_dma_segment_t *segs, int nsegs, int *rsegs,
1317 int flags)
1318 {
1319 struct arm32_dma_range *dr;
1320 int error, i;
1321
1322 #ifdef DEBUG_DMA
1323 printf("dmamem_alloc t=%p size=%#lx align=%#lx boundary=%#lx "
1324 "segs=%p nsegs=%#x rsegs=%p flags=%#x\n", t, size, alignment,
1325 boundary, segs, nsegs, rsegs, flags);
1326 #endif
1327
1328 if ((dr = t->_ranges) != NULL) {
1329 error = ENOMEM;
1330 for (i = 0; i < t->_nranges; i++, dr++) {
1331 if (dr->dr_len == 0
1332 || (dr->dr_flags & _BUS_DMAMAP_NOALLOC))
1333 continue;
1334 error = _bus_dmamem_alloc_range(t, size, alignment,
1335 boundary, segs, nsegs, rsegs, flags,
1336 trunc_page(dr->dr_sysbase),
1337 trunc_page(dr->dr_sysbase + dr->dr_len));
1338 if (error == 0)
1339 break;
1340 }
1341 } else {
1342 error = _bus_dmamem_alloc_range(t, size, alignment, boundary,
1343 segs, nsegs, rsegs, flags, trunc_page(physical_start),
1344 trunc_page(physical_end));
1345 }
1346
1347 #ifdef DEBUG_DMA
1348 printf("dmamem_alloc: =%d\n", error);
1349 #endif
1350
1351 return error;
1352 }
1353
1354 /*
1355 * Common function for freeing DMA-safe memory. May be called by
1356 * bus-specific DMA memory free functions.
1357 */
1358 void
1359 _bus_dmamem_free(bus_dma_tag_t t, bus_dma_segment_t *segs, int nsegs)
1360 {
1361 struct vm_page *m;
1362 bus_addr_t addr;
1363 struct pglist mlist;
1364 int curseg;
1365
1366 #ifdef DEBUG_DMA
1367 printf("dmamem_free: t=%p segs=%p nsegs=%#x\n", t, segs, nsegs);
1368 #endif /* DEBUG_DMA */
1369
1370 /*
1371 * Build a list of pages to free back to the VM system.
1372 */
1373 TAILQ_INIT(&mlist);
1374 for (curseg = 0; curseg < nsegs; curseg++) {
1375 for (addr = segs[curseg].ds_addr;
1376 addr < (segs[curseg].ds_addr + segs[curseg].ds_len);
1377 addr += PAGE_SIZE) {
1378 m = PHYS_TO_VM_PAGE(addr);
1379 TAILQ_INSERT_TAIL(&mlist, m, pageq.queue);
1380 }
1381 }
1382 uvm_pglistfree(&mlist);
1383 }
1384
1385 /*
1386 * Common function for mapping DMA-safe memory. May be called by
1387 * bus-specific DMA memory map functions.
1388 */
1389 int
1390 _bus_dmamem_map(bus_dma_tag_t t, bus_dma_segment_t *segs, int nsegs,
1391 size_t size, void **kvap, int flags)
1392 {
1393 vaddr_t va;
1394 paddr_t pa;
1395 int curseg;
1396 const uvm_flag_t kmflags = UVM_KMF_VAONLY
1397 | ((flags & BUS_DMA_NOWAIT) != 0 ? UVM_KMF_NOWAIT : 0);
1398 vsize_t align = 0;
1399
1400 #ifdef DEBUG_DMA
1401 printf("dmamem_map: t=%p segs=%p nsegs=%#x size=%#lx flags=%#x\n", t,
1402 segs, nsegs, (unsigned long)size, flags);
1403 #endif /* DEBUG_DMA */
1404
1405 #ifdef PMAP_MAP_POOLPAGE
1406 /*
1407 * If all of memory is mapped, and we are mapping a single physically
1408 * contiguous area then this area is already mapped. Let's see if we
1409 * avoid having a separate mapping for it.
1410 */
1411 if (nsegs == 1 && (flags & BUS_DMA_PREFETCHABLE) == 0) {
1412 /*
1413 * If this is a non-COHERENT mapping, then the existing kernel
1414 * mapping is already compatible with it.
1415 */
1416 bool direct_mapable = (flags & BUS_DMA_COHERENT) == 0;
1417 pa = segs[0].ds_addr;
1418
1419 /*
1420 * This is a COHERENT mapping which, unless this address is in
1421 * a COHERENT dma range, will not be compatible.
1422 */
1423 if (t->_ranges != NULL) {
1424 const struct arm32_dma_range * const dr =
1425 _bus_dma_paddr_inrange(t->_ranges, t->_nranges, pa);
1426 if (dr != NULL
1427 && (dr->dr_flags & _BUS_DMAMAP_COHERENT)) {
1428 direct_mapable = true;
1429 }
1430 }
1431
1432 #ifdef PMAP_NEED_ALLOC_POOLPAGE
1433 /*
1434 * The page can only be direct mapped if was allocated out
1435 * of the arm poolpage vm freelist.
1436 */
1437 uvm_physseg_t upm = uvm_physseg_find(atop(pa), NULL);
1438 KASSERT(uvm_physseg_valid_p(upm));
1439 if (direct_mapable) {
1440 direct_mapable =
1441 (arm_poolpage_vmfreelist == uvm_physseg_get_free_list(upm));
1442 }
1443 #endif
1444
1445 if (direct_mapable) {
1446 *kvap = (void *)PMAP_MAP_POOLPAGE(pa);
1447 #ifdef DEBUG_DMA
1448 printf("dmamem_map: =%p\n", *kvap);
1449 #endif /* DEBUG_DMA */
1450 return 0;
1451 }
1452 }
1453 #endif
1454
1455 size = round_page(size);
1456
1457 #ifdef PMAP_MAPSIZE1
1458 if (size >= PMAP_MAPSIZE1)
1459 align = PMAP_MAPSIZE1;
1460
1461 #ifdef PMAP_MAPSIZE2
1462
1463 #if PMAP_MAPSIZE1 > PMAP_MAPSIZE2
1464 #error PMAP_MAPSIZE1 must be smaller than PMAP_MAPSIZE2
1465 #endif
1466
1467 if (size >= PMAP_MAPSIZE2)
1468 align = PMAP_MAPSIZE2;
1469
1470 #ifdef PMAP_MAPSIZE3
1471
1472 #if PMAP_MAPSIZE2 > PMAP_MAPSIZE3
1473 #error PMAP_MAPSIZE2 must be smaller than PMAP_MAPSIZE3
1474 #endif
1475
1476 if (size >= PMAP_MAPSIZE3)
1477 align = PMAP_MAPSIZE3;
1478 #endif
1479 #endif
1480 #endif
1481
1482 va = uvm_km_alloc(kernel_map, size, align, kmflags);
1483 if (__predict_false(va == 0 && align > 0)) {
1484 align = 0;
1485 va = uvm_km_alloc(kernel_map, size, 0, kmflags);
1486 }
1487
1488 if (va == 0)
1489 return ENOMEM;
1490
1491 *kvap = (void *)va;
1492
1493 for (curseg = 0; curseg < nsegs; curseg++) {
1494 for (pa = segs[curseg].ds_addr;
1495 pa < (segs[curseg].ds_addr + segs[curseg].ds_len);
1496 pa += PAGE_SIZE, va += PAGE_SIZE, size -= PAGE_SIZE) {
1497 bool uncached = (flags & BUS_DMA_COHERENT);
1498 bool prefetchable = (flags & BUS_DMA_PREFETCHABLE);
1499 #ifdef DEBUG_DMA
1500 printf("wiring p%#lx to v%#lx", pa, va);
1501 #endif /* DEBUG_DMA */
1502 if (size == 0)
1503 panic("_bus_dmamem_map: size botch");
1504
1505 const struct arm32_dma_range * const dr =
1506 _bus_dma_paddr_inrange(t->_ranges, t->_nranges, pa);
1507 /*
1508 * If this dma region is coherent then there is
1509 * no need for an uncached mapping.
1510 */
1511 if (dr != NULL
1512 && (dr->dr_flags & _BUS_DMAMAP_COHERENT)) {
1513 uncached = false;
1514 }
1515
1516 u_int pmap_flags = PMAP_WIRED;
1517 if (prefetchable)
1518 pmap_flags |= PMAP_WRITE_COMBINE;
1519 else if (uncached)
1520 pmap_flags |= PMAP_NOCACHE;
1521
1522 pmap_kenter_pa(va, pa, VM_PROT_READ | VM_PROT_WRITE,
1523 pmap_flags);
1524 }
1525 }
1526 pmap_update(pmap_kernel());
1527 #ifdef DEBUG_DMA
1528 printf("dmamem_map: =%p\n", *kvap);
1529 #endif /* DEBUG_DMA */
1530 return 0;
1531 }
1532
1533 /*
1534 * Common function for unmapping DMA-safe memory. May be called by
1535 * bus-specific DMA memory unmapping functions.
1536 */
1537 void
1538 _bus_dmamem_unmap(bus_dma_tag_t t, void *kva, size_t size)
1539 {
1540
1541 #ifdef DEBUG_DMA
1542 printf("dmamem_unmap: t=%p kva=%p size=%#zx\n", t, kva, size);
1543 #endif /* DEBUG_DMA */
1544 KASSERTMSG(((uintptr_t)kva & PAGE_MASK) == 0,
1545 "kva %p (%#"PRIxPTR")", kva, ((uintptr_t)kva & PAGE_MASK));
1546
1547 #ifdef __HAVE_MM_MD_DIRECT_MAPPED_PHYS
1548 /*
1549 * Check to see if this used direct mapped memory. Get its physical
1550 * address and try to map it. If the resultant matches the kva, then
1551 * it was and so we can just return since we have nothing to free up.
1552 */
1553 paddr_t pa;
1554 vaddr_t va;
1555 (void)pmap_extract(pmap_kernel(), (vaddr_t)kva, &pa);
1556 if (mm_md_direct_mapped_phys(pa, &va) && va == (vaddr_t)kva)
1557 return;
1558 #endif
1559
1560 size = round_page(size);
1561 pmap_kremove((vaddr_t)kva, size);
1562 pmap_update(pmap_kernel());
1563 uvm_km_free(kernel_map, (vaddr_t)kva, size, UVM_KMF_VAONLY);
1564 }
1565
1566 /*
1567 * Common functin for mmap(2)'ing DMA-safe memory. May be called by
1568 * bus-specific DMA mmap(2)'ing functions.
1569 */
1570 paddr_t
1571 _bus_dmamem_mmap(bus_dma_tag_t t, bus_dma_segment_t *segs, int nsegs,
1572 off_t off, int prot, int flags)
1573 {
1574 paddr_t map_flags;
1575 int i;
1576
1577 for (i = 0; i < nsegs; i++) {
1578 KASSERTMSG((off & PAGE_MASK) == 0,
1579 "off %#jx (%#x)", (uintmax_t)off, (int)off & PAGE_MASK);
1580 KASSERTMSG((segs[i].ds_addr & PAGE_MASK) == 0,
1581 "ds_addr %#lx (%#x)", segs[i].ds_addr,
1582 (int)segs[i].ds_addr & PAGE_MASK);
1583 KASSERTMSG((segs[i].ds_len & PAGE_MASK) == 0,
1584 "ds_len %#lx (%#x)", segs[i].ds_addr,
1585 (int)segs[i].ds_addr & PAGE_MASK);
1586 if (off >= segs[i].ds_len) {
1587 off -= segs[i].ds_len;
1588 continue;
1589 }
1590
1591 map_flags = 0;
1592 if (flags & BUS_DMA_PREFETCHABLE)
1593 map_flags |= ARM_MMAP_WRITECOMBINE;
1594
1595 return arm_btop((u_long)segs[i].ds_addr + off) | map_flags;
1596
1597 }
1598
1599 /* Page not found. */
1600 return -1;
1601 }
1602
1603 /**********************************************************************
1604 * DMA utility functions
1605 **********************************************************************/
1606
1607 /*
1608 * Utility function to load a linear buffer. lastaddrp holds state
1609 * between invocations (for multiple-buffer loads). segp contains
1610 * the starting segment on entrace, and the ending segment on exit.
1611 * first indicates if this is the first invocation of this function.
1612 */
1613 int
1614 _bus_dmamap_load_buffer(bus_dma_tag_t t, bus_dmamap_t map, void *buf,
1615 bus_size_t buflen, struct vmspace *vm, int flags)
1616 {
1617 bus_size_t sgsize;
1618 bus_addr_t curaddr;
1619 vaddr_t vaddr = (vaddr_t)buf;
1620 int error;
1621 pmap_t pmap;
1622
1623 #ifdef DEBUG_DMA
1624 printf("_bus_dmamem_load_buffer(buf=%p, len=%#lx, flags=%#x)\n",
1625 buf, buflen, flags);
1626 #endif /* DEBUG_DMA */
1627
1628 pmap = vm_map_pmap(&vm->vm_map);
1629
1630 while (buflen > 0) {
1631 /*
1632 * Get the physical address for this segment.
1633 *
1634 */
1635 bool coherent;
1636 pmap_extract_coherency(pmap, vaddr, &curaddr, &coherent);
1637
1638 KASSERTMSG((vaddr & PAGE_MASK) == (curaddr & PAGE_MASK),
1639 "va %#lx curaddr %#lx", vaddr, curaddr);
1640
1641 /*
1642 * Compute the segment size, and adjust counts.
1643 */
1644 sgsize = PAGE_SIZE - ((u_long)vaddr & PGOFSET);
1645 if (buflen < sgsize)
1646 sgsize = buflen;
1647
1648 error = _bus_dmamap_load_paddr(t, map, curaddr, sgsize,
1649 coherent);
1650 if (error)
1651 return error;
1652
1653 vaddr += sgsize;
1654 buflen -= sgsize;
1655 }
1656
1657 return 0;
1658 }
1659
1660 /*
1661 * Allocate physical memory from the given physical address range.
1662 * Called by DMA-safe memory allocation methods.
1663 */
1664 int
1665 _bus_dmamem_alloc_range(bus_dma_tag_t t, bus_size_t size, bus_size_t alignment,
1666 bus_size_t boundary, bus_dma_segment_t *segs, int nsegs, int *rsegs,
1667 int flags, paddr_t low, paddr_t high)
1668 {
1669 paddr_t curaddr, lastaddr;
1670 struct vm_page *m;
1671 struct pglist mlist;
1672 int curseg, error;
1673
1674 KASSERTMSG(boundary == 0 || (boundary & (boundary - 1)) == 0,
1675 "invalid boundary %#lx", boundary);
1676
1677 #ifdef DEBUG_DMA
1678 printf("alloc_range: t=%p size=%#lx align=%#lx boundary=%#lx segs=%p nsegs=%#x rsegs=%p flags=%#x lo=%#lx hi=%#lx\n",
1679 t, size, alignment, boundary, segs, nsegs, rsegs, flags, low, high);
1680 #endif /* DEBUG_DMA */
1681
1682 /* Always round the size. */
1683 size = round_page(size);
1684
1685 /*
1686 * We accept boundaries < size, splitting in multiple segments
1687 * if needed. uvm_pglistalloc does not, so compute an appropriate
1688 * boundary: next power of 2 >= size
1689 */
1690 bus_size_t uboundary = boundary;
1691 if (uboundary <= PAGE_SIZE) {
1692 uboundary = 0;
1693 } else {
1694 while (uboundary < size) {
1695 uboundary <<= 1;
1696 }
1697 }
1698
1699 /*
1700 * Allocate pages from the VM system.
1701 */
1702 error = uvm_pglistalloc(size, low, high, alignment, uboundary,
1703 &mlist, nsegs, (flags & BUS_DMA_NOWAIT) == 0);
1704 if (error)
1705 return error;
1706
1707 /*
1708 * Compute the location, size, and number of segments actually
1709 * returned by the VM code.
1710 */
1711 m = TAILQ_FIRST(&mlist);
1712 curseg = 0;
1713 lastaddr = segs[curseg].ds_addr = VM_PAGE_TO_PHYS(m);
1714 segs[curseg].ds_len = PAGE_SIZE;
1715 #ifdef DEBUG_DMA
1716 printf("alloc: page %#lx\n", lastaddr);
1717 #endif /* DEBUG_DMA */
1718 m = TAILQ_NEXT(m, pageq.queue);
1719
1720 for (; m != NULL; m = TAILQ_NEXT(m, pageq.queue)) {
1721 curaddr = VM_PAGE_TO_PHYS(m);
1722 KASSERTMSG(low <= curaddr && curaddr < high,
1723 "uvm_pglistalloc returned non-sensicaladdress %#lx "
1724 "(low=%#lx, high=%#lx\n", curaddr, low, high);
1725 #ifdef DEBUG_DMA
1726 printf("alloc: page %#lx\n", curaddr);
1727 #endif /* DEBUG_DMA */
1728 if (curaddr == lastaddr + PAGE_SIZE
1729 && (lastaddr & boundary) == (curaddr & boundary))
1730 segs[curseg].ds_len += PAGE_SIZE;
1731 else {
1732 curseg++;
1733 if (curseg >= nsegs) {
1734 uvm_pglistfree(&mlist);
1735 return EFBIG;
1736 }
1737 segs[curseg].ds_addr = curaddr;
1738 segs[curseg].ds_len = PAGE_SIZE;
1739 }
1740 lastaddr = curaddr;
1741 }
1742
1743 *rsegs = curseg + 1;
1744
1745 return 0;
1746 }
1747
1748 /*
1749 * Check if a memory region intersects with a DMA range, and return the
1750 * page-rounded intersection if it does.
1751 */
1752 int
1753 arm32_dma_range_intersect(struct arm32_dma_range *ranges, int nranges,
1754 paddr_t pa, psize_t size, paddr_t *pap, psize_t *sizep)
1755 {
1756 struct arm32_dma_range *dr;
1757 int i;
1758
1759 if (ranges == NULL)
1760 return 0;
1761
1762 for (i = 0, dr = ranges; i < nranges; i++, dr++) {
1763 if (dr->dr_sysbase <= pa &&
1764 pa < (dr->dr_sysbase + dr->dr_len)) {
1765 /*
1766 * Beginning of region intersects with this range.
1767 */
1768 *pap = trunc_page(pa);
1769 *sizep = round_page(uimin(pa + size,
1770 dr->dr_sysbase + dr->dr_len) - pa);
1771 return 1;
1772 }
1773 if (pa < dr->dr_sysbase && dr->dr_sysbase < (pa + size)) {
1774 /*
1775 * End of region intersects with this range.
1776 */
1777 *pap = trunc_page(dr->dr_sysbase);
1778 *sizep = round_page(uimin((pa + size) - dr->dr_sysbase,
1779 dr->dr_len));
1780 return 1;
1781 }
1782 }
1783
1784 /* No intersection found. */
1785 return 0;
1786 }
1787
1788 #ifdef _ARM32_NEED_BUS_DMA_BOUNCE
1789 static int
1790 _bus_dma_alloc_bouncebuf(bus_dma_tag_t t, bus_dmamap_t map,
1791 bus_size_t size, int flags)
1792 {
1793 struct arm32_bus_dma_cookie *cookie = map->_dm_cookie;
1794 int error = 0;
1795
1796 KASSERT(cookie != NULL);
1797
1798 cookie->id_bouncebuflen = round_page(size);
1799 error = _bus_dmamem_alloc(t, cookie->id_bouncebuflen,
1800 PAGE_SIZE, map->_dm_boundary, cookie->id_bouncesegs,
1801 map->_dm_segcnt, &cookie->id_nbouncesegs, flags);
1802 if (error == 0) {
1803 error = _bus_dmamem_map(t, cookie->id_bouncesegs,
1804 cookie->id_nbouncesegs, cookie->id_bouncebuflen,
1805 (void **)&cookie->id_bouncebuf, flags);
1806 if (error) {
1807 _bus_dmamem_free(t, cookie->id_bouncesegs,
1808 cookie->id_nbouncesegs);
1809 cookie->id_bouncebuflen = 0;
1810 cookie->id_nbouncesegs = 0;
1811 } else {
1812 cookie->id_flags |= _BUS_DMA_HAS_BOUNCE;
1813 }
1814 } else {
1815 cookie->id_bouncebuflen = 0;
1816 cookie->id_nbouncesegs = 0;
1817 }
1818
1819 return error;
1820 }
1821
1822 static void
1823 _bus_dma_free_bouncebuf(bus_dma_tag_t t, bus_dmamap_t map)
1824 {
1825 struct arm32_bus_dma_cookie *cookie = map->_dm_cookie;
1826
1827 KASSERT(cookie != NULL);
1828
1829 _bus_dmamem_unmap(t, cookie->id_bouncebuf, cookie->id_bouncebuflen);
1830 _bus_dmamem_free(t, cookie->id_bouncesegs, cookie->id_nbouncesegs);
1831 cookie->id_bouncebuflen = 0;
1832 cookie->id_nbouncesegs = 0;
1833 cookie->id_flags &= ~_BUS_DMA_HAS_BOUNCE;
1834 }
1835 #endif /* _ARM32_NEED_BUS_DMA_BOUNCE */
1836
1837 /*
1838 * This function does the same as uiomove, but takes an explicit
1839 * direction, and does not update the uio structure.
1840 */
1841 static int
1842 _bus_dma_uiomove(void *buf, struct uio *uio, size_t n, int direction)
1843 {
1844 struct iovec *iov;
1845 int error;
1846 struct vmspace *vm;
1847 char *cp;
1848 size_t resid, cnt;
1849 int i;
1850
1851 iov = uio->uio_iov;
1852 vm = uio->uio_vmspace;
1853 cp = buf;
1854 resid = n;
1855
1856 for (i = 0; i < uio->uio_iovcnt && resid > 0; i++) {
1857 iov = &uio->uio_iov[i];
1858 if (iov->iov_len == 0)
1859 continue;
1860 cnt = MIN(resid, iov->iov_len);
1861
1862 if (!VMSPACE_IS_KERNEL_P(vm)) {
1863 preempt_point();
1864 }
1865 if (direction == UIO_READ) {
1866 error = copyout_vmspace(vm, cp, iov->iov_base, cnt);
1867 } else {
1868 error = copyin_vmspace(vm, iov->iov_base, cp, cnt);
1869 }
1870 if (error)
1871 return error;
1872 cp += cnt;
1873 resid -= cnt;
1874 }
1875 return 0;
1876 }
1877
1878 int
1879 _bus_dmatag_subregion(bus_dma_tag_t tag, bus_addr_t min_addr,
1880 bus_addr_t max_addr, bus_dma_tag_t *newtag, int flags)
1881 {
1882 if (min_addr >= max_addr)
1883 return EOPNOTSUPP;
1884
1885 #ifdef _ARM32_NEED_BUS_DMA_BOUNCE
1886 struct arm32_dma_range *dr;
1887 bool psubset = true;
1888 size_t nranges = 0;
1889 size_t i;
1890 for (i = 0, dr = tag->_ranges; i < tag->_nranges; i++, dr++) {
1891 /*
1892 * If the new {min,max}_addr are narrower than any of the
1893 * ranges in the parent tag then we need a new tag;
1894 * otherwise the parent tag is a subset of the new
1895 * range and can continue to be used.
1896 */
1897 if (min_addr > dr->dr_sysbase
1898 || max_addr < dr->dr_sysbase + dr->dr_len - 1) {
1899 psubset = false;
1900 }
1901 if (min_addr <= dr->dr_sysbase + dr->dr_len
1902 && max_addr >= dr->dr_sysbase) {
1903 nranges++;
1904 }
1905 }
1906 if (nranges == 0) {
1907 nranges = 1;
1908 psubset = false;
1909 }
1910 if (psubset) {
1911 *newtag = tag;
1912 /* if the tag must be freed, add a reference */
1913 if (tag->_tag_needs_free)
1914 (tag->_tag_needs_free)++;
1915 return 0;
1916 }
1917
1918 const size_t tagsize = sizeof(*tag) + nranges * sizeof(*dr);
1919 if ((*newtag = kmem_intr_zalloc(tagsize,
1920 (flags & BUS_DMA_NOWAIT) ? KM_NOSLEEP : KM_SLEEP)) == NULL)
1921 return ENOMEM;
1922
1923 dr = (void *)(*newtag + 1);
1924 **newtag = *tag;
1925 (*newtag)->_tag_needs_free = 1;
1926 (*newtag)->_ranges = dr;
1927 (*newtag)->_nranges = nranges;
1928
1929 if (tag->_ranges == NULL) {
1930 dr->dr_sysbase = min_addr;
1931 dr->dr_busbase = min_addr;
1932 dr->dr_len = max_addr + 1 - min_addr;
1933 } else {
1934 struct arm32_dma_range *pdr;
1935
1936 for (i = 0, pdr = tag->_ranges; i < tag->_nranges; i++, pdr++) {
1937 KASSERT(nranges != 0);
1938
1939 if (min_addr > pdr->dr_sysbase + pdr->dr_len
1940 || max_addr < pdr->dr_sysbase) {
1941 /*
1942 * this range doesn't overlap with new limits,
1943 * so skip.
1944 */
1945 continue;
1946 }
1947 /*
1948 * Copy the range and adjust to fit within the new
1949 * limits
1950 */
1951 dr[0] = pdr[0];
1952 if (dr->dr_sysbase < min_addr) {
1953 psize_t diff = min_addr - dr->dr_sysbase;
1954 dr->dr_busbase += diff;
1955 dr->dr_len -= diff;
1956 dr->dr_sysbase += diff;
1957 }
1958 if (max_addr <= dr->dr_sysbase + dr->dr_len - 1) {
1959 dr->dr_len = max_addr + 1 - dr->dr_sysbase;
1960 }
1961 dr++;
1962 nranges--;
1963 }
1964 }
1965
1966 return 0;
1967 #else
1968 return EOPNOTSUPP;
1969 #endif /* _ARM32_NEED_BUS_DMA_BOUNCE */
1970 }
1971
1972 void
1973 _bus_dmatag_destroy(bus_dma_tag_t tag)
1974 {
1975 #ifdef _ARM32_NEED_BUS_DMA_BOUNCE
1976 switch (tag->_tag_needs_free) {
1977 case 0:
1978 break; /* not allocated with kmem */
1979 case 1: {
1980 const size_t tagsize = sizeof(*tag)
1981 + tag->_nranges * sizeof(*tag->_ranges);
1982 kmem_intr_free(tag, tagsize); /* last reference to tag */
1983 break;
1984 }
1985 default:
1986 (tag->_tag_needs_free)--; /* one less reference */
1987 }
1988 #endif
1989 }
1990