bus_dma.c revision 1.141 1 /* $NetBSD: bus_dma.c,v 1.141 2023/04/03 06:35:13 skrll Exp $ */
2
3 /*-
4 * Copyright (c) 1996, 1997, 1998, 2020 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Jason R. Thorpe of the Numerical Aerospace Simulation Facility,
9 * NASA Ames Research Center.
10 *
11 * Redistribution and use in source and binary forms, with or without
12 * modification, are permitted provided that the following conditions
13 * are met:
14 * 1. Redistributions of source code must retain the above copyright
15 * notice, this list of conditions and the following disclaimer.
16 * 2. Redistributions in binary form must reproduce the above copyright
17 * notice, this list of conditions and the following disclaimer in the
18 * documentation and/or other materials provided with the distribution.
19 *
20 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
21 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
22 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
23 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
24 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
25 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
26 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
27 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
28 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
29 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
30 * POSSIBILITY OF SUCH DAMAGE.
31 */
32
33 #define _ARM32_BUS_DMA_PRIVATE
34
35 #include "opt_arm_bus_space.h"
36 #include "opt_cputypes.h"
37
38 #include <sys/cdefs.h>
39 __KERNEL_RCSID(0, "$NetBSD: bus_dma.c,v 1.141 2023/04/03 06:35:13 skrll Exp $");
40
41 #include <sys/param.h>
42
43 #include <sys/bus.h>
44 #include <sys/cpu.h>
45 #include <sys/kmem.h>
46 #include <sys/mbuf.h>
47
48 #include <uvm/uvm.h>
49
50 #include <arm/cpuconf.h>
51 #include <arm/cpufunc.h>
52
53 #ifdef __HAVE_MM_MD_DIRECT_MAPPED_PHYS
54 #include <dev/mm.h>
55 #endif
56
57 #ifdef BUSDMA_COUNTERS
58 static struct evcnt bus_dma_creates =
59 EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL, "busdma", "creates");
60 static struct evcnt bus_dma_bounced_creates =
61 EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL, "busdma", "bounced creates");
62 static struct evcnt bus_dma_loads =
63 EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL, "busdma", "loads");
64 static struct evcnt bus_dma_bounced_loads =
65 EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL, "busdma", "bounced loads");
66 static struct evcnt bus_dma_coherent_loads =
67 EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL, "busdma", "coherent loads");
68 static struct evcnt bus_dma_read_bounces =
69 EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL, "busdma", "read bounces");
70 static struct evcnt bus_dma_write_bounces =
71 EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL, "busdma", "write bounces");
72 static struct evcnt bus_dma_bounced_unloads =
73 EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL, "busdma", "bounced unloads");
74 static struct evcnt bus_dma_bounced_mbuf_loads =
75 EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL, "busdma", "bounced mbuf loads");
76 static struct evcnt bus_dma_unloads =
77 EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL, "busdma", "unloads");
78 static struct evcnt bus_dma_bounced_destroys =
79 EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL, "busdma", "bounced destroys");
80 static struct evcnt bus_dma_destroys =
81 EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL, "busdma", "destroys");
82 static struct evcnt bus_dma_sync_prereadwrite =
83 EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL, "busdma", "sync prereadwrite");
84 static struct evcnt bus_dma_sync_preread_begin =
85 EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL, "busdma", "sync preread begin");
86 static struct evcnt bus_dma_sync_preread =
87 EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL, "busdma", "sync preread");
88 static struct evcnt bus_dma_sync_preread_tail =
89 EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL, "busdma", "sync preread tail");
90 static struct evcnt bus_dma_sync_prewrite =
91 EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL, "busdma", "sync prewrite");
92 static struct evcnt bus_dma_sync_postread =
93 EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL, "busdma", "sync postread");
94 static struct evcnt bus_dma_sync_postreadwrite =
95 EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL, "busdma", "sync postreadwrite");
96 static struct evcnt bus_dma_sync_postwrite =
97 EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL, "busdma", "sync postwrite");
98 static struct evcnt bus_dma_inrange_fail =
99 EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL, "busdma", "inrange check failed");
100
101 static struct evcnt bus_dma_sync_coherent_prereadwrite =
102 EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL, "busdma", "sync coherent prereadwrite");
103 static struct evcnt bus_dma_sync_coherent_preread =
104 EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL, "busdma", "sync coherent preread");
105 static struct evcnt bus_dma_sync_coherent_prewrite =
106 EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL, "busdma", "sync coherent prewrite");
107 static struct evcnt bus_dma_sync_coherent_postread =
108 EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL, "busdma", "sync coherent postread");
109 static struct evcnt bus_dma_sync_coherent_postreadwrite =
110 EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL, "busdma", "sync coherent postreadwrite");
111 static struct evcnt bus_dma_sync_coherent_postwrite =
112 EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL, "busdma", "sync coherent postwrite");
113
114 EVCNT_ATTACH_STATIC(bus_dma_creates);
115 EVCNT_ATTACH_STATIC(bus_dma_bounced_creates);
116 EVCNT_ATTACH_STATIC(bus_dma_loads);
117 EVCNT_ATTACH_STATIC(bus_dma_bounced_loads);
118 EVCNT_ATTACH_STATIC(bus_dma_coherent_loads);
119 EVCNT_ATTACH_STATIC(bus_dma_read_bounces);
120 EVCNT_ATTACH_STATIC(bus_dma_write_bounces);
121 EVCNT_ATTACH_STATIC(bus_dma_unloads);
122 EVCNT_ATTACH_STATIC(bus_dma_bounced_unloads);
123 EVCNT_ATTACH_STATIC(bus_dma_destroys);
124 EVCNT_ATTACH_STATIC(bus_dma_bounced_destroys);
125 EVCNT_ATTACH_STATIC(bus_dma_bounced_mbuf_loads);
126 EVCNT_ATTACH_STATIC(bus_dma_sync_prereadwrite);
127 EVCNT_ATTACH_STATIC(bus_dma_sync_preread_begin);
128 EVCNT_ATTACH_STATIC(bus_dma_sync_preread);
129 EVCNT_ATTACH_STATIC(bus_dma_sync_preread_tail);
130 EVCNT_ATTACH_STATIC(bus_dma_sync_prewrite);
131 EVCNT_ATTACH_STATIC(bus_dma_sync_postread);
132 EVCNT_ATTACH_STATIC(bus_dma_sync_postreadwrite);
133 EVCNT_ATTACH_STATIC(bus_dma_sync_postwrite);
134 EVCNT_ATTACH_STATIC(bus_dma_inrange_fail);
135
136 EVCNT_ATTACH_STATIC(bus_dma_sync_coherent_prereadwrite);
137 EVCNT_ATTACH_STATIC(bus_dma_sync_coherent_preread);
138 EVCNT_ATTACH_STATIC(bus_dma_sync_coherent_prewrite);
139 EVCNT_ATTACH_STATIC(bus_dma_sync_coherent_postread);
140 EVCNT_ATTACH_STATIC(bus_dma_sync_coherent_postreadwrite);
141 EVCNT_ATTACH_STATIC(bus_dma_sync_coherent_postwrite);
142
143 #define STAT_INCR(x) (bus_dma_ ## x.ev_count++)
144 #else
145 #define STAT_INCR(x) __nothing
146 #endif
147
148 int _bus_dmamap_load_buffer(bus_dma_tag_t, bus_dmamap_t, void *,
149 bus_size_t, struct vmspace *, int);
150
151 /*
152 * Check to see if the specified page is in an allowed DMA range.
153 */
154 static inline struct arm32_dma_range *
155 _bus_dma_paddr_inrange(struct arm32_dma_range *ranges, int nranges,
156 bus_addr_t curaddr)
157 {
158 struct arm32_dma_range *dr;
159 int i;
160
161 for (i = 0, dr = ranges; i < nranges; i++, dr++) {
162 if (curaddr >= dr->dr_sysbase &&
163 curaddr < (dr->dr_sysbase + dr->dr_len))
164 return dr;
165 }
166
167 return NULL;
168 }
169
170 /*
171 * Check to see if the specified busaddr is in an allowed DMA range.
172 */
173 static inline paddr_t
174 _bus_dma_busaddr_to_paddr(bus_dma_tag_t t, bus_addr_t curaddr)
175 {
176 struct arm32_dma_range *dr;
177 u_int i;
178
179 if (t->_nranges == 0)
180 return curaddr;
181
182 for (i = 0, dr = t->_ranges; i < t->_nranges; i++, dr++) {
183 if (dr->dr_busbase <= curaddr
184 && curaddr < dr->dr_busbase + dr->dr_len)
185 return curaddr - dr->dr_busbase + dr->dr_sysbase;
186 }
187 panic("%s: curaddr %#lx not in range", __func__, curaddr);
188 }
189
190 /*
191 * Common function to load the specified physical address into the
192 * DMA map, coalescing segments and boundary checking as necessary.
193 */
194 static int
195 _bus_dmamap_load_paddr(bus_dma_tag_t t, bus_dmamap_t map,
196 bus_addr_t paddr, bus_size_t size, bool coherent)
197 {
198 bus_dma_segment_t * const segs = map->dm_segs;
199 int nseg = map->dm_nsegs;
200 bus_addr_t lastaddr;
201 bus_addr_t bmask = ~(map->_dm_boundary - 1);
202 bus_addr_t curaddr;
203 bus_size_t sgsize;
204 uint32_t _ds_flags = coherent ? _BUS_DMAMAP_COHERENT : 0;
205
206 if (nseg > 0)
207 lastaddr = segs[nseg - 1].ds_addr + segs[nseg - 1].ds_len;
208 else
209 lastaddr = 0xdead;
210
211 again:
212 sgsize = size;
213
214 /* Make sure we're in an allowed DMA range. */
215 if (t->_ranges != NULL) {
216 /* XXX cache last result? */
217 const struct arm32_dma_range * const dr =
218 _bus_dma_paddr_inrange(t->_ranges, t->_nranges, paddr);
219 if (dr == NULL) {
220 STAT_INCR(inrange_fail);
221 return EINVAL;
222 }
223
224 /*
225 * If this region is coherent, mark the segment as coherent.
226 */
227 _ds_flags |= dr->dr_flags & _BUS_DMAMAP_COHERENT;
228
229 /*
230 * In a valid DMA range. Translate the physical
231 * memory address to an address in the DMA window.
232 */
233 curaddr = (paddr - dr->dr_sysbase) + dr->dr_busbase;
234 #if 0
235 printf("%p: %#lx: range %#lx/%#lx/%#lx/%#x: %#x <-- %#lx\n",
236 t, paddr, dr->dr_sysbase, dr->dr_busbase,
237 dr->dr_len, dr->dr_flags, _ds_flags, curaddr);
238 #endif
239 } else
240 curaddr = paddr;
241
242 /*
243 * Make sure we don't cross any boundaries.
244 */
245 if (map->_dm_boundary > 0) {
246 bus_addr_t baddr; /* next boundary address */
247
248 baddr = (curaddr + map->_dm_boundary) & bmask;
249 if (sgsize > (baddr - curaddr))
250 sgsize = (baddr - curaddr);
251 }
252
253 /*
254 * Insert chunk into a segment, coalescing with the
255 * previous segment if possible.
256 */
257 if (nseg > 0 && curaddr == lastaddr &&
258 segs[nseg - 1].ds_len + sgsize <= map->dm_maxsegsz &&
259 ((segs[nseg - 1]._ds_flags ^ _ds_flags) & _BUS_DMAMAP_COHERENT) == 0 &&
260 (map->_dm_boundary == 0 ||
261 (segs[nseg - 1].ds_addr & bmask) == (curaddr & bmask))) {
262 /* coalesce */
263 segs[nseg - 1].ds_len += sgsize;
264 } else if (nseg >= map->_dm_segcnt) {
265 return EFBIG;
266 } else {
267 /* new segment */
268 segs[nseg].ds_addr = curaddr;
269 segs[nseg].ds_len = sgsize;
270 segs[nseg]._ds_paddr = curaddr;
271 segs[nseg]._ds_flags = _ds_flags;
272 nseg++;
273 }
274
275 lastaddr = curaddr + sgsize;
276
277 paddr += sgsize;
278 size -= sgsize;
279 if (size > 0)
280 goto again;
281
282 map->_dm_flags &= (_ds_flags & _BUS_DMAMAP_COHERENT);
283 map->dm_nsegs = nseg;
284 return 0;
285 }
286
287 static int _bus_dma_uiomove(void *buf, struct uio *uio, size_t n,
288 int direction);
289
290 #ifdef _ARM32_NEED_BUS_DMA_BOUNCE
291 static int _bus_dma_alloc_bouncebuf(bus_dma_tag_t t, bus_dmamap_t map,
292 bus_size_t size, int flags);
293 static void _bus_dma_free_bouncebuf(bus_dma_tag_t t, bus_dmamap_t map);
294
295 static int
296 _bus_dma_load_bouncebuf(bus_dma_tag_t t, bus_dmamap_t map, void *buf,
297 size_t buflen, int buftype, int flags)
298 {
299 struct arm32_bus_dma_cookie * const cookie = map->_dm_cookie;
300 struct vmspace * const vm = vmspace_kernel();
301 int error;
302
303 KASSERT(cookie != NULL);
304 KASSERT(cookie->id_flags & _BUS_DMA_MIGHT_NEED_BOUNCE);
305
306 /*
307 * Allocate bounce pages, if necessary.
308 */
309 if ((cookie->id_flags & _BUS_DMA_HAS_BOUNCE) == 0) {
310 error = _bus_dma_alloc_bouncebuf(t, map, buflen, flags);
311 if (error)
312 return error;
313 }
314
315 /*
316 * Since we're trying again, clear the previous attempt.
317 */
318 map->dm_mapsize = 0;
319 map->dm_nsegs = 0;
320 map->_dm_buftype = _BUS_DMA_BUFTYPE_INVALID;
321 /* _bus_dmamap_load_buffer() clears this if we're not... */
322 map->_dm_flags |= _BUS_DMAMAP_COHERENT;
323
324 /*
325 * Cache a pointer to the caller's buffer and load the DMA map
326 * with the bounce buffer.
327 */
328 cookie->id_origbuf = buf;
329 cookie->id_origbuflen = buflen;
330 error = _bus_dmamap_load_buffer(t, map, cookie->id_bouncebuf,
331 buflen, vm, flags);
332 if (error)
333 return error;
334
335 STAT_INCR(bounced_loads);
336 map->dm_mapsize = buflen;
337 map->_dm_vmspace = vm;
338 map->_dm_buftype = buftype;
339
340 /* ...so _bus_dmamap_sync() knows we're bouncing */
341 map->_dm_flags |= _BUS_DMAMAP_IS_BOUNCING;
342 cookie->id_flags |= _BUS_DMA_IS_BOUNCING;
343 return 0;
344 }
345 #endif /* _ARM32_NEED_BUS_DMA_BOUNCE */
346
347 /*
348 * Common function for DMA map creation. May be called by bus-specific
349 * DMA map creation functions.
350 */
351 int
352 _bus_dmamap_create(bus_dma_tag_t t, bus_size_t size, int nsegments,
353 bus_size_t maxsegsz, bus_size_t boundary, int flags, bus_dmamap_t *dmamp)
354 {
355 struct arm32_bus_dmamap *map;
356 void *mapstore;
357 int error = 0;
358
359 #ifdef DEBUG_DMA
360 printf("dmamap_create: t=%p size=%#lx nseg=%#x msegsz=%#lx boundary=%#lx"
361 " flags=%#x\n", t, size, nsegments, maxsegsz, boundary, flags);
362 #endif /* DEBUG_DMA */
363
364 /*
365 * Allocate and initialize the DMA map. The end of the map
366 * is a variable-sized array of segments, so we allocate enough
367 * room for them in one shot.
368 *
369 * Note we don't preserve the WAITOK or NOWAIT flags. Preservation
370 * of ALLOCNOW notifies others that we've reserved these resources,
371 * and they are not to be freed.
372 *
373 * The bus_dmamap_t includes one bus_dma_segment_t, hence
374 * the (nsegments - 1).
375 */
376 const size_t mapsize = sizeof(struct arm32_bus_dmamap) +
377 (sizeof(bus_dma_segment_t) * (nsegments - 1));
378 const int zallocflags = (flags & BUS_DMA_NOWAIT) ? KM_NOSLEEP : KM_SLEEP;
379 if ((mapstore = kmem_intr_zalloc(mapsize, zallocflags)) == NULL)
380 return ENOMEM;
381
382 map = (struct arm32_bus_dmamap *)mapstore;
383 map->_dm_size = size;
384 map->_dm_segcnt = nsegments;
385 map->_dm_maxmaxsegsz = maxsegsz;
386 map->_dm_boundary = boundary;
387 map->_dm_flags = flags & ~(BUS_DMA_WAITOK | BUS_DMA_NOWAIT);
388 map->_dm_origbuf = NULL;
389 map->_dm_buftype = _BUS_DMA_BUFTYPE_INVALID;
390 map->_dm_vmspace = vmspace_kernel();
391 map->_dm_cookie = NULL;
392 map->dm_maxsegsz = maxsegsz;
393 map->dm_mapsize = 0; /* no valid mappings */
394 map->dm_nsegs = 0;
395
396 #ifdef _ARM32_NEED_BUS_DMA_BOUNCE
397 struct arm32_bus_dma_cookie *cookie;
398 int cookieflags;
399 void *cookiestore;
400
401 cookieflags = 0;
402
403 if (t->_may_bounce != NULL) {
404 error = (*t->_may_bounce)(t, map, flags, &cookieflags);
405 if (error != 0)
406 goto out;
407 }
408
409 if (t->_ranges != NULL) {
410 /*
411 * If ranges are defined, we may have to bounce. The only
412 * exception is if there is exactly one range that covers
413 * all of physical memory.
414 */
415 switch (t->_nranges) {
416 case 1:
417 if (t->_ranges[0].dr_sysbase == 0 &&
418 t->_ranges[0].dr_len == UINTPTR_MAX) {
419 break;
420 }
421 /* FALLTHROUGH */
422 default:
423 cookieflags |= _BUS_DMA_MIGHT_NEED_BOUNCE;
424 }
425 }
426
427 if ((cookieflags & _BUS_DMA_MIGHT_NEED_BOUNCE) == 0) {
428 STAT_INCR(creates);
429 *dmamp = map;
430 return 0;
431 }
432
433 const size_t cookiesize = sizeof(struct arm32_bus_dma_cookie) +
434 (sizeof(bus_dma_segment_t) * map->_dm_segcnt);
435
436 /*
437 * Allocate our cookie.
438 */
439 if ((cookiestore = kmem_intr_zalloc(cookiesize, zallocflags)) == NULL) {
440 error = ENOMEM;
441 goto out;
442 }
443 cookie = (struct arm32_bus_dma_cookie *)cookiestore;
444 cookie->id_flags = cookieflags;
445 map->_dm_cookie = cookie;
446 STAT_INCR(bounced_creates);
447
448 error = _bus_dma_alloc_bouncebuf(t, map, size, flags);
449 out:
450 if (error)
451 _bus_dmamap_destroy(t, map);
452 else
453 *dmamp = map;
454 #else
455 *dmamp = map;
456 STAT_INCR(creates);
457 #endif /* _ARM32_NEED_BUS_DMA_BOUNCE */
458 #ifdef DEBUG_DMA
459 printf("dmamap_create:map=%p\n", map);
460 #endif /* DEBUG_DMA */
461 return error;
462 }
463
464 /*
465 * Common function for DMA map destruction. May be called by bus-specific
466 * DMA map destruction functions.
467 */
468 void
469 _bus_dmamap_destroy(bus_dma_tag_t t, bus_dmamap_t map)
470 {
471
472 #ifdef DEBUG_DMA
473 printf("dmamap_destroy: t=%p map=%p\n", t, map);
474 #endif /* DEBUG_DMA */
475 #ifdef _ARM32_NEED_BUS_DMA_BOUNCE
476 struct arm32_bus_dma_cookie *cookie = map->_dm_cookie;
477
478 /*
479 * Free any bounce pages this map might hold.
480 */
481 if (cookie != NULL) {
482 const size_t cookiesize = sizeof(struct arm32_bus_dma_cookie) +
483 (sizeof(bus_dma_segment_t) * map->_dm_segcnt);
484
485 if (cookie->id_flags & _BUS_DMA_IS_BOUNCING)
486 STAT_INCR(bounced_unloads);
487 map->dm_nsegs = 0;
488 if (cookie->id_flags & _BUS_DMA_HAS_BOUNCE)
489 _bus_dma_free_bouncebuf(t, map);
490 STAT_INCR(bounced_destroys);
491 kmem_intr_free(cookie, cookiesize);
492 } else
493 #endif
494 STAT_INCR(destroys);
495
496 if (map->dm_nsegs > 0)
497 STAT_INCR(unloads);
498
499 const size_t mapsize = sizeof(struct arm32_bus_dmamap) +
500 (sizeof(bus_dma_segment_t) * (map->_dm_segcnt - 1));
501 kmem_intr_free(map, mapsize);
502 }
503
504 /*
505 * Common function for loading a DMA map with a linear buffer. May
506 * be called by bus-specific DMA map load functions.
507 */
508 int
509 _bus_dmamap_load(bus_dma_tag_t t, bus_dmamap_t map, void *buf,
510 bus_size_t buflen, struct proc *p, int flags)
511 {
512 struct vmspace *vm;
513 int error;
514
515 #ifdef DEBUG_DMA
516 printf("dmamap_load: t=%p map=%p buf=%p len=%#lx p=%p f=%#x\n",
517 t, map, buf, buflen, p, flags);
518 #endif /* DEBUG_DMA */
519
520 if (map->dm_nsegs > 0) {
521 #ifdef _ARM32_NEED_BUS_DMA_BOUNCE
522 struct arm32_bus_dma_cookie *cookie = map->_dm_cookie;
523 if (cookie != NULL) {
524 if (cookie->id_flags & _BUS_DMA_IS_BOUNCING) {
525 STAT_INCR(bounced_unloads);
526 cookie->id_flags &= ~_BUS_DMA_IS_BOUNCING;
527 map->_dm_flags &= ~_BUS_DMAMAP_IS_BOUNCING;
528 }
529 } else
530 #endif
531 STAT_INCR(unloads);
532 }
533
534 /*
535 * Make sure that on error condition we return "no valid mappings".
536 */
537 map->dm_mapsize = 0;
538 map->dm_nsegs = 0;
539 map->_dm_buftype = _BUS_DMA_BUFTYPE_INVALID;
540 KASSERTMSG(map->dm_maxsegsz <= map->_dm_maxmaxsegsz,
541 "dm_maxsegsz %lu _dm_maxmaxsegsz %lu",
542 map->dm_maxsegsz, map->_dm_maxmaxsegsz);
543
544 if (buflen > map->_dm_size)
545 return EINVAL;
546
547 if (p != NULL) {
548 vm = p->p_vmspace;
549 } else {
550 vm = vmspace_kernel();
551 }
552
553 /* _bus_dmamap_load_buffer() clears this if we're not... */
554 map->_dm_flags |= _BUS_DMAMAP_COHERENT;
555
556 error = _bus_dmamap_load_buffer(t, map, buf, buflen, vm, flags);
557 if (error == 0) {
558 map->dm_mapsize = buflen;
559 map->_dm_vmspace = vm;
560 map->_dm_origbuf = buf;
561 map->_dm_buftype = _BUS_DMA_BUFTYPE_LINEAR;
562 if (map->_dm_flags & _BUS_DMAMAP_COHERENT) {
563 STAT_INCR(coherent_loads);
564 } else {
565 STAT_INCR(loads);
566 }
567 return 0;
568 }
569 #ifdef _ARM32_NEED_BUS_DMA_BOUNCE
570 struct arm32_bus_dma_cookie * const cookie = map->_dm_cookie;
571 if (cookie != NULL && (cookie->id_flags & _BUS_DMA_MIGHT_NEED_BOUNCE)) {
572 error = _bus_dma_load_bouncebuf(t, map, buf, buflen,
573 _BUS_DMA_BUFTYPE_LINEAR, flags);
574 }
575 #endif
576 return error;
577 }
578
579 /*
580 * Like _bus_dmamap_load(), but for mbufs.
581 */
582 int
583 _bus_dmamap_load_mbuf(bus_dma_tag_t t, bus_dmamap_t map, struct mbuf *m0,
584 int flags)
585 {
586 struct mbuf *m;
587 int error;
588
589 #ifdef DEBUG_DMA
590 printf("dmamap_load_mbuf: t=%p map=%p m0=%p f=%#x\n",
591 t, map, m0, flags);
592 #endif /* DEBUG_DMA */
593
594 if (map->dm_nsegs > 0) {
595 #ifdef _ARM32_NEED_BUS_DMA_BOUNCE
596 struct arm32_bus_dma_cookie *cookie = map->_dm_cookie;
597 if (cookie != NULL) {
598 if (cookie->id_flags & _BUS_DMA_IS_BOUNCING) {
599 STAT_INCR(bounced_unloads);
600 cookie->id_flags &= ~_BUS_DMA_IS_BOUNCING;
601 map->_dm_flags &= ~_BUS_DMAMAP_IS_BOUNCING;
602 }
603 } else
604 #endif
605 STAT_INCR(unloads);
606 }
607
608 /*
609 * Make sure that on error condition we return "no valid mappings."
610 */
611 map->dm_mapsize = 0;
612 map->dm_nsegs = 0;
613 map->_dm_buftype = _BUS_DMA_BUFTYPE_INVALID;
614 KASSERTMSG(map->dm_maxsegsz <= map->_dm_maxmaxsegsz,
615 "dm_maxsegsz %lu _dm_maxmaxsegsz %lu",
616 map->dm_maxsegsz, map->_dm_maxmaxsegsz);
617
618 KASSERT(m0->m_flags & M_PKTHDR);
619
620 if (m0->m_pkthdr.len > map->_dm_size)
621 return EINVAL;
622
623 /* _bus_dmamap_load_paddr() clears this if we're not... */
624 map->_dm_flags |= _BUS_DMAMAP_COHERENT;
625
626 error = 0;
627 for (m = m0; m != NULL && error == 0; m = m->m_next) {
628 int offset;
629 int remainbytes;
630 const struct vm_page * const *pgs;
631 paddr_t paddr;
632 int size;
633
634 if (m->m_len == 0)
635 continue;
636 /*
637 * Don't allow reads in read-only mbufs.
638 */
639 if (M_ROMAP(m) && (flags & BUS_DMA_READ)) {
640 error = EFAULT;
641 break;
642 }
643 switch (m->m_flags & (M_EXT | M_EXT_CLUSTER | M_EXT_PAGES)) {
644 case M_EXT | M_EXT_CLUSTER:
645 /* XXX KDASSERT */
646 KASSERT(m->m_ext.ext_paddr != M_PADDR_INVALID);
647 paddr = m->m_ext.ext_paddr +
648 (m->m_data - m->m_ext.ext_buf);
649 size = m->m_len;
650 error = _bus_dmamap_load_paddr(t, map, paddr, size,
651 false);
652 break;
653
654 case M_EXT | M_EXT_PAGES:
655 KASSERT(m->m_ext.ext_buf <= m->m_data);
656 KASSERT(m->m_data <=
657 m->m_ext.ext_buf + m->m_ext.ext_size);
658
659 offset = (vaddr_t)m->m_data -
660 trunc_page((vaddr_t)m->m_ext.ext_buf);
661 remainbytes = m->m_len;
662
663 /* skip uninteresting pages */
664 pgs = (const struct vm_page * const *)
665 m->m_ext.ext_pgs + (offset >> PAGE_SHIFT);
666
667 offset &= PAGE_MASK; /* offset in the first page */
668
669 /* load each page */
670 while (remainbytes > 0) {
671 const struct vm_page *pg;
672
673 size = MIN(remainbytes, PAGE_SIZE - offset);
674
675 pg = *pgs++;
676 KASSERT(pg);
677 paddr = VM_PAGE_TO_PHYS(pg) + offset;
678
679 error = _bus_dmamap_load_paddr(t, map,
680 paddr, size, false);
681 if (error)
682 break;
683 offset = 0;
684 remainbytes -= size;
685 }
686 break;
687
688 case 0:
689 paddr = m->m_paddr + M_BUFOFFSET(m) +
690 (m->m_data - M_BUFADDR(m));
691 size = m->m_len;
692 error = _bus_dmamap_load_paddr(t, map, paddr, size,
693 false);
694 break;
695
696 default:
697 error = _bus_dmamap_load_buffer(t, map, m->m_data,
698 m->m_len, vmspace_kernel(), flags);
699 }
700 }
701 if (error == 0) {
702 map->dm_mapsize = m0->m_pkthdr.len;
703 map->_dm_origbuf = m0;
704 map->_dm_buftype = _BUS_DMA_BUFTYPE_MBUF;
705 map->_dm_vmspace = vmspace_kernel(); /* always kernel */
706 if (map->_dm_flags & _BUS_DMAMAP_COHERENT) {
707 STAT_INCR(coherent_loads);
708 } else {
709 STAT_INCR(loads);
710 }
711 return 0;
712 }
713 #ifdef _ARM32_NEED_BUS_DMA_BOUNCE
714 struct arm32_bus_dma_cookie * const cookie = map->_dm_cookie;
715 if (cookie != NULL && (cookie->id_flags & _BUS_DMA_MIGHT_NEED_BOUNCE)) {
716 error = _bus_dma_load_bouncebuf(t, map, m0, m0->m_pkthdr.len,
717 _BUS_DMA_BUFTYPE_MBUF, flags);
718 STAT_INCR(bounced_mbuf_loads);
719 }
720 #endif
721 return error;
722 }
723
724 /*
725 * Like _bus_dmamap_load(), but for uios.
726 */
727 int
728 _bus_dmamap_load_uio(bus_dma_tag_t t, bus_dmamap_t map, struct uio *uio,
729 int flags)
730 {
731 bus_size_t minlen, resid;
732 struct iovec *iov;
733 void *addr;
734 int i, error;
735
736 /*
737 * Make sure that on error condition we return "no valid mappings."
738 */
739 map->dm_mapsize = 0;
740 map->dm_nsegs = 0;
741 KASSERTMSG(map->dm_maxsegsz <= map->_dm_maxmaxsegsz,
742 "dm_maxsegsz %lu _dm_maxmaxsegsz %lu",
743 map->dm_maxsegsz, map->_dm_maxmaxsegsz);
744
745 resid = uio->uio_resid;
746 iov = uio->uio_iov;
747
748 /* _bus_dmamap_load_buffer() clears this if we're not... */
749 map->_dm_flags |= _BUS_DMAMAP_COHERENT;
750
751 error = 0;
752 for (i = 0; i < uio->uio_iovcnt && resid != 0 && error == 0; i++) {
753 /*
754 * Now at the first iovec to load. Load each iovec
755 * until we have exhausted the residual count.
756 */
757 minlen = resid < iov[i].iov_len ? resid : iov[i].iov_len;
758 addr = (void *)iov[i].iov_base;
759
760 error = _bus_dmamap_load_buffer(t, map, addr, minlen,
761 uio->uio_vmspace, flags);
762
763 resid -= minlen;
764 }
765 if (error == 0) {
766 map->dm_mapsize = uio->uio_resid;
767 map->_dm_origbuf = uio;
768 map->_dm_buftype = _BUS_DMA_BUFTYPE_UIO;
769 map->_dm_vmspace = uio->uio_vmspace;
770 if (map->_dm_flags & _BUS_DMAMAP_COHERENT) {
771 STAT_INCR(coherent_loads);
772 } else {
773 STAT_INCR(loads);
774 }
775 }
776 return error;
777 }
778
779 /*
780 * Like _bus_dmamap_load(), but for raw memory allocated with
781 * bus_dmamem_alloc().
782 */
783 int
784 _bus_dmamap_load_raw(bus_dma_tag_t t, bus_dmamap_t map,
785 bus_dma_segment_t *segs, int nsegs, bus_size_t size0, int flags)
786 {
787
788 bus_size_t size;
789 int i, error = 0;
790
791 /*
792 * Make sure that on error conditions we return "no valid mappings."
793 */
794 map->dm_mapsize = 0;
795 map->dm_nsegs = 0;
796 KASSERT(map->dm_maxsegsz <= map->_dm_maxmaxsegsz);
797
798 if (size0 > map->_dm_size)
799 return EINVAL;
800
801 for (i = 0, size = size0; i < nsegs && size > 0; i++) {
802 bus_dma_segment_t *ds = &segs[i];
803 bus_size_t sgsize;
804
805 sgsize = MIN(ds->ds_len, size);
806 if (sgsize == 0)
807 continue;
808 const bool coherent =
809 (ds->_ds_flags & _BUS_DMAMAP_COHERENT) != 0;
810 error = _bus_dmamap_load_paddr(t, map, ds->ds_addr,
811 sgsize, coherent);
812 if (error != 0)
813 break;
814 size -= sgsize;
815 }
816
817 if (error != 0) {
818 map->dm_mapsize = 0;
819 map->dm_nsegs = 0;
820 return error;
821 }
822
823 /* XXX TBD bounce */
824
825 map->dm_mapsize = size0;
826 map->_dm_origbuf = NULL;
827 map->_dm_buftype = _BUS_DMA_BUFTYPE_RAW;
828 map->_dm_vmspace = NULL;
829 return 0;
830 }
831
832 /*
833 * Common function for unloading a DMA map. May be called by
834 * bus-specific DMA map unload functions.
835 */
836 void
837 _bus_dmamap_unload(bus_dma_tag_t t, bus_dmamap_t map)
838 {
839
840 #ifdef DEBUG_DMA
841 printf("dmamap_unload: t=%p map=%p\n", t, map);
842 #endif /* DEBUG_DMA */
843
844 /*
845 * No resources to free; just mark the mappings as
846 * invalid.
847 */
848 map->dm_mapsize = 0;
849 map->dm_nsegs = 0;
850 map->_dm_origbuf = NULL;
851 map->_dm_buftype = _BUS_DMA_BUFTYPE_INVALID;
852 map->_dm_vmspace = NULL;
853 }
854
855 static void
856 _bus_dmamap_sync_segment(vaddr_t va, paddr_t pa, vsize_t len, int ops,
857 bool readonly_p)
858 {
859
860 #if defined(ARM_MMU_EXTENDED)
861 /*
862 * No optimisations are available for readonly mbufs on armv6+, so
863 * assume it's not readonly from here on.
864 *
865 * See the comment in _bus_dmamap_sync_mbuf
866 */
867 readonly_p = false;
868 #endif
869
870 KASSERTMSG((va & PAGE_MASK) == (pa & PAGE_MASK),
871 "va %#lx pa %#lx", va, pa);
872 #if 0
873 printf("sync_segment: va=%#lx pa=%#lx len=%#lx ops=%#x ro=%d\n",
874 va, pa, len, ops, readonly_p);
875 #endif
876
877 switch (ops) {
878 case BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE:
879 if (!readonly_p) {
880 STAT_INCR(sync_prereadwrite);
881 cpu_dcache_wbinv_range(va, len);
882 cpu_sdcache_wbinv_range(va, pa, len);
883 break;
884 }
885 /* FALLTHROUGH */
886
887 case BUS_DMASYNC_PREREAD: {
888 const size_t line_size = arm_dcache_align;
889 const size_t line_mask = arm_dcache_align_mask;
890 vsize_t misalignment = va & line_mask;
891 if (misalignment) {
892 va -= misalignment;
893 pa -= misalignment;
894 len += misalignment;
895 STAT_INCR(sync_preread_begin);
896 cpu_dcache_wbinv_range(va, line_size);
897 cpu_sdcache_wbinv_range(va, pa, line_size);
898 if (len <= line_size)
899 break;
900 va += line_size;
901 pa += line_size;
902 len -= line_size;
903 }
904 misalignment = len & line_mask;
905 len -= misalignment;
906 if (len > 0) {
907 STAT_INCR(sync_preread);
908 cpu_dcache_inv_range(va, len);
909 cpu_sdcache_inv_range(va, pa, len);
910 }
911 if (misalignment) {
912 va += len;
913 pa += len;
914 STAT_INCR(sync_preread_tail);
915 cpu_dcache_wbinv_range(va, line_size);
916 cpu_sdcache_wbinv_range(va, pa, line_size);
917 }
918 break;
919 }
920
921 case BUS_DMASYNC_PREWRITE:
922 STAT_INCR(sync_prewrite);
923 cpu_dcache_wb_range(va, len);
924 cpu_sdcache_wb_range(va, pa, len);
925 break;
926
927 #if defined(CPU_CORTEX) || defined(CPU_ARMV8)
928
929 /*
930 * Cortex CPUs can do speculative loads so we need to clean the cache
931 * after a DMA read to deal with any speculatively loaded cache lines.
932 * Since these can't be dirty, we can just invalidate them and don't
933 * have to worry about having to write back their contents.
934 */
935 case BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE:
936 STAT_INCR(sync_postreadwrite);
937 cpu_dcache_inv_range(va, len);
938 cpu_sdcache_inv_range(va, pa, len);
939 break;
940
941 case BUS_DMASYNC_POSTREAD:
942 STAT_INCR(sync_postread);
943 cpu_dcache_inv_range(va, len);
944 cpu_sdcache_inv_range(va, pa, len);
945 break;
946 #endif
947 }
948 }
949
950 static inline void
951 _bus_dmamap_sync_linear(bus_dma_tag_t t, bus_dmamap_t map, bus_addr_t offset,
952 bus_size_t len, int ops)
953 {
954 bus_dma_segment_t *ds = map->dm_segs;
955 vaddr_t va = (vaddr_t) map->_dm_origbuf;
956 #ifdef _ARM32_NEED_BUS_DMA_BOUNCE
957 if (map->_dm_flags & _BUS_DMAMAP_IS_BOUNCING) {
958 struct arm32_bus_dma_cookie * const cookie = map->_dm_cookie;
959 va = (vaddr_t) cookie->id_bouncebuf;
960 }
961 #endif
962
963 while (len > 0) {
964 while (offset >= ds->ds_len) {
965 offset -= ds->ds_len;
966 va += ds->ds_len;
967 ds++;
968 }
969
970 paddr_t pa = _bus_dma_busaddr_to_paddr(t, ds->ds_addr + offset);
971 size_t seglen = uimin(len, ds->ds_len - offset);
972
973 if ((ds->_ds_flags & _BUS_DMAMAP_COHERENT) == 0)
974 _bus_dmamap_sync_segment(va + offset, pa, seglen, ops,
975 false);
976
977 offset += seglen;
978 len -= seglen;
979 }
980 }
981
982 static inline void
983 _bus_dmamap_sync_mbuf(bus_dma_tag_t t, bus_dmamap_t map, bus_size_t offset,
984 bus_size_t len, int ops)
985 {
986 bus_dma_segment_t *ds = map->dm_segs;
987 struct mbuf *m = map->_dm_origbuf;
988 bus_size_t voff = offset;
989 bus_size_t ds_off = offset;
990
991 while (len > 0) {
992 /* Find the current dma segment */
993 while (ds_off >= ds->ds_len) {
994 ds_off -= ds->ds_len;
995 ds++;
996 }
997 /* Find the current mbuf. */
998 while (voff >= m->m_len) {
999 voff -= m->m_len;
1000 m = m->m_next;
1001 }
1002
1003 /*
1004 * Now at the first mbuf to sync; nail each one until
1005 * we have exhausted the length.
1006 */
1007 vsize_t seglen = uimin(len, uimin(m->m_len - voff, ds->ds_len - ds_off));
1008 vaddr_t va = mtod(m, vaddr_t) + voff;
1009 paddr_t pa = _bus_dma_busaddr_to_paddr(t, ds->ds_addr + ds_off);
1010
1011 /*
1012 * We can save a lot of work here if we know the mapping
1013 * is read-only at the MMU and we aren't using the armv6+
1014 * MMU:
1015 *
1016 * If a mapping is read-only, no dirty cache blocks will
1017 * exist for it. If a writable mapping was made read-only,
1018 * we know any dirty cache lines for the range will have
1019 * been cleaned for us already. Therefore, if the upper
1020 * layer can tell us we have a read-only mapping, we can
1021 * skip all cache cleaning.
1022 *
1023 * NOTE: This only works if we know the pmap cleans pages
1024 * before making a read-write -> read-only transition. If
1025 * this ever becomes non-true (e.g. Physically Indexed
1026 * cache), this will have to be revisited.
1027 */
1028
1029 if ((ds->_ds_flags & _BUS_DMAMAP_COHERENT) == 0) {
1030 /*
1031 * If we are doing preread (DMAing into the mbuf),
1032 * this mbuf better not be readonly,
1033 */
1034 KASSERT(!(ops & BUS_DMASYNC_PREREAD) || !M_ROMAP(m));
1035 _bus_dmamap_sync_segment(va, pa, seglen, ops,
1036 M_ROMAP(m));
1037 }
1038 voff += seglen;
1039 ds_off += seglen;
1040 len -= seglen;
1041 }
1042 }
1043
1044 static inline void
1045 _bus_dmamap_sync_uio(bus_dma_tag_t t, bus_dmamap_t map, bus_addr_t offset,
1046 bus_size_t len, int ops)
1047 {
1048 bus_dma_segment_t *ds = map->dm_segs;
1049 struct uio *uio = map->_dm_origbuf;
1050 struct iovec *iov = uio->uio_iov;
1051 bus_size_t voff = offset;
1052 bus_size_t ds_off = offset;
1053
1054 while (len > 0) {
1055 /* Find the current dma segment */
1056 while (ds_off >= ds->ds_len) {
1057 ds_off -= ds->ds_len;
1058 ds++;
1059 }
1060
1061 /* Find the current iovec. */
1062 while (voff >= iov->iov_len) {
1063 voff -= iov->iov_len;
1064 iov++;
1065 }
1066
1067 /*
1068 * Now at the first iovec to sync; nail each one until
1069 * we have exhausted the length.
1070 */
1071 vsize_t seglen = uimin(len, uimin(iov->iov_len - voff, ds->ds_len - ds_off));
1072 vaddr_t va = (vaddr_t) iov->iov_base + voff;
1073 paddr_t pa = _bus_dma_busaddr_to_paddr(t, ds->ds_addr + ds_off);
1074
1075 if ((ds->_ds_flags & _BUS_DMAMAP_COHERENT) == 0)
1076 _bus_dmamap_sync_segment(va, pa, seglen, ops, false);
1077
1078 voff += seglen;
1079 ds_off += seglen;
1080 len -= seglen;
1081 }
1082 }
1083
1084 /*
1085 * Common function for DMA map synchronization. May be called
1086 * by bus-specific DMA map synchronization functions.
1087 *
1088 * XXX Should have separate versions for write-through vs.
1089 * XXX write-back caches. We currently assume write-back
1090 * XXX here, which is not as efficient as it could be for
1091 * XXX the write-through case.
1092 */
1093 void
1094 _bus_dmamap_sync(bus_dma_tag_t t, bus_dmamap_t map, bus_addr_t offset,
1095 bus_size_t len, int ops)
1096 {
1097 #ifdef DEBUG_DMA
1098 printf("dmamap_sync: t=%p map=%p offset=%#lx len=%#lx ops=%#x\n",
1099 t, map, offset, len, ops);
1100 #endif /* DEBUG_DMA */
1101
1102 /*
1103 * Mixing of PRE and POST operations is not allowed.
1104 */
1105 if ((ops & (BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE)) != 0 &&
1106 (ops & (BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE)) != 0)
1107 panic("%s: mix PRE and POST", __func__);
1108
1109 KASSERTMSG(offset < map->dm_mapsize,
1110 "offset %lu mapsize %lu",
1111 offset, map->dm_mapsize);
1112 KASSERTMSG(len > 0 && offset + len <= map->dm_mapsize,
1113 "len %lu offset %lu mapsize %lu",
1114 len, offset, map->dm_mapsize);
1115
1116 /*
1117 * For a virtually-indexed write-back cache, we need
1118 * to do the following things:
1119 *
1120 * PREREAD -- Invalidate the D-cache. We do this
1121 * here in case a write-back is required by the back-end.
1122 *
1123 * PREWRITE -- Write-back the D-cache. Note that if
1124 * we are doing a PREREAD|PREWRITE, we can collapse
1125 * the whole thing into a single Wb-Inv.
1126 *
1127 * POSTREAD -- Re-invalidate the D-cache in case speculative
1128 * memory accesses caused cachelines to become valid with now
1129 * invalid data.
1130 *
1131 * POSTWRITE -- Nothing.
1132 */
1133 #ifdef _ARM32_NEED_BUS_DMA_BOUNCE
1134 const bool bouncing = (map->_dm_flags & _BUS_DMAMAP_IS_BOUNCING);
1135 #else
1136 const bool bouncing = false;
1137 #endif
1138
1139 const int pre_ops = ops & (BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1140 #if defined(CPU_CORTEX) || defined(CPU_ARMV8)
1141 const int post_ops = ops & (BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1142 #else
1143 const int post_ops = 0;
1144 #endif
1145 if (pre_ops == 0 && post_ops == 0)
1146 return;
1147
1148 if (post_ops == BUS_DMASYNC_POSTWRITE) {
1149 KASSERT(pre_ops == 0);
1150 if ((map->_dm_flags & _BUS_DMAMAP_COHERENT)) {
1151 STAT_INCR(sync_coherent_postwrite);
1152 } else {
1153 STAT_INCR(sync_postwrite);
1154 }
1155 return;
1156 }
1157
1158 KASSERTMSG(bouncing || pre_ops != 0 || (post_ops & BUS_DMASYNC_POSTREAD),
1159 "pre_ops %#x post_ops %#x", pre_ops, post_ops);
1160
1161 if (bouncing && (ops & BUS_DMASYNC_PREWRITE)) {
1162 struct arm32_bus_dma_cookie * const cookie = map->_dm_cookie;
1163 STAT_INCR(write_bounces);
1164 char * const dataptr = (char *)cookie->id_bouncebuf + offset;
1165 /*
1166 * Copy the caller's buffer to the bounce buffer.
1167 */
1168 switch (map->_dm_buftype) {
1169 case _BUS_DMA_BUFTYPE_LINEAR:
1170 memcpy(dataptr, cookie->id_origlinearbuf + offset, len);
1171 break;
1172
1173 case _BUS_DMA_BUFTYPE_MBUF:
1174 m_copydata(cookie->id_origmbuf, offset, len, dataptr);
1175 break;
1176
1177 case _BUS_DMA_BUFTYPE_UIO:
1178 _bus_dma_uiomove(dataptr, cookie->id_origuio, len,
1179 UIO_WRITE);
1180 break;
1181
1182 #ifdef DIAGNOSTIC
1183 case _BUS_DMA_BUFTYPE_RAW:
1184 panic("%s:(pre): _BUS_DMA_BUFTYPE_RAW", __func__);
1185 break;
1186
1187 case _BUS_DMA_BUFTYPE_INVALID:
1188 panic("%s(pre): _BUS_DMA_BUFTYPE_INVALID", __func__);
1189 break;
1190
1191 default:
1192 panic("%s(pre): map %p: unknown buffer type %d\n",
1193 __func__, map, map->_dm_buftype);
1194 break;
1195 #endif /* DIAGNOSTIC */
1196 }
1197 }
1198
1199 /* Skip cache frobbing if mapping was COHERENT */
1200 if ((map->_dm_flags & _BUS_DMAMAP_COHERENT)) {
1201 switch (ops) {
1202 case BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE:
1203 STAT_INCR(sync_coherent_prereadwrite);
1204 break;
1205
1206 case BUS_DMASYNC_PREREAD:
1207 STAT_INCR(sync_coherent_preread);
1208 break;
1209
1210 case BUS_DMASYNC_PREWRITE:
1211 STAT_INCR(sync_coherent_prewrite);
1212 break;
1213
1214 case BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE:
1215 STAT_INCR(sync_coherent_postreadwrite);
1216 break;
1217
1218 case BUS_DMASYNC_POSTREAD:
1219 STAT_INCR(sync_coherent_postread);
1220 break;
1221
1222 /* BUS_DMASYNC_POSTWRITE was aleady handled as a fastpath */
1223 }
1224 /*
1225 * Drain the write buffer of DMA operators.
1226 * 1) when cpu->device (prewrite)
1227 * 2) when device->cpu (postread)
1228 */
1229 if ((pre_ops & BUS_DMASYNC_PREWRITE) || (post_ops & BUS_DMASYNC_POSTREAD))
1230 cpu_drain_writebuf();
1231
1232 /*
1233 * Only thing left to do for COHERENT mapping is copy from bounce
1234 * in the POSTREAD case.
1235 */
1236 if (bouncing && (post_ops & BUS_DMASYNC_POSTREAD))
1237 goto bounce_it;
1238
1239 return;
1240 }
1241
1242 #if !defined(ARM_MMU_EXTENDED)
1243 /*
1244 * If the mapping belongs to a non-kernel vmspace, and the
1245 * vmspace has not been active since the last time a full
1246 * cache flush was performed, we don't need to do anything.
1247 */
1248 if (__predict_false(!VMSPACE_IS_KERNEL_P(map->_dm_vmspace) &&
1249 vm_map_pmap(&map->_dm_vmspace->vm_map)->pm_cstate.cs_cache_d == 0))
1250 return;
1251 #endif
1252
1253 int buftype = map->_dm_buftype;
1254 if (bouncing) {
1255 buftype = _BUS_DMA_BUFTYPE_LINEAR;
1256 }
1257
1258 switch (buftype) {
1259 case _BUS_DMA_BUFTYPE_LINEAR:
1260 case _BUS_DMA_BUFTYPE_RAW:
1261 _bus_dmamap_sync_linear(t, map, offset, len, ops);
1262 break;
1263
1264 case _BUS_DMA_BUFTYPE_MBUF:
1265 _bus_dmamap_sync_mbuf(t, map, offset, len, ops);
1266 break;
1267
1268 case _BUS_DMA_BUFTYPE_UIO:
1269 _bus_dmamap_sync_uio(t, map, offset, len, ops);
1270 break;
1271
1272 case _BUS_DMA_BUFTYPE_INVALID:
1273 panic("%s: _BUS_DMA_BUFTYPE_INVALID", __func__);
1274 break;
1275
1276 default:
1277 panic("%s: map %p: unknown buffer type %d\n", __func__, map,
1278 map->_dm_buftype);
1279 }
1280
1281 /* Drain the write buffer. */
1282 cpu_drain_writebuf();
1283
1284 if (!bouncing || (ops & BUS_DMASYNC_POSTREAD) == 0)
1285 return;
1286
1287 bounce_it:
1288 STAT_INCR(read_bounces);
1289
1290 struct arm32_bus_dma_cookie * const cookie = map->_dm_cookie;
1291 char * const dataptr = (char *)cookie->id_bouncebuf + offset;
1292 /*
1293 * Copy the bounce buffer to the caller's buffer.
1294 */
1295 switch (map->_dm_buftype) {
1296 case _BUS_DMA_BUFTYPE_LINEAR:
1297 memcpy(cookie->id_origlinearbuf + offset, dataptr, len);
1298 break;
1299
1300 case _BUS_DMA_BUFTYPE_MBUF:
1301 m_copyback(cookie->id_origmbuf, offset, len, dataptr);
1302 break;
1303
1304 case _BUS_DMA_BUFTYPE_UIO:
1305 _bus_dma_uiomove(dataptr, cookie->id_origuio, len, UIO_READ);
1306 break;
1307
1308 #ifdef DIAGNOSTIC
1309 case _BUS_DMA_BUFTYPE_RAW:
1310 panic("%s(post): _BUS_DMA_BUFTYPE_RAW", __func__);
1311 break;
1312
1313 case _BUS_DMA_BUFTYPE_INVALID:
1314 panic("%s(post): _BUS_DMA_BUFTYPE_INVALID", __func__);
1315 break;
1316
1317 default:
1318 panic("%s(post): map %p: unknown buffer type %d\n", __func__,
1319 map, map->_dm_buftype);
1320 break;
1321 #endif
1322 }
1323 }
1324
1325 /*
1326 * Common function for DMA-safe memory allocation. May be called
1327 * by bus-specific DMA memory allocation functions.
1328 */
1329
1330 int
1331 _bus_dmamem_alloc(bus_dma_tag_t t, bus_size_t size, bus_size_t alignment,
1332 bus_size_t boundary, bus_dma_segment_t *segs, int nsegs, int *rsegs,
1333 int flags)
1334 {
1335 struct arm32_dma_range *dr;
1336 int error, i;
1337
1338 #ifdef DEBUG_DMA
1339 printf("dmamem_alloc t=%p size=%#lx align=%#lx boundary=%#lx "
1340 "segs=%p nsegs=%#x rsegs=%p flags=%#x\n", t, size, alignment,
1341 boundary, segs, nsegs, rsegs, flags);
1342 #endif
1343
1344 if ((dr = t->_ranges) != NULL) {
1345 error = ENOMEM;
1346 for (i = 0; i < t->_nranges; i++, dr++) {
1347 if (dr->dr_len == 0
1348 || (dr->dr_flags & _BUS_DMAMAP_NOALLOC))
1349 continue;
1350 error = _bus_dmamem_alloc_range(t, size, alignment,
1351 boundary, segs, nsegs, rsegs, flags,
1352 trunc_page(dr->dr_sysbase),
1353 trunc_page(dr->dr_sysbase + dr->dr_len));
1354 if (error == 0)
1355 break;
1356 }
1357 } else {
1358 error = _bus_dmamem_alloc_range(t, size, alignment, boundary,
1359 segs, nsegs, rsegs, flags, 0UL, ~0UL);
1360 }
1361
1362 #ifdef DEBUG_DMA
1363 printf("dmamem_alloc: =%d\n", error);
1364 #endif
1365
1366 return error;
1367 }
1368
1369 /*
1370 * Common function for freeing DMA-safe memory. May be called by
1371 * bus-specific DMA memory free functions.
1372 */
1373 void
1374 _bus_dmamem_free(bus_dma_tag_t t, bus_dma_segment_t *segs, int nsegs)
1375 {
1376 struct vm_page *m;
1377 bus_addr_t addr;
1378 struct pglist mlist;
1379 int curseg;
1380
1381 #ifdef DEBUG_DMA
1382 printf("dmamem_free: t=%p segs=%p nsegs=%#x\n", t, segs, nsegs);
1383 #endif /* DEBUG_DMA */
1384
1385 /*
1386 * Build a list of pages to free back to the VM system.
1387 */
1388 TAILQ_INIT(&mlist);
1389 for (curseg = 0; curseg < nsegs; curseg++) {
1390 for (addr = segs[curseg].ds_addr;
1391 addr < (segs[curseg].ds_addr + segs[curseg].ds_len);
1392 addr += PAGE_SIZE) {
1393 m = PHYS_TO_VM_PAGE(addr);
1394 TAILQ_INSERT_TAIL(&mlist, m, pageq.queue);
1395 }
1396 }
1397 uvm_pglistfree(&mlist);
1398 }
1399
1400 /*
1401 * Common function for mapping DMA-safe memory. May be called by
1402 * bus-specific DMA memory map functions.
1403 */
1404 int
1405 _bus_dmamem_map(bus_dma_tag_t t, bus_dma_segment_t *segs, int nsegs,
1406 size_t size, void **kvap, int flags)
1407 {
1408 vaddr_t va;
1409 paddr_t pa;
1410 int curseg;
1411 const uvm_flag_t kmflags = UVM_KMF_VAONLY
1412 | ((flags & BUS_DMA_NOWAIT) != 0 ? UVM_KMF_NOWAIT : 0);
1413 vsize_t align = 0;
1414
1415 #ifdef DEBUG_DMA
1416 printf("dmamem_map: t=%p segs=%p nsegs=%#x size=%#lx flags=%#x\n", t,
1417 segs, nsegs, (unsigned long)size, flags);
1418 #endif /* DEBUG_DMA */
1419
1420 #ifdef PMAP_MAP_POOLPAGE
1421 /*
1422 * If all of memory is mapped, and we are mapping a single physically
1423 * contiguous area then this area is already mapped. Let's see if we
1424 * avoid having a separate mapping for it.
1425 */
1426 if (nsegs == 1 && (flags & BUS_DMA_PREFETCHABLE) == 0) {
1427 /*
1428 * If this is a non-COHERENT mapping, then the existing kernel
1429 * mapping is already compatible with it.
1430 */
1431 bool direct_mapable = (flags & BUS_DMA_COHERENT) == 0;
1432 pa = segs[0].ds_addr;
1433
1434 /*
1435 * This is a COHERENT mapping which, unless this address is in
1436 * a COHERENT dma range, will not be compatible.
1437 */
1438 if (t->_ranges != NULL) {
1439 const struct arm32_dma_range * const dr =
1440 _bus_dma_paddr_inrange(t->_ranges, t->_nranges, pa);
1441 if (dr != NULL
1442 && (dr->dr_flags & _BUS_DMAMAP_COHERENT)) {
1443 direct_mapable = true;
1444 }
1445 }
1446
1447 #ifdef PMAP_NEED_ALLOC_POOLPAGE
1448 /*
1449 * The page can only be direct mapped if was allocated out
1450 * of the arm poolpage vm freelist.
1451 */
1452 uvm_physseg_t upm = uvm_physseg_find(atop(pa), NULL);
1453 KASSERT(uvm_physseg_valid_p(upm));
1454 if (direct_mapable) {
1455 direct_mapable =
1456 (arm_poolpage_vmfreelist == uvm_physseg_get_free_list(upm));
1457 }
1458 #endif
1459
1460 if (direct_mapable) {
1461 *kvap = (void *)PMAP_MAP_POOLPAGE(pa);
1462 #ifdef DEBUG_DMA
1463 printf("dmamem_map: =%p\n", *kvap);
1464 #endif /* DEBUG_DMA */
1465 return 0;
1466 }
1467 }
1468 #endif
1469
1470 size = round_page(size);
1471
1472 #ifdef PMAP_MAPSIZE1
1473 if (size >= PMAP_MAPSIZE1)
1474 align = PMAP_MAPSIZE1;
1475
1476 #ifdef PMAP_MAPSIZE2
1477
1478 #if PMAP_MAPSIZE1 > PMAP_MAPSIZE2
1479 #error PMAP_MAPSIZE1 must be smaller than PMAP_MAPSIZE2
1480 #endif
1481
1482 if (size >= PMAP_MAPSIZE2)
1483 align = PMAP_MAPSIZE2;
1484
1485 #ifdef PMAP_MAPSIZE3
1486
1487 #if PMAP_MAPSIZE2 > PMAP_MAPSIZE3
1488 #error PMAP_MAPSIZE2 must be smaller than PMAP_MAPSIZE3
1489 #endif
1490
1491 if (size >= PMAP_MAPSIZE3)
1492 align = PMAP_MAPSIZE3;
1493 #endif
1494 #endif
1495 #endif
1496
1497 va = uvm_km_alloc(kernel_map, size, align, kmflags);
1498 if (__predict_false(va == 0 && align > 0)) {
1499 align = 0;
1500 va = uvm_km_alloc(kernel_map, size, 0, kmflags);
1501 }
1502
1503 if (va == 0)
1504 return ENOMEM;
1505
1506 *kvap = (void *)va;
1507
1508 for (curseg = 0; curseg < nsegs; curseg++) {
1509 for (pa = segs[curseg].ds_addr;
1510 pa < (segs[curseg].ds_addr + segs[curseg].ds_len);
1511 pa += PAGE_SIZE, va += PAGE_SIZE, size -= PAGE_SIZE) {
1512 bool uncached = (flags & BUS_DMA_COHERENT);
1513 bool prefetchable = (flags & BUS_DMA_PREFETCHABLE);
1514 #ifdef DEBUG_DMA
1515 printf("wiring P%#lx to V%#lx\n", pa, va);
1516 #endif /* DEBUG_DMA */
1517 if (size == 0)
1518 panic("_bus_dmamem_map: size botch");
1519
1520 const struct arm32_dma_range * const dr =
1521 _bus_dma_paddr_inrange(t->_ranges, t->_nranges, pa);
1522 /*
1523 * If this dma region is coherent then there is
1524 * no need for an uncached mapping.
1525 */
1526 if (dr != NULL
1527 && (dr->dr_flags & _BUS_DMAMAP_COHERENT)) {
1528 uncached = false;
1529 }
1530
1531 u_int pmap_flags = PMAP_WIRED;
1532 if (prefetchable)
1533 pmap_flags |= PMAP_WRITE_COMBINE;
1534 else if (uncached)
1535 pmap_flags |= PMAP_NOCACHE;
1536
1537 pmap_kenter_pa(va, pa, VM_PROT_READ | VM_PROT_WRITE,
1538 pmap_flags);
1539 }
1540 }
1541 pmap_update(pmap_kernel());
1542 #ifdef DEBUG_DMA
1543 printf("dmamem_map: =%p\n", *kvap);
1544 #endif /* DEBUG_DMA */
1545 return 0;
1546 }
1547
1548 /*
1549 * Common function for unmapping DMA-safe memory. May be called by
1550 * bus-specific DMA memory unmapping functions.
1551 */
1552 void
1553 _bus_dmamem_unmap(bus_dma_tag_t t, void *kva, size_t size)
1554 {
1555
1556 #ifdef DEBUG_DMA
1557 printf("dmamem_unmap: t=%p kva=%p size=%#zx\n", t, kva, size);
1558 #endif /* DEBUG_DMA */
1559 KASSERTMSG(((uintptr_t)kva & PAGE_MASK) == 0,
1560 "kva %p (%#"PRIxPTR")", kva, ((uintptr_t)kva & PAGE_MASK));
1561
1562 #ifdef __HAVE_MM_MD_DIRECT_MAPPED_PHYS
1563 /*
1564 * Check to see if this used direct mapped memory. Get its physical
1565 * address and try to map it. If the resultant matches the kva, then
1566 * it was and so we can just return since we have nothing to free up.
1567 */
1568 paddr_t pa;
1569 vaddr_t va;
1570 (void)pmap_extract(pmap_kernel(), (vaddr_t)kva, &pa);
1571 if (mm_md_direct_mapped_phys(pa, &va) && va == (vaddr_t)kva)
1572 return;
1573 #endif
1574
1575 size = round_page(size);
1576 pmap_kremove((vaddr_t)kva, size);
1577 pmap_update(pmap_kernel());
1578 uvm_km_free(kernel_map, (vaddr_t)kva, size, UVM_KMF_VAONLY);
1579 }
1580
1581 /*
1582 * Common function for mmap(2)'ing DMA-safe memory. May be called by
1583 * bus-specific DMA mmap(2)'ing functions.
1584 */
1585 paddr_t
1586 _bus_dmamem_mmap(bus_dma_tag_t t, bus_dma_segment_t *segs, int nsegs,
1587 off_t off, int prot, int flags)
1588 {
1589 paddr_t map_flags;
1590 int i;
1591
1592 for (i = 0; i < nsegs; i++) {
1593 KASSERTMSG((off & PAGE_MASK) == 0,
1594 "off %#jx (%#x)", (uintmax_t)off, (int)off & PAGE_MASK);
1595 KASSERTMSG((segs[i].ds_addr & PAGE_MASK) == 0,
1596 "ds_addr %#lx (%#x)", segs[i].ds_addr,
1597 (int)segs[i].ds_addr & PAGE_MASK);
1598 KASSERTMSG((segs[i].ds_len & PAGE_MASK) == 0,
1599 "ds_len %#lx (%#x)", segs[i].ds_addr,
1600 (int)segs[i].ds_addr & PAGE_MASK);
1601 if (off >= segs[i].ds_len) {
1602 off -= segs[i].ds_len;
1603 continue;
1604 }
1605
1606 map_flags = 0;
1607 if (flags & BUS_DMA_PREFETCHABLE)
1608 map_flags |= ARM_MMAP_WRITECOMBINE;
1609
1610 return arm_btop((u_long)segs[i].ds_addr + off) | map_flags;
1611
1612 }
1613
1614 /* Page not found. */
1615 return -1;
1616 }
1617
1618 /**********************************************************************
1619 * DMA utility functions
1620 **********************************************************************/
1621
1622 /*
1623 * Utility function to load a linear buffer. lastaddrp holds state
1624 * between invocations (for multiple-buffer loads). segp contains
1625 * the starting segment on entrance, and the ending segment on exit.
1626 * first indicates if this is the first invocation of this function.
1627 */
1628 int
1629 _bus_dmamap_load_buffer(bus_dma_tag_t t, bus_dmamap_t map, void *buf,
1630 bus_size_t buflen, struct vmspace *vm, int flags)
1631 {
1632 bus_size_t sgsize;
1633 bus_addr_t curaddr;
1634 vaddr_t vaddr = (vaddr_t)buf;
1635 int error;
1636 pmap_t pmap;
1637
1638 #ifdef DEBUG_DMA
1639 printf("_bus_dmamap_load_buffer(buf=%p, len=%#lx, flags=%#x)\n",
1640 buf, buflen, flags);
1641 #endif /* DEBUG_DMA */
1642
1643 pmap = vm_map_pmap(&vm->vm_map);
1644
1645 while (buflen > 0) {
1646 /*
1647 * Get the physical address for this segment.
1648 *
1649 */
1650 bool coherent;
1651 bool ok __diagused;
1652 ok = pmap_extract_coherency(pmap, vaddr, &curaddr, &coherent);
1653
1654 /*
1655 * trying to bus_dmamap_load an unmapped buffer is a
1656 * programming error.
1657 */
1658 KASSERT(ok);
1659
1660 KASSERTMSG((vaddr & PAGE_MASK) == (curaddr & PAGE_MASK),
1661 "va %#lx curaddr %#lx", vaddr, curaddr);
1662
1663 /*
1664 * Compute the segment size, and adjust counts.
1665 */
1666 sgsize = PAGE_SIZE - ((u_long)vaddr & PGOFSET);
1667 if (buflen < sgsize)
1668 sgsize = buflen;
1669
1670 error = _bus_dmamap_load_paddr(t, map, curaddr, sgsize,
1671 coherent);
1672 if (error)
1673 return error;
1674
1675 vaddr += sgsize;
1676 buflen -= sgsize;
1677 }
1678
1679 return 0;
1680 }
1681
1682 /*
1683 * Allocate physical memory from the given physical address range.
1684 * Called by DMA-safe memory allocation methods.
1685 */
1686 int
1687 _bus_dmamem_alloc_range(bus_dma_tag_t t, bus_size_t size, bus_size_t alignment,
1688 bus_size_t boundary, bus_dma_segment_t *segs, int nsegs, int *rsegs,
1689 int flags, paddr_t low, paddr_t high)
1690 {
1691 paddr_t curaddr, lastaddr;
1692 struct vm_page *m;
1693 struct pglist mlist;
1694 int curseg, error;
1695
1696 KASSERTMSG(boundary == 0 || (boundary & (boundary - 1)) == 0,
1697 "invalid boundary %#lx", boundary);
1698
1699 #ifdef DEBUG_DMA
1700 printf("alloc_range: t=%p size=%#lx align=%#lx boundary=%#lx segs=%p nsegs=%#x rsegs=%p flags=%#x lo=%#lx hi=%#lx\n",
1701 t, size, alignment, boundary, segs, nsegs, rsegs, flags, low, high);
1702 #endif /* DEBUG_DMA */
1703
1704 /* Always round the size. */
1705 size = round_page(size);
1706
1707 /*
1708 * We accept boundaries < size, splitting in multiple segments
1709 * if needed. uvm_pglistalloc does not, so compute an appropriate
1710 * boundary: next power of 2 >= size
1711 */
1712 bus_size_t uboundary = boundary;
1713 if (uboundary <= PAGE_SIZE) {
1714 uboundary = 0;
1715 } else {
1716 while (uboundary < size) {
1717 uboundary <<= 1;
1718 }
1719 }
1720
1721 /*
1722 * Allocate pages from the VM system.
1723 */
1724 error = uvm_pglistalloc(size, low, high, alignment, uboundary,
1725 &mlist, nsegs, (flags & BUS_DMA_NOWAIT) == 0);
1726 if (error)
1727 return error;
1728
1729 /*
1730 * Compute the location, size, and number of segments actually
1731 * returned by the VM code.
1732 */
1733 m = TAILQ_FIRST(&mlist);
1734 curseg = 0;
1735 lastaddr = segs[curseg].ds_addr = segs[curseg]._ds_paddr =
1736 VM_PAGE_TO_PHYS(m);
1737 segs[curseg].ds_len = PAGE_SIZE;
1738 #ifdef DEBUG_DMA
1739 printf("alloc: page %#lx\n", lastaddr);
1740 #endif /* DEBUG_DMA */
1741 m = TAILQ_NEXT(m, pageq.queue);
1742
1743 for (; m != NULL; m = TAILQ_NEXT(m, pageq.queue)) {
1744 curaddr = VM_PAGE_TO_PHYS(m);
1745 KASSERTMSG(low <= curaddr && curaddr < high,
1746 "uvm_pglistalloc returned non-sensicaladdress %#lx "
1747 "(low=%#lx, high=%#lx\n", curaddr, low, high);
1748 #ifdef DEBUG_DMA
1749 printf("alloc: page %#lx\n", curaddr);
1750 #endif /* DEBUG_DMA */
1751 if (curaddr == lastaddr + PAGE_SIZE
1752 && (lastaddr & boundary) == (curaddr & boundary))
1753 segs[curseg].ds_len += PAGE_SIZE;
1754 else {
1755 curseg++;
1756 if (curseg >= nsegs) {
1757 uvm_pglistfree(&mlist);
1758 return EFBIG;
1759 }
1760 segs[curseg].ds_addr = curaddr;
1761 segs[curseg]._ds_paddr = curaddr;
1762 segs[curseg].ds_len = PAGE_SIZE;
1763 }
1764 lastaddr = curaddr;
1765 }
1766
1767 *rsegs = curseg + 1;
1768
1769 return 0;
1770 }
1771
1772 /*
1773 * Check if a memory region intersects with a DMA range, and return the
1774 * page-rounded intersection if it does.
1775 */
1776 int
1777 arm32_dma_range_intersect(struct arm32_dma_range *ranges, int nranges,
1778 paddr_t pa, psize_t size, paddr_t *pap, psize_t *sizep)
1779 {
1780 struct arm32_dma_range *dr;
1781 int i;
1782
1783 if (ranges == NULL)
1784 return 0;
1785
1786 for (i = 0, dr = ranges; i < nranges; i++, dr++) {
1787 if (dr->dr_sysbase <= pa &&
1788 pa < (dr->dr_sysbase + dr->dr_len)) {
1789 /*
1790 * Beginning of region intersects with this range.
1791 */
1792 *pap = trunc_page(pa);
1793 *sizep = round_page(uimin(pa + size,
1794 dr->dr_sysbase + dr->dr_len) - pa);
1795 return 1;
1796 }
1797 if (pa < dr->dr_sysbase && dr->dr_sysbase < (pa + size)) {
1798 /*
1799 * End of region intersects with this range.
1800 */
1801 *pap = trunc_page(dr->dr_sysbase);
1802 *sizep = round_page(uimin((pa + size) - dr->dr_sysbase,
1803 dr->dr_len));
1804 return 1;
1805 }
1806 }
1807
1808 /* No intersection found. */
1809 return 0;
1810 }
1811
1812 #ifdef _ARM32_NEED_BUS_DMA_BOUNCE
1813 static int
1814 _bus_dma_alloc_bouncebuf(bus_dma_tag_t t, bus_dmamap_t map,
1815 bus_size_t size, int flags)
1816 {
1817 struct arm32_bus_dma_cookie *cookie = map->_dm_cookie;
1818 int error = 0;
1819
1820 KASSERT(cookie != NULL);
1821
1822 cookie->id_bouncebuflen = round_page(size);
1823 error = _bus_dmamem_alloc(t, cookie->id_bouncebuflen,
1824 PAGE_SIZE, map->_dm_boundary, cookie->id_bouncesegs,
1825 map->_dm_segcnt, &cookie->id_nbouncesegs, flags);
1826 if (error == 0) {
1827 error = _bus_dmamem_map(t, cookie->id_bouncesegs,
1828 cookie->id_nbouncesegs, cookie->id_bouncebuflen,
1829 (void **)&cookie->id_bouncebuf, flags);
1830 if (error) {
1831 _bus_dmamem_free(t, cookie->id_bouncesegs,
1832 cookie->id_nbouncesegs);
1833 cookie->id_bouncebuflen = 0;
1834 cookie->id_nbouncesegs = 0;
1835 } else {
1836 cookie->id_flags |= _BUS_DMA_HAS_BOUNCE;
1837 }
1838 } else {
1839 cookie->id_bouncebuflen = 0;
1840 cookie->id_nbouncesegs = 0;
1841 }
1842
1843 return error;
1844 }
1845
1846 static void
1847 _bus_dma_free_bouncebuf(bus_dma_tag_t t, bus_dmamap_t map)
1848 {
1849 struct arm32_bus_dma_cookie *cookie = map->_dm_cookie;
1850
1851 KASSERT(cookie != NULL);
1852
1853 _bus_dmamem_unmap(t, cookie->id_bouncebuf, cookie->id_bouncebuflen);
1854 _bus_dmamem_free(t, cookie->id_bouncesegs, cookie->id_nbouncesegs);
1855 cookie->id_bouncebuflen = 0;
1856 cookie->id_nbouncesegs = 0;
1857 cookie->id_flags &= ~_BUS_DMA_HAS_BOUNCE;
1858 }
1859 #endif /* _ARM32_NEED_BUS_DMA_BOUNCE */
1860
1861 /*
1862 * This function does the same as uiomove, but takes an explicit
1863 * direction, and does not update the uio structure.
1864 */
1865 static int
1866 _bus_dma_uiomove(void *buf, struct uio *uio, size_t n, int direction)
1867 {
1868 struct iovec *iov;
1869 int error;
1870 struct vmspace *vm;
1871 char *cp;
1872 size_t resid, cnt;
1873 int i;
1874
1875 iov = uio->uio_iov;
1876 vm = uio->uio_vmspace;
1877 cp = buf;
1878 resid = n;
1879
1880 for (i = 0; i < uio->uio_iovcnt && resid > 0; i++) {
1881 iov = &uio->uio_iov[i];
1882 if (iov->iov_len == 0)
1883 continue;
1884 cnt = MIN(resid, iov->iov_len);
1885
1886 if (!VMSPACE_IS_KERNEL_P(vm)) {
1887 preempt_point();
1888 }
1889 if (direction == UIO_READ) {
1890 error = copyout_vmspace(vm, cp, iov->iov_base, cnt);
1891 } else {
1892 error = copyin_vmspace(vm, iov->iov_base, cp, cnt);
1893 }
1894 if (error)
1895 return error;
1896 cp += cnt;
1897 resid -= cnt;
1898 }
1899 return 0;
1900 }
1901
1902 int
1903 _bus_dmatag_subregion(bus_dma_tag_t tag, bus_addr_t min_addr,
1904 bus_addr_t max_addr, bus_dma_tag_t *newtag, int flags)
1905 {
1906 #ifdef _ARM32_NEED_BUS_DMA_BOUNCE
1907 if (min_addr >= max_addr)
1908 return EOPNOTSUPP;
1909
1910 struct arm32_dma_range *dr;
1911 bool psubset = true;
1912 size_t nranges = 0;
1913 size_t i;
1914 for (i = 0, dr = tag->_ranges; i < tag->_nranges; i++, dr++) {
1915 /*
1916 * If the new {min,max}_addr are narrower than any of the
1917 * ranges in the parent tag then we need a new tag;
1918 * otherwise the parent tag is a subset of the new
1919 * range and can continue to be used.
1920 */
1921 if (min_addr > dr->dr_sysbase
1922 || max_addr < dr->dr_sysbase + dr->dr_len - 1) {
1923 psubset = false;
1924 }
1925 if (min_addr <= dr->dr_sysbase + dr->dr_len
1926 && max_addr >= dr->dr_sysbase) {
1927 nranges++;
1928 }
1929 }
1930 if (nranges == 0) {
1931 nranges = 1;
1932 psubset = false;
1933 }
1934 if (psubset) {
1935 *newtag = tag;
1936 /* if the tag must be freed, add a reference */
1937 if (tag->_tag_needs_free)
1938 (tag->_tag_needs_free)++;
1939 return 0;
1940 }
1941
1942 const size_t tagsize = sizeof(*tag) + nranges * sizeof(*dr);
1943 if ((*newtag = kmem_intr_zalloc(tagsize,
1944 (flags & BUS_DMA_NOWAIT) ? KM_NOSLEEP : KM_SLEEP)) == NULL)
1945 return ENOMEM;
1946
1947 dr = (void *)(*newtag + 1);
1948 **newtag = *tag;
1949 (*newtag)->_tag_needs_free = 1;
1950 (*newtag)->_ranges = dr;
1951 (*newtag)->_nranges = nranges;
1952
1953 if (tag->_ranges == NULL) {
1954 dr->dr_sysbase = min_addr;
1955 dr->dr_busbase = min_addr;
1956 dr->dr_len = max_addr + 1 - min_addr;
1957 } else {
1958 struct arm32_dma_range *pdr;
1959
1960 for (i = 0, pdr = tag->_ranges; i < tag->_nranges; i++, pdr++) {
1961 KASSERT(nranges != 0);
1962
1963 if (min_addr > pdr->dr_sysbase + pdr->dr_len
1964 || max_addr < pdr->dr_sysbase) {
1965 /*
1966 * this range doesn't overlap with new limits,
1967 * so skip.
1968 */
1969 continue;
1970 }
1971 /*
1972 * Copy the range and adjust to fit within the new
1973 * limits
1974 */
1975 dr[0] = pdr[0];
1976 if (dr->dr_sysbase < min_addr) {
1977 psize_t diff = min_addr - dr->dr_sysbase;
1978 dr->dr_busbase += diff;
1979 dr->dr_len -= diff;
1980 dr->dr_sysbase += diff;
1981 }
1982 if (max_addr <= dr->dr_sysbase + dr->dr_len - 1) {
1983 dr->dr_len = max_addr + 1 - dr->dr_sysbase;
1984 }
1985 dr++;
1986 nranges--;
1987 }
1988 }
1989
1990 return 0;
1991 #else
1992 return EOPNOTSUPP;
1993 #endif /* _ARM32_NEED_BUS_DMA_BOUNCE */
1994 }
1995
1996 void
1997 _bus_dmatag_destroy(bus_dma_tag_t tag)
1998 {
1999 #ifdef _ARM32_NEED_BUS_DMA_BOUNCE
2000 switch (tag->_tag_needs_free) {
2001 case 0:
2002 break; /* not allocated with kmem */
2003 case 1: {
2004 const size_t tagsize = sizeof(*tag)
2005 + tag->_nranges * sizeof(*tag->_ranges);
2006 kmem_intr_free(tag, tagsize); /* last reference to tag */
2007 break;
2008 }
2009 default:
2010 (tag->_tag_needs_free)--; /* one less reference */
2011 }
2012 #endif
2013 }
2014