bus_dma.c revision 1.148 1 /* $NetBSD: bus_dma.c,v 1.148 2024/12/10 00:41:30 msaitoh Exp $ */
2
3 /*-
4 * Copyright (c) 1996, 1997, 1998, 2020 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Jason R. Thorpe of the Numerical Aerospace Simulation Facility,
9 * NASA Ames Research Center.
10 *
11 * Redistribution and use in source and binary forms, with or without
12 * modification, are permitted provided that the following conditions
13 * are met:
14 * 1. Redistributions of source code must retain the above copyright
15 * notice, this list of conditions and the following disclaimer.
16 * 2. Redistributions in binary form must reproduce the above copyright
17 * notice, this list of conditions and the following disclaimer in the
18 * documentation and/or other materials provided with the distribution.
19 *
20 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
21 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
22 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
23 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
24 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
25 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
26 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
27 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
28 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
29 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
30 * POSSIBILITY OF SUCH DAMAGE.
31 */
32
33 #define _ARM32_BUS_DMA_PRIVATE
34
35 #include "opt_arm_bus_space.h"
36 #include "opt_cputypes.h"
37
38 #include <sys/cdefs.h>
39 __KERNEL_RCSID(0, "$NetBSD: bus_dma.c,v 1.148 2024/12/10 00:41:30 msaitoh Exp $");
40
41 #include <sys/param.h>
42
43 #include <sys/bus.h>
44 #include <sys/cpu.h>
45 #include <sys/kmem.h>
46 #include <sys/mbuf.h>
47
48 #include <uvm/uvm.h>
49
50 #include <arm/cpuconf.h>
51 #include <arm/cpufunc.h>
52
53 #ifdef __HAVE_MM_MD_DIRECT_MAPPED_PHYS
54 #include <dev/mm.h>
55 #endif
56
57 #ifdef BUSDMA_COUNTERS
58 static struct evcnt bus_dma_creates =
59 EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL, "busdma", "creates");
60 static struct evcnt bus_dma_bounced_creates =
61 EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL, "busdma", "bounced creates");
62 static struct evcnt bus_dma_loads =
63 EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL, "busdma", "loads");
64 static struct evcnt bus_dma_bounced_loads =
65 EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL, "busdma", "bounced loads");
66 static struct evcnt bus_dma_coherent_loads =
67 EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL, "busdma", "coherent loads");
68 static struct evcnt bus_dma_read_bounces =
69 EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL, "busdma", "read bounces");
70 static struct evcnt bus_dma_write_bounces =
71 EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL, "busdma", "write bounces");
72 static struct evcnt bus_dma_bounced_unloads =
73 EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL, "busdma", "bounced unloads");
74 static struct evcnt bus_dma_bounced_mbuf_loads =
75 EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL, "busdma", "bounced mbuf loads");
76 static struct evcnt bus_dma_unloads =
77 EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL, "busdma", "unloads");
78 static struct evcnt bus_dma_bounced_destroys =
79 EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL, "busdma", "bounced destroys");
80 static struct evcnt bus_dma_destroys =
81 EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL, "busdma", "destroys");
82 static struct evcnt bus_dma_sync_prereadwrite =
83 EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL, "busdma", "sync prereadwrite");
84 static struct evcnt bus_dma_sync_preread_begin =
85 EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL, "busdma", "sync preread begin");
86 static struct evcnt bus_dma_sync_preread =
87 EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL, "busdma", "sync preread");
88 static struct evcnt bus_dma_sync_preread_tail =
89 EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL, "busdma", "sync preread tail");
90 static struct evcnt bus_dma_sync_prewrite =
91 EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL, "busdma", "sync prewrite");
92 static struct evcnt bus_dma_sync_postread =
93 EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL, "busdma", "sync postread");
94 static struct evcnt bus_dma_sync_postreadwrite =
95 EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL, "busdma", "sync postreadwrite");
96 static struct evcnt bus_dma_sync_postwrite =
97 EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL, "busdma", "sync postwrite");
98 static struct evcnt bus_dma_inrange_fail =
99 EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL, "busdma", "inrange check failed");
100
101 static struct evcnt bus_dma_sync_coherent_prereadwrite =
102 EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL, "busdma", "sync coherent prereadwrite");
103 static struct evcnt bus_dma_sync_coherent_preread =
104 EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL, "busdma", "sync coherent preread");
105 static struct evcnt bus_dma_sync_coherent_prewrite =
106 EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL, "busdma", "sync coherent prewrite");
107 static struct evcnt bus_dma_sync_coherent_postread =
108 EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL, "busdma", "sync coherent postread");
109 static struct evcnt bus_dma_sync_coherent_postreadwrite =
110 EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL, "busdma", "sync coherent postreadwrite");
111 static struct evcnt bus_dma_sync_coherent_postwrite =
112 EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL, "busdma", "sync coherent postwrite");
113
114 EVCNT_ATTACH_STATIC(bus_dma_creates);
115 EVCNT_ATTACH_STATIC(bus_dma_bounced_creates);
116 EVCNT_ATTACH_STATIC(bus_dma_loads);
117 EVCNT_ATTACH_STATIC(bus_dma_bounced_loads);
118 EVCNT_ATTACH_STATIC(bus_dma_coherent_loads);
119 EVCNT_ATTACH_STATIC(bus_dma_read_bounces);
120 EVCNT_ATTACH_STATIC(bus_dma_write_bounces);
121 EVCNT_ATTACH_STATIC(bus_dma_unloads);
122 EVCNT_ATTACH_STATIC(bus_dma_bounced_unloads);
123 EVCNT_ATTACH_STATIC(bus_dma_destroys);
124 EVCNT_ATTACH_STATIC(bus_dma_bounced_destroys);
125 EVCNT_ATTACH_STATIC(bus_dma_bounced_mbuf_loads);
126 EVCNT_ATTACH_STATIC(bus_dma_sync_prereadwrite);
127 EVCNT_ATTACH_STATIC(bus_dma_sync_preread_begin);
128 EVCNT_ATTACH_STATIC(bus_dma_sync_preread);
129 EVCNT_ATTACH_STATIC(bus_dma_sync_preread_tail);
130 EVCNT_ATTACH_STATIC(bus_dma_sync_prewrite);
131 EVCNT_ATTACH_STATIC(bus_dma_sync_postread);
132 EVCNT_ATTACH_STATIC(bus_dma_sync_postreadwrite);
133 EVCNT_ATTACH_STATIC(bus_dma_sync_postwrite);
134 EVCNT_ATTACH_STATIC(bus_dma_inrange_fail);
135
136 EVCNT_ATTACH_STATIC(bus_dma_sync_coherent_prereadwrite);
137 EVCNT_ATTACH_STATIC(bus_dma_sync_coherent_preread);
138 EVCNT_ATTACH_STATIC(bus_dma_sync_coherent_prewrite);
139 EVCNT_ATTACH_STATIC(bus_dma_sync_coherent_postread);
140 EVCNT_ATTACH_STATIC(bus_dma_sync_coherent_postreadwrite);
141 EVCNT_ATTACH_STATIC(bus_dma_sync_coherent_postwrite);
142
143 #define STAT_INCR(x) (bus_dma_ ## x.ev_count++)
144 #else
145 #define STAT_INCR(x) __nothing
146 #endif
147
148 int _bus_dmamap_load_buffer(bus_dma_tag_t, bus_dmamap_t, void *,
149 bus_size_t, struct vmspace *, int);
150
151 /*
152 * Check to see if the specified page is in an allowed DMA range.
153 */
154 static inline struct arm32_dma_range *
155 _bus_dma_paddr_inrange(struct arm32_dma_range *ranges, int nranges,
156 bus_addr_t curaddr)
157 {
158 struct arm32_dma_range *dr;
159 int i;
160
161 for (i = 0, dr = ranges; i < nranges; i++, dr++) {
162 if (curaddr >= dr->dr_sysbase &&
163 curaddr < (dr->dr_sysbase + dr->dr_len))
164 return dr;
165 }
166
167 return NULL;
168 }
169
170 /*
171 * Check to see if the specified busaddr is in an allowed DMA range.
172 */
173 static inline paddr_t
174 _bus_dma_busaddr_to_paddr(bus_dma_tag_t t, bus_addr_t curaddr)
175 {
176 struct arm32_dma_range *dr;
177 u_int i;
178
179 if (t->_nranges == 0)
180 return curaddr;
181
182 for (i = 0, dr = t->_ranges; i < t->_nranges; i++, dr++) {
183 if (dr->dr_busbase <= curaddr
184 && curaddr < dr->dr_busbase + dr->dr_len)
185 return curaddr - dr->dr_busbase + dr->dr_sysbase;
186 }
187 panic("%s: curaddr %#" PRIxBUSADDR "not in range", __func__, curaddr);
188 }
189
190 /*
191 * Common function to load the specified physical address into the
192 * DMA map, coalescing segments and boundary checking as necessary.
193 */
194 static int
195 _bus_dmamap_load_paddr(bus_dma_tag_t t, bus_dmamap_t map,
196 bus_addr_t paddr, bus_size_t size, bool coherent)
197 {
198 bus_dma_segment_t * const segs = map->dm_segs;
199 int nseg = map->dm_nsegs;
200 bus_addr_t lastaddr;
201 bus_addr_t bmask = ~(map->_dm_boundary - 1);
202 bus_addr_t curaddr;
203 bus_size_t sgsize;
204 uint32_t _ds_flags = coherent ? _BUS_DMAMAP_COHERENT : 0;
205
206 if (nseg > 0)
207 lastaddr = segs[nseg - 1].ds_addr + segs[nseg - 1].ds_len;
208 else
209 lastaddr = 0xdead;
210
211 again:
212 sgsize = size;
213
214 /* Make sure we're in an allowed DMA range. */
215 if (t->_ranges != NULL) {
216 /* XXX cache last result? */
217 const struct arm32_dma_range * const dr =
218 _bus_dma_paddr_inrange(t->_ranges, t->_nranges, paddr);
219 if (__predict_false(dr == NULL)) {
220 STAT_INCR(inrange_fail);
221 return EINVAL;
222 }
223
224 /*
225 * If this region is coherent, mark the segment as coherent.
226 */
227 _ds_flags |= dr->dr_flags & _BUS_DMAMAP_COHERENT;
228
229 /*
230 * In a valid DMA range. Translate the physical
231 * memory address to an address in the DMA window.
232 */
233 curaddr = (paddr - dr->dr_sysbase) + dr->dr_busbase;
234 #if 0
235 printf("%p: %#" PRIxPADDR
236 ": range %#" PRIxPADDR "/%#" PRIxBUSADDR
237 "/%#" PRIxBUSSIZE "/%#" PRIx32 ": %#" PRIx32
238 " <-- %#" PRIxBUSADDR "\n",
239 t, paddr, dr->dr_sysbase, dr->dr_busbase,
240 dr->dr_len, dr->dr_flags, _ds_flags, curaddr);
241 #endif
242 } else
243 curaddr = paddr;
244
245 /*
246 * Make sure we don't cross any boundaries.
247 */
248 if (map->_dm_boundary > 0) {
249 bus_addr_t baddr; /* next boundary address */
250
251 baddr = (curaddr + map->_dm_boundary) & bmask;
252 if (sgsize > (baddr - curaddr))
253 sgsize = (baddr - curaddr);
254 }
255
256 /*
257 * Insert chunk into a segment, coalescing with the
258 * previous segment if possible.
259 */
260 if (nseg > 0 && curaddr == lastaddr &&
261 segs[nseg - 1].ds_len + sgsize <= map->dm_maxsegsz &&
262 ((segs[nseg - 1]._ds_flags ^ _ds_flags) & _BUS_DMAMAP_COHERENT) == 0 &&
263 (map->_dm_boundary == 0 ||
264 (segs[nseg - 1].ds_addr & bmask) == (curaddr & bmask))) {
265 /* coalesce */
266 segs[nseg - 1].ds_len += sgsize;
267 } else if (__predict_false(nseg >= map->_dm_segcnt)) {
268 return EFBIG;
269 } else {
270 /* new segment */
271 segs[nseg].ds_addr = curaddr;
272 segs[nseg].ds_len = sgsize;
273 segs[nseg]._ds_paddr = curaddr;
274 segs[nseg]._ds_flags = _ds_flags;
275 nseg++;
276 }
277
278 lastaddr = curaddr + sgsize;
279
280 paddr += sgsize;
281 size -= sgsize;
282 if (size > 0)
283 goto again;
284
285 map->_dm_flags &= (_ds_flags & _BUS_DMAMAP_COHERENT);
286 map->dm_nsegs = nseg;
287 return 0;
288 }
289
290 static int _bus_dma_uiomove(void *buf, struct uio *uio, size_t n,
291 int direction);
292
293 #ifdef _ARM32_NEED_BUS_DMA_BOUNCE
294 static int _bus_dma_alloc_bouncebuf(bus_dma_tag_t t, bus_dmamap_t map,
295 bus_size_t size, int flags);
296 static void _bus_dma_free_bouncebuf(bus_dma_tag_t t, bus_dmamap_t map);
297
298 static int
299 _bus_dma_load_bouncebuf(bus_dma_tag_t t, bus_dmamap_t map, void *buf,
300 size_t buflen, int buftype, int flags)
301 {
302 struct arm32_bus_dma_cookie * const cookie = map->_dm_cookie;
303 struct vmspace * const vm = vmspace_kernel();
304 int error;
305
306 KASSERT(cookie != NULL);
307 KASSERT(cookie->id_flags & _BUS_DMA_MIGHT_NEED_BOUNCE);
308
309 /*
310 * Allocate bounce pages, if necessary.
311 */
312 if ((cookie->id_flags & _BUS_DMA_HAS_BOUNCE) == 0) {
313 error = _bus_dma_alloc_bouncebuf(t, map, buflen, flags);
314 if (__predict_false(error))
315 return error;
316 }
317
318 /*
319 * Since we're trying again, clear the previous attempt.
320 */
321 map->dm_mapsize = 0;
322 map->dm_nsegs = 0;
323 map->_dm_buftype = _BUS_DMA_BUFTYPE_INVALID;
324 /* _bus_dmamap_load_buffer() clears this if we're not... */
325 map->_dm_flags |= _BUS_DMAMAP_COHERENT;
326
327 /*
328 * Cache a pointer to the caller's buffer and load the DMA map
329 * with the bounce buffer.
330 */
331 cookie->id_origbuf = buf;
332 cookie->id_origbuflen = buflen;
333 error = _bus_dmamap_load_buffer(t, map, cookie->id_bouncebuf,
334 buflen, vm, flags);
335 if (__predict_false(error))
336 return error;
337
338 STAT_INCR(bounced_loads);
339 map->dm_mapsize = buflen;
340 map->_dm_vmspace = vm;
341 map->_dm_buftype = buftype;
342
343 /* ...so _bus_dmamap_sync() knows we're bouncing */
344 map->_dm_flags |= _BUS_DMAMAP_IS_BOUNCING;
345 cookie->id_flags |= _BUS_DMA_IS_BOUNCING;
346 return 0;
347 }
348 #endif /* _ARM32_NEED_BUS_DMA_BOUNCE */
349
350 /*
351 * Common function for DMA map creation. May be called by bus-specific
352 * DMA map creation functions.
353 */
354 int
355 _bus_dmamap_create(bus_dma_tag_t t, bus_size_t size, int nsegments,
356 bus_size_t maxsegsz, bus_size_t boundary, int flags, bus_dmamap_t *dmamp)
357 {
358 struct arm32_bus_dmamap *map;
359 void *mapstore;
360 int error = 0;
361
362 #ifdef DEBUG_DMA
363 printf("dmamap_create: t=%p size=%#" PRIxBUSSIZE
364 " nseg=%#x msegsz=%#" PRIxBUSSIZE
365 " boundary=%#" PRIxBUSSIZE
366 " flags=%#x\n", t, size, nsegments, maxsegsz, boundary, flags);
367 #endif /* DEBUG_DMA */
368
369 /*
370 * Allocate and initialize the DMA map. The end of the map
371 * is a variable-sized array of segments, so we allocate enough
372 * room for them in one shot.
373 *
374 * Note we don't preserve the WAITOK or NOWAIT flags. Preservation
375 * of ALLOCNOW notifies others that we've reserved these resources,
376 * and they are not to be freed.
377 *
378 * The bus_dmamap_t includes one bus_dma_segment_t, hence
379 * the (nsegments - 1).
380 */
381 const size_t mapsize = sizeof(struct arm32_bus_dmamap) +
382 (sizeof(bus_dma_segment_t) * (nsegments - 1));
383 const int zallocflags = (flags & BUS_DMA_NOWAIT) ? KM_NOSLEEP : KM_SLEEP;
384 if ((mapstore = kmem_intr_zalloc(mapsize, zallocflags)) == NULL)
385 return ENOMEM;
386
387 map = (struct arm32_bus_dmamap *)mapstore;
388 map->_dm_size = size;
389 map->_dm_segcnt = nsegments;
390 map->_dm_maxmaxsegsz = maxsegsz;
391 map->_dm_boundary = boundary;
392 map->_dm_flags = flags & ~(BUS_DMA_WAITOK | BUS_DMA_NOWAIT);
393 map->_dm_origbuf = NULL;
394 map->_dm_buftype = _BUS_DMA_BUFTYPE_INVALID;
395 map->_dm_vmspace = vmspace_kernel();
396 map->_dm_cookie = NULL;
397 map->dm_maxsegsz = maxsegsz;
398 map->dm_mapsize = 0; /* no valid mappings */
399 map->dm_nsegs = 0;
400
401 #ifdef _ARM32_NEED_BUS_DMA_BOUNCE
402 struct arm32_bus_dma_cookie *cookie;
403 int cookieflags;
404 void *cookiestore;
405
406 cookieflags = 0;
407
408 if (t->_may_bounce != NULL) {
409 error = (*t->_may_bounce)(t, map, flags, &cookieflags);
410 if (error != 0)
411 goto out;
412 }
413
414 if (t->_ranges != NULL) {
415 /*
416 * If ranges are defined, we may have to bounce. The only
417 * exception is if there is exactly one range that covers
418 * all of physical memory.
419 */
420 switch (t->_nranges) {
421 case 1:
422 if (t->_ranges[0].dr_sysbase == 0 &&
423 t->_ranges[0].dr_len == UINTPTR_MAX) {
424 break;
425 }
426 /* FALLTHROUGH */
427 default:
428 cookieflags |= _BUS_DMA_MIGHT_NEED_BOUNCE;
429 }
430 }
431
432 if ((cookieflags & _BUS_DMA_MIGHT_NEED_BOUNCE) == 0) {
433 STAT_INCR(creates);
434 *dmamp = map;
435 return 0;
436 }
437
438 const size_t cookiesize = sizeof(struct arm32_bus_dma_cookie) +
439 (sizeof(bus_dma_segment_t) * map->_dm_segcnt);
440
441 /*
442 * Allocate our cookie.
443 */
444 if ((cookiestore = kmem_intr_zalloc(cookiesize, zallocflags)) == NULL) {
445 error = ENOMEM;
446 goto out;
447 }
448 cookie = (struct arm32_bus_dma_cookie *)cookiestore;
449 cookie->id_flags = cookieflags;
450 map->_dm_cookie = cookie;
451 STAT_INCR(bounced_creates);
452
453 error = _bus_dma_alloc_bouncebuf(t, map, size, flags);
454 out:
455 if (error)
456 _bus_dmamap_destroy(t, map);
457 else
458 *dmamp = map;
459 #else
460 *dmamp = map;
461 STAT_INCR(creates);
462 #endif /* _ARM32_NEED_BUS_DMA_BOUNCE */
463 #ifdef DEBUG_DMA
464 printf("dmamap_create:map=%p\n", map);
465 #endif /* DEBUG_DMA */
466 return error;
467 }
468
469 /*
470 * Common function for DMA map destruction. May be called by bus-specific
471 * DMA map destruction functions.
472 */
473 void
474 _bus_dmamap_destroy(bus_dma_tag_t t, bus_dmamap_t map)
475 {
476
477 #ifdef DEBUG_DMA
478 printf("dmamap_destroy: t=%p map=%p\n", t, map);
479 #endif /* DEBUG_DMA */
480 #ifdef _ARM32_NEED_BUS_DMA_BOUNCE
481 struct arm32_bus_dma_cookie *cookie = map->_dm_cookie;
482
483 /*
484 * Free any bounce pages this map might hold.
485 */
486 if (cookie != NULL) {
487 const size_t cookiesize = sizeof(struct arm32_bus_dma_cookie) +
488 (sizeof(bus_dma_segment_t) * map->_dm_segcnt);
489
490 if (cookie->id_flags & _BUS_DMA_IS_BOUNCING)
491 STAT_INCR(bounced_unloads);
492 map->dm_nsegs = 0;
493 if (cookie->id_flags & _BUS_DMA_HAS_BOUNCE)
494 _bus_dma_free_bouncebuf(t, map);
495 STAT_INCR(bounced_destroys);
496 kmem_intr_free(cookie, cookiesize);
497 } else
498 #endif
499 STAT_INCR(destroys);
500
501 if (map->dm_nsegs > 0)
502 STAT_INCR(unloads);
503
504 const size_t mapsize = sizeof(struct arm32_bus_dmamap) +
505 (sizeof(bus_dma_segment_t) * (map->_dm_segcnt - 1));
506 kmem_intr_free(map, mapsize);
507 }
508
509 /*
510 * Common function for loading a DMA map with a linear buffer. May
511 * be called by bus-specific DMA map load functions.
512 */
513 int
514 _bus_dmamap_load(bus_dma_tag_t t, bus_dmamap_t map, void *buf,
515 bus_size_t buflen, struct proc *p, int flags)
516 {
517 struct vmspace *vm;
518 int error;
519
520 #ifdef DEBUG_DMA
521 printf("dmamap_load: t=%p map=%p buf=%p len=%#" PRIxBUSSIZE
522 " p=%p f=%#x\n", t, map, buf, buflen, p, flags);
523 #endif /* DEBUG_DMA */
524
525 if (map->dm_nsegs > 0) {
526 #ifdef _ARM32_NEED_BUS_DMA_BOUNCE
527 struct arm32_bus_dma_cookie *cookie = map->_dm_cookie;
528 if (cookie != NULL) {
529 if (cookie->id_flags & _BUS_DMA_IS_BOUNCING) {
530 STAT_INCR(bounced_unloads);
531 cookie->id_flags &= ~_BUS_DMA_IS_BOUNCING;
532 map->_dm_flags &= ~_BUS_DMAMAP_IS_BOUNCING;
533 }
534 } else
535 #endif
536 STAT_INCR(unloads);
537 }
538
539 /*
540 * Make sure that on error condition we return "no valid mappings".
541 */
542 map->dm_mapsize = 0;
543 map->dm_nsegs = 0;
544 map->_dm_buftype = _BUS_DMA_BUFTYPE_INVALID;
545 KASSERTMSG(map->dm_maxsegsz <= map->_dm_maxmaxsegsz,
546 "dm_maxsegsz %" PRIuBUSSIZE " _dm_maxmaxsegsz %" PRIuBUSSIZE,
547 map->dm_maxsegsz, map->_dm_maxmaxsegsz);
548
549 if (__predict_false(buflen > map->_dm_size))
550 return EINVAL;
551
552 if (p != NULL) {
553 vm = p->p_vmspace;
554 } else {
555 vm = vmspace_kernel();
556 }
557
558 /* _bus_dmamap_load_buffer() clears this if we're not... */
559 map->_dm_flags |= _BUS_DMAMAP_COHERENT;
560
561 error = _bus_dmamap_load_buffer(t, map, buf, buflen, vm, flags);
562 if (__predict_true(error == 0)) {
563 map->dm_mapsize = buflen;
564 map->_dm_vmspace = vm;
565 map->_dm_origbuf = buf;
566 map->_dm_buftype = _BUS_DMA_BUFTYPE_LINEAR;
567 if (map->_dm_flags & _BUS_DMAMAP_COHERENT) {
568 STAT_INCR(coherent_loads);
569 } else {
570 STAT_INCR(loads);
571 }
572 return 0;
573 }
574 #ifdef _ARM32_NEED_BUS_DMA_BOUNCE
575 struct arm32_bus_dma_cookie * const cookie = map->_dm_cookie;
576 if (cookie != NULL && (cookie->id_flags & _BUS_DMA_MIGHT_NEED_BOUNCE)) {
577 error = _bus_dma_load_bouncebuf(t, map, buf, buflen,
578 _BUS_DMA_BUFTYPE_LINEAR, flags);
579 }
580 #endif
581 return error;
582 }
583
584 /*
585 * Like _bus_dmamap_load(), but for mbufs.
586 */
587 int
588 _bus_dmamap_load_mbuf(bus_dma_tag_t t, bus_dmamap_t map, struct mbuf *m0,
589 int flags)
590 {
591 struct mbuf *m;
592 int error;
593
594 #ifdef DEBUG_DMA
595 printf("dmamap_load_mbuf: t=%p map=%p m0=%p f=%#x\n",
596 t, map, m0, flags);
597 #endif /* DEBUG_DMA */
598
599 if (map->dm_nsegs > 0) {
600 #ifdef _ARM32_NEED_BUS_DMA_BOUNCE
601 struct arm32_bus_dma_cookie *cookie = map->_dm_cookie;
602 if (cookie != NULL) {
603 if (cookie->id_flags & _BUS_DMA_IS_BOUNCING) {
604 STAT_INCR(bounced_unloads);
605 cookie->id_flags &= ~_BUS_DMA_IS_BOUNCING;
606 map->_dm_flags &= ~_BUS_DMAMAP_IS_BOUNCING;
607 }
608 } else
609 #endif
610 STAT_INCR(unloads);
611 }
612
613 /*
614 * Make sure that on error condition we return "no valid mappings."
615 */
616 map->dm_mapsize = 0;
617 map->dm_nsegs = 0;
618 map->_dm_buftype = _BUS_DMA_BUFTYPE_INVALID;
619 KASSERTMSG(map->dm_maxsegsz <= map->_dm_maxmaxsegsz,
620 "dm_maxsegsz %" PRIuBUSSIZE " _dm_maxmaxsegsz %" PRIuBUSSIZE,
621 map->dm_maxsegsz, map->_dm_maxmaxsegsz);
622
623 KASSERT(m0->m_flags & M_PKTHDR);
624
625 if (__predict_false(m0->m_pkthdr.len > map->_dm_size))
626 return EINVAL;
627
628 /* _bus_dmamap_load_paddr() clears this if we're not... */
629 map->_dm_flags |= _BUS_DMAMAP_COHERENT;
630
631 error = 0;
632 for (m = m0; m != NULL && error == 0; m = m->m_next) {
633 int offset;
634 int remainbytes;
635 const struct vm_page * const *pgs;
636 paddr_t paddr;
637 int size;
638
639 if (m->m_len == 0)
640 continue;
641 /*
642 * Don't allow reads in read-only mbufs.
643 */
644 if (__predict_false(M_ROMAP(m) && (flags & BUS_DMA_READ))) {
645 error = EFAULT;
646 break;
647 }
648 switch (m->m_flags & (M_EXT | M_EXT_CLUSTER | M_EXT_PAGES)) {
649 case M_EXT | M_EXT_CLUSTER:
650 KASSERT(m->m_ext.ext_paddr != M_PADDR_INVALID);
651 paddr = m->m_ext.ext_paddr +
652 (m->m_data - m->m_ext.ext_buf);
653 size = m->m_len;
654 error = _bus_dmamap_load_paddr(t, map, paddr, size,
655 false);
656 break;
657
658 case M_EXT | M_EXT_PAGES:
659 KASSERT(m->m_ext.ext_buf <= m->m_data);
660 KASSERT(m->m_data <=
661 m->m_ext.ext_buf + m->m_ext.ext_size);
662
663 offset = (vaddr_t)m->m_data -
664 trunc_page((vaddr_t)m->m_ext.ext_buf);
665 remainbytes = m->m_len;
666
667 /* skip uninteresting pages */
668 pgs = (const struct vm_page * const *)
669 m->m_ext.ext_pgs + (offset >> PAGE_SHIFT);
670
671 offset &= PAGE_MASK; /* offset in the first page */
672
673 /* load each page */
674 while (remainbytes > 0) {
675 const struct vm_page *pg;
676
677 size = MIN(remainbytes, PAGE_SIZE - offset);
678
679 pg = *pgs++;
680 KASSERT(pg);
681 paddr = VM_PAGE_TO_PHYS(pg) + offset;
682
683 error = _bus_dmamap_load_paddr(t, map,
684 paddr, size, false);
685 if (__predict_false(error))
686 break;
687 offset = 0;
688 remainbytes -= size;
689 }
690 break;
691
692 case 0:
693 paddr = m->m_paddr + M_BUFOFFSET(m) +
694 (m->m_data - M_BUFADDR(m));
695 size = m->m_len;
696 error = _bus_dmamap_load_paddr(t, map, paddr, size,
697 false);
698 break;
699
700 default:
701 error = _bus_dmamap_load_buffer(t, map, m->m_data,
702 m->m_len, vmspace_kernel(), flags);
703 }
704 }
705 if (__predict_true(error == 0)) {
706 map->dm_mapsize = m0->m_pkthdr.len;
707 map->_dm_origbuf = m0;
708 map->_dm_buftype = _BUS_DMA_BUFTYPE_MBUF;
709 map->_dm_vmspace = vmspace_kernel(); /* always kernel */
710 if (map->_dm_flags & _BUS_DMAMAP_COHERENT) {
711 STAT_INCR(coherent_loads);
712 } else {
713 STAT_INCR(loads);
714 }
715 return 0;
716 }
717 #ifdef _ARM32_NEED_BUS_DMA_BOUNCE
718 struct arm32_bus_dma_cookie * const cookie = map->_dm_cookie;
719 if (cookie != NULL && (cookie->id_flags & _BUS_DMA_MIGHT_NEED_BOUNCE)) {
720 error = _bus_dma_load_bouncebuf(t, map, m0, m0->m_pkthdr.len,
721 _BUS_DMA_BUFTYPE_MBUF, flags);
722 STAT_INCR(bounced_mbuf_loads);
723 }
724 #endif
725 return error;
726 }
727
728 /*
729 * Like _bus_dmamap_load(), but for uios.
730 */
731 int
732 _bus_dmamap_load_uio(bus_dma_tag_t t, bus_dmamap_t map, struct uio *uio,
733 int flags)
734 {
735 bus_size_t minlen, resid;
736 struct iovec *iov;
737 void *addr;
738 int i, error;
739
740 /*
741 * Make sure that on error condition we return "no valid mappings."
742 */
743 map->dm_mapsize = 0;
744 map->dm_nsegs = 0;
745 KASSERTMSG(map->dm_maxsegsz <= map->_dm_maxmaxsegsz,
746 "dm_maxsegsz %" PRIuBUSSIZE " _dm_maxmaxsegsz %" PRIuBUSSIZE,
747 map->dm_maxsegsz, map->_dm_maxmaxsegsz);
748
749 resid = uio->uio_resid;
750 iov = uio->uio_iov;
751
752 /* _bus_dmamap_load_buffer() clears this if we're not... */
753 map->_dm_flags |= _BUS_DMAMAP_COHERENT;
754
755 error = 0;
756 for (i = 0; i < uio->uio_iovcnt && resid != 0 && error == 0; i++) {
757 /*
758 * Now at the first iovec to load. Load each iovec
759 * until we have exhausted the residual count.
760 */
761 minlen = resid < iov[i].iov_len ? resid : iov[i].iov_len;
762 addr = (void *)iov[i].iov_base;
763
764 error = _bus_dmamap_load_buffer(t, map, addr, minlen,
765 uio->uio_vmspace, flags);
766
767 resid -= minlen;
768 }
769 if (__predict_true(error == 0)) {
770 map->dm_mapsize = uio->uio_resid;
771 map->_dm_origbuf = uio;
772 map->_dm_buftype = _BUS_DMA_BUFTYPE_UIO;
773 map->_dm_vmspace = uio->uio_vmspace;
774 if (map->_dm_flags & _BUS_DMAMAP_COHERENT) {
775 STAT_INCR(coherent_loads);
776 } else {
777 STAT_INCR(loads);
778 }
779 }
780 return error;
781 }
782
783 /*
784 * Like _bus_dmamap_load(), but for raw memory allocated with
785 * bus_dmamem_alloc().
786 */
787 int
788 _bus_dmamap_load_raw(bus_dma_tag_t t, bus_dmamap_t map,
789 bus_dma_segment_t *segs, int nsegs, bus_size_t size0, int flags)
790 {
791
792 bus_size_t size;
793 int i, error = 0;
794
795 /*
796 * Make sure that on error conditions we return "no valid mappings."
797 */
798 map->dm_mapsize = 0;
799 map->dm_nsegs = 0;
800 KASSERT(map->dm_maxsegsz <= map->_dm_maxmaxsegsz);
801
802 if (__predict_false(size0 > map->_dm_size))
803 return EINVAL;
804
805 for (i = 0, size = size0; i < nsegs && size > 0; i++) {
806 bus_dma_segment_t *ds = &segs[i];
807 bus_size_t sgsize;
808
809 sgsize = MIN(ds->ds_len, size);
810 if (sgsize == 0)
811 continue;
812 const bool coherent =
813 (ds->_ds_flags & _BUS_DMAMAP_COHERENT) != 0;
814 error = _bus_dmamap_load_paddr(t, map, ds->ds_addr,
815 sgsize, coherent);
816 if (__predict_false(error != 0))
817 break;
818 size -= sgsize;
819 }
820
821 if (__predict_false(error != 0)) {
822 map->dm_mapsize = 0;
823 map->dm_nsegs = 0;
824 return error;
825 }
826
827 /* XXX TBD bounce */
828
829 map->dm_mapsize = size0;
830 map->_dm_origbuf = NULL;
831 map->_dm_buftype = _BUS_DMA_BUFTYPE_RAW;
832 map->_dm_vmspace = NULL;
833 return 0;
834 }
835
836 /*
837 * Common function for unloading a DMA map. May be called by
838 * bus-specific DMA map unload functions.
839 */
840 void
841 _bus_dmamap_unload(bus_dma_tag_t t, bus_dmamap_t map)
842 {
843
844 #ifdef DEBUG_DMA
845 printf("dmamap_unload: t=%p map=%p\n", t, map);
846 #endif /* DEBUG_DMA */
847
848 /*
849 * No resources to free; just mark the mappings as
850 * invalid.
851 */
852 map->dm_mapsize = 0;
853 map->dm_nsegs = 0;
854 map->_dm_origbuf = NULL;
855 map->_dm_buftype = _BUS_DMA_BUFTYPE_INVALID;
856 map->_dm_vmspace = NULL;
857 }
858
859 static void
860 _bus_dmamap_sync_segment(vaddr_t va, paddr_t pa, vsize_t len, int ops,
861 bool readonly_p)
862 {
863
864 #if defined(ARM_MMU_EXTENDED)
865 /*
866 * No optimisations are available for readonly mbufs on armv6+, so
867 * assume it's not readonly from here on.
868 *
869 * See the comment in _bus_dmamap_sync_mbuf
870 */
871 readonly_p = false;
872 #endif
873
874 KASSERTMSG((va & PAGE_MASK) == (pa & PAGE_MASK),
875 "va %#" PRIxVADDR " pa %#" PRIxPADDR, va, pa);
876 #if 0
877 printf("sync_segment: va=%#" PRIxVADDR
878 " pa=%#" PRIxPADDR " len=%#" PRIxVSIZE " ops=%#x\n",
879 va, pa, len, ops);
880 #endif
881
882 switch (ops) {
883 case BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE:
884 if (!readonly_p) {
885 STAT_INCR(sync_prereadwrite);
886 cpu_dcache_wbinv_range(va, len);
887 cpu_sdcache_wbinv_range(va, pa, len);
888 break;
889 }
890 /* FALLTHROUGH */
891
892 case BUS_DMASYNC_PREREAD: {
893 const size_t line_size = arm_dcache_align;
894 const size_t line_mask = arm_dcache_align_mask;
895 vsize_t misalignment = va & line_mask;
896 if (misalignment) {
897 va -= misalignment;
898 pa -= misalignment;
899 len += misalignment;
900 STAT_INCR(sync_preread_begin);
901 cpu_dcache_wbinv_range(va, line_size);
902 cpu_sdcache_wbinv_range(va, pa, line_size);
903 if (len <= line_size)
904 break;
905 va += line_size;
906 pa += line_size;
907 len -= line_size;
908 }
909 misalignment = len & line_mask;
910 len -= misalignment;
911 if (len > 0) {
912 STAT_INCR(sync_preread);
913 cpu_dcache_inv_range(va, len);
914 cpu_sdcache_inv_range(va, pa, len);
915 }
916 if (misalignment) {
917 va += len;
918 pa += len;
919 STAT_INCR(sync_preread_tail);
920 cpu_dcache_wbinv_range(va, line_size);
921 cpu_sdcache_wbinv_range(va, pa, line_size);
922 }
923 break;
924 }
925
926 case BUS_DMASYNC_PREWRITE:
927 STAT_INCR(sync_prewrite);
928 cpu_dcache_wb_range(va, len);
929 cpu_sdcache_wb_range(va, pa, len);
930 break;
931
932 #if defined(CPU_CORTEX) || defined(CPU_ARMV8)
933
934 /*
935 * Cortex CPUs can do speculative loads so we need to clean the cache
936 * after a DMA read to deal with any speculatively loaded cache lines.
937 * Since these can't be dirty, we can just invalidate them and don't
938 * have to worry about having to write back their contents.
939 */
940 case BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE:
941 STAT_INCR(sync_postreadwrite);
942 cpu_dcache_inv_range(va, len);
943 cpu_sdcache_inv_range(va, pa, len);
944 break;
945
946 case BUS_DMASYNC_POSTREAD:
947 STAT_INCR(sync_postread);
948 cpu_dcache_inv_range(va, len);
949 cpu_sdcache_inv_range(va, pa, len);
950 break;
951 #endif
952 }
953 }
954
955 static inline void
956 _bus_dmamap_sync_linear(bus_dma_tag_t t, bus_dmamap_t map, bus_addr_t offset,
957 bus_size_t len, int ops)
958 {
959 bus_dma_segment_t *ds = map->dm_segs;
960 vaddr_t va = (vaddr_t) map->_dm_origbuf;
961 #ifdef _ARM32_NEED_BUS_DMA_BOUNCE
962 if (map->_dm_flags & _BUS_DMAMAP_IS_BOUNCING) {
963 struct arm32_bus_dma_cookie * const cookie = map->_dm_cookie;
964 va = (vaddr_t) cookie->id_bouncebuf;
965 }
966 #endif
967
968 while (len > 0) {
969 while (offset >= ds->ds_len) {
970 offset -= ds->ds_len;
971 va += ds->ds_len;
972 ds++;
973 }
974
975 paddr_t pa = _bus_dma_busaddr_to_paddr(t, ds->ds_addr + offset);
976 size_t seglen = uimin(len, ds->ds_len - offset);
977
978 if ((ds->_ds_flags & _BUS_DMAMAP_COHERENT) == 0)
979 _bus_dmamap_sync_segment(va + offset, pa, seglen, ops,
980 false);
981
982 offset += seglen;
983 len -= seglen;
984 }
985 }
986
987 static inline void
988 _bus_dmamap_sync_mbuf(bus_dma_tag_t t, bus_dmamap_t map, bus_size_t offset,
989 bus_size_t len, int ops)
990 {
991 bus_dma_segment_t *ds = map->dm_segs;
992 struct mbuf *m = map->_dm_origbuf;
993 bus_size_t voff = offset;
994 bus_size_t ds_off = offset;
995
996 while (len > 0) {
997 /* Find the current dma segment */
998 while (ds_off >= ds->ds_len) {
999 ds_off -= ds->ds_len;
1000 ds++;
1001 }
1002 /* Find the current mbuf. */
1003 while (voff >= m->m_len) {
1004 voff -= m->m_len;
1005 m = m->m_next;
1006 }
1007
1008 /*
1009 * Now at the first mbuf to sync; nail each one until
1010 * we have exhausted the length.
1011 */
1012 vsize_t seglen = uimin(len, uimin(m->m_len - voff, ds->ds_len - ds_off));
1013 vaddr_t va = mtod(m, vaddr_t) + voff;
1014 paddr_t pa = _bus_dma_busaddr_to_paddr(t, ds->ds_addr + ds_off);
1015
1016 /*
1017 * We can save a lot of work here if we know the mapping
1018 * is read-only at the MMU and we aren't using the armv6+
1019 * MMU:
1020 *
1021 * If a mapping is read-only, no dirty cache blocks will
1022 * exist for it. If a writable mapping was made read-only,
1023 * we know any dirty cache lines for the range will have
1024 * been cleaned for us already. Therefore, if the upper
1025 * layer can tell us we have a read-only mapping, we can
1026 * skip all cache cleaning.
1027 *
1028 * NOTE: This only works if we know the pmap cleans pages
1029 * before making a read-write -> read-only transition. If
1030 * this ever becomes non-true (e.g. Physically Indexed
1031 * cache), this will have to be revisited.
1032 */
1033
1034 if ((ds->_ds_flags & _BUS_DMAMAP_COHERENT) == 0) {
1035 /*
1036 * If we are doing preread (DMAing into the mbuf),
1037 * this mbuf better not be readonly,
1038 */
1039 KASSERT(!(ops & BUS_DMASYNC_PREREAD) || !M_ROMAP(m));
1040 _bus_dmamap_sync_segment(va, pa, seglen, ops,
1041 M_ROMAP(m));
1042 }
1043 voff += seglen;
1044 ds_off += seglen;
1045 len -= seglen;
1046 }
1047 }
1048
1049 static inline void
1050 _bus_dmamap_sync_uio(bus_dma_tag_t t, bus_dmamap_t map, bus_addr_t offset,
1051 bus_size_t len, int ops)
1052 {
1053 bus_dma_segment_t *ds = map->dm_segs;
1054 struct uio *uio = map->_dm_origbuf;
1055 struct iovec *iov = uio->uio_iov;
1056 bus_size_t voff = offset;
1057 bus_size_t ds_off = offset;
1058
1059 while (len > 0) {
1060 /* Find the current dma segment */
1061 while (ds_off >= ds->ds_len) {
1062 ds_off -= ds->ds_len;
1063 ds++;
1064 }
1065
1066 /* Find the current iovec. */
1067 while (voff >= iov->iov_len) {
1068 voff -= iov->iov_len;
1069 iov++;
1070 }
1071
1072 /*
1073 * Now at the first iovec to sync; nail each one until
1074 * we have exhausted the length.
1075 */
1076 vsize_t seglen = uimin(len, uimin(iov->iov_len - voff, ds->ds_len - ds_off));
1077 vaddr_t va = (vaddr_t) iov->iov_base + voff;
1078 paddr_t pa = _bus_dma_busaddr_to_paddr(t, ds->ds_addr + ds_off);
1079
1080 if ((ds->_ds_flags & _BUS_DMAMAP_COHERENT) == 0)
1081 _bus_dmamap_sync_segment(va, pa, seglen, ops, false);
1082
1083 voff += seglen;
1084 ds_off += seglen;
1085 len -= seglen;
1086 }
1087 }
1088
1089 /*
1090 * Common function for DMA map synchronization. May be called
1091 * by bus-specific DMA map synchronization functions.
1092 *
1093 * XXX Should have separate versions for write-through vs.
1094 * XXX write-back caches. We currently assume write-back
1095 * XXX here, which is not as efficient as it could be for
1096 * XXX the write-through case.
1097 */
1098 void
1099 _bus_dmamap_sync(bus_dma_tag_t t, bus_dmamap_t map, bus_addr_t offset,
1100 bus_size_t len, int ops)
1101 {
1102 #ifdef DEBUG_DMA
1103 printf("dmamap_sync: t=%p map=%p offset=%#" PRIxBUSADDR
1104 " len=%#" PRIxBUSSIZE " ops=%#x\n", t, map, offset, len, ops);
1105 #endif /* DEBUG_DMA */
1106
1107 /*
1108 * Mixing of PRE and POST operations is not allowed.
1109 */
1110 KASSERTMSG((((ops & (BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE)) == 0)
1111 || ((ops & (BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE)) == 0)),
1112 "%s: mix PRE and POST", __func__);
1113
1114 KASSERTMSG(offset < map->dm_mapsize,
1115 "offset %" PRIxBUSADDR " mapsize %" PRIuBUSSIZE,
1116 offset, map->dm_mapsize);
1117 KASSERTMSG(len > 0 && offset + len <= map->dm_mapsize,
1118 "len %" PRIuBUSSIZE " offset %" PRIxBUSADDR " mapsize %" PRIuBUSSIZE,
1119 len, offset, map->dm_mapsize);
1120
1121 /*
1122 * For a write-back cache, we need to do the following things:
1123 *
1124 * PREREAD -- Invalidate the D-cache. We do this
1125 * here in case a write-back is required by the back-end.
1126 *
1127 * PREWRITE -- Write-back the D-cache. Note that if
1128 * we are doing a PREREAD | PREWRITE, we can collapse
1129 * the whole thing into a single Wb-Inv.
1130 *
1131 * POSTREAD -- Re-invalidate the D-cache in case speculative
1132 * memory accesses caused cachelines to become valid with now
1133 * invalid data.
1134 *
1135 * POSTWRITE -- Nothing.
1136 */
1137 #ifdef _ARM32_NEED_BUS_DMA_BOUNCE
1138 const bool bouncing = (map->_dm_flags & _BUS_DMAMAP_IS_BOUNCING);
1139 #else
1140 const bool bouncing = false;
1141 #endif
1142
1143 const int pre_ops = ops & (BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
1144 #if defined(CPU_CORTEX) || defined(CPU_ARMV8)
1145 const int post_ops = ops & (BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
1146 #else
1147 const int post_ops = 0;
1148 #endif
1149 if (pre_ops == 0 && post_ops == 0)
1150 return;
1151
1152 if (post_ops == BUS_DMASYNC_POSTWRITE) {
1153 KASSERT(pre_ops == 0);
1154 if ((map->_dm_flags & _BUS_DMAMAP_COHERENT)) {
1155 STAT_INCR(sync_coherent_postwrite);
1156 } else {
1157 STAT_INCR(sync_postwrite);
1158 }
1159 return;
1160 }
1161
1162 KASSERTMSG(bouncing || pre_ops != 0 || (post_ops & BUS_DMASYNC_POSTREAD),
1163 "pre_ops %#x post_ops %#x", pre_ops, post_ops);
1164
1165 if (bouncing && (ops & BUS_DMASYNC_PREWRITE)) {
1166 struct arm32_bus_dma_cookie * const cookie = map->_dm_cookie;
1167 STAT_INCR(write_bounces);
1168 char * const dataptr = (char *)cookie->id_bouncebuf + offset;
1169 /*
1170 * Copy the caller's buffer to the bounce buffer.
1171 */
1172 switch (map->_dm_buftype) {
1173 case _BUS_DMA_BUFTYPE_LINEAR:
1174 memcpy(dataptr, cookie->id_origlinearbuf + offset, len);
1175 break;
1176
1177 case _BUS_DMA_BUFTYPE_MBUF:
1178 m_copydata(cookie->id_origmbuf, offset, len, dataptr);
1179 break;
1180
1181 case _BUS_DMA_BUFTYPE_UIO:
1182 _bus_dma_uiomove(dataptr, cookie->id_origuio, len,
1183 UIO_WRITE);
1184 break;
1185
1186 #ifdef DIAGNOSTIC
1187 case _BUS_DMA_BUFTYPE_RAW:
1188 panic("%s:(pre): _BUS_DMA_BUFTYPE_RAW", __func__);
1189 break;
1190
1191 case _BUS_DMA_BUFTYPE_INVALID:
1192 panic("%s(pre): _BUS_DMA_BUFTYPE_INVALID", __func__);
1193 break;
1194
1195 default:
1196 panic("%s(pre): map %p: unknown buffer type %d\n",
1197 __func__, map, map->_dm_buftype);
1198 break;
1199 #endif /* DIAGNOSTIC */
1200 }
1201 }
1202
1203 /* Skip cache frobbing if mapping was COHERENT */
1204 if ((map->_dm_flags & _BUS_DMAMAP_COHERENT)) {
1205 switch (ops) {
1206 case BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE:
1207 STAT_INCR(sync_coherent_prereadwrite);
1208 break;
1209
1210 case BUS_DMASYNC_PREREAD:
1211 STAT_INCR(sync_coherent_preread);
1212 break;
1213
1214 case BUS_DMASYNC_PREWRITE:
1215 STAT_INCR(sync_coherent_prewrite);
1216 break;
1217
1218 case BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE:
1219 STAT_INCR(sync_coherent_postreadwrite);
1220 break;
1221
1222 case BUS_DMASYNC_POSTREAD:
1223 STAT_INCR(sync_coherent_postread);
1224 break;
1225
1226 /* BUS_DMASYNC_POSTWRITE was aleady handled as a fastpath */
1227 }
1228 /*
1229 * Drain the write buffer of DMA operators.
1230 * 1) when cpu->device (prewrite)
1231 * 2) when device->cpu (postread)
1232 */
1233 if ((pre_ops & BUS_DMASYNC_PREWRITE) || (post_ops & BUS_DMASYNC_POSTREAD))
1234 cpu_drain_writebuf();
1235
1236 /*
1237 * Only thing left to do for COHERENT mapping is copy from bounce
1238 * in the POSTREAD case.
1239 */
1240 if (bouncing && (post_ops & BUS_DMASYNC_POSTREAD))
1241 goto bounce_it;
1242
1243 return;
1244 }
1245
1246 #if !defined(ARM_MMU_EXTENDED)
1247 /*
1248 * If the mapping belongs to a non-kernel vmspace, and the
1249 * vmspace has not been active since the last time a full
1250 * cache flush was performed, we don't need to do anything.
1251 */
1252 if (__predict_false(!VMSPACE_IS_KERNEL_P(map->_dm_vmspace) &&
1253 vm_map_pmap(&map->_dm_vmspace->vm_map)->pm_cstate.cs_cache_d == 0))
1254 return;
1255 #endif
1256
1257 int buftype = map->_dm_buftype;
1258 if (bouncing) {
1259 buftype = _BUS_DMA_BUFTYPE_LINEAR;
1260 }
1261
1262 switch (buftype) {
1263 case _BUS_DMA_BUFTYPE_LINEAR:
1264 case _BUS_DMA_BUFTYPE_RAW:
1265 _bus_dmamap_sync_linear(t, map, offset, len, ops);
1266 break;
1267
1268 case _BUS_DMA_BUFTYPE_MBUF:
1269 _bus_dmamap_sync_mbuf(t, map, offset, len, ops);
1270 break;
1271
1272 case _BUS_DMA_BUFTYPE_UIO:
1273 _bus_dmamap_sync_uio(t, map, offset, len, ops);
1274 break;
1275
1276 case _BUS_DMA_BUFTYPE_INVALID:
1277 panic("%s: _BUS_DMA_BUFTYPE_INVALID", __func__);
1278 break;
1279
1280 default:
1281 panic("%s: map %p: unknown buffer type %d\n", __func__, map,
1282 map->_dm_buftype);
1283 }
1284
1285 /* Drain the write buffer. */
1286 cpu_drain_writebuf();
1287
1288 if (!bouncing || (ops & BUS_DMASYNC_POSTREAD) == 0)
1289 return;
1290
1291 bounce_it:
1292 STAT_INCR(read_bounces);
1293
1294 struct arm32_bus_dma_cookie * const cookie = map->_dm_cookie;
1295 char * const dataptr = (char *)cookie->id_bouncebuf + offset;
1296 /*
1297 * Copy the bounce buffer to the caller's buffer.
1298 */
1299 switch (map->_dm_buftype) {
1300 case _BUS_DMA_BUFTYPE_LINEAR:
1301 memcpy(cookie->id_origlinearbuf + offset, dataptr, len);
1302 break;
1303
1304 case _BUS_DMA_BUFTYPE_MBUF:
1305 m_copyback(cookie->id_origmbuf, offset, len, dataptr);
1306 break;
1307
1308 case _BUS_DMA_BUFTYPE_UIO:
1309 _bus_dma_uiomove(dataptr, cookie->id_origuio, len, UIO_READ);
1310 break;
1311
1312 #ifdef DIAGNOSTIC
1313 case _BUS_DMA_BUFTYPE_RAW:
1314 panic("%s(post): _BUS_DMA_BUFTYPE_RAW", __func__);
1315 break;
1316
1317 case _BUS_DMA_BUFTYPE_INVALID:
1318 panic("%s(post): _BUS_DMA_BUFTYPE_INVALID", __func__);
1319 break;
1320
1321 default:
1322 panic("%s(post): map %p: unknown buffer type %d\n", __func__,
1323 map, map->_dm_buftype);
1324 break;
1325 #endif
1326 }
1327 }
1328
1329 /*
1330 * Common function for DMA-safe memory allocation. May be called
1331 * by bus-specific DMA memory allocation functions.
1332 */
1333
1334 int
1335 _bus_dmamem_alloc(bus_dma_tag_t t, bus_size_t size, bus_size_t alignment,
1336 bus_size_t boundary, bus_dma_segment_t *segs, int nsegs, int *rsegs,
1337 int flags)
1338 {
1339 struct arm32_dma_range *dr;
1340 int error, i;
1341
1342 #ifdef DEBUG_DMA
1343 printf("dmamem_alloc t=%p size=%#" PRIxBUSSIZE
1344 " align=%#" PRIxBUSSIZE
1345 " boundary=%#" PRIxBUSSIZE " "
1346 "segs=%p nsegs=%#x rsegs=%p flags=%#x\n", t, size, alignment,
1347 boundary, segs, nsegs, rsegs, flags);
1348 #endif
1349
1350 if ((dr = t->_ranges) != NULL) {
1351 error = ENOMEM;
1352 for (i = 0; i < t->_nranges; i++, dr++) {
1353 if (dr->dr_len == 0
1354 || (dr->dr_flags & _BUS_DMAMAP_NOALLOC))
1355 continue;
1356 error = _bus_dmamem_alloc_range(t, size, alignment,
1357 boundary, segs, nsegs, rsegs, flags,
1358 trunc_page(dr->dr_sysbase),
1359 trunc_page(dr->dr_sysbase + dr->dr_len));
1360 if (error == 0)
1361 break;
1362 }
1363 } else {
1364 error = _bus_dmamem_alloc_range(t, size, alignment, boundary,
1365 segs, nsegs, rsegs, flags, 0UL, ~0UL);
1366 }
1367
1368 #ifdef DEBUG_DMA
1369 printf("dmamem_alloc: =%d\n", error);
1370 #endif
1371
1372 return error;
1373 }
1374
1375 /*
1376 * Common function for freeing DMA-safe memory. May be called by
1377 * bus-specific DMA memory free functions.
1378 */
1379 void
1380 _bus_dmamem_free(bus_dma_tag_t t, bus_dma_segment_t *segs, int nsegs)
1381 {
1382 struct vm_page *m;
1383 bus_addr_t addr;
1384 struct pglist mlist;
1385 int curseg;
1386
1387 #ifdef DEBUG_DMA
1388 printf("dmamem_free: t=%p segs=%p nsegs=%#x\n", t, segs, nsegs);
1389 #endif /* DEBUG_DMA */
1390
1391 /*
1392 * Build a list of pages to free back to the VM system.
1393 */
1394 TAILQ_INIT(&mlist);
1395 for (curseg = 0; curseg < nsegs; curseg++) {
1396 for (addr = segs[curseg].ds_addr;
1397 addr < (segs[curseg].ds_addr + segs[curseg].ds_len);
1398 addr += PAGE_SIZE) {
1399 m = PHYS_TO_VM_PAGE(addr);
1400 TAILQ_INSERT_TAIL(&mlist, m, pageq.queue);
1401 }
1402 }
1403 uvm_pglistfree(&mlist);
1404 }
1405
1406 /*
1407 * Common function for mapping DMA-safe memory. May be called by
1408 * bus-specific DMA memory map functions.
1409 */
1410 int
1411 _bus_dmamem_map(bus_dma_tag_t t, bus_dma_segment_t *segs, int nsegs,
1412 size_t size, void **kvap, int flags)
1413 {
1414 vaddr_t va;
1415 paddr_t pa;
1416 int curseg;
1417 const uvm_flag_t kmflags = UVM_KMF_VAONLY
1418 | ((flags & BUS_DMA_NOWAIT) != 0 ? UVM_KMF_NOWAIT : 0);
1419 vsize_t align = 0;
1420
1421 #ifdef DEBUG_DMA
1422 printf("dmamem_map: t=%p segs=%p nsegs=%#x size=%#zx flags=%#x\n", t,
1423 segs, nsegs, size, flags);
1424 #endif /* DEBUG_DMA */
1425
1426 #ifdef PMAP_MAP_POOLPAGE
1427 /*
1428 * If all of memory is mapped, and we are mapping a single physically
1429 * contiguous area then this area is already mapped. Let's see if we
1430 * avoid having a separate mapping for it.
1431 */
1432 if (nsegs == 1 && (flags & BUS_DMA_PREFETCHABLE) == 0) {
1433 /*
1434 * If this is a non-COHERENT mapping, then the existing kernel
1435 * mapping is already compatible with it.
1436 */
1437 bool direct_mapable = (flags & BUS_DMA_COHERENT) == 0;
1438 pa = segs[0].ds_addr;
1439
1440 /*
1441 * This is a COHERENT mapping which, unless this address is in
1442 * a COHERENT dma range, will not be compatible.
1443 */
1444 if (t->_ranges != NULL) {
1445 const struct arm32_dma_range * const dr =
1446 _bus_dma_paddr_inrange(t->_ranges, t->_nranges, pa);
1447 if (dr != NULL
1448 && (dr->dr_flags & _BUS_DMAMAP_COHERENT)) {
1449 direct_mapable = true;
1450 }
1451 }
1452
1453 #ifdef PMAP_NEED_ALLOC_POOLPAGE
1454 /*
1455 * The page can only be direct mapped if was allocated out
1456 * of the arm poolpage vm freelist.
1457 */
1458 uvm_physseg_t upm = uvm_physseg_find(atop(pa), NULL);
1459 KASSERT(uvm_physseg_valid_p(upm));
1460 if (direct_mapable) {
1461 direct_mapable =
1462 (arm_poolpage_vmfreelist == uvm_physseg_get_free_list(upm));
1463 }
1464 #endif
1465
1466 if (direct_mapable) {
1467 *kvap = (void *)PMAP_MAP_POOLPAGE(pa);
1468 #ifdef DEBUG_DMA
1469 printf("dmamem_map: =%p\n", *kvap);
1470 #endif /* DEBUG_DMA */
1471 return 0;
1472 }
1473 }
1474 #endif
1475
1476 size = round_page(size);
1477
1478 #ifdef PMAP_MAPSIZE1
1479 if (size >= PMAP_MAPSIZE1)
1480 align = PMAP_MAPSIZE1;
1481
1482 #ifdef PMAP_MAPSIZE2
1483
1484 #if PMAP_MAPSIZE1 > PMAP_MAPSIZE2
1485 #error PMAP_MAPSIZE1 must be smaller than PMAP_MAPSIZE2
1486 #endif
1487
1488 if (size >= PMAP_MAPSIZE2)
1489 align = PMAP_MAPSIZE2;
1490
1491 #ifdef PMAP_MAPSIZE3
1492
1493 #if PMAP_MAPSIZE2 > PMAP_MAPSIZE3
1494 #error PMAP_MAPSIZE2 must be smaller than PMAP_MAPSIZE3
1495 #endif
1496
1497 if (size >= PMAP_MAPSIZE3)
1498 align = PMAP_MAPSIZE3;
1499 #endif
1500 #endif
1501 #endif
1502
1503 va = uvm_km_alloc(kernel_map, size, align, kmflags);
1504 if (__predict_false(va == 0 && align > 0)) {
1505 align = 0;
1506 va = uvm_km_alloc(kernel_map, size, 0, kmflags);
1507 }
1508
1509 if (va == 0)
1510 return ENOMEM;
1511
1512 *kvap = (void *)va;
1513
1514 for (curseg = 0; curseg < nsegs; curseg++) {
1515 for (pa = segs[curseg].ds_addr;
1516 pa < (segs[curseg].ds_addr + segs[curseg].ds_len);
1517 pa += PAGE_SIZE, va += PAGE_SIZE, size -= PAGE_SIZE) {
1518 bool uncached = (flags & BUS_DMA_COHERENT);
1519 bool prefetchable = (flags & BUS_DMA_PREFETCHABLE);
1520 #ifdef DEBUG_DMA
1521 printf("wiring P%#" PRIxPADDR
1522 " to V%#" PRIxVADDR "\n", pa, va);
1523 #endif /* DEBUG_DMA */
1524 if (size == 0)
1525 panic("_bus_dmamem_map: size botch");
1526
1527 const struct arm32_dma_range * const dr =
1528 _bus_dma_paddr_inrange(t->_ranges, t->_nranges, pa);
1529 /*
1530 * If this dma region is coherent then there is
1531 * no need for an uncached mapping.
1532 */
1533 if (dr != NULL
1534 && (dr->dr_flags & _BUS_DMAMAP_COHERENT)) {
1535 uncached = false;
1536 }
1537
1538 u_int pmap_flags = PMAP_WIRED;
1539 if (prefetchable)
1540 pmap_flags |= PMAP_WRITE_COMBINE;
1541 else if (uncached)
1542 pmap_flags |= PMAP_NOCACHE;
1543
1544 pmap_kenter_pa(va, pa, VM_PROT_READ | VM_PROT_WRITE,
1545 pmap_flags);
1546 }
1547 }
1548 pmap_update(pmap_kernel());
1549 #ifdef DEBUG_DMA
1550 printf("dmamem_map: =%p\n", *kvap);
1551 #endif /* DEBUG_DMA */
1552 return 0;
1553 }
1554
1555 /*
1556 * Common function for unmapping DMA-safe memory. May be called by
1557 * bus-specific DMA memory unmapping functions.
1558 */
1559 void
1560 _bus_dmamem_unmap(bus_dma_tag_t t, void *kva, size_t size)
1561 {
1562
1563 #ifdef DEBUG_DMA
1564 printf("dmamem_unmap: t=%p kva=%p size=%#zx\n", t, kva, size);
1565 #endif /* DEBUG_DMA */
1566 KASSERTMSG(((uintptr_t)kva & PAGE_MASK) == 0,
1567 "kva %p (%#"PRIxPTR")", kva, ((uintptr_t)kva & PAGE_MASK));
1568
1569 #ifdef __HAVE_MM_MD_DIRECT_MAPPED_PHYS
1570 /*
1571 * Check to see if this used direct mapped memory. Get its physical
1572 * address and try to map it. If the resultant matches the kva, then
1573 * it was and so we can just return since we have nothing to free up.
1574 */
1575 paddr_t pa;
1576 vaddr_t va;
1577 (void)pmap_extract(pmap_kernel(), (vaddr_t)kva, &pa);
1578 if (mm_md_direct_mapped_phys(pa, &va) && va == (vaddr_t)kva)
1579 return;
1580 #endif
1581
1582 size = round_page(size);
1583 pmap_kremove((vaddr_t)kva, size);
1584 pmap_update(pmap_kernel());
1585 uvm_km_free(kernel_map, (vaddr_t)kva, size, UVM_KMF_VAONLY);
1586 }
1587
1588 /*
1589 * Common function for mmap(2)'ing DMA-safe memory. May be called by
1590 * bus-specific DMA mmap(2)'ing functions.
1591 */
1592 paddr_t
1593 _bus_dmamem_mmap(bus_dma_tag_t t, bus_dma_segment_t *segs, int nsegs,
1594 off_t off, int prot, int flags)
1595 {
1596 paddr_t map_flags;
1597 int i;
1598
1599 for (i = 0; i < nsegs; i++) {
1600 KASSERTMSG((off & PAGE_MASK) == 0,
1601 "off %#jx (%#x)", (uintmax_t)off, (int)off & PAGE_MASK);
1602 KASSERTMSG((segs[i].ds_addr & PAGE_MASK) == 0,
1603 "ds_addr %#lx (%#x)", segs[i].ds_addr,
1604 (int)segs[i].ds_addr & PAGE_MASK);
1605 KASSERTMSG((segs[i].ds_len & PAGE_MASK) == 0,
1606 "ds_len %#lx (%#x)", segs[i].ds_addr,
1607 (int)segs[i].ds_addr & PAGE_MASK);
1608 if (off >= segs[i].ds_len) {
1609 off -= segs[i].ds_len;
1610 continue;
1611 }
1612
1613 map_flags = 0;
1614 if (flags & BUS_DMA_PREFETCHABLE)
1615 map_flags |= ARM_MMAP_WRITECOMBINE;
1616
1617 return arm_btop((u_long)segs[i].ds_addr + off) | map_flags;
1618
1619 }
1620
1621 /* Page not found. */
1622 return -1;
1623 }
1624
1625 /**********************************************************************
1626 * DMA utility functions
1627 **********************************************************************/
1628
1629 /*
1630 * Utility function to load a linear buffer. lastaddrp holds state
1631 * between invocations (for multiple-buffer loads). segp contains
1632 * the starting segment on entrance, and the ending segment on exit.
1633 * first indicates if this is the first invocation of this function.
1634 */
1635 int
1636 _bus_dmamap_load_buffer(bus_dma_tag_t t, bus_dmamap_t map, void *buf,
1637 bus_size_t buflen, struct vmspace *vm, int flags)
1638 {
1639 bus_size_t sgsize;
1640 bus_addr_t curaddr;
1641 vaddr_t vaddr = (vaddr_t)buf;
1642 int error;
1643
1644 #ifdef DEBUG_DMA
1645 printf("_bus_dmamap_load_buffer(buf=%p, len=%#" PRIxBUSSIZE
1646 ", flags=%#x)\n", buf, buflen, flags);
1647 #endif /* DEBUG_DMA */
1648
1649 pmap_t pmap = vm_map_pmap(&vm->vm_map);
1650
1651 while (buflen > 0) {
1652 /*
1653 * Get the physical address for this segment.
1654 *
1655 */
1656 bool coherent;
1657 bool ok __diagused;
1658 ok = pmap_extract_coherency(pmap, vaddr, &curaddr, &coherent);
1659
1660 /*
1661 * trying to bus_dmamap_load an unmapped buffer is a
1662 * programming error.
1663 */
1664 KASSERT(ok);
1665
1666 KASSERTMSG((vaddr & PAGE_MASK) == (curaddr & PAGE_MASK),
1667 "va %#" PRIxVADDR " curaddr %#" PRIxBUSADDR, vaddr, curaddr);
1668
1669 /*
1670 * Compute the segment size, and adjust counts.
1671 */
1672 sgsize = PAGE_SIZE - ((u_long)vaddr & PGOFSET);
1673 if (buflen < sgsize)
1674 sgsize = buflen;
1675
1676 error = _bus_dmamap_load_paddr(t, map, curaddr, sgsize,
1677 coherent);
1678 if (__predict_false(error))
1679 return error;
1680
1681 vaddr += sgsize;
1682 buflen -= sgsize;
1683 }
1684
1685 return 0;
1686 }
1687
1688 /*
1689 * Allocate physical memory from the given physical address range.
1690 * Called by DMA-safe memory allocation methods.
1691 */
1692 int
1693 _bus_dmamem_alloc_range(bus_dma_tag_t t, bus_size_t size, bus_size_t alignment,
1694 bus_size_t boundary, bus_dma_segment_t *segs, int nsegs, int *rsegs,
1695 int flags, paddr_t low, paddr_t high)
1696 {
1697 paddr_t curaddr, lastaddr;
1698 struct vm_page *m;
1699 struct pglist mlist;
1700 int curseg, error;
1701
1702 KASSERTMSG(boundary == 0 || (boundary & (boundary - 1)) == 0,
1703 "invalid boundary %#" PRIxBUSSIZE, boundary);
1704
1705 #ifdef DEBUG_DMA
1706 printf("alloc_range: t=%p size=%#" PRIxBUSSIZE
1707 " align=%#" PRIxBUSSIZE " boundary=%#" PRIxBUSSIZE
1708 " segs=%p nsegs=%#x rsegs=%p flags=%#x"
1709 " lo=%#" PRIxPADDR " hi=%#" PRIxPADDR "\n",
1710 t, size, alignment, boundary, segs, nsegs, rsegs, flags, low, high);
1711 #endif /* DEBUG_DMA */
1712
1713 /* Always round the size. */
1714 size = round_page(size);
1715
1716 /*
1717 * We accept boundaries < size, splitting in multiple segments
1718 * if needed. uvm_pglistalloc does not, so compute an appropriate
1719 * boundary: next power of 2 >= size
1720 */
1721 bus_size_t uboundary = boundary;
1722 if (uboundary <= PAGE_SIZE) {
1723 uboundary = 0;
1724 } else {
1725 while (uboundary < size) {
1726 uboundary <<= 1;
1727 }
1728 }
1729
1730 /*
1731 * Allocate pages from the VM system.
1732 */
1733 error = uvm_pglistalloc(size, low, high, alignment, uboundary,
1734 &mlist, nsegs, (flags & BUS_DMA_NOWAIT) == 0);
1735 if (error)
1736 return error;
1737
1738 /*
1739 * Compute the location, size, and number of segments actually
1740 * returned by the VM code.
1741 */
1742 m = TAILQ_FIRST(&mlist);
1743 curseg = 0;
1744 lastaddr = segs[curseg].ds_addr = segs[curseg]._ds_paddr =
1745 VM_PAGE_TO_PHYS(m);
1746 segs[curseg].ds_len = PAGE_SIZE;
1747 #ifdef DEBUG_DMA
1748 printf("alloc: page %#" PRIxPADDR "\n", lastaddr);
1749 #endif /* DEBUG_DMA */
1750 m = TAILQ_NEXT(m, pageq.queue);
1751
1752 for (; m != NULL; m = TAILQ_NEXT(m, pageq.queue)) {
1753 curaddr = VM_PAGE_TO_PHYS(m);
1754 KASSERTMSG(low <= curaddr && curaddr < high,
1755 "uvm_pglistalloc returned non-sensicaladdress %#" PRIxPADDR
1756 "(low=%#" PRIxPADDR ", high=%#" PRIxPADDR "\n",
1757 curaddr, low, high);
1758 #ifdef DEBUG_DMA
1759 printf("alloc: page %#" PRIxPADDR "\n", curaddr);
1760 #endif /* DEBUG_DMA */
1761 if (curaddr == lastaddr + PAGE_SIZE
1762 && (lastaddr & boundary) == (curaddr & boundary))
1763 segs[curseg].ds_len += PAGE_SIZE;
1764 else {
1765 curseg++;
1766 if (curseg >= nsegs) {
1767 uvm_pglistfree(&mlist);
1768 return EFBIG;
1769 }
1770 segs[curseg].ds_addr = curaddr;
1771 segs[curseg]._ds_paddr = curaddr;
1772 segs[curseg].ds_len = PAGE_SIZE;
1773 }
1774 lastaddr = curaddr;
1775 }
1776
1777 *rsegs = curseg + 1;
1778
1779 return 0;
1780 }
1781
1782 /*
1783 * Check if a memory region intersects with a DMA range, and return the
1784 * page-rounded intersection if it does.
1785 */
1786 int
1787 arm32_dma_range_intersect(struct arm32_dma_range *ranges, int nranges,
1788 paddr_t pa, psize_t size, paddr_t *pap, psize_t *sizep)
1789 {
1790 struct arm32_dma_range *dr;
1791 int i;
1792
1793 if (ranges == NULL)
1794 return 0;
1795
1796 for (i = 0, dr = ranges; i < nranges; i++, dr++) {
1797 if (dr->dr_sysbase <= pa &&
1798 pa < (dr->dr_sysbase + dr->dr_len)) {
1799 /*
1800 * Beginning of region intersects with this range.
1801 */
1802 *pap = trunc_page(pa);
1803 *sizep = round_page(uimin(pa + size,
1804 dr->dr_sysbase + dr->dr_len) - pa);
1805 return 1;
1806 }
1807 if (pa < dr->dr_sysbase && dr->dr_sysbase < (pa + size)) {
1808 /*
1809 * End of region intersects with this range.
1810 */
1811 *pap = trunc_page(dr->dr_sysbase);
1812 *sizep = round_page(uimin((pa + size) - dr->dr_sysbase,
1813 dr->dr_len));
1814 return 1;
1815 }
1816 }
1817
1818 /* No intersection found. */
1819 return 0;
1820 }
1821
1822 #ifdef _ARM32_NEED_BUS_DMA_BOUNCE
1823 static int
1824 _bus_dma_alloc_bouncebuf(bus_dma_tag_t t, bus_dmamap_t map,
1825 bus_size_t size, int flags)
1826 {
1827 struct arm32_bus_dma_cookie *cookie = map->_dm_cookie;
1828 int error = 0;
1829
1830 KASSERT(cookie != NULL);
1831
1832 cookie->id_bouncebuflen = round_page(size);
1833 error = _bus_dmamem_alloc(t, cookie->id_bouncebuflen,
1834 PAGE_SIZE, map->_dm_boundary, cookie->id_bouncesegs,
1835 map->_dm_segcnt, &cookie->id_nbouncesegs, flags);
1836 if (error == 0) {
1837 error = _bus_dmamem_map(t, cookie->id_bouncesegs,
1838 cookie->id_nbouncesegs, cookie->id_bouncebuflen,
1839 (void **)&cookie->id_bouncebuf, flags);
1840 if (error) {
1841 _bus_dmamem_free(t, cookie->id_bouncesegs,
1842 cookie->id_nbouncesegs);
1843 cookie->id_bouncebuflen = 0;
1844 cookie->id_nbouncesegs = 0;
1845 } else {
1846 cookie->id_flags |= _BUS_DMA_HAS_BOUNCE;
1847 }
1848 } else {
1849 cookie->id_bouncebuflen = 0;
1850 cookie->id_nbouncesegs = 0;
1851 }
1852
1853 return error;
1854 }
1855
1856 static void
1857 _bus_dma_free_bouncebuf(bus_dma_tag_t t, bus_dmamap_t map)
1858 {
1859 struct arm32_bus_dma_cookie *cookie = map->_dm_cookie;
1860
1861 KASSERT(cookie != NULL);
1862
1863 _bus_dmamem_unmap(t, cookie->id_bouncebuf, cookie->id_bouncebuflen);
1864 _bus_dmamem_free(t, cookie->id_bouncesegs, cookie->id_nbouncesegs);
1865 cookie->id_bouncebuflen = 0;
1866 cookie->id_nbouncesegs = 0;
1867 cookie->id_flags &= ~_BUS_DMA_HAS_BOUNCE;
1868 }
1869 #endif /* _ARM32_NEED_BUS_DMA_BOUNCE */
1870
1871 /*
1872 * This function does the same as uiomove, but takes an explicit
1873 * direction, and does not update the uio structure.
1874 */
1875 static int
1876 _bus_dma_uiomove(void *buf, struct uio *uio, size_t n, int direction)
1877 {
1878 struct iovec *iov;
1879 int error;
1880 struct vmspace *vm;
1881 char *cp;
1882 size_t resid, cnt;
1883 int i;
1884
1885 iov = uio->uio_iov;
1886 vm = uio->uio_vmspace;
1887 cp = buf;
1888 resid = n;
1889
1890 for (i = 0; i < uio->uio_iovcnt && resid > 0; i++) {
1891 iov = &uio->uio_iov[i];
1892 if (iov->iov_len == 0)
1893 continue;
1894 cnt = MIN(resid, iov->iov_len);
1895
1896 if (!VMSPACE_IS_KERNEL_P(vm)) {
1897 preempt_point();
1898 }
1899 if (direction == UIO_READ) {
1900 error = copyout_vmspace(vm, cp, iov->iov_base, cnt);
1901 } else {
1902 error = copyin_vmspace(vm, iov->iov_base, cp, cnt);
1903 }
1904 if (error)
1905 return error;
1906 cp += cnt;
1907 resid -= cnt;
1908 }
1909 return 0;
1910 }
1911
1912 int
1913 _bus_dmatag_subregion(bus_dma_tag_t tag, bus_addr_t min_addr,
1914 bus_addr_t max_addr, bus_dma_tag_t *newtag, int flags)
1915 {
1916 #ifdef _ARM32_NEED_BUS_DMA_BOUNCE
1917 if (min_addr >= max_addr)
1918 return EOPNOTSUPP;
1919
1920 struct arm32_dma_range *dr;
1921 bool psubset = true;
1922 size_t nranges = 0;
1923 size_t i;
1924 for (i = 0, dr = tag->_ranges; i < tag->_nranges; i++, dr++) {
1925 /*
1926 * If the new {min,max}_addr are narrower than any of the
1927 * ranges in the parent tag then we need a new tag;
1928 * otherwise the parent tag is a subset of the new
1929 * range and can continue to be used.
1930 */
1931 if (min_addr > dr->dr_sysbase
1932 || max_addr < dr->dr_sysbase + dr->dr_len - 1) {
1933 psubset = false;
1934 }
1935 if (min_addr <= dr->dr_sysbase + dr->dr_len
1936 && max_addr >= dr->dr_sysbase) {
1937 nranges++;
1938 }
1939 }
1940 if (nranges == 0) {
1941 nranges = 1;
1942 psubset = false;
1943 }
1944 if (psubset) {
1945 *newtag = tag;
1946 /* if the tag must be freed, add a reference */
1947 if (tag->_tag_needs_free)
1948 (tag->_tag_needs_free)++;
1949 return 0;
1950 }
1951
1952 const size_t tagsize = sizeof(*tag) + nranges * sizeof(*dr);
1953 if ((*newtag = kmem_intr_zalloc(tagsize,
1954 (flags & BUS_DMA_NOWAIT) ? KM_NOSLEEP : KM_SLEEP)) == NULL)
1955 return ENOMEM;
1956
1957 dr = (void *)(*newtag + 1);
1958 **newtag = *tag;
1959 (*newtag)->_tag_needs_free = 1;
1960 (*newtag)->_ranges = dr;
1961 (*newtag)->_nranges = nranges;
1962
1963 if (tag->_ranges == NULL) {
1964 dr->dr_sysbase = min_addr;
1965 dr->dr_busbase = min_addr;
1966 dr->dr_len = max_addr + 1 - min_addr;
1967 } else {
1968 struct arm32_dma_range *pdr;
1969
1970 for (i = 0, pdr = tag->_ranges; i < tag->_nranges; i++, pdr++) {
1971 KASSERT(nranges != 0);
1972
1973 if (min_addr > pdr->dr_sysbase + pdr->dr_len
1974 || max_addr < pdr->dr_sysbase) {
1975 /*
1976 * this range doesn't overlap with new limits,
1977 * so skip.
1978 */
1979 continue;
1980 }
1981 /*
1982 * Copy the range and adjust to fit within the new
1983 * limits
1984 */
1985 dr[0] = pdr[0];
1986 if (dr->dr_sysbase < min_addr) {
1987 psize_t diff = min_addr - dr->dr_sysbase;
1988 dr->dr_busbase += diff;
1989 dr->dr_len -= diff;
1990 dr->dr_sysbase += diff;
1991 }
1992 if (max_addr <= dr->dr_sysbase + dr->dr_len - 1) {
1993 dr->dr_len = max_addr + 1 - dr->dr_sysbase;
1994 }
1995 dr++;
1996 nranges--;
1997 }
1998 }
1999
2000 return 0;
2001 #else
2002 return EOPNOTSUPP;
2003 #endif /* _ARM32_NEED_BUS_DMA_BOUNCE */
2004 }
2005
2006 void
2007 _bus_dmatag_destroy(bus_dma_tag_t tag)
2008 {
2009 #ifdef _ARM32_NEED_BUS_DMA_BOUNCE
2010 switch (tag->_tag_needs_free) {
2011 case 0:
2012 break; /* not allocated with kmem */
2013 case 1: {
2014 const size_t tagsize = sizeof(*tag)
2015 + tag->_nranges * sizeof(*tag->_ranges);
2016 kmem_intr_free(tag, tagsize); /* last reference to tag */
2017 break;
2018 }
2019 default:
2020 (tag->_tag_needs_free)--; /* one less reference */
2021 }
2022 #endif
2023 }
2024