Home | History | Annotate | Line # | Download | only in arm32
bus_dma.c revision 1.130
      1 /*	$NetBSD: bus_dma.c,v 1.130 2021/02/07 10:19:49 skrll Exp $	*/
      2 
      3 /*-
      4  * Copyright (c) 1996, 1997, 1998, 2020 The NetBSD Foundation, Inc.
      5  * All rights reserved.
      6  *
      7  * This code is derived from software contributed to The NetBSD Foundation
      8  * by Jason R. Thorpe of the Numerical Aerospace Simulation Facility,
      9  * NASA Ames Research Center.
     10  *
     11  * Redistribution and use in source and binary forms, with or without
     12  * modification, are permitted provided that the following conditions
     13  * are met:
     14  * 1. Redistributions of source code must retain the above copyright
     15  *    notice, this list of conditions and the following disclaimer.
     16  * 2. Redistributions in binary form must reproduce the above copyright
     17  *    notice, this list of conditions and the following disclaimer in the
     18  *    documentation and/or other materials provided with the distribution.
     19  *
     20  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     21  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     22  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     23  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     24  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     25  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     26  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     27  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     28  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     29  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     30  * POSSIBILITY OF SUCH DAMAGE.
     31  */
     32 
     33 #define _ARM32_BUS_DMA_PRIVATE
     34 
     35 #include "opt_arm_bus_space.h"
     36 #include "opt_cputypes.h"
     37 
     38 #include <sys/cdefs.h>
     39 __KERNEL_RCSID(0, "$NetBSD: bus_dma.c,v 1.130 2021/02/07 10:19:49 skrll Exp $");
     40 
     41 #include <sys/param.h>
     42 
     43 #include <sys/bus.h>
     44 #include <sys/cpu.h>
     45 #include <sys/kmem.h>
     46 #include <sys/mbuf.h>
     47 
     48 #include <uvm/uvm.h>
     49 
     50 #include <arm/cpuconf.h>
     51 #include <arm/cpufunc.h>
     52 
     53 #ifdef __HAVE_MM_MD_DIRECT_MAPPED_PHYS
     54 #include <dev/mm.h>
     55 #endif
     56 
     57 #ifdef BUSDMA_COUNTERS
     58 static struct evcnt bus_dma_creates =
     59 	EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL, "busdma", "creates");
     60 static struct evcnt bus_dma_bounced_creates =
     61 	EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL, "busdma", "bounced creates");
     62 static struct evcnt bus_dma_loads =
     63 	EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL, "busdma", "loads");
     64 static struct evcnt bus_dma_bounced_loads =
     65 	EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL, "busdma", "bounced loads");
     66 static struct evcnt bus_dma_coherent_loads =
     67 	EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL, "busdma", "coherent loads");
     68 static struct evcnt bus_dma_read_bounces =
     69 	EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL, "busdma", "read bounces");
     70 static struct evcnt bus_dma_write_bounces =
     71 	EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL, "busdma", "write bounces");
     72 static struct evcnt bus_dma_bounced_unloads =
     73 	EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL, "busdma", "bounced unloads");
     74 static struct evcnt bus_dma_unloads =
     75 	EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL, "busdma", "unloads");
     76 static struct evcnt bus_dma_bounced_destroys =
     77 	EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL, "busdma", "bounced destroys");
     78 static struct evcnt bus_dma_destroys =
     79 	EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL, "busdma", "destroys");
     80 static struct evcnt bus_dma_sync_prereadwrite =
     81 	EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL, "busdma", "sync prereadwrite");
     82 static struct evcnt bus_dma_sync_preread_begin =
     83 	EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL, "busdma", "sync preread begin");
     84 static struct evcnt bus_dma_sync_preread =
     85 	EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL, "busdma", "sync preread");
     86 static struct evcnt bus_dma_sync_preread_tail =
     87 	EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL, "busdma", "sync preread tail");
     88 static struct evcnt bus_dma_sync_prewrite =
     89 	EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL, "busdma", "sync prewrite");
     90 static struct evcnt bus_dma_sync_postread =
     91 	EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL, "busdma", "sync postread");
     92 static struct evcnt bus_dma_sync_postreadwrite =
     93 	EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL, "busdma", "sync postreadwrite");
     94 static struct evcnt bus_dma_sync_postwrite =
     95 	EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL, "busdma", "sync postwrite");
     96 
     97 static struct evcnt bus_dma_sync_coherent_prereadwrite =
     98 	EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL, "busdma", "sync coherent prereadwrite");
     99 static struct evcnt bus_dma_sync_coherent_preread =
    100 	EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL, "busdma", "sync coherent preread");
    101 static struct evcnt bus_dma_sync_coherent_prewrite =
    102 	EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL, "busdma", "sync coherent prewrite");
    103 static struct evcnt bus_dma_sync_coherent_postread =
    104 	EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL, "busdma", "sync coherent postread");
    105 static struct evcnt bus_dma_sync_coherent_postreadwrite =
    106 	EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL, "busdma", "sync coherent postreadwrite");
    107 static struct evcnt bus_dma_sync_coherent_postwrite =
    108 	EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL, "busdma", "sync coherent postwrite");
    109 
    110 EVCNT_ATTACH_STATIC(bus_dma_creates);
    111 EVCNT_ATTACH_STATIC(bus_dma_bounced_creates);
    112 EVCNT_ATTACH_STATIC(bus_dma_loads);
    113 EVCNT_ATTACH_STATIC(bus_dma_bounced_loads);
    114 EVCNT_ATTACH_STATIC(bus_dma_coherent_loads);
    115 EVCNT_ATTACH_STATIC(bus_dma_read_bounces);
    116 EVCNT_ATTACH_STATIC(bus_dma_write_bounces);
    117 EVCNT_ATTACH_STATIC(bus_dma_unloads);
    118 EVCNT_ATTACH_STATIC(bus_dma_bounced_unloads);
    119 EVCNT_ATTACH_STATIC(bus_dma_destroys);
    120 EVCNT_ATTACH_STATIC(bus_dma_bounced_destroys);
    121 EVCNT_ATTACH_STATIC(bus_dma_sync_prereadwrite);
    122 EVCNT_ATTACH_STATIC(bus_dma_sync_preread_begin);
    123 EVCNT_ATTACH_STATIC(bus_dma_sync_preread);
    124 EVCNT_ATTACH_STATIC(bus_dma_sync_preread_tail);
    125 EVCNT_ATTACH_STATIC(bus_dma_sync_prewrite);
    126 EVCNT_ATTACH_STATIC(bus_dma_sync_postread);
    127 EVCNT_ATTACH_STATIC(bus_dma_sync_postreadwrite);
    128 EVCNT_ATTACH_STATIC(bus_dma_sync_postwrite);
    129 
    130 EVCNT_ATTACH_STATIC(bus_dma_sync_coherent_prereadwrite);
    131 EVCNT_ATTACH_STATIC(bus_dma_sync_coherent_preread);
    132 EVCNT_ATTACH_STATIC(bus_dma_sync_coherent_prewrite);
    133 EVCNT_ATTACH_STATIC(bus_dma_sync_coherent_postread);
    134 EVCNT_ATTACH_STATIC(bus_dma_sync_coherent_postreadwrite);
    135 EVCNT_ATTACH_STATIC(bus_dma_sync_coherent_postwrite);
    136 
    137 #define	STAT_INCR(x)	(bus_dma_ ## x.ev_count++)
    138 #else
    139 #define	STAT_INCR(x)	__nothing
    140 #endif
    141 
    142 int	_bus_dmamap_load_buffer(bus_dma_tag_t, bus_dmamap_t, void *,
    143 	    bus_size_t, struct vmspace *, int);
    144 
    145 /*
    146  * Check to see if the specified page is in an allowed DMA range.
    147  */
    148 static inline struct arm32_dma_range *
    149 _bus_dma_paddr_inrange(struct arm32_dma_range *ranges, int nranges,
    150     bus_addr_t curaddr)
    151 {
    152 	struct arm32_dma_range *dr;
    153 	int i;
    154 
    155 	for (i = 0, dr = ranges; i < nranges; i++, dr++) {
    156 		if (curaddr >= dr->dr_sysbase &&
    157 		    curaddr < (dr->dr_sysbase + dr->dr_len))
    158 			return dr;
    159 	}
    160 
    161 	return NULL;
    162 }
    163 
    164 /*
    165  * Check to see if the specified busaddr is in an allowed DMA range.
    166  */
    167 static inline paddr_t
    168 _bus_dma_busaddr_to_paddr(bus_dma_tag_t t, bus_addr_t curaddr)
    169 {
    170 	struct arm32_dma_range *dr;
    171 	u_int i;
    172 
    173 	if (t->_nranges == 0)
    174 		return curaddr;
    175 
    176 	for (i = 0, dr = t->_ranges; i < t->_nranges; i++, dr++) {
    177 		if (dr->dr_busbase <= curaddr
    178 		    && curaddr < dr->dr_busbase + dr->dr_len)
    179 			return curaddr - dr->dr_busbase + dr->dr_sysbase;
    180 	}
    181 	panic("%s: curaddr %#lx not in range", __func__, curaddr);
    182 }
    183 
    184 /*
    185  * Common function to load the specified physical address into the
    186  * DMA map, coalescing segments and boundary checking as necessary.
    187  */
    188 static int
    189 _bus_dmamap_load_paddr(bus_dma_tag_t t, bus_dmamap_t map,
    190     bus_addr_t paddr, bus_size_t size, bool coherent)
    191 {
    192 	bus_dma_segment_t * const segs = map->dm_segs;
    193 	int nseg = map->dm_nsegs;
    194 	bus_addr_t lastaddr;
    195 	bus_addr_t bmask = ~(map->_dm_boundary - 1);
    196 	bus_addr_t curaddr;
    197 	bus_size_t sgsize;
    198 	uint32_t _ds_flags = coherent ? _BUS_DMAMAP_COHERENT : 0;
    199 
    200 	if (nseg > 0)
    201 		lastaddr = segs[nseg - 1].ds_addr + segs[nseg - 1].ds_len;
    202 	else
    203 		lastaddr = 0xdead;
    204 
    205  again:
    206 	sgsize = size;
    207 
    208 	/* Make sure we're in an allowed DMA range. */
    209 	if (t->_ranges != NULL) {
    210 		/* XXX cache last result? */
    211 		const struct arm32_dma_range * const dr =
    212 		    _bus_dma_paddr_inrange(t->_ranges, t->_nranges, paddr);
    213 		if (dr == NULL)
    214 			return EINVAL;
    215 
    216 		/*
    217 		 * If this region is coherent, mark the segment as coherent.
    218 		 */
    219 		_ds_flags |= dr->dr_flags & _BUS_DMAMAP_COHERENT;
    220 
    221 		/*
    222 		 * In a valid DMA range.  Translate the physical
    223 		 * memory address to an address in the DMA window.
    224 		 */
    225 		curaddr = (paddr - dr->dr_sysbase) + dr->dr_busbase;
    226 #if 0
    227 		printf("%p: %#lx: range %#lx/%#lx/%#lx/%#x: %#x <-- %#lx\n",
    228 		    t, paddr, dr->dr_sysbase, dr->dr_busbase,
    229 		    dr->dr_len, dr->dr_flags, _ds_flags, curaddr);
    230 #endif
    231 	} else
    232 		curaddr = paddr;
    233 
    234 	/*
    235 	 * Make sure we don't cross any boundaries.
    236 	 */
    237 	if (map->_dm_boundary > 0) {
    238 		bus_addr_t baddr;	/* next boundary address */
    239 
    240 		baddr = (curaddr + map->_dm_boundary) & bmask;
    241 		if (sgsize > (baddr - curaddr))
    242 			sgsize = (baddr - curaddr);
    243 	}
    244 
    245 	/*
    246 	 * Insert chunk into a segment, coalescing with the
    247 	 * previous segment if possible.
    248 	 */
    249 	if (nseg > 0 && curaddr == lastaddr &&
    250 	    segs[nseg - 1].ds_len + sgsize <= map->dm_maxsegsz &&
    251 	    ((segs[nseg - 1]._ds_flags ^ _ds_flags) & _BUS_DMAMAP_COHERENT) == 0 &&
    252 	    (map->_dm_boundary == 0 ||
    253 	     (segs[nseg - 1].ds_addr & bmask) == (curaddr & bmask))) {
    254 	     	/* coalesce */
    255 		segs[nseg - 1].ds_len += sgsize;
    256 	} else if (nseg >= map->_dm_segcnt) {
    257 		return EFBIG;
    258 	} else {
    259 		/* new segment */
    260 		segs[nseg].ds_addr = curaddr;
    261 		segs[nseg].ds_len = sgsize;
    262 		segs[nseg]._ds_flags = _ds_flags;
    263 		nseg++;
    264 	}
    265 
    266 	lastaddr = curaddr + sgsize;
    267 
    268 	paddr += sgsize;
    269 	size -= sgsize;
    270 	if (size > 0)
    271 		goto again;
    272 
    273 	map->_dm_flags &= (_ds_flags & _BUS_DMAMAP_COHERENT);
    274 	map->dm_nsegs = nseg;
    275 	return 0;
    276 }
    277 
    278 static int _bus_dma_uiomove(void *buf, struct uio *uio, size_t n,
    279 	    int direction);
    280 
    281 #ifdef _ARM32_NEED_BUS_DMA_BOUNCE
    282 static int _bus_dma_alloc_bouncebuf(bus_dma_tag_t t, bus_dmamap_t map,
    283 	    bus_size_t size, int flags);
    284 static void _bus_dma_free_bouncebuf(bus_dma_tag_t t, bus_dmamap_t map);
    285 
    286 static int
    287 _bus_dma_load_bouncebuf(bus_dma_tag_t t, bus_dmamap_t map, void *buf,
    288 	size_t buflen, int buftype, int flags)
    289 {
    290 	struct arm32_bus_dma_cookie * const cookie = map->_dm_cookie;
    291 	struct vmspace * const vm = vmspace_kernel();
    292 	int error;
    293 
    294 	KASSERT(cookie != NULL);
    295 	KASSERT(cookie->id_flags & _BUS_DMA_MIGHT_NEED_BOUNCE);
    296 
    297 	/*
    298 	 * Allocate bounce pages, if necessary.
    299 	 */
    300 	if ((cookie->id_flags & _BUS_DMA_HAS_BOUNCE) == 0) {
    301 		error = _bus_dma_alloc_bouncebuf(t, map, buflen, flags);
    302 		if (error)
    303 			return error;
    304 	}
    305 
    306 	/*
    307 	 * Cache a pointer to the caller's buffer and load the DMA map
    308 	 * with the bounce buffer.
    309 	 */
    310 	cookie->id_origbuf = buf;
    311 	cookie->id_origbuflen = buflen;
    312 	error = _bus_dmamap_load_buffer(t, map, cookie->id_bouncebuf,
    313 	    buflen, vm, flags);
    314 	if (error)
    315 		return error;
    316 
    317 	STAT_INCR(bounced_loads);
    318 	map->dm_mapsize = buflen;
    319 	map->_dm_vmspace = vm;
    320 	map->_dm_buftype = buftype;
    321 
    322 	/* ...so _bus_dmamap_sync() knows we're bouncing */
    323 	map->_dm_flags |= _BUS_DMAMAP_IS_BOUNCING;
    324 	cookie->id_flags |= _BUS_DMA_IS_BOUNCING;
    325 	return 0;
    326 }
    327 #endif /* _ARM32_NEED_BUS_DMA_BOUNCE */
    328 
    329 /*
    330  * Common function for DMA map creation.  May be called by bus-specific
    331  * DMA map creation functions.
    332  */
    333 int
    334 _bus_dmamap_create(bus_dma_tag_t t, bus_size_t size, int nsegments,
    335     bus_size_t maxsegsz, bus_size_t boundary, int flags, bus_dmamap_t *dmamp)
    336 {
    337 	struct arm32_bus_dmamap *map;
    338 	void *mapstore;
    339 	int error = 0;
    340 
    341 #ifdef DEBUG_DMA
    342 	printf("dmamap_create: t=%p size=%#lx nseg=%#x msegsz=%#lx boundary=%#lx"
    343 	    " flags=%#x\n", t, size, nsegments, maxsegsz, boundary, flags);
    344 #endif	/* DEBUG_DMA */
    345 
    346 	/*
    347 	 * Allocate and initialize the DMA map.  The end of the map
    348 	 * is a variable-sized array of segments, so we allocate enough
    349 	 * room for them in one shot.
    350 	 *
    351 	 * Note we don't preserve the WAITOK or NOWAIT flags.  Preservation
    352 	 * of ALLOCNOW notifies others that we've reserved these resources,
    353 	 * and they are not to be freed.
    354 	 *
    355 	 * The bus_dmamap_t includes one bus_dma_segment_t, hence
    356 	 * the (nsegments - 1).
    357 	 */
    358 	const size_t mapsize = sizeof(struct arm32_bus_dmamap) +
    359 	    (sizeof(bus_dma_segment_t) * (nsegments - 1));
    360 	const int zallocflags = (flags & BUS_DMA_NOWAIT) ? KM_NOSLEEP : KM_SLEEP;
    361 	if ((mapstore = kmem_intr_zalloc(mapsize, zallocflags)) == NULL)
    362 		return ENOMEM;
    363 
    364 	map = (struct arm32_bus_dmamap *)mapstore;
    365 	map->_dm_size = size;
    366 	map->_dm_segcnt = nsegments;
    367 	map->_dm_maxmaxsegsz = maxsegsz;
    368 	map->_dm_boundary = boundary;
    369 	map->_dm_flags = flags & ~(BUS_DMA_WAITOK|BUS_DMA_NOWAIT);
    370 	map->_dm_origbuf = NULL;
    371 	map->_dm_buftype = _BUS_DMA_BUFTYPE_INVALID;
    372 	map->_dm_vmspace = vmspace_kernel();
    373 	map->_dm_cookie = NULL;
    374 	map->dm_maxsegsz = maxsegsz;
    375 	map->dm_mapsize = 0;		/* no valid mappings */
    376 	map->dm_nsegs = 0;
    377 
    378 #ifdef _ARM32_NEED_BUS_DMA_BOUNCE
    379 	struct arm32_bus_dma_cookie *cookie;
    380 	int cookieflags;
    381 	void *cookiestore;
    382 
    383 	cookieflags = 0;
    384 
    385 	if (t->_may_bounce != NULL) {
    386 		error = (*t->_may_bounce)(t, map, flags, &cookieflags);
    387 		if (error != 0)
    388 			goto out;
    389 	}
    390 
    391 	if (t->_ranges != NULL) {
    392 		/*
    393 		 * If ranges are defined, we may have to bounce. The only
    394 		 * exception is if there is exactly one range that covers
    395 		 * all of physical memory.
    396 		 */
    397 		switch (t->_nranges) {
    398 		case 1:
    399 			if (t->_ranges[0].dr_sysbase == 0 &&
    400 			    t->_ranges[0].dr_len == UINTPTR_MAX) {
    401 				break;
    402 			}
    403 			/* FALLTHROUGH */
    404 		default:
    405 			cookieflags |= _BUS_DMA_MIGHT_NEED_BOUNCE;
    406 		}
    407 	}
    408 
    409 	if ((cookieflags & _BUS_DMA_MIGHT_NEED_BOUNCE) == 0) {
    410 		STAT_INCR(creates);
    411 		*dmamp = map;
    412 		return 0;
    413 	}
    414 
    415 	const size_t cookiesize = sizeof(struct arm32_bus_dma_cookie) +
    416 	    (sizeof(bus_dma_segment_t) * map->_dm_segcnt);
    417 
    418 	/*
    419 	 * Allocate our cookie.
    420 	 */
    421 	if ((cookiestore = kmem_intr_zalloc(cookiesize, zallocflags)) == NULL) {
    422 		error = ENOMEM;
    423 		goto out;
    424 	}
    425 	cookie = (struct arm32_bus_dma_cookie *)cookiestore;
    426 	cookie->id_flags = cookieflags;
    427 	map->_dm_cookie = cookie;
    428 	STAT_INCR(bounced_creates);
    429 
    430 	error = _bus_dma_alloc_bouncebuf(t, map, size, flags);
    431  out:
    432 	if (error)
    433 		_bus_dmamap_destroy(t, map);
    434 	else
    435 		*dmamp = map;
    436 #else
    437 	*dmamp = map;
    438 	STAT_INCR(creates);
    439 #endif /* _ARM32_NEED_BUS_DMA_BOUNCE */
    440 #ifdef DEBUG_DMA
    441 	printf("dmamap_create:map=%p\n", map);
    442 #endif	/* DEBUG_DMA */
    443 	return error;
    444 }
    445 
    446 /*
    447  * Common function for DMA map destruction.  May be called by bus-specific
    448  * DMA map destruction functions.
    449  */
    450 void
    451 _bus_dmamap_destroy(bus_dma_tag_t t, bus_dmamap_t map)
    452 {
    453 
    454 #ifdef DEBUG_DMA
    455 	printf("dmamap_destroy: t=%p map=%p\n", t, map);
    456 #endif	/* DEBUG_DMA */
    457 #ifdef _ARM32_NEED_BUS_DMA_BOUNCE
    458 	struct arm32_bus_dma_cookie *cookie = map->_dm_cookie;
    459 
    460 	/*
    461 	 * Free any bounce pages this map might hold.
    462 	 */
    463 	if (cookie != NULL) {
    464 		const size_t cookiesize = sizeof(struct arm32_bus_dma_cookie) +
    465 		    (sizeof(bus_dma_segment_t) * map->_dm_segcnt);
    466 
    467 		if (cookie->id_flags & _BUS_DMA_IS_BOUNCING)
    468 			STAT_INCR(bounced_unloads);
    469 		map->dm_nsegs = 0;
    470 		if (cookie->id_flags & _BUS_DMA_HAS_BOUNCE)
    471 			_bus_dma_free_bouncebuf(t, map);
    472 		STAT_INCR(bounced_destroys);
    473 		kmem_intr_free(cookie, cookiesize);
    474 	} else
    475 #endif
    476 	STAT_INCR(destroys);
    477 
    478 	if (map->dm_nsegs > 0)
    479 		STAT_INCR(unloads);
    480 
    481 	const size_t mapsize = sizeof(struct arm32_bus_dmamap) +
    482 	    (sizeof(bus_dma_segment_t) * (map->_dm_segcnt - 1));
    483 	kmem_intr_free(map, mapsize);
    484 }
    485 
    486 /*
    487  * Common function for loading a DMA map with a linear buffer.  May
    488  * be called by bus-specific DMA map load functions.
    489  */
    490 int
    491 _bus_dmamap_load(bus_dma_tag_t t, bus_dmamap_t map, void *buf,
    492     bus_size_t buflen, struct proc *p, int flags)
    493 {
    494 	struct vmspace *vm;
    495 	int error;
    496 
    497 #ifdef DEBUG_DMA
    498 	printf("dmamap_load: t=%p map=%p buf=%p len=%#lx p=%p f=%#x\n",
    499 	    t, map, buf, buflen, p, flags);
    500 #endif	/* DEBUG_DMA */
    501 
    502 	if (map->dm_nsegs > 0) {
    503 #ifdef _ARM32_NEED_BUS_DMA_BOUNCE
    504 		struct arm32_bus_dma_cookie *cookie = map->_dm_cookie;
    505 		if (cookie != NULL) {
    506 			if (cookie->id_flags & _BUS_DMA_IS_BOUNCING) {
    507 				STAT_INCR(bounced_unloads);
    508 				cookie->id_flags &= ~_BUS_DMA_IS_BOUNCING;
    509 				map->_dm_flags &= ~_BUS_DMAMAP_IS_BOUNCING;
    510 			}
    511 		} else
    512 #endif
    513 		STAT_INCR(unloads);
    514 	}
    515 
    516 	/*
    517 	 * Make sure that on error condition we return "no valid mappings".
    518 	 */
    519 	map->dm_mapsize = 0;
    520 	map->dm_nsegs = 0;
    521 	map->_dm_buftype = _BUS_DMA_BUFTYPE_INVALID;
    522 	KASSERTMSG(map->dm_maxsegsz <= map->_dm_maxmaxsegsz,
    523 	    "dm_maxsegsz %lu _dm_maxmaxsegsz %lu",
    524 	    map->dm_maxsegsz, map->_dm_maxmaxsegsz);
    525 
    526 	if (buflen > map->_dm_size)
    527 		return EINVAL;
    528 
    529 	if (p != NULL) {
    530 		vm = p->p_vmspace;
    531 	} else {
    532 		vm = vmspace_kernel();
    533 	}
    534 
    535 	/* _bus_dmamap_load_buffer() clears this if we're not... */
    536 	map->_dm_flags |= _BUS_DMAMAP_COHERENT;
    537 
    538 	error = _bus_dmamap_load_buffer(t, map, buf, buflen, vm, flags);
    539 	if (error == 0) {
    540 		map->dm_mapsize = buflen;
    541 		map->_dm_vmspace = vm;
    542 		map->_dm_origbuf = buf;
    543 		map->_dm_buftype = _BUS_DMA_BUFTYPE_LINEAR;
    544 		if (map->_dm_flags & _BUS_DMAMAP_COHERENT) {
    545 			STAT_INCR(coherent_loads);
    546 		} else {
    547 			STAT_INCR(loads);
    548 		}
    549 		return 0;
    550 	}
    551 #ifdef _ARM32_NEED_BUS_DMA_BOUNCE
    552 	struct arm32_bus_dma_cookie * const cookie = map->_dm_cookie;
    553 	if (cookie != NULL && (cookie->id_flags & _BUS_DMA_MIGHT_NEED_BOUNCE)) {
    554 		error = _bus_dma_load_bouncebuf(t, map, buf, buflen,
    555 		    _BUS_DMA_BUFTYPE_LINEAR, flags);
    556 	}
    557 #endif
    558 	return error;
    559 }
    560 
    561 /*
    562  * Like _bus_dmamap_load(), but for mbufs.
    563  */
    564 int
    565 _bus_dmamap_load_mbuf(bus_dma_tag_t t, bus_dmamap_t map, struct mbuf *m0,
    566     int flags)
    567 {
    568 	struct mbuf *m;
    569 	int error;
    570 
    571 #ifdef DEBUG_DMA
    572 	printf("dmamap_load_mbuf: t=%p map=%p m0=%p f=%#x\n",
    573 	    t, map, m0, flags);
    574 #endif	/* DEBUG_DMA */
    575 
    576 	if (map->dm_nsegs > 0) {
    577 #ifdef _ARM32_NEED_BUS_DMA_BOUNCE
    578 		struct arm32_bus_dma_cookie *cookie = map->_dm_cookie;
    579 		if (cookie != NULL) {
    580 			if (cookie->id_flags & _BUS_DMA_IS_BOUNCING) {
    581 				STAT_INCR(bounced_unloads);
    582 				cookie->id_flags &= ~_BUS_DMA_IS_BOUNCING;
    583 				map->_dm_flags &= ~_BUS_DMAMAP_IS_BOUNCING;
    584 			}
    585 		} else
    586 #endif
    587 		STAT_INCR(unloads);
    588 	}
    589 
    590 	/*
    591 	 * Make sure that on error condition we return "no valid mappings."
    592 	 */
    593 	map->dm_mapsize = 0;
    594 	map->dm_nsegs = 0;
    595 	map->_dm_buftype = _BUS_DMA_BUFTYPE_INVALID;
    596 	KASSERTMSG(map->dm_maxsegsz <= map->_dm_maxmaxsegsz,
    597 	    "dm_maxsegsz %lu _dm_maxmaxsegsz %lu",
    598 	    map->dm_maxsegsz, map->_dm_maxmaxsegsz);
    599 
    600 	KASSERT(m0->m_flags & M_PKTHDR);
    601 
    602 	if (m0->m_pkthdr.len > map->_dm_size)
    603 		return EINVAL;
    604 
    605 	/* _bus_dmamap_load_paddr() clears this if we're not... */
    606 	map->_dm_flags |= _BUS_DMAMAP_COHERENT;
    607 
    608 	error = 0;
    609 	for (m = m0; m != NULL && error == 0; m = m->m_next) {
    610 		int offset;
    611 		int remainbytes;
    612 		const struct vm_page * const *pgs;
    613 		paddr_t paddr;
    614 		int size;
    615 
    616 		if (m->m_len == 0)
    617 			continue;
    618 		/*
    619 		 * Don't allow reads in read-only mbufs.
    620 		 */
    621 		if (M_ROMAP(m) && (flags & BUS_DMA_READ)) {
    622 			error = EFAULT;
    623 			break;
    624 		}
    625 		switch (m->m_flags & (M_EXT|M_EXT_CLUSTER|M_EXT_PAGES)) {
    626 		case M_EXT|M_EXT_CLUSTER:
    627 			/* XXX KDASSERT */
    628 			KASSERT(m->m_ext.ext_paddr != M_PADDR_INVALID);
    629 			paddr = m->m_ext.ext_paddr +
    630 			    (m->m_data - m->m_ext.ext_buf);
    631 			size = m->m_len;
    632 			error = _bus_dmamap_load_paddr(t, map, paddr, size,
    633 			    false);
    634 			break;
    635 
    636 		case M_EXT|M_EXT_PAGES:
    637 			KASSERT(m->m_ext.ext_buf <= m->m_data);
    638 			KASSERT(m->m_data <=
    639 			    m->m_ext.ext_buf + m->m_ext.ext_size);
    640 
    641 			offset = (vaddr_t)m->m_data -
    642 			    trunc_page((vaddr_t)m->m_ext.ext_buf);
    643 			remainbytes = m->m_len;
    644 
    645 			/* skip uninteresting pages */
    646 			pgs = (const struct vm_page * const *)
    647 			    m->m_ext.ext_pgs + (offset >> PAGE_SHIFT);
    648 
    649 			offset &= PAGE_MASK;	/* offset in the first page */
    650 
    651 			/* load each page */
    652 			while (remainbytes > 0) {
    653 				const struct vm_page *pg;
    654 
    655 				size = MIN(remainbytes, PAGE_SIZE - offset);
    656 
    657 				pg = *pgs++;
    658 				KASSERT(pg);
    659 				paddr = VM_PAGE_TO_PHYS(pg) + offset;
    660 
    661 				error = _bus_dmamap_load_paddr(t, map,
    662 				    paddr, size, false);
    663 				if (error)
    664 					break;
    665 				offset = 0;
    666 				remainbytes -= size;
    667 			}
    668 			break;
    669 
    670 		case 0:
    671 			paddr = m->m_paddr + M_BUFOFFSET(m) +
    672 			    (m->m_data - M_BUFADDR(m));
    673 			size = m->m_len;
    674 			error = _bus_dmamap_load_paddr(t, map, paddr, size,
    675 			    false);
    676 			break;
    677 
    678 		default:
    679 			error = _bus_dmamap_load_buffer(t, map, m->m_data,
    680 			    m->m_len, vmspace_kernel(), flags);
    681 		}
    682 	}
    683 	if (error == 0) {
    684 		map->dm_mapsize = m0->m_pkthdr.len;
    685 		map->_dm_origbuf = m0;
    686 		map->_dm_buftype = _BUS_DMA_BUFTYPE_MBUF;
    687 		map->_dm_vmspace = vmspace_kernel();	/* always kernel */
    688 		if (map->_dm_flags & _BUS_DMAMAP_COHERENT) {
    689 			STAT_INCR(coherent_loads);
    690 		} else {
    691 			STAT_INCR(loads);
    692 		}
    693 		return 0;
    694 	}
    695 #ifdef _ARM32_NEED_BUS_DMA_BOUNCE
    696 	struct arm32_bus_dma_cookie * const cookie = map->_dm_cookie;
    697 	if (cookie != NULL && (cookie->id_flags & _BUS_DMA_MIGHT_NEED_BOUNCE)) {
    698 		error = _bus_dma_load_bouncebuf(t, map, m0, m0->m_pkthdr.len,
    699 		    _BUS_DMA_BUFTYPE_MBUF, flags);
    700 	}
    701 #endif
    702 	return error;
    703 }
    704 
    705 /*
    706  * Like _bus_dmamap_load(), but for uios.
    707  */
    708 int
    709 _bus_dmamap_load_uio(bus_dma_tag_t t, bus_dmamap_t map, struct uio *uio,
    710     int flags)
    711 {
    712 	bus_size_t minlen, resid;
    713 	struct iovec *iov;
    714 	void *addr;
    715 	int i, error;
    716 
    717 	/*
    718 	 * Make sure that on error condition we return "no valid mappings."
    719 	 */
    720 	map->dm_mapsize = 0;
    721 	map->dm_nsegs = 0;
    722 	KASSERTMSG(map->dm_maxsegsz <= map->_dm_maxmaxsegsz,
    723 	    "dm_maxsegsz %lu _dm_maxmaxsegsz %lu",
    724 	    map->dm_maxsegsz, map->_dm_maxmaxsegsz);
    725 
    726 	resid = uio->uio_resid;
    727 	iov = uio->uio_iov;
    728 
    729 	/* _bus_dmamap_load_buffer() clears this if we're not... */
    730 	map->_dm_flags |= _BUS_DMAMAP_COHERENT;
    731 
    732 	error = 0;
    733 	for (i = 0; i < uio->uio_iovcnt && resid != 0 && error == 0; i++) {
    734 		/*
    735 		 * Now at the first iovec to load.  Load each iovec
    736 		 * until we have exhausted the residual count.
    737 		 */
    738 		minlen = resid < iov[i].iov_len ? resid : iov[i].iov_len;
    739 		addr = (void *)iov[i].iov_base;
    740 
    741 		error = _bus_dmamap_load_buffer(t, map, addr, minlen,
    742 		    uio->uio_vmspace, flags);
    743 
    744 		resid -= minlen;
    745 	}
    746 	if (error == 0) {
    747 		map->dm_mapsize = uio->uio_resid;
    748 		map->_dm_origbuf = uio;
    749 		map->_dm_buftype = _BUS_DMA_BUFTYPE_UIO;
    750 		map->_dm_vmspace = uio->uio_vmspace;
    751 		if (map->_dm_flags & _BUS_DMAMAP_COHERENT) {
    752 			STAT_INCR(coherent_loads);
    753 		} else {
    754 			STAT_INCR(loads);
    755 		}
    756 	}
    757 	return error;
    758 }
    759 
    760 /*
    761  * Like _bus_dmamap_load(), but for raw memory allocated with
    762  * bus_dmamem_alloc().
    763  */
    764 int
    765 _bus_dmamap_load_raw(bus_dma_tag_t t, bus_dmamap_t map,
    766     bus_dma_segment_t *segs, int nsegs, bus_size_t size0, int flags)
    767 {
    768 
    769 	bus_size_t size;
    770 	int i, error = 0;
    771 
    772 	/*
    773 	 * Make sure that on error conditions we return "no valid mappings."
    774 	 */
    775 	map->dm_mapsize = 0;
    776 	map->dm_nsegs = 0;
    777 	KASSERT(map->dm_maxsegsz <= map->_dm_maxmaxsegsz);
    778 
    779 	if (size0 > map->_dm_size)
    780 		return EINVAL;
    781 
    782 	for (i = 0, size = size0; i < nsegs && size > 0; i++) {
    783 		bus_dma_segment_t *ds = &segs[i];
    784 		bus_size_t sgsize;
    785 
    786 		sgsize = MIN(ds->ds_len, size);
    787 		if (sgsize == 0)
    788 			continue;
    789 		const bool coherent =
    790 		    (ds->_ds_flags & _BUS_DMAMAP_COHERENT) != 0;
    791 		error = _bus_dmamap_load_paddr(t, map, ds->ds_addr,
    792 		    sgsize, coherent);
    793 		if (error != 0)
    794 			break;
    795 		size -= sgsize;
    796 	}
    797 
    798 	if (error != 0) {
    799 		map->dm_mapsize = 0;
    800 		map->dm_nsegs = 0;
    801 		return error;
    802 	}
    803 
    804 	/* XXX TBD bounce */
    805 
    806 	map->dm_mapsize = size0;
    807 	map->_dm_origbuf = NULL;
    808 	map->_dm_buftype = _BUS_DMA_BUFTYPE_RAW;
    809 	map->_dm_vmspace = NULL;
    810 	return 0;
    811 }
    812 
    813 /*
    814  * Common function for unloading a DMA map.  May be called by
    815  * bus-specific DMA map unload functions.
    816  */
    817 void
    818 _bus_dmamap_unload(bus_dma_tag_t t, bus_dmamap_t map)
    819 {
    820 
    821 #ifdef DEBUG_DMA
    822 	printf("dmamap_unload: t=%p map=%p\n", t, map);
    823 #endif	/* DEBUG_DMA */
    824 
    825 	/*
    826 	 * No resources to free; just mark the mappings as
    827 	 * invalid.
    828 	 */
    829 	map->dm_mapsize = 0;
    830 	map->dm_nsegs = 0;
    831 	map->_dm_origbuf = NULL;
    832 	map->_dm_buftype = _BUS_DMA_BUFTYPE_INVALID;
    833 	map->_dm_vmspace = NULL;
    834 }
    835 
    836 static void
    837 _bus_dmamap_sync_segment(vaddr_t va, paddr_t pa, vsize_t len, int ops,
    838     bool readonly_p)
    839 {
    840 
    841 #if defined(ARM_MMU_EXTENDED)
    842 	/*
    843 	 * No optimisations are available for readonly mbufs on armv6+, so
    844 	 * assume it's not readonly from here on.
    845 	 *
    846  	 * See the comment in _bus_dmamap_sync_mbuf
    847 	 */
    848 	readonly_p = false;
    849 #endif
    850 
    851 	KASSERTMSG((va & PAGE_MASK) == (pa & PAGE_MASK),
    852 	    "va %#lx pa %#lx", va, pa);
    853 #if 0
    854 	printf("sync_segment: va=%#lx pa=%#lx len=%#lx ops=%#x ro=%d\n",
    855 	    va, pa, len, ops, readonly_p);
    856 #endif
    857 
    858 	switch (ops) {
    859 	case BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE:
    860 		if (!readonly_p) {
    861 			STAT_INCR(sync_prereadwrite);
    862 			cpu_dcache_wbinv_range(va, len);
    863 			cpu_sdcache_wbinv_range(va, pa, len);
    864 			break;
    865 		}
    866 		/* FALLTHROUGH */
    867 
    868 	case BUS_DMASYNC_PREREAD: {
    869 		const size_t line_size = arm_dcache_align;
    870 		const size_t line_mask = arm_dcache_align_mask;
    871 		vsize_t misalignment = va & line_mask;
    872 		if (misalignment) {
    873 			va -= misalignment;
    874 			pa -= misalignment;
    875 			len += misalignment;
    876 			STAT_INCR(sync_preread_begin);
    877 			cpu_dcache_wbinv_range(va, line_size);
    878 			cpu_sdcache_wbinv_range(va, pa, line_size);
    879 			if (len <= line_size)
    880 				break;
    881 			va += line_size;
    882 			pa += line_size;
    883 			len -= line_size;
    884 		}
    885 		misalignment = len & line_mask;
    886 		len -= misalignment;
    887 		if (len > 0) {
    888 			STAT_INCR(sync_preread);
    889 			cpu_dcache_inv_range(va, len);
    890 			cpu_sdcache_inv_range(va, pa, len);
    891 		}
    892 		if (misalignment) {
    893 			va += len;
    894 			pa += len;
    895 			STAT_INCR(sync_preread_tail);
    896 			cpu_dcache_wbinv_range(va, line_size);
    897 			cpu_sdcache_wbinv_range(va, pa, line_size);
    898 		}
    899 		break;
    900 	}
    901 
    902 	case BUS_DMASYNC_PREWRITE:
    903 		STAT_INCR(sync_prewrite);
    904 		cpu_dcache_wb_range(va, len);
    905 		cpu_sdcache_wb_range(va, pa, len);
    906 		break;
    907 
    908 #if defined(CPU_CORTEX) || defined(CPU_ARMV8)
    909 
    910 	/*
    911 	 * Cortex CPUs can do speculative loads so we need to clean the cache
    912 	 * after a DMA read to deal with any speculatively loaded cache lines.
    913 	 * Since these can't be dirty, we can just invalidate them and don't
    914 	 * have to worry about having to write back their contents.
    915 	 */
    916 	case BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE:
    917 		STAT_INCR(sync_postreadwrite);
    918 		cpu_dcache_inv_range(va, len);
    919 		cpu_sdcache_inv_range(va, pa, len);
    920 		break;
    921 
    922 	case BUS_DMASYNC_POSTREAD:
    923 		STAT_INCR(sync_postread);
    924 		cpu_dcache_inv_range(va, len);
    925 		cpu_sdcache_inv_range(va, pa, len);
    926 		break;
    927 #endif
    928 	}
    929 }
    930 
    931 static inline void
    932 _bus_dmamap_sync_linear(bus_dma_tag_t t, bus_dmamap_t map, bus_addr_t offset,
    933     bus_size_t len, int ops)
    934 {
    935 	bus_dma_segment_t *ds = map->dm_segs;
    936 	vaddr_t va = (vaddr_t) map->_dm_origbuf;
    937 #ifdef _ARM32_NEED_BUS_DMA_BOUNCE
    938 	if (map->_dm_flags & _BUS_DMAMAP_IS_BOUNCING) {
    939 		struct arm32_bus_dma_cookie * const cookie = map->_dm_cookie;
    940 		va = (vaddr_t) cookie->id_bouncebuf;
    941 	}
    942 #endif
    943 
    944 	while (len > 0) {
    945 		while (offset >= ds->ds_len) {
    946 			offset -= ds->ds_len;
    947 			va += ds->ds_len;
    948 			ds++;
    949 		}
    950 
    951 		paddr_t pa = _bus_dma_busaddr_to_paddr(t, ds->ds_addr + offset);
    952 		size_t seglen = uimin(len, ds->ds_len - offset);
    953 
    954 		if ((ds->_ds_flags & _BUS_DMAMAP_COHERENT) == 0)
    955 			_bus_dmamap_sync_segment(va + offset, pa, seglen, ops,
    956 			    false);
    957 
    958 		offset += seglen;
    959 		len -= seglen;
    960 	}
    961 }
    962 
    963 static inline void
    964 _bus_dmamap_sync_mbuf(bus_dma_tag_t t, bus_dmamap_t map, bus_size_t offset,
    965     bus_size_t len, int ops)
    966 {
    967 	bus_dma_segment_t *ds = map->dm_segs;
    968 	struct mbuf *m = map->_dm_origbuf;
    969 	bus_size_t voff = offset;
    970 	bus_size_t ds_off = offset;
    971 
    972 	while (len > 0) {
    973 		/* Find the current dma segment */
    974 		while (ds_off >= ds->ds_len) {
    975 			ds_off -= ds->ds_len;
    976 			ds++;
    977 		}
    978 		/* Find the current mbuf. */
    979 		while (voff >= m->m_len) {
    980 			voff -= m->m_len;
    981 			m = m->m_next;
    982 		}
    983 
    984 		/*
    985 		 * Now at the first mbuf to sync; nail each one until
    986 		 * we have exhausted the length.
    987 		 */
    988 		vsize_t seglen = uimin(len, uimin(m->m_len - voff, ds->ds_len - ds_off));
    989 		vaddr_t va = mtod(m, vaddr_t) + voff;
    990 		paddr_t pa = _bus_dma_busaddr_to_paddr(t, ds->ds_addr + ds_off);
    991 
    992 		/*
    993 		 * We can save a lot of work here if we know the mapping
    994 		 * is read-only at the MMU and we aren't using the armv6+
    995 		 * MMU:
    996 		 *
    997 		 * If a mapping is read-only, no dirty cache blocks will
    998 		 * exist for it.  If a writable mapping was made read-only,
    999 		 * we know any dirty cache lines for the range will have
   1000 		 * been cleaned for us already.  Therefore, if the upper
   1001 		 * layer can tell us we have a read-only mapping, we can
   1002 		 * skip all cache cleaning.
   1003 		 *
   1004 		 * NOTE: This only works if we know the pmap cleans pages
   1005 		 * before making a read-write -> read-only transition.  If
   1006 		 * this ever becomes non-true (e.g. Physically Indexed
   1007 		 * cache), this will have to be revisited.
   1008 		 */
   1009 
   1010 		if ((ds->_ds_flags & _BUS_DMAMAP_COHERENT) == 0) {
   1011 			/*
   1012 			 * If we are doing preread (DMAing into the mbuf),
   1013 			 * this mbuf better not be readonly,
   1014 			 */
   1015 			KASSERT(!(ops & BUS_DMASYNC_PREREAD) || !M_ROMAP(m));
   1016 			_bus_dmamap_sync_segment(va, pa, seglen, ops,
   1017 			    M_ROMAP(m));
   1018 		}
   1019 		voff += seglen;
   1020 		ds_off += seglen;
   1021 		len -= seglen;
   1022 	}
   1023 }
   1024 
   1025 static inline void
   1026 _bus_dmamap_sync_uio(bus_dma_tag_t t, bus_dmamap_t map, bus_addr_t offset,
   1027     bus_size_t len, int ops)
   1028 {
   1029 	bus_dma_segment_t *ds = map->dm_segs;
   1030 	struct uio *uio = map->_dm_origbuf;
   1031 	struct iovec *iov = uio->uio_iov;
   1032 	bus_size_t voff = offset;
   1033 	bus_size_t ds_off = offset;
   1034 
   1035 	while (len > 0) {
   1036 		/* Find the current dma segment */
   1037 		while (ds_off >= ds->ds_len) {
   1038 			ds_off -= ds->ds_len;
   1039 			ds++;
   1040 		}
   1041 
   1042 		/* Find the current iovec. */
   1043 		while (voff >= iov->iov_len) {
   1044 			voff -= iov->iov_len;
   1045 			iov++;
   1046 		}
   1047 
   1048 		/*
   1049 		 * Now at the first iovec to sync; nail each one until
   1050 		 * we have exhausted the length.
   1051 		 */
   1052 		vsize_t seglen = uimin(len, uimin(iov->iov_len - voff, ds->ds_len - ds_off));
   1053 		vaddr_t va = (vaddr_t) iov->iov_base + voff;
   1054 		paddr_t pa = _bus_dma_busaddr_to_paddr(t, ds->ds_addr + ds_off);
   1055 
   1056 		if ((ds->_ds_flags & _BUS_DMAMAP_COHERENT) == 0)
   1057 			_bus_dmamap_sync_segment(va, pa, seglen, ops, false);
   1058 
   1059 		voff += seglen;
   1060 		ds_off += seglen;
   1061 		len -= seglen;
   1062 	}
   1063 }
   1064 
   1065 /*
   1066  * Common function for DMA map synchronization.  May be called
   1067  * by bus-specific DMA map synchronization functions.
   1068  *
   1069  * XXX Should have separate versions for write-through vs.
   1070  * XXX write-back caches.  We currently assume write-back
   1071  * XXX here, which is not as efficient as it could be for
   1072  * XXX the write-through case.
   1073  */
   1074 void
   1075 _bus_dmamap_sync(bus_dma_tag_t t, bus_dmamap_t map, bus_addr_t offset,
   1076     bus_size_t len, int ops)
   1077 {
   1078 #ifdef DEBUG_DMA
   1079 	printf("dmamap_sync: t=%p map=%p offset=%#lx len=%#lx ops=%#x\n",
   1080 	    t, map, offset, len, ops);
   1081 #endif	/* DEBUG_DMA */
   1082 
   1083 	/*
   1084 	 * Mixing of PRE and POST operations is not allowed.
   1085 	 */
   1086 	if ((ops & (BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE)) != 0 &&
   1087 	    (ops & (BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE)) != 0)
   1088 		panic("%s: mix PRE and POST", __func__);
   1089 
   1090 	KASSERTMSG(offset < map->dm_mapsize,
   1091 	    "offset %lu mapsize %lu",
   1092 	    offset, map->dm_mapsize);
   1093 	KASSERTMSG(len > 0 && offset + len <= map->dm_mapsize,
   1094 	    "len %lu offset %lu mapsize %lu",
   1095 	    len, offset, map->dm_mapsize);
   1096 
   1097 	/*
   1098 	 * For a virtually-indexed write-back cache, we need
   1099 	 * to do the following things:
   1100 	 *
   1101 	 *	PREREAD -- Invalidate the D-cache.  We do this
   1102 	 *	here in case a write-back is required by the back-end.
   1103 	 *
   1104 	 *	PREWRITE -- Write-back the D-cache.  Note that if
   1105 	 *	we are doing a PREREAD|PREWRITE, we can collapse
   1106 	 *	the whole thing into a single Wb-Inv.
   1107 	 *
   1108 	 *	POSTREAD -- Re-invalidate the D-cache in case speculative
   1109 	 *	memory accesses caused cachelines to become valid with now
   1110 	 *	invalid data.
   1111 	 *
   1112 	 *	POSTWRITE -- Nothing.
   1113 	 */
   1114 #ifdef _ARM32_NEED_BUS_DMA_BOUNCE
   1115 	const bool bouncing = (map->_dm_flags & _BUS_DMAMAP_IS_BOUNCING);
   1116 #else
   1117 	const bool bouncing = false;
   1118 #endif
   1119 
   1120 	const int pre_ops = ops & (BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
   1121 #if defined(CPU_CORTEX) || defined(CPU_ARMV8)
   1122 	const int post_ops = ops & (BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
   1123 #else
   1124 	const int post_ops = 0;
   1125 #endif
   1126 	if (pre_ops == 0 && post_ops == 0)
   1127 		return;
   1128 
   1129 	if (post_ops == BUS_DMASYNC_POSTWRITE) {
   1130 		KASSERT(pre_ops == 0);
   1131 		if ((map->_dm_flags & _BUS_DMAMAP_COHERENT)) {
   1132 			STAT_INCR(sync_coherent_postwrite);
   1133 		} else {
   1134 			STAT_INCR(sync_postwrite);
   1135 		}
   1136 		return;
   1137 	}
   1138 
   1139 	KASSERTMSG(bouncing || pre_ops != 0 || (post_ops & BUS_DMASYNC_POSTREAD),
   1140 	    "pre_ops %#x post_ops %#x", pre_ops, post_ops);
   1141 
   1142 	if (bouncing && (ops & BUS_DMASYNC_PREWRITE)) {
   1143 		struct arm32_bus_dma_cookie * const cookie = map->_dm_cookie;
   1144 		STAT_INCR(write_bounces);
   1145 		char * const dataptr = (char *)cookie->id_bouncebuf + offset;
   1146 		/*
   1147 		 * Copy the caller's buffer to the bounce buffer.
   1148 		 */
   1149 		switch (map->_dm_buftype) {
   1150 		case _BUS_DMA_BUFTYPE_LINEAR:
   1151 			memcpy(dataptr, cookie->id_origlinearbuf + offset, len);
   1152 			break;
   1153 
   1154 		case _BUS_DMA_BUFTYPE_MBUF:
   1155 			m_copydata(cookie->id_origmbuf, offset, len, dataptr);
   1156 			break;
   1157 
   1158 		case _BUS_DMA_BUFTYPE_UIO:
   1159 			_bus_dma_uiomove(dataptr, cookie->id_origuio, len,
   1160 			    UIO_WRITE);
   1161 			break;
   1162 
   1163 #ifdef DIAGNOSTIC
   1164 		case _BUS_DMA_BUFTYPE_RAW:
   1165 			panic("%s:(pre): _BUS_DMA_BUFTYPE_RAW", __func__);
   1166 			break;
   1167 
   1168 		case _BUS_DMA_BUFTYPE_INVALID:
   1169 			panic("%s(pre): _BUS_DMA_BUFTYPE_INVALID", __func__);
   1170 			break;
   1171 
   1172 		default:
   1173 			panic("%s(pre): map %p: unknown buffer type %d\n",
   1174 			    __func__, map, map->_dm_buftype);
   1175 			break;
   1176 #endif /* DIAGNOSTIC */
   1177 		}
   1178 	}
   1179 
   1180 	/* Skip cache frobbing if mapping was COHERENT */
   1181 	if ((map->_dm_flags & _BUS_DMAMAP_COHERENT)) {
   1182 		switch (ops) {
   1183 		case BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE:
   1184 			STAT_INCR(sync_coherent_prereadwrite);
   1185 			break;
   1186 
   1187 		case BUS_DMASYNC_PREREAD:
   1188 			STAT_INCR(sync_coherent_preread);
   1189 			break;
   1190 
   1191 		case BUS_DMASYNC_PREWRITE:
   1192 			STAT_INCR(sync_coherent_prewrite);
   1193 			break;
   1194 
   1195 		case BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE:
   1196 			STAT_INCR(sync_coherent_postreadwrite);
   1197 			break;
   1198 
   1199 		case BUS_DMASYNC_POSTREAD:
   1200 			STAT_INCR(sync_coherent_postread);
   1201 			break;
   1202 
   1203 		/* BUS_DMASYNC_POSTWRITE was aleady handled as a fastpath */
   1204 		}
   1205 		/*
   1206 		 * Drain the write buffer of DMA operators.
   1207 		 * 1) when cpu->device (prewrite)
   1208 		 * 2) when device->cpu (postread)
   1209 		 */
   1210 		if ((pre_ops & BUS_DMASYNC_PREWRITE) || (post_ops & BUS_DMASYNC_POSTREAD))
   1211 			cpu_drain_writebuf();
   1212 
   1213 		/*
   1214 		 * Only thing left to do for COHERENT mapping is copy from bounce
   1215 		 * in the POSTREAD case.
   1216 		 */
   1217 		if (bouncing && (post_ops & BUS_DMASYNC_POSTREAD))
   1218 			goto bounce_it;
   1219 
   1220 		return;
   1221 	}
   1222 
   1223 #if !defined(ARM_MMU_EXTENDED)
   1224 	/*
   1225 	 * If the mapping belongs to a non-kernel vmspace, and the
   1226 	 * vmspace has not been active since the last time a full
   1227 	 * cache flush was performed, we don't need to do anything.
   1228 	 */
   1229 	if (__predict_false(!VMSPACE_IS_KERNEL_P(map->_dm_vmspace) &&
   1230 	    vm_map_pmap(&map->_dm_vmspace->vm_map)->pm_cstate.cs_cache_d == 0))
   1231 		return;
   1232 #endif
   1233 
   1234 	int buftype = map->_dm_buftype;
   1235 	if (bouncing) {
   1236 		buftype = _BUS_DMA_BUFTYPE_LINEAR;
   1237 	}
   1238 
   1239 	switch (buftype) {
   1240 	case _BUS_DMA_BUFTYPE_LINEAR:
   1241 	case _BUS_DMA_BUFTYPE_RAW:
   1242 		_bus_dmamap_sync_linear(t, map, offset, len, ops);
   1243 		break;
   1244 
   1245 	case _BUS_DMA_BUFTYPE_MBUF:
   1246 		_bus_dmamap_sync_mbuf(t, map, offset, len, ops);
   1247 		break;
   1248 
   1249 	case _BUS_DMA_BUFTYPE_UIO:
   1250 		_bus_dmamap_sync_uio(t, map, offset, len, ops);
   1251 		break;
   1252 
   1253 	case _BUS_DMA_BUFTYPE_INVALID:
   1254 		panic("%s: _BUS_DMA_BUFTYPE_INVALID", __func__);
   1255 		break;
   1256 
   1257 	default:
   1258 		panic("%s: map %p: unknown buffer type %d\n", __func__, map,
   1259 		    map->_dm_buftype);
   1260 	}
   1261 
   1262 	/* Drain the write buffer. */
   1263 	cpu_drain_writebuf();
   1264 
   1265 	if (!bouncing || (ops & BUS_DMASYNC_POSTREAD) == 0)
   1266 		return;
   1267 
   1268   bounce_it:
   1269 	STAT_INCR(read_bounces);
   1270 
   1271 	struct arm32_bus_dma_cookie * const cookie = map->_dm_cookie;
   1272 	char * const dataptr = (char *)cookie->id_bouncebuf + offset;
   1273 	/*
   1274 	 * Copy the bounce buffer to the caller's buffer.
   1275 	 */
   1276 	switch (map->_dm_buftype) {
   1277 	case _BUS_DMA_BUFTYPE_LINEAR:
   1278 		memcpy(cookie->id_origlinearbuf + offset, dataptr, len);
   1279 		break;
   1280 
   1281 	case _BUS_DMA_BUFTYPE_MBUF:
   1282 		m_copyback(cookie->id_origmbuf, offset, len, dataptr);
   1283 		break;
   1284 
   1285 	case _BUS_DMA_BUFTYPE_UIO:
   1286 		_bus_dma_uiomove(dataptr, cookie->id_origuio, len, UIO_READ);
   1287 		break;
   1288 
   1289 #ifdef DIAGNOSTIC
   1290 	case _BUS_DMA_BUFTYPE_RAW:
   1291 		panic("%s(post): _BUS_DMA_BUFTYPE_RAW", __func__);
   1292 		break;
   1293 
   1294 	case _BUS_DMA_BUFTYPE_INVALID:
   1295 		panic("%s(post): _BUS_DMA_BUFTYPE_INVALID", __func__);
   1296 		break;
   1297 
   1298 	default:
   1299 		panic("%s(post): map %p: unknown buffer type %d\n", __func__,
   1300 		    map, map->_dm_buftype);
   1301 		break;
   1302 #endif
   1303 	}
   1304 }
   1305 
   1306 /*
   1307  * Common function for DMA-safe memory allocation.  May be called
   1308  * by bus-specific DMA memory allocation functions.
   1309  */
   1310 
   1311 extern paddr_t physical_start;
   1312 extern paddr_t physical_end;
   1313 
   1314 int
   1315 _bus_dmamem_alloc(bus_dma_tag_t t, bus_size_t size, bus_size_t alignment,
   1316     bus_size_t boundary, bus_dma_segment_t *segs, int nsegs, int *rsegs,
   1317     int flags)
   1318 {
   1319 	struct arm32_dma_range *dr;
   1320 	int error, i;
   1321 
   1322 #ifdef DEBUG_DMA
   1323 	printf("dmamem_alloc t=%p size=%#lx align=%#lx boundary=%#lx "
   1324 	    "segs=%p nsegs=%#x rsegs=%p flags=%#x\n", t, size, alignment,
   1325 	    boundary, segs, nsegs, rsegs, flags);
   1326 #endif
   1327 
   1328 	if ((dr = t->_ranges) != NULL) {
   1329 		error = ENOMEM;
   1330 		for (i = 0; i < t->_nranges; i++, dr++) {
   1331 			if (dr->dr_len == 0
   1332 			    || (dr->dr_flags & _BUS_DMAMAP_NOALLOC))
   1333 				continue;
   1334 			error = _bus_dmamem_alloc_range(t, size, alignment,
   1335 			    boundary, segs, nsegs, rsegs, flags,
   1336 			    trunc_page(dr->dr_sysbase),
   1337 			    trunc_page(dr->dr_sysbase + dr->dr_len));
   1338 			if (error == 0)
   1339 				break;
   1340 		}
   1341 	} else {
   1342 		error = _bus_dmamem_alloc_range(t, size, alignment, boundary,
   1343 		    segs, nsegs, rsegs, flags, trunc_page(physical_start),
   1344 		    trunc_page(physical_end));
   1345 	}
   1346 
   1347 #ifdef DEBUG_DMA
   1348 	printf("dmamem_alloc: =%d\n", error);
   1349 #endif
   1350 
   1351 	return error;
   1352 }
   1353 
   1354 /*
   1355  * Common function for freeing DMA-safe memory.  May be called by
   1356  * bus-specific DMA memory free functions.
   1357  */
   1358 void
   1359 _bus_dmamem_free(bus_dma_tag_t t, bus_dma_segment_t *segs, int nsegs)
   1360 {
   1361 	struct vm_page *m;
   1362 	bus_addr_t addr;
   1363 	struct pglist mlist;
   1364 	int curseg;
   1365 
   1366 #ifdef DEBUG_DMA
   1367 	printf("dmamem_free: t=%p segs=%p nsegs=%#x\n", t, segs, nsegs);
   1368 #endif	/* DEBUG_DMA */
   1369 
   1370 	/*
   1371 	 * Build a list of pages to free back to the VM system.
   1372 	 */
   1373 	TAILQ_INIT(&mlist);
   1374 	for (curseg = 0; curseg < nsegs; curseg++) {
   1375 		for (addr = segs[curseg].ds_addr;
   1376 		    addr < (segs[curseg].ds_addr + segs[curseg].ds_len);
   1377 		    addr += PAGE_SIZE) {
   1378 			m = PHYS_TO_VM_PAGE(addr);
   1379 			TAILQ_INSERT_TAIL(&mlist, m, pageq.queue);
   1380 		}
   1381 	}
   1382 	uvm_pglistfree(&mlist);
   1383 }
   1384 
   1385 /*
   1386  * Common function for mapping DMA-safe memory.  May be called by
   1387  * bus-specific DMA memory map functions.
   1388  */
   1389 int
   1390 _bus_dmamem_map(bus_dma_tag_t t, bus_dma_segment_t *segs, int nsegs,
   1391     size_t size, void **kvap, int flags)
   1392 {
   1393 	vaddr_t va;
   1394 	paddr_t pa;
   1395 	int curseg;
   1396 	const uvm_flag_t kmflags = UVM_KMF_VAONLY
   1397 	    | ((flags & BUS_DMA_NOWAIT) != 0 ? UVM_KMF_NOWAIT : 0);
   1398 	vsize_t align = 0;
   1399 
   1400 #ifdef DEBUG_DMA
   1401 	printf("dmamem_map: t=%p segs=%p nsegs=%#x size=%#lx flags=%#x\n", t,
   1402 	    segs, nsegs, (unsigned long)size, flags);
   1403 #endif	/* DEBUG_DMA */
   1404 
   1405 #ifdef PMAP_MAP_POOLPAGE
   1406 	/*
   1407 	 * If all of memory is mapped, and we are mapping a single physically
   1408 	 * contiguous area then this area is already mapped.  Let's see if we
   1409 	 * avoid having a separate mapping for it.
   1410 	 */
   1411 	if (nsegs == 1 && (flags & BUS_DMA_PREFETCHABLE) == 0) {
   1412 		/*
   1413 		 * If this is a non-COHERENT mapping, then the existing kernel
   1414 		 * mapping is already compatible with it.
   1415 		 */
   1416 		bool direct_mapable = (flags & BUS_DMA_COHERENT) == 0;
   1417 		pa = segs[0].ds_addr;
   1418 
   1419 		/*
   1420 		 * This is a COHERENT mapping which, unless this address is in
   1421 		 * a COHERENT dma range, will not be compatible.
   1422 		 */
   1423 		if (t->_ranges != NULL) {
   1424 			const struct arm32_dma_range * const dr =
   1425 			    _bus_dma_paddr_inrange(t->_ranges, t->_nranges, pa);
   1426 			if (dr != NULL
   1427 			    && (dr->dr_flags & _BUS_DMAMAP_COHERENT)) {
   1428 				direct_mapable = true;
   1429 			}
   1430 		}
   1431 
   1432 #ifdef PMAP_NEED_ALLOC_POOLPAGE
   1433 		/*
   1434 		 * The page can only be direct mapped if was allocated out
   1435 		 * of the arm poolpage vm freelist.
   1436 		 */
   1437 		uvm_physseg_t upm = uvm_physseg_find(atop(pa), NULL);
   1438 		KASSERT(uvm_physseg_valid_p(upm));
   1439 		if (direct_mapable) {
   1440 			direct_mapable =
   1441 			    (arm_poolpage_vmfreelist == uvm_physseg_get_free_list(upm));
   1442 		}
   1443 #endif
   1444 
   1445 		if (direct_mapable) {
   1446 			*kvap = (void *)PMAP_MAP_POOLPAGE(pa);
   1447 #ifdef DEBUG_DMA
   1448 			printf("dmamem_map: =%p\n", *kvap);
   1449 #endif	/* DEBUG_DMA */
   1450 			return 0;
   1451 		}
   1452 	}
   1453 #endif
   1454 
   1455 	size = round_page(size);
   1456 
   1457 #ifdef PMAP_MAPSIZE1
   1458 	if (size >= PMAP_MAPSIZE1)
   1459 		align = PMAP_MAPSIZE1;
   1460 
   1461 #ifdef PMAP_MAPSIZE2
   1462 
   1463 #if PMAP_MAPSIZE1 > PMAP_MAPSIZE2
   1464 #error PMAP_MAPSIZE1 must be smaller than PMAP_MAPSIZE2
   1465 #endif
   1466 
   1467 	if (size >= PMAP_MAPSIZE2)
   1468 		align = PMAP_MAPSIZE2;
   1469 
   1470 #ifdef PMAP_MAPSIZE3
   1471 
   1472 #if PMAP_MAPSIZE2 > PMAP_MAPSIZE3
   1473 #error PMAP_MAPSIZE2 must be smaller than PMAP_MAPSIZE3
   1474 #endif
   1475 
   1476 	if (size >= PMAP_MAPSIZE3)
   1477 		align = PMAP_MAPSIZE3;
   1478 #endif
   1479 #endif
   1480 #endif
   1481 
   1482 	va = uvm_km_alloc(kernel_map, size, align, kmflags);
   1483 	if (__predict_false(va == 0 && align > 0)) {
   1484 		align = 0;
   1485 		va = uvm_km_alloc(kernel_map, size, 0, kmflags);
   1486 	}
   1487 
   1488 	if (va == 0)
   1489 		return ENOMEM;
   1490 
   1491 	*kvap = (void *)va;
   1492 
   1493 	for (curseg = 0; curseg < nsegs; curseg++) {
   1494 		for (pa = segs[curseg].ds_addr;
   1495 		    pa < (segs[curseg].ds_addr + segs[curseg].ds_len);
   1496 		    pa += PAGE_SIZE, va += PAGE_SIZE, size -= PAGE_SIZE) {
   1497 			bool uncached = (flags & BUS_DMA_COHERENT);
   1498 			bool prefetchable = (flags & BUS_DMA_PREFETCHABLE);
   1499 #ifdef DEBUG_DMA
   1500 			printf("wiring p%#lx to v%#lx", pa, va);
   1501 #endif	/* DEBUG_DMA */
   1502 			if (size == 0)
   1503 				panic("_bus_dmamem_map: size botch");
   1504 
   1505 			const struct arm32_dma_range * const dr =
   1506 			    _bus_dma_paddr_inrange(t->_ranges, t->_nranges, pa);
   1507 			/*
   1508 			 * If this dma region is coherent then there is
   1509 			 * no need for an uncached mapping.
   1510 			 */
   1511 			if (dr != NULL
   1512 			    && (dr->dr_flags & _BUS_DMAMAP_COHERENT)) {
   1513 				uncached = false;
   1514 			}
   1515 
   1516 			u_int pmap_flags = PMAP_WIRED;
   1517 			if (prefetchable)
   1518 				pmap_flags |= PMAP_WRITE_COMBINE;
   1519 			else if (uncached)
   1520 				pmap_flags |= PMAP_NOCACHE;
   1521 
   1522 			pmap_kenter_pa(va, pa, VM_PROT_READ | VM_PROT_WRITE,
   1523 			    pmap_flags);
   1524 		}
   1525 	}
   1526 	pmap_update(pmap_kernel());
   1527 #ifdef DEBUG_DMA
   1528 	printf("dmamem_map: =%p\n", *kvap);
   1529 #endif	/* DEBUG_DMA */
   1530 	return 0;
   1531 }
   1532 
   1533 /*
   1534  * Common function for unmapping DMA-safe memory.  May be called by
   1535  * bus-specific DMA memory unmapping functions.
   1536  */
   1537 void
   1538 _bus_dmamem_unmap(bus_dma_tag_t t, void *kva, size_t size)
   1539 {
   1540 
   1541 #ifdef DEBUG_DMA
   1542 	printf("dmamem_unmap: t=%p kva=%p size=%#zx\n", t, kva, size);
   1543 #endif	/* DEBUG_DMA */
   1544 	KASSERTMSG(((uintptr_t)kva & PAGE_MASK) == 0,
   1545 	    "kva %p (%#"PRIxPTR")", kva, ((uintptr_t)kva & PAGE_MASK));
   1546 
   1547 #ifdef __HAVE_MM_MD_DIRECT_MAPPED_PHYS
   1548 	/*
   1549 	 * Check to see if this used direct mapped memory.  Get its physical
   1550 	 * address and try to map it.  If the resultant matches the kva, then
   1551 	 * it was and so we can just return since we have nothing to free up.
   1552 	 */
   1553 	paddr_t pa;
   1554 	vaddr_t va;
   1555 	(void)pmap_extract(pmap_kernel(), (vaddr_t)kva, &pa);
   1556 	if (mm_md_direct_mapped_phys(pa, &va) && va == (vaddr_t)kva)
   1557 		return;
   1558 #endif
   1559 
   1560 	size = round_page(size);
   1561 	pmap_kremove((vaddr_t)kva, size);
   1562 	pmap_update(pmap_kernel());
   1563 	uvm_km_free(kernel_map, (vaddr_t)kva, size, UVM_KMF_VAONLY);
   1564 }
   1565 
   1566 /*
   1567  * Common functin for mmap(2)'ing DMA-safe memory.  May be called by
   1568  * bus-specific DMA mmap(2)'ing functions.
   1569  */
   1570 paddr_t
   1571 _bus_dmamem_mmap(bus_dma_tag_t t, bus_dma_segment_t *segs, int nsegs,
   1572     off_t off, int prot, int flags)
   1573 {
   1574 	paddr_t map_flags;
   1575 	int i;
   1576 
   1577 	for (i = 0; i < nsegs; i++) {
   1578 		KASSERTMSG((off & PAGE_MASK) == 0,
   1579 		    "off %#jx (%#x)", (uintmax_t)off, (int)off & PAGE_MASK);
   1580 		KASSERTMSG((segs[i].ds_addr & PAGE_MASK) == 0,
   1581 		    "ds_addr %#lx (%#x)", segs[i].ds_addr,
   1582 		    (int)segs[i].ds_addr & PAGE_MASK);
   1583 		KASSERTMSG((segs[i].ds_len & PAGE_MASK) == 0,
   1584 		    "ds_len %#lx (%#x)", segs[i].ds_addr,
   1585 		    (int)segs[i].ds_addr & PAGE_MASK);
   1586 		if (off >= segs[i].ds_len) {
   1587 			off -= segs[i].ds_len;
   1588 			continue;
   1589 		}
   1590 
   1591 		map_flags = 0;
   1592 		if (flags & BUS_DMA_PREFETCHABLE)
   1593 			map_flags |= ARM_MMAP_WRITECOMBINE;
   1594 
   1595 		return arm_btop((u_long)segs[i].ds_addr + off) | map_flags;
   1596 
   1597 	}
   1598 
   1599 	/* Page not found. */
   1600 	return -1;
   1601 }
   1602 
   1603 /**********************************************************************
   1604  * DMA utility functions
   1605  **********************************************************************/
   1606 
   1607 /*
   1608  * Utility function to load a linear buffer.  lastaddrp holds state
   1609  * between invocations (for multiple-buffer loads).  segp contains
   1610  * the starting segment on entrace, and the ending segment on exit.
   1611  * first indicates if this is the first invocation of this function.
   1612  */
   1613 int
   1614 _bus_dmamap_load_buffer(bus_dma_tag_t t, bus_dmamap_t map, void *buf,
   1615     bus_size_t buflen, struct vmspace *vm, int flags)
   1616 {
   1617 	bus_size_t sgsize;
   1618 	bus_addr_t curaddr;
   1619 	vaddr_t vaddr = (vaddr_t)buf;
   1620 	int error;
   1621 	pmap_t pmap;
   1622 
   1623 #ifdef DEBUG_DMA
   1624 	printf("_bus_dmamem_load_buffer(buf=%p, len=%#lx, flags=%#x)\n",
   1625 	    buf, buflen, flags);
   1626 #endif	/* DEBUG_DMA */
   1627 
   1628 	pmap = vm_map_pmap(&vm->vm_map);
   1629 
   1630 	while (buflen > 0) {
   1631 		/*
   1632 		 * Get the physical address for this segment.
   1633 		 *
   1634 		 */
   1635 		bool coherent;
   1636 		pmap_extract_coherency(pmap, vaddr, &curaddr, &coherent);
   1637 
   1638 		KASSERTMSG((vaddr & PAGE_MASK) == (curaddr & PAGE_MASK),
   1639 		    "va %#lx curaddr %#lx", vaddr, curaddr);
   1640 
   1641 		/*
   1642 		 * Compute the segment size, and adjust counts.
   1643 		 */
   1644 		sgsize = PAGE_SIZE - ((u_long)vaddr & PGOFSET);
   1645 		if (buflen < sgsize)
   1646 			sgsize = buflen;
   1647 
   1648 		error = _bus_dmamap_load_paddr(t, map, curaddr, sgsize,
   1649 		    coherent);
   1650 		if (error)
   1651 			return error;
   1652 
   1653 		vaddr += sgsize;
   1654 		buflen -= sgsize;
   1655 	}
   1656 
   1657 	return 0;
   1658 }
   1659 
   1660 /*
   1661  * Allocate physical memory from the given physical address range.
   1662  * Called by DMA-safe memory allocation methods.
   1663  */
   1664 int
   1665 _bus_dmamem_alloc_range(bus_dma_tag_t t, bus_size_t size, bus_size_t alignment,
   1666     bus_size_t boundary, bus_dma_segment_t *segs, int nsegs, int *rsegs,
   1667     int flags, paddr_t low, paddr_t high)
   1668 {
   1669 	paddr_t curaddr, lastaddr;
   1670 	struct vm_page *m;
   1671 	struct pglist mlist;
   1672 	int curseg, error;
   1673 
   1674 	KASSERTMSG(boundary == 0 || (boundary & (boundary - 1)) == 0,
   1675 	    "invalid boundary %#lx", boundary);
   1676 
   1677 #ifdef DEBUG_DMA
   1678 	printf("alloc_range: t=%p size=%#lx align=%#lx boundary=%#lx segs=%p nsegs=%#x rsegs=%p flags=%#x lo=%#lx hi=%#lx\n",
   1679 	    t, size, alignment, boundary, segs, nsegs, rsegs, flags, low, high);
   1680 #endif	/* DEBUG_DMA */
   1681 
   1682 	/* Always round the size. */
   1683 	size = round_page(size);
   1684 
   1685 	/*
   1686 	 * We accept boundaries < size, splitting in multiple segments
   1687 	 * if needed. uvm_pglistalloc does not, so compute an appropriate
   1688 	 * boundary: next power of 2 >= size
   1689 	 */
   1690 	bus_size_t uboundary = boundary;
   1691 	if (uboundary <= PAGE_SIZE) {
   1692 		uboundary = 0;
   1693 	} else {
   1694 		while (uboundary < size) {
   1695 			uboundary <<= 1;
   1696 		}
   1697 	}
   1698 
   1699 	/*
   1700 	 * Allocate pages from the VM system.
   1701 	 */
   1702 	error = uvm_pglistalloc(size, low, high, alignment, uboundary,
   1703 	    &mlist, nsegs, (flags & BUS_DMA_NOWAIT) == 0);
   1704 	if (error)
   1705 		return error;
   1706 
   1707 	/*
   1708 	 * Compute the location, size, and number of segments actually
   1709 	 * returned by the VM code.
   1710 	 */
   1711 	m = TAILQ_FIRST(&mlist);
   1712 	curseg = 0;
   1713 	lastaddr = segs[curseg].ds_addr = VM_PAGE_TO_PHYS(m);
   1714 	segs[curseg].ds_len = PAGE_SIZE;
   1715 #ifdef DEBUG_DMA
   1716 		printf("alloc: page %#lx\n", lastaddr);
   1717 #endif	/* DEBUG_DMA */
   1718 	m = TAILQ_NEXT(m, pageq.queue);
   1719 
   1720 	for (; m != NULL; m = TAILQ_NEXT(m, pageq.queue)) {
   1721 		curaddr = VM_PAGE_TO_PHYS(m);
   1722 		KASSERTMSG(low <= curaddr && curaddr < high,
   1723 		    "uvm_pglistalloc returned non-sensicaladdress %#lx "
   1724 		    "(low=%#lx, high=%#lx\n", curaddr, low, high);
   1725 #ifdef DEBUG_DMA
   1726 		printf("alloc: page %#lx\n", curaddr);
   1727 #endif	/* DEBUG_DMA */
   1728 		if (curaddr == lastaddr + PAGE_SIZE
   1729 		    && (lastaddr & boundary) == (curaddr & boundary))
   1730 			segs[curseg].ds_len += PAGE_SIZE;
   1731 		else {
   1732 			curseg++;
   1733 			if (curseg >= nsegs) {
   1734 				uvm_pglistfree(&mlist);
   1735 				return EFBIG;
   1736 			}
   1737 			segs[curseg].ds_addr = curaddr;
   1738 			segs[curseg].ds_len = PAGE_SIZE;
   1739 		}
   1740 		lastaddr = curaddr;
   1741 	}
   1742 
   1743 	*rsegs = curseg + 1;
   1744 
   1745 	return 0;
   1746 }
   1747 
   1748 /*
   1749  * Check if a memory region intersects with a DMA range, and return the
   1750  * page-rounded intersection if it does.
   1751  */
   1752 int
   1753 arm32_dma_range_intersect(struct arm32_dma_range *ranges, int nranges,
   1754     paddr_t pa, psize_t size, paddr_t *pap, psize_t *sizep)
   1755 {
   1756 	struct arm32_dma_range *dr;
   1757 	int i;
   1758 
   1759 	if (ranges == NULL)
   1760 		return 0;
   1761 
   1762 	for (i = 0, dr = ranges; i < nranges; i++, dr++) {
   1763 		if (dr->dr_sysbase <= pa &&
   1764 		    pa < (dr->dr_sysbase + dr->dr_len)) {
   1765 			/*
   1766 			 * Beginning of region intersects with this range.
   1767 			 */
   1768 			*pap = trunc_page(pa);
   1769 			*sizep = round_page(uimin(pa + size,
   1770 			    dr->dr_sysbase + dr->dr_len) - pa);
   1771 			return 1;
   1772 		}
   1773 		if (pa < dr->dr_sysbase && dr->dr_sysbase < (pa + size)) {
   1774 			/*
   1775 			 * End of region intersects with this range.
   1776 			 */
   1777 			*pap = trunc_page(dr->dr_sysbase);
   1778 			*sizep = round_page(uimin((pa + size) - dr->dr_sysbase,
   1779 			    dr->dr_len));
   1780 			return 1;
   1781 		}
   1782 	}
   1783 
   1784 	/* No intersection found. */
   1785 	return 0;
   1786 }
   1787 
   1788 #ifdef _ARM32_NEED_BUS_DMA_BOUNCE
   1789 static int
   1790 _bus_dma_alloc_bouncebuf(bus_dma_tag_t t, bus_dmamap_t map,
   1791     bus_size_t size, int flags)
   1792 {
   1793 	struct arm32_bus_dma_cookie *cookie = map->_dm_cookie;
   1794 	int error = 0;
   1795 
   1796 	KASSERT(cookie != NULL);
   1797 
   1798 	cookie->id_bouncebuflen = round_page(size);
   1799 	error = _bus_dmamem_alloc(t, cookie->id_bouncebuflen,
   1800 	    PAGE_SIZE, map->_dm_boundary, cookie->id_bouncesegs,
   1801 	    map->_dm_segcnt, &cookie->id_nbouncesegs, flags);
   1802 	if (error == 0) {
   1803 		error = _bus_dmamem_map(t, cookie->id_bouncesegs,
   1804 		    cookie->id_nbouncesegs, cookie->id_bouncebuflen,
   1805 		    (void **)&cookie->id_bouncebuf, flags);
   1806 		if (error) {
   1807 			_bus_dmamem_free(t, cookie->id_bouncesegs,
   1808 			    cookie->id_nbouncesegs);
   1809 			cookie->id_bouncebuflen = 0;
   1810 			cookie->id_nbouncesegs = 0;
   1811 		} else {
   1812 			cookie->id_flags |= _BUS_DMA_HAS_BOUNCE;
   1813 		}
   1814 	} else {
   1815 		cookie->id_bouncebuflen = 0;
   1816 		cookie->id_nbouncesegs = 0;
   1817 	}
   1818 
   1819 	return error;
   1820 }
   1821 
   1822 static void
   1823 _bus_dma_free_bouncebuf(bus_dma_tag_t t, bus_dmamap_t map)
   1824 {
   1825 	struct arm32_bus_dma_cookie *cookie = map->_dm_cookie;
   1826 
   1827 	KASSERT(cookie != NULL);
   1828 
   1829 	_bus_dmamem_unmap(t, cookie->id_bouncebuf, cookie->id_bouncebuflen);
   1830 	_bus_dmamem_free(t, cookie->id_bouncesegs, cookie->id_nbouncesegs);
   1831 	cookie->id_bouncebuflen = 0;
   1832 	cookie->id_nbouncesegs = 0;
   1833 	cookie->id_flags &= ~_BUS_DMA_HAS_BOUNCE;
   1834 }
   1835 #endif /* _ARM32_NEED_BUS_DMA_BOUNCE */
   1836 
   1837 /*
   1838  * This function does the same as uiomove, but takes an explicit
   1839  * direction, and does not update the uio structure.
   1840  */
   1841 static int
   1842 _bus_dma_uiomove(void *buf, struct uio *uio, size_t n, int direction)
   1843 {
   1844 	struct iovec *iov;
   1845 	int error;
   1846 	struct vmspace *vm;
   1847 	char *cp;
   1848 	size_t resid, cnt;
   1849 	int i;
   1850 
   1851 	iov = uio->uio_iov;
   1852 	vm = uio->uio_vmspace;
   1853 	cp = buf;
   1854 	resid = n;
   1855 
   1856 	for (i = 0; i < uio->uio_iovcnt && resid > 0; i++) {
   1857 		iov = &uio->uio_iov[i];
   1858 		if (iov->iov_len == 0)
   1859 			continue;
   1860 		cnt = MIN(resid, iov->iov_len);
   1861 
   1862 		if (!VMSPACE_IS_KERNEL_P(vm)) {
   1863 			preempt_point();
   1864 		}
   1865 		if (direction == UIO_READ) {
   1866 			error = copyout_vmspace(vm, cp, iov->iov_base, cnt);
   1867 		} else {
   1868 			error = copyin_vmspace(vm, iov->iov_base, cp, cnt);
   1869 		}
   1870 		if (error)
   1871 			return error;
   1872 		cp += cnt;
   1873 		resid -= cnt;
   1874 	}
   1875 	return 0;
   1876 }
   1877 
   1878 int
   1879 _bus_dmatag_subregion(bus_dma_tag_t tag, bus_addr_t min_addr,
   1880     bus_addr_t max_addr, bus_dma_tag_t *newtag, int flags)
   1881 {
   1882 	if (min_addr >= max_addr)
   1883 		return EOPNOTSUPP;
   1884 
   1885 #ifdef _ARM32_NEED_BUS_DMA_BOUNCE
   1886 	struct arm32_dma_range *dr;
   1887 	bool psubset = true;
   1888 	size_t nranges = 0;
   1889 	size_t i;
   1890 	for (i = 0, dr = tag->_ranges; i < tag->_nranges; i++, dr++) {
   1891 		/*
   1892 		 * If the new {min,max}_addr are narrower than any of the
   1893 		 * ranges in the parent tag then we need a new tag;
   1894 		 * otherwise the parent tag is a subset of the new
   1895 		 * range and can continue to be used.
   1896 		 */
   1897 		if (min_addr > dr->dr_sysbase
   1898 		    || max_addr < dr->dr_sysbase + dr->dr_len - 1) {
   1899 			psubset = false;
   1900 		}
   1901 		if (min_addr <= dr->dr_sysbase + dr->dr_len
   1902 		    && max_addr >= dr->dr_sysbase) {
   1903 			nranges++;
   1904 		}
   1905 	}
   1906 	if (nranges == 0) {
   1907 		nranges = 1;
   1908 		psubset = false;
   1909 	}
   1910 	if (psubset) {
   1911 		*newtag = tag;
   1912 		/* if the tag must be freed, add a reference */
   1913 		if (tag->_tag_needs_free)
   1914 			(tag->_tag_needs_free)++;
   1915 		return 0;
   1916 	}
   1917 
   1918 	const size_t tagsize = sizeof(*tag) + nranges * sizeof(*dr);
   1919 	if ((*newtag = kmem_intr_zalloc(tagsize,
   1920 	    (flags & BUS_DMA_NOWAIT) ? KM_NOSLEEP : KM_SLEEP)) == NULL)
   1921 		return ENOMEM;
   1922 
   1923 	dr = (void *)(*newtag + 1);
   1924 	**newtag = *tag;
   1925 	(*newtag)->_tag_needs_free = 1;
   1926 	(*newtag)->_ranges = dr;
   1927 	(*newtag)->_nranges = nranges;
   1928 
   1929 	if (tag->_ranges == NULL) {
   1930 		dr->dr_sysbase = min_addr;
   1931 		dr->dr_busbase = min_addr;
   1932 		dr->dr_len = max_addr + 1 - min_addr;
   1933 	} else {
   1934 		struct arm32_dma_range *pdr;
   1935 
   1936 		for (i = 0, pdr = tag->_ranges; i < tag->_nranges; i++, pdr++) {
   1937 			KASSERT(nranges != 0);
   1938 
   1939 			if (min_addr > pdr->dr_sysbase + pdr->dr_len
   1940 			    || max_addr < pdr->dr_sysbase) {
   1941 				/*
   1942 				 * this range doesn't overlap with new limits,
   1943 				 * so skip.
   1944 				 */
   1945 				continue;
   1946 			}
   1947 			/*
   1948 			 * Copy the range and adjust to fit within the new
   1949 			 * limits
   1950 			 */
   1951 			dr[0] = pdr[0];
   1952 			if (dr->dr_sysbase < min_addr) {
   1953 				psize_t diff = min_addr - dr->dr_sysbase;
   1954 				dr->dr_busbase += diff;
   1955 				dr->dr_len -= diff;
   1956 				dr->dr_sysbase += diff;
   1957 			}
   1958 			if (max_addr <= dr->dr_sysbase + dr->dr_len - 1) {
   1959 				dr->dr_len = max_addr + 1 - dr->dr_sysbase;
   1960 			}
   1961 			dr++;
   1962 			nranges--;
   1963 		}
   1964 	}
   1965 
   1966 	return 0;
   1967 #else
   1968 	return EOPNOTSUPP;
   1969 #endif /* _ARM32_NEED_BUS_DMA_BOUNCE */
   1970 }
   1971 
   1972 void
   1973 _bus_dmatag_destroy(bus_dma_tag_t tag)
   1974 {
   1975 #ifdef _ARM32_NEED_BUS_DMA_BOUNCE
   1976 	switch (tag->_tag_needs_free) {
   1977 	case 0:
   1978 		break;				/* not allocated with kmem */
   1979 	case 1: {
   1980 		const size_t tagsize = sizeof(*tag)
   1981 		    + tag->_nranges * sizeof(*tag->_ranges);
   1982 		kmem_intr_free(tag, tagsize);	/* last reference to tag */
   1983 		break;
   1984 	}
   1985 	default:
   1986 		(tag->_tag_needs_free)--;	/* one less reference */
   1987 	}
   1988 #endif
   1989 }
   1990