bus_dma.c revision 1.133 1 /* $NetBSD: bus_dma.c,v 1.133 2021/08/30 22:56:26 jmcneill Exp $ */
2
3 /*-
4 * Copyright (c) 1996, 1997, 1998, 2020 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Jason R. Thorpe of the Numerical Aerospace Simulation Facility,
9 * NASA Ames Research Center.
10 *
11 * Redistribution and use in source and binary forms, with or without
12 * modification, are permitted provided that the following conditions
13 * are met:
14 * 1. Redistributions of source code must retain the above copyright
15 * notice, this list of conditions and the following disclaimer.
16 * 2. Redistributions in binary form must reproduce the above copyright
17 * notice, this list of conditions and the following disclaimer in the
18 * documentation and/or other materials provided with the distribution.
19 *
20 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
21 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
22 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
23 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
24 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
25 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
26 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
27 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
28 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
29 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
30 * POSSIBILITY OF SUCH DAMAGE.
31 */
32
33 #define _ARM32_BUS_DMA_PRIVATE
34
35 #include "opt_arm_bus_space.h"
36 #include "opt_cputypes.h"
37
38 #include <sys/cdefs.h>
39 __KERNEL_RCSID(0, "$NetBSD: bus_dma.c,v 1.133 2021/08/30 22:56:26 jmcneill Exp $");
40
41 #include <sys/param.h>
42
43 #include <sys/bus.h>
44 #include <sys/cpu.h>
45 #include <sys/kmem.h>
46 #include <sys/mbuf.h>
47
48 #include <uvm/uvm.h>
49
50 #include <arm/cpuconf.h>
51 #include <arm/cpufunc.h>
52
53 #ifdef __HAVE_MM_MD_DIRECT_MAPPED_PHYS
54 #include <dev/mm.h>
55 #endif
56
57 #ifdef BUSDMA_COUNTERS
58 static struct evcnt bus_dma_creates =
59 EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL, "busdma", "creates");
60 static struct evcnt bus_dma_bounced_creates =
61 EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL, "busdma", "bounced creates");
62 static struct evcnt bus_dma_loads =
63 EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL, "busdma", "loads");
64 static struct evcnt bus_dma_bounced_loads =
65 EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL, "busdma", "bounced loads");
66 static struct evcnt bus_dma_coherent_loads =
67 EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL, "busdma", "coherent loads");
68 static struct evcnt bus_dma_read_bounces =
69 EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL, "busdma", "read bounces");
70 static struct evcnt bus_dma_write_bounces =
71 EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL, "busdma", "write bounces");
72 static struct evcnt bus_dma_bounced_unloads =
73 EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL, "busdma", "bounced unloads");
74 static struct evcnt bus_dma_unloads =
75 EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL, "busdma", "unloads");
76 static struct evcnt bus_dma_bounced_destroys =
77 EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL, "busdma", "bounced destroys");
78 static struct evcnt bus_dma_destroys =
79 EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL, "busdma", "destroys");
80 static struct evcnt bus_dma_sync_prereadwrite =
81 EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL, "busdma", "sync prereadwrite");
82 static struct evcnt bus_dma_sync_preread_begin =
83 EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL, "busdma", "sync preread begin");
84 static struct evcnt bus_dma_sync_preread =
85 EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL, "busdma", "sync preread");
86 static struct evcnt bus_dma_sync_preread_tail =
87 EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL, "busdma", "sync preread tail");
88 static struct evcnt bus_dma_sync_prewrite =
89 EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL, "busdma", "sync prewrite");
90 static struct evcnt bus_dma_sync_postread =
91 EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL, "busdma", "sync postread");
92 static struct evcnt bus_dma_sync_postreadwrite =
93 EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL, "busdma", "sync postreadwrite");
94 static struct evcnt bus_dma_sync_postwrite =
95 EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL, "busdma", "sync postwrite");
96
97 static struct evcnt bus_dma_sync_coherent_prereadwrite =
98 EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL, "busdma", "sync coherent prereadwrite");
99 static struct evcnt bus_dma_sync_coherent_preread =
100 EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL, "busdma", "sync coherent preread");
101 static struct evcnt bus_dma_sync_coherent_prewrite =
102 EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL, "busdma", "sync coherent prewrite");
103 static struct evcnt bus_dma_sync_coherent_postread =
104 EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL, "busdma", "sync coherent postread");
105 static struct evcnt bus_dma_sync_coherent_postreadwrite =
106 EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL, "busdma", "sync coherent postreadwrite");
107 static struct evcnt bus_dma_sync_coherent_postwrite =
108 EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL, "busdma", "sync coherent postwrite");
109
110 EVCNT_ATTACH_STATIC(bus_dma_creates);
111 EVCNT_ATTACH_STATIC(bus_dma_bounced_creates);
112 EVCNT_ATTACH_STATIC(bus_dma_loads);
113 EVCNT_ATTACH_STATIC(bus_dma_bounced_loads);
114 EVCNT_ATTACH_STATIC(bus_dma_coherent_loads);
115 EVCNT_ATTACH_STATIC(bus_dma_read_bounces);
116 EVCNT_ATTACH_STATIC(bus_dma_write_bounces);
117 EVCNT_ATTACH_STATIC(bus_dma_unloads);
118 EVCNT_ATTACH_STATIC(bus_dma_bounced_unloads);
119 EVCNT_ATTACH_STATIC(bus_dma_destroys);
120 EVCNT_ATTACH_STATIC(bus_dma_bounced_destroys);
121 EVCNT_ATTACH_STATIC(bus_dma_sync_prereadwrite);
122 EVCNT_ATTACH_STATIC(bus_dma_sync_preread_begin);
123 EVCNT_ATTACH_STATIC(bus_dma_sync_preread);
124 EVCNT_ATTACH_STATIC(bus_dma_sync_preread_tail);
125 EVCNT_ATTACH_STATIC(bus_dma_sync_prewrite);
126 EVCNT_ATTACH_STATIC(bus_dma_sync_postread);
127 EVCNT_ATTACH_STATIC(bus_dma_sync_postreadwrite);
128 EVCNT_ATTACH_STATIC(bus_dma_sync_postwrite);
129
130 EVCNT_ATTACH_STATIC(bus_dma_sync_coherent_prereadwrite);
131 EVCNT_ATTACH_STATIC(bus_dma_sync_coherent_preread);
132 EVCNT_ATTACH_STATIC(bus_dma_sync_coherent_prewrite);
133 EVCNT_ATTACH_STATIC(bus_dma_sync_coherent_postread);
134 EVCNT_ATTACH_STATIC(bus_dma_sync_coherent_postreadwrite);
135 EVCNT_ATTACH_STATIC(bus_dma_sync_coherent_postwrite);
136
137 #define STAT_INCR(x) (bus_dma_ ## x.ev_count++)
138 #else
139 #define STAT_INCR(x) __nothing
140 #endif
141
142 int _bus_dmamap_load_buffer(bus_dma_tag_t, bus_dmamap_t, void *,
143 bus_size_t, struct vmspace *, int);
144
145 /*
146 * Check to see if the specified page is in an allowed DMA range.
147 */
148 static inline struct arm32_dma_range *
149 _bus_dma_paddr_inrange(struct arm32_dma_range *ranges, int nranges,
150 bus_addr_t curaddr)
151 {
152 struct arm32_dma_range *dr;
153 int i;
154
155 for (i = 0, dr = ranges; i < nranges; i++, dr++) {
156 if (curaddr >= dr->dr_sysbase &&
157 curaddr < (dr->dr_sysbase + dr->dr_len))
158 return dr;
159 }
160
161 return NULL;
162 }
163
164 /*
165 * Check to see if the specified busaddr is in an allowed DMA range.
166 */
167 static inline paddr_t
168 _bus_dma_busaddr_to_paddr(bus_dma_tag_t t, bus_addr_t curaddr)
169 {
170 struct arm32_dma_range *dr;
171 u_int i;
172
173 if (t->_nranges == 0)
174 return curaddr;
175
176 for (i = 0, dr = t->_ranges; i < t->_nranges; i++, dr++) {
177 if (dr->dr_busbase <= curaddr
178 && curaddr < dr->dr_busbase + dr->dr_len)
179 return curaddr - dr->dr_busbase + dr->dr_sysbase;
180 }
181 panic("%s: curaddr %#lx not in range", __func__, curaddr);
182 }
183
184 /*
185 * Common function to load the specified physical address into the
186 * DMA map, coalescing segments and boundary checking as necessary.
187 */
188 static int
189 _bus_dmamap_load_paddr(bus_dma_tag_t t, bus_dmamap_t map,
190 bus_addr_t paddr, bus_size_t size, bool coherent)
191 {
192 bus_dma_segment_t * const segs = map->dm_segs;
193 int nseg = map->dm_nsegs;
194 bus_addr_t lastaddr;
195 bus_addr_t bmask = ~(map->_dm_boundary - 1);
196 bus_addr_t curaddr;
197 bus_size_t sgsize;
198 uint32_t _ds_flags = coherent ? _BUS_DMAMAP_COHERENT : 0;
199
200 if (nseg > 0)
201 lastaddr = segs[nseg - 1].ds_addr + segs[nseg - 1].ds_len;
202 else
203 lastaddr = 0xdead;
204
205 again:
206 sgsize = size;
207
208 /* Make sure we're in an allowed DMA range. */
209 if (t->_ranges != NULL) {
210 /* XXX cache last result? */
211 const struct arm32_dma_range * const dr =
212 _bus_dma_paddr_inrange(t->_ranges, t->_nranges, paddr);
213 if (dr == NULL)
214 return EINVAL;
215
216 /*
217 * If this region is coherent, mark the segment as coherent.
218 */
219 _ds_flags |= dr->dr_flags & _BUS_DMAMAP_COHERENT;
220
221 /*
222 * In a valid DMA range. Translate the physical
223 * memory address to an address in the DMA window.
224 */
225 curaddr = (paddr - dr->dr_sysbase) + dr->dr_busbase;
226 #if 0
227 printf("%p: %#lx: range %#lx/%#lx/%#lx/%#x: %#x <-- %#lx\n",
228 t, paddr, dr->dr_sysbase, dr->dr_busbase,
229 dr->dr_len, dr->dr_flags, _ds_flags, curaddr);
230 #endif
231 } else
232 curaddr = paddr;
233
234 /*
235 * Make sure we don't cross any boundaries.
236 */
237 if (map->_dm_boundary > 0) {
238 bus_addr_t baddr; /* next boundary address */
239
240 baddr = (curaddr + map->_dm_boundary) & bmask;
241 if (sgsize > (baddr - curaddr))
242 sgsize = (baddr - curaddr);
243 }
244
245 /*
246 * Insert chunk into a segment, coalescing with the
247 * previous segment if possible.
248 */
249 if (nseg > 0 && curaddr == lastaddr &&
250 segs[nseg - 1].ds_len + sgsize <= map->dm_maxsegsz &&
251 ((segs[nseg - 1]._ds_flags ^ _ds_flags) & _BUS_DMAMAP_COHERENT) == 0 &&
252 (map->_dm_boundary == 0 ||
253 (segs[nseg - 1].ds_addr & bmask) == (curaddr & bmask))) {
254 /* coalesce */
255 segs[nseg - 1].ds_len += sgsize;
256 } else if (nseg >= map->_dm_segcnt) {
257 return EFBIG;
258 } else {
259 /* new segment */
260 segs[nseg].ds_addr = curaddr;
261 segs[nseg].ds_len = sgsize;
262 segs[nseg]._ds_paddr = curaddr;
263 segs[nseg]._ds_flags = _ds_flags;
264 nseg++;
265 }
266
267 lastaddr = curaddr + sgsize;
268
269 paddr += sgsize;
270 size -= sgsize;
271 if (size > 0)
272 goto again;
273
274 map->_dm_flags &= (_ds_flags & _BUS_DMAMAP_COHERENT);
275 map->dm_nsegs = nseg;
276 return 0;
277 }
278
279 static int _bus_dma_uiomove(void *buf, struct uio *uio, size_t n,
280 int direction);
281
282 #ifdef _ARM32_NEED_BUS_DMA_BOUNCE
283 static int _bus_dma_alloc_bouncebuf(bus_dma_tag_t t, bus_dmamap_t map,
284 bus_size_t size, int flags);
285 static void _bus_dma_free_bouncebuf(bus_dma_tag_t t, bus_dmamap_t map);
286
287 static int
288 _bus_dma_load_bouncebuf(bus_dma_tag_t t, bus_dmamap_t map, void *buf,
289 size_t buflen, int buftype, int flags)
290 {
291 struct arm32_bus_dma_cookie * const cookie = map->_dm_cookie;
292 struct vmspace * const vm = vmspace_kernel();
293 int error;
294
295 KASSERT(cookie != NULL);
296 KASSERT(cookie->id_flags & _BUS_DMA_MIGHT_NEED_BOUNCE);
297
298 /*
299 * Allocate bounce pages, if necessary.
300 */
301 if ((cookie->id_flags & _BUS_DMA_HAS_BOUNCE) == 0) {
302 error = _bus_dma_alloc_bouncebuf(t, map, buflen, flags);
303 if (error)
304 return error;
305 }
306
307 /*
308 * Cache a pointer to the caller's buffer and load the DMA map
309 * with the bounce buffer.
310 */
311 cookie->id_origbuf = buf;
312 cookie->id_origbuflen = buflen;
313 error = _bus_dmamap_load_buffer(t, map, cookie->id_bouncebuf,
314 buflen, vm, flags);
315 if (error)
316 return error;
317
318 STAT_INCR(bounced_loads);
319 map->dm_mapsize = buflen;
320 map->_dm_vmspace = vm;
321 map->_dm_buftype = buftype;
322
323 /* ...so _bus_dmamap_sync() knows we're bouncing */
324 map->_dm_flags |= _BUS_DMAMAP_IS_BOUNCING;
325 cookie->id_flags |= _BUS_DMA_IS_BOUNCING;
326 return 0;
327 }
328 #endif /* _ARM32_NEED_BUS_DMA_BOUNCE */
329
330 /*
331 * Common function for DMA map creation. May be called by bus-specific
332 * DMA map creation functions.
333 */
334 int
335 _bus_dmamap_create(bus_dma_tag_t t, bus_size_t size, int nsegments,
336 bus_size_t maxsegsz, bus_size_t boundary, int flags, bus_dmamap_t *dmamp)
337 {
338 struct arm32_bus_dmamap *map;
339 void *mapstore;
340 int error = 0;
341
342 #ifdef DEBUG_DMA
343 printf("dmamap_create: t=%p size=%#lx nseg=%#x msegsz=%#lx boundary=%#lx"
344 " flags=%#x\n", t, size, nsegments, maxsegsz, boundary, flags);
345 #endif /* DEBUG_DMA */
346
347 /*
348 * Allocate and initialize the DMA map. The end of the map
349 * is a variable-sized array of segments, so we allocate enough
350 * room for them in one shot.
351 *
352 * Note we don't preserve the WAITOK or NOWAIT flags. Preservation
353 * of ALLOCNOW notifies others that we've reserved these resources,
354 * and they are not to be freed.
355 *
356 * The bus_dmamap_t includes one bus_dma_segment_t, hence
357 * the (nsegments - 1).
358 */
359 const size_t mapsize = sizeof(struct arm32_bus_dmamap) +
360 (sizeof(bus_dma_segment_t) * (nsegments - 1));
361 const int zallocflags = (flags & BUS_DMA_NOWAIT) ? KM_NOSLEEP : KM_SLEEP;
362 if ((mapstore = kmem_intr_zalloc(mapsize, zallocflags)) == NULL)
363 return ENOMEM;
364
365 map = (struct arm32_bus_dmamap *)mapstore;
366 map->_dm_size = size;
367 map->_dm_segcnt = nsegments;
368 map->_dm_maxmaxsegsz = maxsegsz;
369 map->_dm_boundary = boundary;
370 map->_dm_flags = flags & ~(BUS_DMA_WAITOK|BUS_DMA_NOWAIT);
371 map->_dm_origbuf = NULL;
372 map->_dm_buftype = _BUS_DMA_BUFTYPE_INVALID;
373 map->_dm_vmspace = vmspace_kernel();
374 map->_dm_cookie = NULL;
375 map->dm_maxsegsz = maxsegsz;
376 map->dm_mapsize = 0; /* no valid mappings */
377 map->dm_nsegs = 0;
378
379 #ifdef _ARM32_NEED_BUS_DMA_BOUNCE
380 struct arm32_bus_dma_cookie *cookie;
381 int cookieflags;
382 void *cookiestore;
383
384 cookieflags = 0;
385
386 if (t->_may_bounce != NULL) {
387 error = (*t->_may_bounce)(t, map, flags, &cookieflags);
388 if (error != 0)
389 goto out;
390 }
391
392 if (t->_ranges != NULL) {
393 /*
394 * If ranges are defined, we may have to bounce. The only
395 * exception is if there is exactly one range that covers
396 * all of physical memory.
397 */
398 switch (t->_nranges) {
399 case 1:
400 if (t->_ranges[0].dr_sysbase == 0 &&
401 t->_ranges[0].dr_len == UINTPTR_MAX) {
402 break;
403 }
404 /* FALLTHROUGH */
405 default:
406 cookieflags |= _BUS_DMA_MIGHT_NEED_BOUNCE;
407 }
408 }
409
410 if ((cookieflags & _BUS_DMA_MIGHT_NEED_BOUNCE) == 0) {
411 STAT_INCR(creates);
412 *dmamp = map;
413 return 0;
414 }
415
416 const size_t cookiesize = sizeof(struct arm32_bus_dma_cookie) +
417 (sizeof(bus_dma_segment_t) * map->_dm_segcnt);
418
419 /*
420 * Allocate our cookie.
421 */
422 if ((cookiestore = kmem_intr_zalloc(cookiesize, zallocflags)) == NULL) {
423 error = ENOMEM;
424 goto out;
425 }
426 cookie = (struct arm32_bus_dma_cookie *)cookiestore;
427 cookie->id_flags = cookieflags;
428 map->_dm_cookie = cookie;
429 STAT_INCR(bounced_creates);
430
431 error = _bus_dma_alloc_bouncebuf(t, map, size, flags);
432 out:
433 if (error)
434 _bus_dmamap_destroy(t, map);
435 else
436 *dmamp = map;
437 #else
438 *dmamp = map;
439 STAT_INCR(creates);
440 #endif /* _ARM32_NEED_BUS_DMA_BOUNCE */
441 #ifdef DEBUG_DMA
442 printf("dmamap_create:map=%p\n", map);
443 #endif /* DEBUG_DMA */
444 return error;
445 }
446
447 /*
448 * Common function for DMA map destruction. May be called by bus-specific
449 * DMA map destruction functions.
450 */
451 void
452 _bus_dmamap_destroy(bus_dma_tag_t t, bus_dmamap_t map)
453 {
454
455 #ifdef DEBUG_DMA
456 printf("dmamap_destroy: t=%p map=%p\n", t, map);
457 #endif /* DEBUG_DMA */
458 #ifdef _ARM32_NEED_BUS_DMA_BOUNCE
459 struct arm32_bus_dma_cookie *cookie = map->_dm_cookie;
460
461 /*
462 * Free any bounce pages this map might hold.
463 */
464 if (cookie != NULL) {
465 const size_t cookiesize = sizeof(struct arm32_bus_dma_cookie) +
466 (sizeof(bus_dma_segment_t) * map->_dm_segcnt);
467
468 if (cookie->id_flags & _BUS_DMA_IS_BOUNCING)
469 STAT_INCR(bounced_unloads);
470 map->dm_nsegs = 0;
471 if (cookie->id_flags & _BUS_DMA_HAS_BOUNCE)
472 _bus_dma_free_bouncebuf(t, map);
473 STAT_INCR(bounced_destroys);
474 kmem_intr_free(cookie, cookiesize);
475 } else
476 #endif
477 STAT_INCR(destroys);
478
479 if (map->dm_nsegs > 0)
480 STAT_INCR(unloads);
481
482 const size_t mapsize = sizeof(struct arm32_bus_dmamap) +
483 (sizeof(bus_dma_segment_t) * (map->_dm_segcnt - 1));
484 kmem_intr_free(map, mapsize);
485 }
486
487 /*
488 * Common function for loading a DMA map with a linear buffer. May
489 * be called by bus-specific DMA map load functions.
490 */
491 int
492 _bus_dmamap_load(bus_dma_tag_t t, bus_dmamap_t map, void *buf,
493 bus_size_t buflen, struct proc *p, int flags)
494 {
495 struct vmspace *vm;
496 int error;
497
498 #ifdef DEBUG_DMA
499 printf("dmamap_load: t=%p map=%p buf=%p len=%#lx p=%p f=%#x\n",
500 t, map, buf, buflen, p, flags);
501 #endif /* DEBUG_DMA */
502
503 if (map->dm_nsegs > 0) {
504 #ifdef _ARM32_NEED_BUS_DMA_BOUNCE
505 struct arm32_bus_dma_cookie *cookie = map->_dm_cookie;
506 if (cookie != NULL) {
507 if (cookie->id_flags & _BUS_DMA_IS_BOUNCING) {
508 STAT_INCR(bounced_unloads);
509 cookie->id_flags &= ~_BUS_DMA_IS_BOUNCING;
510 map->_dm_flags &= ~_BUS_DMAMAP_IS_BOUNCING;
511 }
512 } else
513 #endif
514 STAT_INCR(unloads);
515 }
516
517 /*
518 * Make sure that on error condition we return "no valid mappings".
519 */
520 map->dm_mapsize = 0;
521 map->dm_nsegs = 0;
522 map->_dm_buftype = _BUS_DMA_BUFTYPE_INVALID;
523 KASSERTMSG(map->dm_maxsegsz <= map->_dm_maxmaxsegsz,
524 "dm_maxsegsz %lu _dm_maxmaxsegsz %lu",
525 map->dm_maxsegsz, map->_dm_maxmaxsegsz);
526
527 if (buflen > map->_dm_size)
528 return EINVAL;
529
530 if (p != NULL) {
531 vm = p->p_vmspace;
532 } else {
533 vm = vmspace_kernel();
534 }
535
536 /* _bus_dmamap_load_buffer() clears this if we're not... */
537 map->_dm_flags |= _BUS_DMAMAP_COHERENT;
538
539 error = _bus_dmamap_load_buffer(t, map, buf, buflen, vm, flags);
540 if (error == 0) {
541 map->dm_mapsize = buflen;
542 map->_dm_vmspace = vm;
543 map->_dm_origbuf = buf;
544 map->_dm_buftype = _BUS_DMA_BUFTYPE_LINEAR;
545 if (map->_dm_flags & _BUS_DMAMAP_COHERENT) {
546 STAT_INCR(coherent_loads);
547 } else {
548 STAT_INCR(loads);
549 }
550 return 0;
551 }
552 #ifdef _ARM32_NEED_BUS_DMA_BOUNCE
553 struct arm32_bus_dma_cookie * const cookie = map->_dm_cookie;
554 if (cookie != NULL && (cookie->id_flags & _BUS_DMA_MIGHT_NEED_BOUNCE)) {
555 error = _bus_dma_load_bouncebuf(t, map, buf, buflen,
556 _BUS_DMA_BUFTYPE_LINEAR, flags);
557 }
558 #endif
559 return error;
560 }
561
562 /*
563 * Like _bus_dmamap_load(), but for mbufs.
564 */
565 int
566 _bus_dmamap_load_mbuf(bus_dma_tag_t t, bus_dmamap_t map, struct mbuf *m0,
567 int flags)
568 {
569 struct mbuf *m;
570 int error;
571
572 #ifdef DEBUG_DMA
573 printf("dmamap_load_mbuf: t=%p map=%p m0=%p f=%#x\n",
574 t, map, m0, flags);
575 #endif /* DEBUG_DMA */
576
577 if (map->dm_nsegs > 0) {
578 #ifdef _ARM32_NEED_BUS_DMA_BOUNCE
579 struct arm32_bus_dma_cookie *cookie = map->_dm_cookie;
580 if (cookie != NULL) {
581 if (cookie->id_flags & _BUS_DMA_IS_BOUNCING) {
582 STAT_INCR(bounced_unloads);
583 cookie->id_flags &= ~_BUS_DMA_IS_BOUNCING;
584 map->_dm_flags &= ~_BUS_DMAMAP_IS_BOUNCING;
585 }
586 } else
587 #endif
588 STAT_INCR(unloads);
589 }
590
591 /*
592 * Make sure that on error condition we return "no valid mappings."
593 */
594 map->dm_mapsize = 0;
595 map->dm_nsegs = 0;
596 map->_dm_buftype = _BUS_DMA_BUFTYPE_INVALID;
597 KASSERTMSG(map->dm_maxsegsz <= map->_dm_maxmaxsegsz,
598 "dm_maxsegsz %lu _dm_maxmaxsegsz %lu",
599 map->dm_maxsegsz, map->_dm_maxmaxsegsz);
600
601 KASSERT(m0->m_flags & M_PKTHDR);
602
603 if (m0->m_pkthdr.len > map->_dm_size)
604 return EINVAL;
605
606 /* _bus_dmamap_load_paddr() clears this if we're not... */
607 map->_dm_flags |= _BUS_DMAMAP_COHERENT;
608
609 error = 0;
610 for (m = m0; m != NULL && error == 0; m = m->m_next) {
611 int offset;
612 int remainbytes;
613 const struct vm_page * const *pgs;
614 paddr_t paddr;
615 int size;
616
617 if (m->m_len == 0)
618 continue;
619 /*
620 * Don't allow reads in read-only mbufs.
621 */
622 if (M_ROMAP(m) && (flags & BUS_DMA_READ)) {
623 error = EFAULT;
624 break;
625 }
626 switch (m->m_flags & (M_EXT|M_EXT_CLUSTER|M_EXT_PAGES)) {
627 case M_EXT|M_EXT_CLUSTER:
628 /* XXX KDASSERT */
629 KASSERT(m->m_ext.ext_paddr != M_PADDR_INVALID);
630 paddr = m->m_ext.ext_paddr +
631 (m->m_data - m->m_ext.ext_buf);
632 size = m->m_len;
633 error = _bus_dmamap_load_paddr(t, map, paddr, size,
634 false);
635 break;
636
637 case M_EXT|M_EXT_PAGES:
638 KASSERT(m->m_ext.ext_buf <= m->m_data);
639 KASSERT(m->m_data <=
640 m->m_ext.ext_buf + m->m_ext.ext_size);
641
642 offset = (vaddr_t)m->m_data -
643 trunc_page((vaddr_t)m->m_ext.ext_buf);
644 remainbytes = m->m_len;
645
646 /* skip uninteresting pages */
647 pgs = (const struct vm_page * const *)
648 m->m_ext.ext_pgs + (offset >> PAGE_SHIFT);
649
650 offset &= PAGE_MASK; /* offset in the first page */
651
652 /* load each page */
653 while (remainbytes > 0) {
654 const struct vm_page *pg;
655
656 size = MIN(remainbytes, PAGE_SIZE - offset);
657
658 pg = *pgs++;
659 KASSERT(pg);
660 paddr = VM_PAGE_TO_PHYS(pg) + offset;
661
662 error = _bus_dmamap_load_paddr(t, map,
663 paddr, size, false);
664 if (error)
665 break;
666 offset = 0;
667 remainbytes -= size;
668 }
669 break;
670
671 case 0:
672 paddr = m->m_paddr + M_BUFOFFSET(m) +
673 (m->m_data - M_BUFADDR(m));
674 size = m->m_len;
675 error = _bus_dmamap_load_paddr(t, map, paddr, size,
676 false);
677 break;
678
679 default:
680 error = _bus_dmamap_load_buffer(t, map, m->m_data,
681 m->m_len, vmspace_kernel(), flags);
682 }
683 }
684 if (error == 0) {
685 map->dm_mapsize = m0->m_pkthdr.len;
686 map->_dm_origbuf = m0;
687 map->_dm_buftype = _BUS_DMA_BUFTYPE_MBUF;
688 map->_dm_vmspace = vmspace_kernel(); /* always kernel */
689 if (map->_dm_flags & _BUS_DMAMAP_COHERENT) {
690 STAT_INCR(coherent_loads);
691 } else {
692 STAT_INCR(loads);
693 }
694 return 0;
695 }
696 #ifdef _ARM32_NEED_BUS_DMA_BOUNCE
697 struct arm32_bus_dma_cookie * const cookie = map->_dm_cookie;
698 if (cookie != NULL && (cookie->id_flags & _BUS_DMA_MIGHT_NEED_BOUNCE)) {
699 error = _bus_dma_load_bouncebuf(t, map, m0, m0->m_pkthdr.len,
700 _BUS_DMA_BUFTYPE_MBUF, flags);
701 }
702 #endif
703 return error;
704 }
705
706 /*
707 * Like _bus_dmamap_load(), but for uios.
708 */
709 int
710 _bus_dmamap_load_uio(bus_dma_tag_t t, bus_dmamap_t map, struct uio *uio,
711 int flags)
712 {
713 bus_size_t minlen, resid;
714 struct iovec *iov;
715 void *addr;
716 int i, error;
717
718 /*
719 * Make sure that on error condition we return "no valid mappings."
720 */
721 map->dm_mapsize = 0;
722 map->dm_nsegs = 0;
723 KASSERTMSG(map->dm_maxsegsz <= map->_dm_maxmaxsegsz,
724 "dm_maxsegsz %lu _dm_maxmaxsegsz %lu",
725 map->dm_maxsegsz, map->_dm_maxmaxsegsz);
726
727 resid = uio->uio_resid;
728 iov = uio->uio_iov;
729
730 /* _bus_dmamap_load_buffer() clears this if we're not... */
731 map->_dm_flags |= _BUS_DMAMAP_COHERENT;
732
733 error = 0;
734 for (i = 0; i < uio->uio_iovcnt && resid != 0 && error == 0; i++) {
735 /*
736 * Now at the first iovec to load. Load each iovec
737 * until we have exhausted the residual count.
738 */
739 minlen = resid < iov[i].iov_len ? resid : iov[i].iov_len;
740 addr = (void *)iov[i].iov_base;
741
742 error = _bus_dmamap_load_buffer(t, map, addr, minlen,
743 uio->uio_vmspace, flags);
744
745 resid -= minlen;
746 }
747 if (error == 0) {
748 map->dm_mapsize = uio->uio_resid;
749 map->_dm_origbuf = uio;
750 map->_dm_buftype = _BUS_DMA_BUFTYPE_UIO;
751 map->_dm_vmspace = uio->uio_vmspace;
752 if (map->_dm_flags & _BUS_DMAMAP_COHERENT) {
753 STAT_INCR(coherent_loads);
754 } else {
755 STAT_INCR(loads);
756 }
757 }
758 return error;
759 }
760
761 /*
762 * Like _bus_dmamap_load(), but for raw memory allocated with
763 * bus_dmamem_alloc().
764 */
765 int
766 _bus_dmamap_load_raw(bus_dma_tag_t t, bus_dmamap_t map,
767 bus_dma_segment_t *segs, int nsegs, bus_size_t size0, int flags)
768 {
769
770 bus_size_t size;
771 int i, error = 0;
772
773 /*
774 * Make sure that on error conditions we return "no valid mappings."
775 */
776 map->dm_mapsize = 0;
777 map->dm_nsegs = 0;
778 KASSERT(map->dm_maxsegsz <= map->_dm_maxmaxsegsz);
779
780 if (size0 > map->_dm_size)
781 return EINVAL;
782
783 for (i = 0, size = size0; i < nsegs && size > 0; i++) {
784 bus_dma_segment_t *ds = &segs[i];
785 bus_size_t sgsize;
786
787 sgsize = MIN(ds->ds_len, size);
788 if (sgsize == 0)
789 continue;
790 const bool coherent =
791 (ds->_ds_flags & _BUS_DMAMAP_COHERENT) != 0;
792 error = _bus_dmamap_load_paddr(t, map, ds->ds_addr,
793 sgsize, coherent);
794 if (error != 0)
795 break;
796 size -= sgsize;
797 }
798
799 if (error != 0) {
800 map->dm_mapsize = 0;
801 map->dm_nsegs = 0;
802 return error;
803 }
804
805 /* XXX TBD bounce */
806
807 map->dm_mapsize = size0;
808 map->_dm_origbuf = NULL;
809 map->_dm_buftype = _BUS_DMA_BUFTYPE_RAW;
810 map->_dm_vmspace = NULL;
811 return 0;
812 }
813
814 /*
815 * Common function for unloading a DMA map. May be called by
816 * bus-specific DMA map unload functions.
817 */
818 void
819 _bus_dmamap_unload(bus_dma_tag_t t, bus_dmamap_t map)
820 {
821
822 #ifdef DEBUG_DMA
823 printf("dmamap_unload: t=%p map=%p\n", t, map);
824 #endif /* DEBUG_DMA */
825
826 /*
827 * No resources to free; just mark the mappings as
828 * invalid.
829 */
830 map->dm_mapsize = 0;
831 map->dm_nsegs = 0;
832 map->_dm_origbuf = NULL;
833 map->_dm_buftype = _BUS_DMA_BUFTYPE_INVALID;
834 map->_dm_vmspace = NULL;
835 }
836
837 static void
838 _bus_dmamap_sync_segment(vaddr_t va, paddr_t pa, vsize_t len, int ops,
839 bool readonly_p)
840 {
841
842 #if defined(ARM_MMU_EXTENDED)
843 /*
844 * No optimisations are available for readonly mbufs on armv6+, so
845 * assume it's not readonly from here on.
846 *
847 * See the comment in _bus_dmamap_sync_mbuf
848 */
849 readonly_p = false;
850 #endif
851
852 KASSERTMSG((va & PAGE_MASK) == (pa & PAGE_MASK),
853 "va %#lx pa %#lx", va, pa);
854 #if 0
855 printf("sync_segment: va=%#lx pa=%#lx len=%#lx ops=%#x ro=%d\n",
856 va, pa, len, ops, readonly_p);
857 #endif
858
859 switch (ops) {
860 case BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE:
861 if (!readonly_p) {
862 STAT_INCR(sync_prereadwrite);
863 cpu_dcache_wbinv_range(va, len);
864 cpu_sdcache_wbinv_range(va, pa, len);
865 break;
866 }
867 /* FALLTHROUGH */
868
869 case BUS_DMASYNC_PREREAD: {
870 const size_t line_size = arm_dcache_align;
871 const size_t line_mask = arm_dcache_align_mask;
872 vsize_t misalignment = va & line_mask;
873 if (misalignment) {
874 va -= misalignment;
875 pa -= misalignment;
876 len += misalignment;
877 STAT_INCR(sync_preread_begin);
878 cpu_dcache_wbinv_range(va, line_size);
879 cpu_sdcache_wbinv_range(va, pa, line_size);
880 if (len <= line_size)
881 break;
882 va += line_size;
883 pa += line_size;
884 len -= line_size;
885 }
886 misalignment = len & line_mask;
887 len -= misalignment;
888 if (len > 0) {
889 STAT_INCR(sync_preread);
890 cpu_dcache_inv_range(va, len);
891 cpu_sdcache_inv_range(va, pa, len);
892 }
893 if (misalignment) {
894 va += len;
895 pa += len;
896 STAT_INCR(sync_preread_tail);
897 cpu_dcache_wbinv_range(va, line_size);
898 cpu_sdcache_wbinv_range(va, pa, line_size);
899 }
900 break;
901 }
902
903 case BUS_DMASYNC_PREWRITE:
904 STAT_INCR(sync_prewrite);
905 cpu_dcache_wb_range(va, len);
906 cpu_sdcache_wb_range(va, pa, len);
907 break;
908
909 #if defined(CPU_CORTEX) || defined(CPU_ARMV8)
910
911 /*
912 * Cortex CPUs can do speculative loads so we need to clean the cache
913 * after a DMA read to deal with any speculatively loaded cache lines.
914 * Since these can't be dirty, we can just invalidate them and don't
915 * have to worry about having to write back their contents.
916 */
917 case BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE:
918 STAT_INCR(sync_postreadwrite);
919 cpu_dcache_inv_range(va, len);
920 cpu_sdcache_inv_range(va, pa, len);
921 break;
922
923 case BUS_DMASYNC_POSTREAD:
924 STAT_INCR(sync_postread);
925 cpu_dcache_inv_range(va, len);
926 cpu_sdcache_inv_range(va, pa, len);
927 break;
928 #endif
929 }
930 }
931
932 static inline void
933 _bus_dmamap_sync_linear(bus_dma_tag_t t, bus_dmamap_t map, bus_addr_t offset,
934 bus_size_t len, int ops)
935 {
936 bus_dma_segment_t *ds = map->dm_segs;
937 vaddr_t va = (vaddr_t) map->_dm_origbuf;
938 #ifdef _ARM32_NEED_BUS_DMA_BOUNCE
939 if (map->_dm_flags & _BUS_DMAMAP_IS_BOUNCING) {
940 struct arm32_bus_dma_cookie * const cookie = map->_dm_cookie;
941 va = (vaddr_t) cookie->id_bouncebuf;
942 }
943 #endif
944
945 while (len > 0) {
946 while (offset >= ds->ds_len) {
947 offset -= ds->ds_len;
948 va += ds->ds_len;
949 ds++;
950 }
951
952 paddr_t pa = _bus_dma_busaddr_to_paddr(t, ds->ds_addr + offset);
953 size_t seglen = uimin(len, ds->ds_len - offset);
954
955 if ((ds->_ds_flags & _BUS_DMAMAP_COHERENT) == 0)
956 _bus_dmamap_sync_segment(va + offset, pa, seglen, ops,
957 false);
958
959 offset += seglen;
960 len -= seglen;
961 }
962 }
963
964 static inline void
965 _bus_dmamap_sync_mbuf(bus_dma_tag_t t, bus_dmamap_t map, bus_size_t offset,
966 bus_size_t len, int ops)
967 {
968 bus_dma_segment_t *ds = map->dm_segs;
969 struct mbuf *m = map->_dm_origbuf;
970 bus_size_t voff = offset;
971 bus_size_t ds_off = offset;
972
973 while (len > 0) {
974 /* Find the current dma segment */
975 while (ds_off >= ds->ds_len) {
976 ds_off -= ds->ds_len;
977 ds++;
978 }
979 /* Find the current mbuf. */
980 while (voff >= m->m_len) {
981 voff -= m->m_len;
982 m = m->m_next;
983 }
984
985 /*
986 * Now at the first mbuf to sync; nail each one until
987 * we have exhausted the length.
988 */
989 vsize_t seglen = uimin(len, uimin(m->m_len - voff, ds->ds_len - ds_off));
990 vaddr_t va = mtod(m, vaddr_t) + voff;
991 paddr_t pa = _bus_dma_busaddr_to_paddr(t, ds->ds_addr + ds_off);
992
993 /*
994 * We can save a lot of work here if we know the mapping
995 * is read-only at the MMU and we aren't using the armv6+
996 * MMU:
997 *
998 * If a mapping is read-only, no dirty cache blocks will
999 * exist for it. If a writable mapping was made read-only,
1000 * we know any dirty cache lines for the range will have
1001 * been cleaned for us already. Therefore, if the upper
1002 * layer can tell us we have a read-only mapping, we can
1003 * skip all cache cleaning.
1004 *
1005 * NOTE: This only works if we know the pmap cleans pages
1006 * before making a read-write -> read-only transition. If
1007 * this ever becomes non-true (e.g. Physically Indexed
1008 * cache), this will have to be revisited.
1009 */
1010
1011 if ((ds->_ds_flags & _BUS_DMAMAP_COHERENT) == 0) {
1012 /*
1013 * If we are doing preread (DMAing into the mbuf),
1014 * this mbuf better not be readonly,
1015 */
1016 KASSERT(!(ops & BUS_DMASYNC_PREREAD) || !M_ROMAP(m));
1017 _bus_dmamap_sync_segment(va, pa, seglen, ops,
1018 M_ROMAP(m));
1019 }
1020 voff += seglen;
1021 ds_off += seglen;
1022 len -= seglen;
1023 }
1024 }
1025
1026 static inline void
1027 _bus_dmamap_sync_uio(bus_dma_tag_t t, bus_dmamap_t map, bus_addr_t offset,
1028 bus_size_t len, int ops)
1029 {
1030 bus_dma_segment_t *ds = map->dm_segs;
1031 struct uio *uio = map->_dm_origbuf;
1032 struct iovec *iov = uio->uio_iov;
1033 bus_size_t voff = offset;
1034 bus_size_t ds_off = offset;
1035
1036 while (len > 0) {
1037 /* Find the current dma segment */
1038 while (ds_off >= ds->ds_len) {
1039 ds_off -= ds->ds_len;
1040 ds++;
1041 }
1042
1043 /* Find the current iovec. */
1044 while (voff >= iov->iov_len) {
1045 voff -= iov->iov_len;
1046 iov++;
1047 }
1048
1049 /*
1050 * Now at the first iovec to sync; nail each one until
1051 * we have exhausted the length.
1052 */
1053 vsize_t seglen = uimin(len, uimin(iov->iov_len - voff, ds->ds_len - ds_off));
1054 vaddr_t va = (vaddr_t) iov->iov_base + voff;
1055 paddr_t pa = _bus_dma_busaddr_to_paddr(t, ds->ds_addr + ds_off);
1056
1057 if ((ds->_ds_flags & _BUS_DMAMAP_COHERENT) == 0)
1058 _bus_dmamap_sync_segment(va, pa, seglen, ops, false);
1059
1060 voff += seglen;
1061 ds_off += seglen;
1062 len -= seglen;
1063 }
1064 }
1065
1066 /*
1067 * Common function for DMA map synchronization. May be called
1068 * by bus-specific DMA map synchronization functions.
1069 *
1070 * XXX Should have separate versions for write-through vs.
1071 * XXX write-back caches. We currently assume write-back
1072 * XXX here, which is not as efficient as it could be for
1073 * XXX the write-through case.
1074 */
1075 void
1076 _bus_dmamap_sync(bus_dma_tag_t t, bus_dmamap_t map, bus_addr_t offset,
1077 bus_size_t len, int ops)
1078 {
1079 #ifdef DEBUG_DMA
1080 printf("dmamap_sync: t=%p map=%p offset=%#lx len=%#lx ops=%#x\n",
1081 t, map, offset, len, ops);
1082 #endif /* DEBUG_DMA */
1083
1084 /*
1085 * Mixing of PRE and POST operations is not allowed.
1086 */
1087 if ((ops & (BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE)) != 0 &&
1088 (ops & (BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE)) != 0)
1089 panic("%s: mix PRE and POST", __func__);
1090
1091 KASSERTMSG(offset < map->dm_mapsize,
1092 "offset %lu mapsize %lu",
1093 offset, map->dm_mapsize);
1094 KASSERTMSG(len > 0 && offset + len <= map->dm_mapsize,
1095 "len %lu offset %lu mapsize %lu",
1096 len, offset, map->dm_mapsize);
1097
1098 /*
1099 * For a virtually-indexed write-back cache, we need
1100 * to do the following things:
1101 *
1102 * PREREAD -- Invalidate the D-cache. We do this
1103 * here in case a write-back is required by the back-end.
1104 *
1105 * PREWRITE -- Write-back the D-cache. Note that if
1106 * we are doing a PREREAD|PREWRITE, we can collapse
1107 * the whole thing into a single Wb-Inv.
1108 *
1109 * POSTREAD -- Re-invalidate the D-cache in case speculative
1110 * memory accesses caused cachelines to become valid with now
1111 * invalid data.
1112 *
1113 * POSTWRITE -- Nothing.
1114 */
1115 #ifdef _ARM32_NEED_BUS_DMA_BOUNCE
1116 const bool bouncing = (map->_dm_flags & _BUS_DMAMAP_IS_BOUNCING);
1117 #else
1118 const bool bouncing = false;
1119 #endif
1120
1121 const int pre_ops = ops & (BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1122 #if defined(CPU_CORTEX) || defined(CPU_ARMV8)
1123 const int post_ops = ops & (BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1124 #else
1125 const int post_ops = 0;
1126 #endif
1127 if (pre_ops == 0 && post_ops == 0)
1128 return;
1129
1130 if (post_ops == BUS_DMASYNC_POSTWRITE) {
1131 KASSERT(pre_ops == 0);
1132 if ((map->_dm_flags & _BUS_DMAMAP_COHERENT)) {
1133 STAT_INCR(sync_coherent_postwrite);
1134 } else {
1135 STAT_INCR(sync_postwrite);
1136 }
1137 return;
1138 }
1139
1140 KASSERTMSG(bouncing || pre_ops != 0 || (post_ops & BUS_DMASYNC_POSTREAD),
1141 "pre_ops %#x post_ops %#x", pre_ops, post_ops);
1142
1143 if (bouncing && (ops & BUS_DMASYNC_PREWRITE)) {
1144 struct arm32_bus_dma_cookie * const cookie = map->_dm_cookie;
1145 STAT_INCR(write_bounces);
1146 char * const dataptr = (char *)cookie->id_bouncebuf + offset;
1147 /*
1148 * Copy the caller's buffer to the bounce buffer.
1149 */
1150 switch (map->_dm_buftype) {
1151 case _BUS_DMA_BUFTYPE_LINEAR:
1152 memcpy(dataptr, cookie->id_origlinearbuf + offset, len);
1153 break;
1154
1155 case _BUS_DMA_BUFTYPE_MBUF:
1156 m_copydata(cookie->id_origmbuf, offset, len, dataptr);
1157 break;
1158
1159 case _BUS_DMA_BUFTYPE_UIO:
1160 _bus_dma_uiomove(dataptr, cookie->id_origuio, len,
1161 UIO_WRITE);
1162 break;
1163
1164 #ifdef DIAGNOSTIC
1165 case _BUS_DMA_BUFTYPE_RAW:
1166 panic("%s:(pre): _BUS_DMA_BUFTYPE_RAW", __func__);
1167 break;
1168
1169 case _BUS_DMA_BUFTYPE_INVALID:
1170 panic("%s(pre): _BUS_DMA_BUFTYPE_INVALID", __func__);
1171 break;
1172
1173 default:
1174 panic("%s(pre): map %p: unknown buffer type %d\n",
1175 __func__, map, map->_dm_buftype);
1176 break;
1177 #endif /* DIAGNOSTIC */
1178 }
1179 }
1180
1181 /* Skip cache frobbing if mapping was COHERENT */
1182 if ((map->_dm_flags & _BUS_DMAMAP_COHERENT)) {
1183 switch (ops) {
1184 case BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE:
1185 STAT_INCR(sync_coherent_prereadwrite);
1186 break;
1187
1188 case BUS_DMASYNC_PREREAD:
1189 STAT_INCR(sync_coherent_preread);
1190 break;
1191
1192 case BUS_DMASYNC_PREWRITE:
1193 STAT_INCR(sync_coherent_prewrite);
1194 break;
1195
1196 case BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE:
1197 STAT_INCR(sync_coherent_postreadwrite);
1198 break;
1199
1200 case BUS_DMASYNC_POSTREAD:
1201 STAT_INCR(sync_coherent_postread);
1202 break;
1203
1204 /* BUS_DMASYNC_POSTWRITE was aleady handled as a fastpath */
1205 }
1206 /*
1207 * Drain the write buffer of DMA operators.
1208 * 1) when cpu->device (prewrite)
1209 * 2) when device->cpu (postread)
1210 */
1211 if ((pre_ops & BUS_DMASYNC_PREWRITE) || (post_ops & BUS_DMASYNC_POSTREAD))
1212 cpu_drain_writebuf();
1213
1214 /*
1215 * Only thing left to do for COHERENT mapping is copy from bounce
1216 * in the POSTREAD case.
1217 */
1218 if (bouncing && (post_ops & BUS_DMASYNC_POSTREAD))
1219 goto bounce_it;
1220
1221 return;
1222 }
1223
1224 #if !defined(ARM_MMU_EXTENDED)
1225 /*
1226 * If the mapping belongs to a non-kernel vmspace, and the
1227 * vmspace has not been active since the last time a full
1228 * cache flush was performed, we don't need to do anything.
1229 */
1230 if (__predict_false(!VMSPACE_IS_KERNEL_P(map->_dm_vmspace) &&
1231 vm_map_pmap(&map->_dm_vmspace->vm_map)->pm_cstate.cs_cache_d == 0))
1232 return;
1233 #endif
1234
1235 int buftype = map->_dm_buftype;
1236 if (bouncing) {
1237 buftype = _BUS_DMA_BUFTYPE_LINEAR;
1238 }
1239
1240 switch (buftype) {
1241 case _BUS_DMA_BUFTYPE_LINEAR:
1242 case _BUS_DMA_BUFTYPE_RAW:
1243 _bus_dmamap_sync_linear(t, map, offset, len, ops);
1244 break;
1245
1246 case _BUS_DMA_BUFTYPE_MBUF:
1247 _bus_dmamap_sync_mbuf(t, map, offset, len, ops);
1248 break;
1249
1250 case _BUS_DMA_BUFTYPE_UIO:
1251 _bus_dmamap_sync_uio(t, map, offset, len, ops);
1252 break;
1253
1254 case _BUS_DMA_BUFTYPE_INVALID:
1255 panic("%s: _BUS_DMA_BUFTYPE_INVALID", __func__);
1256 break;
1257
1258 default:
1259 panic("%s: map %p: unknown buffer type %d\n", __func__, map,
1260 map->_dm_buftype);
1261 }
1262
1263 /* Drain the write buffer. */
1264 cpu_drain_writebuf();
1265
1266 if (!bouncing || (ops & BUS_DMASYNC_POSTREAD) == 0)
1267 return;
1268
1269 bounce_it:
1270 STAT_INCR(read_bounces);
1271
1272 struct arm32_bus_dma_cookie * const cookie = map->_dm_cookie;
1273 char * const dataptr = (char *)cookie->id_bouncebuf + offset;
1274 /*
1275 * Copy the bounce buffer to the caller's buffer.
1276 */
1277 switch (map->_dm_buftype) {
1278 case _BUS_DMA_BUFTYPE_LINEAR:
1279 memcpy(cookie->id_origlinearbuf + offset, dataptr, len);
1280 break;
1281
1282 case _BUS_DMA_BUFTYPE_MBUF:
1283 m_copyback(cookie->id_origmbuf, offset, len, dataptr);
1284 break;
1285
1286 case _BUS_DMA_BUFTYPE_UIO:
1287 _bus_dma_uiomove(dataptr, cookie->id_origuio, len, UIO_READ);
1288 break;
1289
1290 #ifdef DIAGNOSTIC
1291 case _BUS_DMA_BUFTYPE_RAW:
1292 panic("%s(post): _BUS_DMA_BUFTYPE_RAW", __func__);
1293 break;
1294
1295 case _BUS_DMA_BUFTYPE_INVALID:
1296 panic("%s(post): _BUS_DMA_BUFTYPE_INVALID", __func__);
1297 break;
1298
1299 default:
1300 panic("%s(post): map %p: unknown buffer type %d\n", __func__,
1301 map, map->_dm_buftype);
1302 break;
1303 #endif
1304 }
1305 }
1306
1307 /*
1308 * Common function for DMA-safe memory allocation. May be called
1309 * by bus-specific DMA memory allocation functions.
1310 */
1311
1312 extern paddr_t physical_start;
1313 extern paddr_t physical_end;
1314
1315 int
1316 _bus_dmamem_alloc(bus_dma_tag_t t, bus_size_t size, bus_size_t alignment,
1317 bus_size_t boundary, bus_dma_segment_t *segs, int nsegs, int *rsegs,
1318 int flags)
1319 {
1320 struct arm32_dma_range *dr;
1321 int error, i;
1322
1323 #ifdef DEBUG_DMA
1324 printf("dmamem_alloc t=%p size=%#lx align=%#lx boundary=%#lx "
1325 "segs=%p nsegs=%#x rsegs=%p flags=%#x\n", t, size, alignment,
1326 boundary, segs, nsegs, rsegs, flags);
1327 #endif
1328
1329 if ((dr = t->_ranges) != NULL) {
1330 error = ENOMEM;
1331 for (i = 0; i < t->_nranges; i++, dr++) {
1332 if (dr->dr_len == 0
1333 || (dr->dr_flags & _BUS_DMAMAP_NOALLOC))
1334 continue;
1335 error = _bus_dmamem_alloc_range(t, size, alignment,
1336 boundary, segs, nsegs, rsegs, flags,
1337 trunc_page(dr->dr_sysbase),
1338 trunc_page(dr->dr_sysbase + dr->dr_len));
1339 if (error == 0)
1340 break;
1341 }
1342 } else {
1343 error = _bus_dmamem_alloc_range(t, size, alignment, boundary,
1344 segs, nsegs, rsegs, flags, trunc_page(physical_start),
1345 trunc_page(physical_end));
1346 }
1347
1348 #ifdef DEBUG_DMA
1349 printf("dmamem_alloc: =%d\n", error);
1350 #endif
1351
1352 return error;
1353 }
1354
1355 /*
1356 * Common function for freeing DMA-safe memory. May be called by
1357 * bus-specific DMA memory free functions.
1358 */
1359 void
1360 _bus_dmamem_free(bus_dma_tag_t t, bus_dma_segment_t *segs, int nsegs)
1361 {
1362 struct vm_page *m;
1363 bus_addr_t addr;
1364 struct pglist mlist;
1365 int curseg;
1366
1367 #ifdef DEBUG_DMA
1368 printf("dmamem_free: t=%p segs=%p nsegs=%#x\n", t, segs, nsegs);
1369 #endif /* DEBUG_DMA */
1370
1371 /*
1372 * Build a list of pages to free back to the VM system.
1373 */
1374 TAILQ_INIT(&mlist);
1375 for (curseg = 0; curseg < nsegs; curseg++) {
1376 for (addr = segs[curseg].ds_addr;
1377 addr < (segs[curseg].ds_addr + segs[curseg].ds_len);
1378 addr += PAGE_SIZE) {
1379 m = PHYS_TO_VM_PAGE(addr);
1380 TAILQ_INSERT_TAIL(&mlist, m, pageq.queue);
1381 }
1382 }
1383 uvm_pglistfree(&mlist);
1384 }
1385
1386 /*
1387 * Common function for mapping DMA-safe memory. May be called by
1388 * bus-specific DMA memory map functions.
1389 */
1390 int
1391 _bus_dmamem_map(bus_dma_tag_t t, bus_dma_segment_t *segs, int nsegs,
1392 size_t size, void **kvap, int flags)
1393 {
1394 vaddr_t va;
1395 paddr_t pa;
1396 int curseg;
1397 const uvm_flag_t kmflags = UVM_KMF_VAONLY
1398 | ((flags & BUS_DMA_NOWAIT) != 0 ? UVM_KMF_NOWAIT : 0);
1399 vsize_t align = 0;
1400
1401 #ifdef DEBUG_DMA
1402 printf("dmamem_map: t=%p segs=%p nsegs=%#x size=%#lx flags=%#x\n", t,
1403 segs, nsegs, (unsigned long)size, flags);
1404 #endif /* DEBUG_DMA */
1405
1406 #ifdef PMAP_MAP_POOLPAGE
1407 /*
1408 * If all of memory is mapped, and we are mapping a single physically
1409 * contiguous area then this area is already mapped. Let's see if we
1410 * avoid having a separate mapping for it.
1411 */
1412 if (nsegs == 1 && (flags & BUS_DMA_PREFETCHABLE) == 0) {
1413 /*
1414 * If this is a non-COHERENT mapping, then the existing kernel
1415 * mapping is already compatible with it.
1416 */
1417 bool direct_mapable = (flags & BUS_DMA_COHERENT) == 0;
1418 pa = segs[0].ds_addr;
1419
1420 /*
1421 * This is a COHERENT mapping which, unless this address is in
1422 * a COHERENT dma range, will not be compatible.
1423 */
1424 if (t->_ranges != NULL) {
1425 const struct arm32_dma_range * const dr =
1426 _bus_dma_paddr_inrange(t->_ranges, t->_nranges, pa);
1427 if (dr != NULL
1428 && (dr->dr_flags & _BUS_DMAMAP_COHERENT)) {
1429 direct_mapable = true;
1430 }
1431 }
1432
1433 #ifdef PMAP_NEED_ALLOC_POOLPAGE
1434 /*
1435 * The page can only be direct mapped if was allocated out
1436 * of the arm poolpage vm freelist.
1437 */
1438 uvm_physseg_t upm = uvm_physseg_find(atop(pa), NULL);
1439 KASSERT(uvm_physseg_valid_p(upm));
1440 if (direct_mapable) {
1441 direct_mapable =
1442 (arm_poolpage_vmfreelist == uvm_physseg_get_free_list(upm));
1443 }
1444 #endif
1445
1446 if (direct_mapable) {
1447 *kvap = (void *)PMAP_MAP_POOLPAGE(pa);
1448 #ifdef DEBUG_DMA
1449 printf("dmamem_map: =%p\n", *kvap);
1450 #endif /* DEBUG_DMA */
1451 return 0;
1452 }
1453 }
1454 #endif
1455
1456 size = round_page(size);
1457
1458 #ifdef PMAP_MAPSIZE1
1459 if (size >= PMAP_MAPSIZE1)
1460 align = PMAP_MAPSIZE1;
1461
1462 #ifdef PMAP_MAPSIZE2
1463
1464 #if PMAP_MAPSIZE1 > PMAP_MAPSIZE2
1465 #error PMAP_MAPSIZE1 must be smaller than PMAP_MAPSIZE2
1466 #endif
1467
1468 if (size >= PMAP_MAPSIZE2)
1469 align = PMAP_MAPSIZE2;
1470
1471 #ifdef PMAP_MAPSIZE3
1472
1473 #if PMAP_MAPSIZE2 > PMAP_MAPSIZE3
1474 #error PMAP_MAPSIZE2 must be smaller than PMAP_MAPSIZE3
1475 #endif
1476
1477 if (size >= PMAP_MAPSIZE3)
1478 align = PMAP_MAPSIZE3;
1479 #endif
1480 #endif
1481 #endif
1482
1483 va = uvm_km_alloc(kernel_map, size, align, kmflags);
1484 if (__predict_false(va == 0 && align > 0)) {
1485 align = 0;
1486 va = uvm_km_alloc(kernel_map, size, 0, kmflags);
1487 }
1488
1489 if (va == 0)
1490 return ENOMEM;
1491
1492 *kvap = (void *)va;
1493
1494 for (curseg = 0; curseg < nsegs; curseg++) {
1495 for (pa = segs[curseg].ds_addr;
1496 pa < (segs[curseg].ds_addr + segs[curseg].ds_len);
1497 pa += PAGE_SIZE, va += PAGE_SIZE, size -= PAGE_SIZE) {
1498 bool uncached = (flags & BUS_DMA_COHERENT);
1499 bool prefetchable = (flags & BUS_DMA_PREFETCHABLE);
1500 #ifdef DEBUG_DMA
1501 printf("wiring P%#lx to V%#lx\n", pa, va);
1502 #endif /* DEBUG_DMA */
1503 if (size == 0)
1504 panic("_bus_dmamem_map: size botch");
1505
1506 const struct arm32_dma_range * const dr =
1507 _bus_dma_paddr_inrange(t->_ranges, t->_nranges, pa);
1508 /*
1509 * If this dma region is coherent then there is
1510 * no need for an uncached mapping.
1511 */
1512 if (dr != NULL
1513 && (dr->dr_flags & _BUS_DMAMAP_COHERENT)) {
1514 uncached = false;
1515 }
1516
1517 u_int pmap_flags = PMAP_WIRED;
1518 if (prefetchable)
1519 pmap_flags |= PMAP_WRITE_COMBINE;
1520 else if (uncached)
1521 pmap_flags |= PMAP_NOCACHE;
1522
1523 pmap_kenter_pa(va, pa, VM_PROT_READ | VM_PROT_WRITE,
1524 pmap_flags);
1525 }
1526 }
1527 pmap_update(pmap_kernel());
1528 #ifdef DEBUG_DMA
1529 printf("dmamem_map: =%p\n", *kvap);
1530 #endif /* DEBUG_DMA */
1531 return 0;
1532 }
1533
1534 /*
1535 * Common function for unmapping DMA-safe memory. May be called by
1536 * bus-specific DMA memory unmapping functions.
1537 */
1538 void
1539 _bus_dmamem_unmap(bus_dma_tag_t t, void *kva, size_t size)
1540 {
1541
1542 #ifdef DEBUG_DMA
1543 printf("dmamem_unmap: t=%p kva=%p size=%#zx\n", t, kva, size);
1544 #endif /* DEBUG_DMA */
1545 KASSERTMSG(((uintptr_t)kva & PAGE_MASK) == 0,
1546 "kva %p (%#"PRIxPTR")", kva, ((uintptr_t)kva & PAGE_MASK));
1547
1548 #ifdef __HAVE_MM_MD_DIRECT_MAPPED_PHYS
1549 /*
1550 * Check to see if this used direct mapped memory. Get its physical
1551 * address and try to map it. If the resultant matches the kva, then
1552 * it was and so we can just return since we have nothing to free up.
1553 */
1554 paddr_t pa;
1555 vaddr_t va;
1556 (void)pmap_extract(pmap_kernel(), (vaddr_t)kva, &pa);
1557 if (mm_md_direct_mapped_phys(pa, &va) && va == (vaddr_t)kva)
1558 return;
1559 #endif
1560
1561 size = round_page(size);
1562 pmap_kremove((vaddr_t)kva, size);
1563 pmap_update(pmap_kernel());
1564 uvm_km_free(kernel_map, (vaddr_t)kva, size, UVM_KMF_VAONLY);
1565 }
1566
1567 /*
1568 * Common functin for mmap(2)'ing DMA-safe memory. May be called by
1569 * bus-specific DMA mmap(2)'ing functions.
1570 */
1571 paddr_t
1572 _bus_dmamem_mmap(bus_dma_tag_t t, bus_dma_segment_t *segs, int nsegs,
1573 off_t off, int prot, int flags)
1574 {
1575 paddr_t map_flags;
1576 int i;
1577
1578 for (i = 0; i < nsegs; i++) {
1579 KASSERTMSG((off & PAGE_MASK) == 0,
1580 "off %#jx (%#x)", (uintmax_t)off, (int)off & PAGE_MASK);
1581 KASSERTMSG((segs[i].ds_addr & PAGE_MASK) == 0,
1582 "ds_addr %#lx (%#x)", segs[i].ds_addr,
1583 (int)segs[i].ds_addr & PAGE_MASK);
1584 KASSERTMSG((segs[i].ds_len & PAGE_MASK) == 0,
1585 "ds_len %#lx (%#x)", segs[i].ds_addr,
1586 (int)segs[i].ds_addr & PAGE_MASK);
1587 if (off >= segs[i].ds_len) {
1588 off -= segs[i].ds_len;
1589 continue;
1590 }
1591
1592 map_flags = 0;
1593 if (flags & BUS_DMA_PREFETCHABLE)
1594 map_flags |= ARM_MMAP_WRITECOMBINE;
1595
1596 return arm_btop((u_long)segs[i].ds_addr + off) | map_flags;
1597
1598 }
1599
1600 /* Page not found. */
1601 return -1;
1602 }
1603
1604 /**********************************************************************
1605 * DMA utility functions
1606 **********************************************************************/
1607
1608 /*
1609 * Utility function to load a linear buffer. lastaddrp holds state
1610 * between invocations (for multiple-buffer loads). segp contains
1611 * the starting segment on entrace, and the ending segment on exit.
1612 * first indicates if this is the first invocation of this function.
1613 */
1614 int
1615 _bus_dmamap_load_buffer(bus_dma_tag_t t, bus_dmamap_t map, void *buf,
1616 bus_size_t buflen, struct vmspace *vm, int flags)
1617 {
1618 bus_size_t sgsize;
1619 bus_addr_t curaddr;
1620 vaddr_t vaddr = (vaddr_t)buf;
1621 int error;
1622 pmap_t pmap;
1623
1624 #ifdef DEBUG_DMA
1625 printf("_bus_dmamem_load_buffer(buf=%p, len=%#lx, flags=%#x)\n",
1626 buf, buflen, flags);
1627 #endif /* DEBUG_DMA */
1628
1629 pmap = vm_map_pmap(&vm->vm_map);
1630
1631 while (buflen > 0) {
1632 /*
1633 * Get the physical address for this segment.
1634 *
1635 */
1636 bool coherent;
1637 bool ok __diagused;
1638 ok = pmap_extract_coherency(pmap, vaddr, &curaddr, &coherent);
1639
1640 /*
1641 * trying to bus_dmamap_load an unmapped buffer is a
1642 * programming error.
1643 */
1644 KASSERT(ok);
1645
1646 KASSERTMSG((vaddr & PAGE_MASK) == (curaddr & PAGE_MASK),
1647 "va %#lx curaddr %#lx", vaddr, curaddr);
1648
1649 /*
1650 * Compute the segment size, and adjust counts.
1651 */
1652 sgsize = PAGE_SIZE - ((u_long)vaddr & PGOFSET);
1653 if (buflen < sgsize)
1654 sgsize = buflen;
1655
1656 error = _bus_dmamap_load_paddr(t, map, curaddr, sgsize,
1657 coherent);
1658 if (error)
1659 return error;
1660
1661 vaddr += sgsize;
1662 buflen -= sgsize;
1663 }
1664
1665 return 0;
1666 }
1667
1668 /*
1669 * Allocate physical memory from the given physical address range.
1670 * Called by DMA-safe memory allocation methods.
1671 */
1672 int
1673 _bus_dmamem_alloc_range(bus_dma_tag_t t, bus_size_t size, bus_size_t alignment,
1674 bus_size_t boundary, bus_dma_segment_t *segs, int nsegs, int *rsegs,
1675 int flags, paddr_t low, paddr_t high)
1676 {
1677 paddr_t curaddr, lastaddr;
1678 struct vm_page *m;
1679 struct pglist mlist;
1680 int curseg, error;
1681
1682 KASSERTMSG(boundary == 0 || (boundary & (boundary - 1)) == 0,
1683 "invalid boundary %#lx", boundary);
1684
1685 #ifdef DEBUG_DMA
1686 printf("alloc_range: t=%p size=%#lx align=%#lx boundary=%#lx segs=%p nsegs=%#x rsegs=%p flags=%#x lo=%#lx hi=%#lx\n",
1687 t, size, alignment, boundary, segs, nsegs, rsegs, flags, low, high);
1688 #endif /* DEBUG_DMA */
1689
1690 /* Always round the size. */
1691 size = round_page(size);
1692
1693 /*
1694 * We accept boundaries < size, splitting in multiple segments
1695 * if needed. uvm_pglistalloc does not, so compute an appropriate
1696 * boundary: next power of 2 >= size
1697 */
1698 bus_size_t uboundary = boundary;
1699 if (uboundary <= PAGE_SIZE) {
1700 uboundary = 0;
1701 } else {
1702 while (uboundary < size) {
1703 uboundary <<= 1;
1704 }
1705 }
1706
1707 /*
1708 * Allocate pages from the VM system.
1709 */
1710 error = uvm_pglistalloc(size, low, high, alignment, uboundary,
1711 &mlist, nsegs, (flags & BUS_DMA_NOWAIT) == 0);
1712 if (error)
1713 return error;
1714
1715 /*
1716 * Compute the location, size, and number of segments actually
1717 * returned by the VM code.
1718 */
1719 m = TAILQ_FIRST(&mlist);
1720 curseg = 0;
1721 lastaddr = segs[curseg].ds_addr = segs[curseg]._ds_paddr =
1722 VM_PAGE_TO_PHYS(m);
1723 segs[curseg].ds_len = PAGE_SIZE;
1724 #ifdef DEBUG_DMA
1725 printf("alloc: page %#lx\n", lastaddr);
1726 #endif /* DEBUG_DMA */
1727 m = TAILQ_NEXT(m, pageq.queue);
1728
1729 for (; m != NULL; m = TAILQ_NEXT(m, pageq.queue)) {
1730 curaddr = VM_PAGE_TO_PHYS(m);
1731 KASSERTMSG(low <= curaddr && curaddr < high,
1732 "uvm_pglistalloc returned non-sensicaladdress %#lx "
1733 "(low=%#lx, high=%#lx\n", curaddr, low, high);
1734 #ifdef DEBUG_DMA
1735 printf("alloc: page %#lx\n", curaddr);
1736 #endif /* DEBUG_DMA */
1737 if (curaddr == lastaddr + PAGE_SIZE
1738 && (lastaddr & boundary) == (curaddr & boundary))
1739 segs[curseg].ds_len += PAGE_SIZE;
1740 else {
1741 curseg++;
1742 if (curseg >= nsegs) {
1743 uvm_pglistfree(&mlist);
1744 return EFBIG;
1745 }
1746 segs[curseg].ds_addr = curaddr;
1747 segs[curseg]._ds_paddr = curaddr;
1748 segs[curseg].ds_len = PAGE_SIZE;
1749 }
1750 lastaddr = curaddr;
1751 }
1752
1753 *rsegs = curseg + 1;
1754
1755 return 0;
1756 }
1757
1758 /*
1759 * Check if a memory region intersects with a DMA range, and return the
1760 * page-rounded intersection if it does.
1761 */
1762 int
1763 arm32_dma_range_intersect(struct arm32_dma_range *ranges, int nranges,
1764 paddr_t pa, psize_t size, paddr_t *pap, psize_t *sizep)
1765 {
1766 struct arm32_dma_range *dr;
1767 int i;
1768
1769 if (ranges == NULL)
1770 return 0;
1771
1772 for (i = 0, dr = ranges; i < nranges; i++, dr++) {
1773 if (dr->dr_sysbase <= pa &&
1774 pa < (dr->dr_sysbase + dr->dr_len)) {
1775 /*
1776 * Beginning of region intersects with this range.
1777 */
1778 *pap = trunc_page(pa);
1779 *sizep = round_page(uimin(pa + size,
1780 dr->dr_sysbase + dr->dr_len) - pa);
1781 return 1;
1782 }
1783 if (pa < dr->dr_sysbase && dr->dr_sysbase < (pa + size)) {
1784 /*
1785 * End of region intersects with this range.
1786 */
1787 *pap = trunc_page(dr->dr_sysbase);
1788 *sizep = round_page(uimin((pa + size) - dr->dr_sysbase,
1789 dr->dr_len));
1790 return 1;
1791 }
1792 }
1793
1794 /* No intersection found. */
1795 return 0;
1796 }
1797
1798 #ifdef _ARM32_NEED_BUS_DMA_BOUNCE
1799 static int
1800 _bus_dma_alloc_bouncebuf(bus_dma_tag_t t, bus_dmamap_t map,
1801 bus_size_t size, int flags)
1802 {
1803 struct arm32_bus_dma_cookie *cookie = map->_dm_cookie;
1804 int error = 0;
1805
1806 KASSERT(cookie != NULL);
1807
1808 cookie->id_bouncebuflen = round_page(size);
1809 error = _bus_dmamem_alloc(t, cookie->id_bouncebuflen,
1810 PAGE_SIZE, map->_dm_boundary, cookie->id_bouncesegs,
1811 map->_dm_segcnt, &cookie->id_nbouncesegs, flags);
1812 if (error == 0) {
1813 error = _bus_dmamem_map(t, cookie->id_bouncesegs,
1814 cookie->id_nbouncesegs, cookie->id_bouncebuflen,
1815 (void **)&cookie->id_bouncebuf, flags);
1816 if (error) {
1817 _bus_dmamem_free(t, cookie->id_bouncesegs,
1818 cookie->id_nbouncesegs);
1819 cookie->id_bouncebuflen = 0;
1820 cookie->id_nbouncesegs = 0;
1821 } else {
1822 cookie->id_flags |= _BUS_DMA_HAS_BOUNCE;
1823 }
1824 } else {
1825 cookie->id_bouncebuflen = 0;
1826 cookie->id_nbouncesegs = 0;
1827 }
1828
1829 return error;
1830 }
1831
1832 static void
1833 _bus_dma_free_bouncebuf(bus_dma_tag_t t, bus_dmamap_t map)
1834 {
1835 struct arm32_bus_dma_cookie *cookie = map->_dm_cookie;
1836
1837 KASSERT(cookie != NULL);
1838
1839 _bus_dmamem_unmap(t, cookie->id_bouncebuf, cookie->id_bouncebuflen);
1840 _bus_dmamem_free(t, cookie->id_bouncesegs, cookie->id_nbouncesegs);
1841 cookie->id_bouncebuflen = 0;
1842 cookie->id_nbouncesegs = 0;
1843 cookie->id_flags &= ~_BUS_DMA_HAS_BOUNCE;
1844 }
1845 #endif /* _ARM32_NEED_BUS_DMA_BOUNCE */
1846
1847 /*
1848 * This function does the same as uiomove, but takes an explicit
1849 * direction, and does not update the uio structure.
1850 */
1851 static int
1852 _bus_dma_uiomove(void *buf, struct uio *uio, size_t n, int direction)
1853 {
1854 struct iovec *iov;
1855 int error;
1856 struct vmspace *vm;
1857 char *cp;
1858 size_t resid, cnt;
1859 int i;
1860
1861 iov = uio->uio_iov;
1862 vm = uio->uio_vmspace;
1863 cp = buf;
1864 resid = n;
1865
1866 for (i = 0; i < uio->uio_iovcnt && resid > 0; i++) {
1867 iov = &uio->uio_iov[i];
1868 if (iov->iov_len == 0)
1869 continue;
1870 cnt = MIN(resid, iov->iov_len);
1871
1872 if (!VMSPACE_IS_KERNEL_P(vm)) {
1873 preempt_point();
1874 }
1875 if (direction == UIO_READ) {
1876 error = copyout_vmspace(vm, cp, iov->iov_base, cnt);
1877 } else {
1878 error = copyin_vmspace(vm, iov->iov_base, cp, cnt);
1879 }
1880 if (error)
1881 return error;
1882 cp += cnt;
1883 resid -= cnt;
1884 }
1885 return 0;
1886 }
1887
1888 int
1889 _bus_dmatag_subregion(bus_dma_tag_t tag, bus_addr_t min_addr,
1890 bus_addr_t max_addr, bus_dma_tag_t *newtag, int flags)
1891 {
1892 if (min_addr >= max_addr)
1893 return EOPNOTSUPP;
1894
1895 #ifdef _ARM32_NEED_BUS_DMA_BOUNCE
1896 struct arm32_dma_range *dr;
1897 bool psubset = true;
1898 size_t nranges = 0;
1899 size_t i;
1900 for (i = 0, dr = tag->_ranges; i < tag->_nranges; i++, dr++) {
1901 /*
1902 * If the new {min,max}_addr are narrower than any of the
1903 * ranges in the parent tag then we need a new tag;
1904 * otherwise the parent tag is a subset of the new
1905 * range and can continue to be used.
1906 */
1907 if (min_addr > dr->dr_sysbase
1908 || max_addr < dr->dr_sysbase + dr->dr_len - 1) {
1909 psubset = false;
1910 }
1911 if (min_addr <= dr->dr_sysbase + dr->dr_len
1912 && max_addr >= dr->dr_sysbase) {
1913 nranges++;
1914 }
1915 }
1916 if (nranges == 0) {
1917 nranges = 1;
1918 psubset = false;
1919 }
1920 if (psubset) {
1921 *newtag = tag;
1922 /* if the tag must be freed, add a reference */
1923 if (tag->_tag_needs_free)
1924 (tag->_tag_needs_free)++;
1925 return 0;
1926 }
1927
1928 const size_t tagsize = sizeof(*tag) + nranges * sizeof(*dr);
1929 if ((*newtag = kmem_intr_zalloc(tagsize,
1930 (flags & BUS_DMA_NOWAIT) ? KM_NOSLEEP : KM_SLEEP)) == NULL)
1931 return ENOMEM;
1932
1933 dr = (void *)(*newtag + 1);
1934 **newtag = *tag;
1935 (*newtag)->_tag_needs_free = 1;
1936 (*newtag)->_ranges = dr;
1937 (*newtag)->_nranges = nranges;
1938
1939 if (tag->_ranges == NULL) {
1940 dr->dr_sysbase = min_addr;
1941 dr->dr_busbase = min_addr;
1942 dr->dr_len = max_addr + 1 - min_addr;
1943 } else {
1944 struct arm32_dma_range *pdr;
1945
1946 for (i = 0, pdr = tag->_ranges; i < tag->_nranges; i++, pdr++) {
1947 KASSERT(nranges != 0);
1948
1949 if (min_addr > pdr->dr_sysbase + pdr->dr_len
1950 || max_addr < pdr->dr_sysbase) {
1951 /*
1952 * this range doesn't overlap with new limits,
1953 * so skip.
1954 */
1955 continue;
1956 }
1957 /*
1958 * Copy the range and adjust to fit within the new
1959 * limits
1960 */
1961 dr[0] = pdr[0];
1962 if (dr->dr_sysbase < min_addr) {
1963 psize_t diff = min_addr - dr->dr_sysbase;
1964 dr->dr_busbase += diff;
1965 dr->dr_len -= diff;
1966 dr->dr_sysbase += diff;
1967 }
1968 if (max_addr <= dr->dr_sysbase + dr->dr_len - 1) {
1969 dr->dr_len = max_addr + 1 - dr->dr_sysbase;
1970 }
1971 dr++;
1972 nranges--;
1973 }
1974 }
1975
1976 return 0;
1977 #else
1978 return EOPNOTSUPP;
1979 #endif /* _ARM32_NEED_BUS_DMA_BOUNCE */
1980 }
1981
1982 void
1983 _bus_dmatag_destroy(bus_dma_tag_t tag)
1984 {
1985 #ifdef _ARM32_NEED_BUS_DMA_BOUNCE
1986 switch (tag->_tag_needs_free) {
1987 case 0:
1988 break; /* not allocated with kmem */
1989 case 1: {
1990 const size_t tagsize = sizeof(*tag)
1991 + tag->_nranges * sizeof(*tag->_ranges);
1992 kmem_intr_free(tag, tagsize); /* last reference to tag */
1993 break;
1994 }
1995 default:
1996 (tag->_tag_needs_free)--; /* one less reference */
1997 }
1998 #endif
1999 }
2000